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Abstract: There is an increasing interest in NoSQL (Not Only SQL) systems developed in the area of Big Data as 
candidates for implementing multidimensional data warehouses due to the capabilities of data 
structuration/storage they offer. In this paper, we study implementation and modeling issues for data 
warehousing with document-oriented systems, a class of NoSQL systems. We study four different mappings 
of the multidimensional conceptual model to document data models. We focus on formalization and cross-
model comparison. Experiments go through important features of data warehouses including data loading, 
OLAP cuboid computation and querying. Document-oriented systems are also compared to relational 
systems. 

1 INTRODUCTION 

In the area of Big Data, NoSQL systems have 
attracted interest as mean for implementing 
multidimensional data warehouses (Chevalier et al, 
2015a), (Chevalier et al, 2015b), (Mior, 2014), (Dede 
et al, 2013), (Schindler, 2012). The proposed 
approaches mainly rely on two specific classes of 
NoSQL systems, namely document-oriented systems 
(Chevalier et al, 2015a) and column oriented systems 
(Chevalier et al, 2015b), (Dede et al, 2013). In this 
paper, we study further document-oriented systems in 
the context of data warehousing.  

In contrast to Relational Database Management 
Systems (RDBMS), document-oriented systems,and 
many other NoSQL systems, are famous for 
horizontal scaling, elasticity, data availability, and 
schema flexibility. They can accommodate 
heterogeneous data (not all conforming to one data 
model); they provide richer structures (arrays, 
nesting…) and they offer different options for data 
processing including map-reduce and aggregation 
pipelines. In these settings, it becomes interesting to 
investigate for new opportunities for data 
warehousing. On one hand, we can exploit scalability 
and flexibility for large-scale deployment. On the 
other hand, we can accommodate heterogeneous data 
and consider mapping to new data models. In this 

setting, document-oriented systems become natural 
candidates for implementing data warehouses.  

In this paper, we consider four possible mappings 
of the multidimensional conceptual model into 
document logical models. This includes simple 
models that are analogous to relational database 
models using normalization and denormalization. We 
also consider models that use specific features of the 
document-oriented system such as nesting and 
schema flexibility. We instantiate a data warehouse 
using each of the models and we compare each 
instantiation with each other on different axes 
including: data loading, querying, and OLAP cuboid 
computation. 

2 RELATED WORK 

Multidimensional databases are mostly implemented 
using RDBMS technologies (Chaudhuri et al, 1997), 
(Kimball, 2013). Considerable research has focused 
on the translation of data warehousing concepts into 
relational logical level (Bosworth et al, 1995), 
(Colliat et al, 1996), (called R-OLAP). Mapping rules 
are used to convert structures of the conceptual level 
(facts, dimensions and hierarchies) into a logical 
model based on relations (Ravat, et al, 2006). 
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There is an increasing attention towards the 
implementation of data warehouses with NoSQL 
systems (Chevalier et al, 2015a), (Zhao et al, 2014), 
(Dehdouh et al, 2014), (Cuzzocrea et al, 2013). In 
(Zhao et al, 2014), the authors implement a data 
warehouse into a column-oriented store (HBase). They 
show how to instantiate efficiently OLAP cuboids with 
MapReduce-like functions. In (Floratou et al, 2012), 
the authors compare a column-oriented system (Hive 
on Hadoop) with a distributed version of a relational 
system (SQL server PDW) on OLAP queries.  

Document-oriented systems offer particular data 
structures such as nested sub-documents and arrays. 
These features are also met in object-oriented and 
XML like systems. However, none of the above has 
met success as RDBMS for implementing data 
warehouses and in particular for implementing OLAP 
cuboids as we do is this paper. In (Kanade et al, 2014), 
different document logical models are compared to 
each other: data denormalization, normalized data; 
and models that use nesting. However, this study is in 
a “non-OLAP” setting. 

In our previous work (Chevalier et al, 2015a), 
(Chevalier et al, 2015b) we have studied 3 column-
oriented models and 3-document-oriented models for 
multidimensional data warehouses. We have focused 
on direct translation of the multidimensional model to 
NoSQL logical models. However, we have 
considered simple models (models with few 
document-oriented specific features) and the 
experiments were at an early stage. In this paper, we 
focus on more powerful models and our experiments 
cover most of data warehouse issues.  

3 DOCUMENT DATA MODEL 
FOR DATA WAREHOUSES 

We distinguish three abstraction levels: conceptual 
model (Golfarelli et al, 1998), (Annoni, et al, 2006) 
that is independent of technologies, logical model that 
corresponds to one specific technology but software 
independent, physical model that corresponds to one 
specific software. The multidimensional schema is 
the reference conceptual model for data warehousing. 
We will map this model to document-oriented data 
models.  

3.1 Multidimensional Conceptual 
Model 

Definition 1. A multidimensional schema, namely E, 
is defined by (FE, DE, StarE) where: FE = {F1,…, Fn} 

is a finite set of facts, DE = {D1,…, Dm} is a finite set 

of dimensions, and StarE: FE → 2ಶ is a function that 
associates facts of FE to sets of dimensions along 
which it can be analyzed (2ಶ is the power set of DE).  

Definition 2. A dimension, denoted Di∈DE 
(abusively noted as D), is defined by (ND, AD, HD) 
where: ND is the name of the dimension; ܣ	 ={ܽଵ,… , ܽ௨}	U	{݅݀,… ,  }  is a set of dimension݈݈ܣ
attributes; and ܪ =  is a set of {௩ܪ…,ଵܪ}
hierarchies. A hierarchy can be as simple as the 
example {“day, month, year”}.  

Definition 3. A fact, F∈FE, is defined by (NF, MF) 
where: NF is the name of the fact, and ܯி ={݉ଵி,… ,݉௩ி} is a set of measures. Typically, we apply 
aggregation functions on measures. A combination of 
dimensions represents the analysis axis, while the 
measures and their aggregations represent the 
analysis values.  

3.2 Document-oriented Logical Model 

Here, we provide key definitions and notation we will 
use to formalize documents. Documents are grouped 
in collections. We refer to such a document as C(id).  

Definition 4. A document corresponds to a set of 
key-values. A unique key identifies every document; 
we call it identifier. Keys define the structure of the 
document; they act as meta-data. Each value can be 
an atomic value (number, string, date…) or a sub-
document or array. Documents within documents are 
called sub-documents or nested documents. 

Definition 5. The document structure/schema 
corresponds to a generic document without atomic 
values i.e. only keys.  

We use the colon symbol “:” to separate keys 
from values, “[]” to denote arrays, “{}” to denote 
documents and a comma “,” to separate key-value 
pairs from each other.  

With the above notation, we can provide an 
example of a document instance. It belongs to the 
“Persons” collection, it has 30001 as identifier and it 
contains keys such as “name”, “addresses”, “phone”. 
The addresses value corresponds to an array and the 
phone value corresponds to a sub-document.  

Persons(30001): 
{name:“John Smith”,  
 addresses:  
 [{city:“London”, country:“UK”}, 
  {city:“Paris”, country:“France”}], 
 phone: 
 {prefix:“0033”, number:“61234567”}} 

The above document has a document schema: 

 {name, addresses: [{city, country}], 
phone: {prefix, number}} 
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Another way to represent a document is through 
all the paths within the document that reach the 
atomic values. A path p of a document instance with 
identifier id is described as p=C(id):k1:k2:…kn:a 
where k1, k2,… kn:a are keys within the same path 
ending at an atomic value a.  

In a same collection it is possible to have 
documents with different structures: the schema is 
specific at the document level. We define the 
collection model as the union of all schemas of all 
documents. A collection C that accepts two sub-
models S1 and S2, can be written as SC={S1, S2}. This 
formalism will be enough for our purposes.  

3.3 Document-oriented Models for 
Data Warehousing 

In this section, we present document models that we 
will use to map the multidimensional data model. We 
refer here to the multidimensional conceptual model as 
described in section 3 and we describe and illustrate 
four logical data models. Each time we describe the 
model for a fact F (with name NF) and its dimensions 
D∈StarE(F) (each dimension has a name ND).  

We will illustrate each model with a simple 
example. We consider the fact “LineOrder” and only 
one dimension “Customer”. For “LineOrder”, we 
have three measures “l_quantity”, “l_shipmode” and 
“l_price”. For “Customer”, we have three attributes 
“c_name”, “c_city” and “c_nation_name”.  

The chosen models are diverse each one with 
strengths and weaknesses. They are also useful to 
illustrate the modeling issues in document-oriented 
systems. Models M0 and M2 are equivalent to data 
denormalization and normalization in RDBMS. 
Model M1 is similar to M0, but it adds some more 
structure (meta-data) to documents. This model is 
interesting to see if extra meta data is penalizing (in 
terms of memory usage, query execution, etc.). Model 
M3 is similar to M2, but everything is stored in one 
collection. M3 exploits schema flexibility i.e. it stores 
in one collection documents of different schema. 

Each model is defined, formalized and illustrated 
below: 
Model M0, Flat: It corresponds to a denormalized 
flat model. Every fact from F is stored in a collection 
CF with all attributes of its dimensions StarE(F). It 
corresponds to denormalized data (in RDBMS). 
Documents are flat (no nesting), all attributes are at 
the same level. The schema SF of the collection CF is: ܵி = {id,݉ଵ,݉ଶ, …݉หெಷห, ܽଵభ, ܽଶభ, … ܽหವభหభ , ܽଵమ, ܽଶమ	… ܽหವమหమ , … } 

e.g. 
{id:1,  
 l_quantity:4, 
 l_shipmode:“mail”, 
 l_price:400.0, 
 c_name:“John”,  
 c_city:“Rome”, 
 c_nation_name:“Italy”} 

Model M1, Deco: It corresponds to a denormalized 
model with more structure (meta-data). It is similar to 
M0, because every fact F is stored in a collection CF 
with all attributes of its dimensions StarE(F). In each 
document, we group measures together in a sub-
document with key NF. Attributes of one dimension 
are also grouped together in a sub-document with key 
ND. This model is simple, but it illustrates the 
existence of non-flat documents. The schema SF of 
the CF is:   ܵி = ቄ݅݀ி, Nி: ቄ݉ଵ,݉ଶ, . . ݉หெಷหቅ , 	ܰభ: {ܽଵభ, ܽଶభ, … ܽหವభหభ ቅ, 
          	ܰమ: {ܽଵమ, ܽଶమ, … ܽหವభหమ },… } 
e.g. 
{id:1,  
 LineOrder:  
  {l_quantity:4, 
   l_shipmode:“mail”, 
   l_price:400.0}, 
 Customer:  
  {c_name:“John”, 
   c_city:“Rome”,  
   c_nation_name:“Italy”}} 

Model M2, Shattered: It corresponds to a data model 
where fact records are stored separately from 
dimension records to avoid redundancy, equivalent to 
normalization. The fact F is stored in a collection CF 
and each dimension D∈StarE(F) is stored in a 
collection CD. The fact documents contain foreign 
keys towards the dimension collections. The schema 
SF of CF and the schema ܵ of a dimension collection 
CD are as follows:   			ܵி = {݅݀ி,݉ଵ,݉ଶ,…݉หெಷห, ݅݀భ, ݅݀మ, … } 			ܵ = {݅݀, ܽଵୈ, ܽଶୈ, … ܽหವหୈ } 
e.g. 
{id:1, 
 l_quantity:4, 
 l_shipmode:“mail”, 
 l_price:400.0, 
 c_id:4} ∈ C 
{id:4, 
 c_name:“John”, 
 c_city:“Rome”,  
 c_nation_name:“Italy”} ∈ Cେ୳ୱ୲୭୫ୣ୰ 
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Model M3, Hybrid: It corresponds to a hybrid model 
where we store documents of different schema in one 
collection. We store everything in one collection, say 
CF. We store the fact entries with a schema SF. 
Dimensions are stored within the same collection, but 
each with its complete schema SD.  

We need to keep references from fact entries 
towards the corresponding dimension entries. This 
model is similar to M2, at the difference of storing 
everything in one collection. 

This model is interesting, because if we use 
indexes properly, we can access quickly the 
dimension attributes and all corresponding facts e.g. 
with an index on c_custkey, we access quickly all 
sales of a given customer.  

The schemas SF and SD are:  ܵி = {݅݀	, ݉ଵ,݉ଶ,…݉หெಷห, ݅݀భ, ݅݀మ, … } ; ܵ = {݅݀, ܽଵୈ, ܽଶୈ, … ܽหಷหୈ } 
e.g. 
{id:1, 
 l_quantity:4, 
 l_shipmode:“mail”, 
 l_extended_price:400.0, 
 c_custkey:2, 
 c_datekey:3} ∈ C 
{id:2, 
 custkey: 4, 
 c_name: “John”, 
 c_city: “Rome”, 
 c_nation_name:“Italy”, 
 c_region_name:“Europe”} ∈ C 
{id:3, 
 date_key:1,  
 d_date:10, 
 d_month:“January”, 
 d_year:2014} ∈ C 

In Table 1, we summarize the mapping of the 
multidimensional model to our logical models. For 
every dimension attribute or fact measure, we show 
the corresponding collection and path within a 
document structure.  

Table 1: Mapping of the multidimensional schema to the 
logical data models. 

 ∀D∈DO ∀a∈AD ∀m∈MF 
 collection path collection path 

M0 CF a CF m

M1 CF ND:a CF NF:m
M2 CD a CF m
M3 CF a CF m

4 EXPERIMENTS 

4.1 Experimental Setup 

The experimental setup is briefly introduced and then 
detailed in the next paragraphs. We generate 4 
datasets according to the SSB+, Star schema 
benchmark (Chevalier et al, 2015c), (Oneil et al, 
2009), which is itself a derived from the TPC-H 
benchmark. TPC-H is a reference benchmark for 
decision support systems. The benchmark is extended 
to generate data compatible to our document models 
(M0, M1, M2, M3). Data is loaded in MongoDB v2.6, 
a popular document-oriented system. On each 
dataset, we issue sets of OLAP queries and we 
compute OLAP cuboids on different combinations of 
dimensions. Experiments are done in single-node and 
a distributed 3-nodes cluster setting.  

For comparative reasons, we also load two 
datasets in PostgresSQL v8.4, a popular RDBMS. In 
this case, dataset data corresponds to a flat model 
(M0) and a star-like normalized model (M2), that we 
name respectively R0 and R2. Experiments in 
PostgreSQL are done in a singlenode setting.  

Data. We generate data using an extended version 
of the Start Schema Benchmark denoted SSB+ 
(Chevalier et al, 2015c), (Oneil et al, 2009). The 
benchmark models a simple product retail reality. The 
SSB+ benchmark models a simple product retail 
reality. It contains one fact “LineOrder” and 4 
dimensions “Customer”, “Supplier”, “Part” and 
“Date”.  

We generate data using an extended version of the 
Start Schema Benchmark SSB (Oneil et al, 2009) 
because it is the only data warehousing benchmark that 
has been adapted to NoSQL systems. The extended 
version is part of our previous work (Blind3). It makes 
possible to generates raw data directly as JSON which 
is the preferable data format for data loading in 
MongoDB. We use improve scaling factor issues that 
have been reported. In our experiments we use 
different scale factors (sf) such as sf=1, sf=10 and 
sf=25 in our experiments. In the extended version, the 
scale factor sf=1 corresponds to approximately 107 

records for the LineOrder fact, for sf=10 we have 
approximately 10x107 records and so on.  

Settings/Hardware/Software. The experiments 
have been done in two different settings: single-node 
architecture and a cluster of 3 physical nodes. Each 
node is a Unix machine (CentOs) with 4 core-i5 CPU, 
8GB RAM, 2TB disks, 1Gb/s network. The cluster is 
composed of 3 nodes, each being a worker node and 
one node acts also as dispatcher. Each node has a 
MongoDB v.3.0 running. In MongoDB terminology, 
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this setup corresponds to 3 shards (one per machine). 
One machine also acts as configuration server and 
client. 

4.2 Document-oriented Data 
Warehouses by Model 

Data Loading. We report first the observations on 
data loading. Data with model M0 and M1 occupy 
about 4 times less space than data with models M2 
and M3. For instance, at scale factor sf=1 (107 line 
order records) we need about 4.2GB for storing 
models M2 and M3, while we need about 15GB for 
models M0 and M1. The above observations are 
explained by the fact that data in M2 or M3 has less 
redundancy. In M2 and M3 dimension data is 
repeated just once.  

Figure 1 shows data loading times by model and 
scale factor (sf=1, sf=10, sf=25) on a singlenode 
setting. Loading times are as expected higher for the 
data models that require more memory (M0 and M1). 
In Figure 2, we compare loading times for sf=1 on 
singlenode setting with the distributed setting. We 
observe data loading is significantly slower in a 
distributed setting than on a single machine. For 
instance, model M0 data (sf=1) loads for 1306s on a 
single cluster, while it needs 4246s in a distributed 
setting. This is mainly due to penalization related to 
network data transfer. Indeed, MongoDB balances 
data load i.e. it tries to distribute equally data across 
all shards implying more network communication. 

 

Figure 1: Loading times by data models. 

Querying. We test each instantiation (on 4 data 
models) on 3 sets of OLAP queries (QS1, QS2, QS3). 
To do so, we use the SSB benchmark query generator 
that generates 3 query variants per set. The query 
complexity increases from QS1 to QS3. QS1 queries 
filter on one dimension and aggregate all data; QS2 
queries filter data on 2 dimensions and group data on 
one dimension; and QS3 queries filter data on 3 
dimensions and group data on 2 dimensions.  

 

Figure 2: Loading time comparisons on single node and 
cluster. 

In Table 3 and 4, we show query execution times 
on all query variants with scale factor sf=1, all 
models, in two settings (single node and cluster). For 
the queries with 3 variants, results are averaged 
(arithmetic mean). In Table 3, we can compare 
averaged execution times per query and model in the 
single node setting. In Table 4, we can compare 
execution times in the distributed (cluster) setting.  

We observe that for some queries some models 
work better and for others some other models work 
better. We would have expected queries to run faster 
on models M0 and M1 because data is in a 
denormalized fashion (no joins needed). This is 
surprisingly not the case. Query execution times are 
comparable across all models and sometimes queries 
run faster for models M2 and M3. This is partly 
because we could optimize queries choosing from the 
MongoDB rich palette: aggregation pipeline, 
map/reduce, simple queries and procedures. For M2 
and M3, we need to join data from more than one 
document at a time. When we do not write the most 
efficient MongoDB query and/or when we join all 
data needed for the query before any filtering, 
execution times can be significantly higher. Instead 
we apply filters before joins and then we use the 
aggregation pipeline , map/reduce functions, simple 
queries or procedures. We also observed the SSB 
queries had high selectivity. We could filter most 
records before needing any join. To test selectivity 
impact, we tested querying performance on another 
query Q4 that is obtained by modifying one of the 
queries from QS1 to be more selective. On this new 
query set we have about 500000 facts  after filtering. 
We observe that query execution on data with models 
M0 and M1 is lower about 20-30%. Meanwhile, on 
data with models M2 and M3 query execution is 
respectively about 5-15 times slower. This is purely 
due to the impact of joins that are not supported by 
document-oriented systems in general.  
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To fully understand the impact of joins on data 
with models M2 and M3, we conducted another 
experiment when we join all data i.e. we basically 
generate data with model M0 starting from data with 
model M2 and M3. In the most performant 
approaches we could produce, we observed 1010 
minutes for M2 and 632 minutes for M3 on sf=1. This 
is a huge delay. We can conclude that data joins can 
be a major limitation for document-oriented system. 
When joins are poorly supported, data models such as 
M2 and M3 are not interesting.  

In Table 3 and Table 4, we can also compare 
query execution times in singlenode setting with 
respect to distributed setting. We observe that query 
execution times are generally better in a distributed 
setting. For many queries, execution times improve 2 
to 3 times depending on the cases. In a distributed 
setting, query execution is penalized by network data 
transfer, but it is improved by parallel computation. 
When queries are executed on data with models M2 
and M3, improvement on the distributed setting is less 
important (less than 1.5 times).  

4.3 OLAP Cuboids with Documents 

OLAP Cuboid. It is common in OLAP applications 
to pre-compute analysis cuboids that aggregate fact 
measures on different dimension combinations. In our 
example (SSB dataset), there are 4 dimensions C: 
Customer, S: Supplier, D: Date and P: Part. In Figure 
3, we show all possible dimension combinations. 
Data can be analyzed on no dimension (all), 1 
dimension, 2 dimensions or 3 dimensions or 4 
dimensions. Cuboid names are given with dimension 
initials, e.g. CSP stands for cuboid on Customer, 
Supplier and Part. In Figure 3, we show for 
illustration purposes the computation time for a 
complete lattice in M0. In this case, we compute 
lower level cuboids from the cuboid just on top to 
make things faster.  

In Table 2 we show the average time needed to 
compute an OLAP cuboid of x dimensions (x can be 
3, 2, 1, 0, i.e. group on 3 dimensions, 2 dimensions 
and so on). Cuboids are produced starting from data 
on any of the models M0, M1, M2, or M3. 

Table 2: Average aggregation time per lattice level on 
single node setting. 

 M0 M1 M2 M3 
3D 423s 460s 303s 308s 
2D 271s 292s 157s 244s

1D 196s 201s 37s 44s
all 185s 191s 37s 27s

We observe that we need less time to compute the 
OLAP cuboid with M2 and M3. This is because we 
do not denormalize data, i.e. we group only on foreign 
keys. If we need cuboids that use other dimension 
attributes, the computation time is significantly 
higher. 

 

Figure 3: Computation time for each OLAP cuboid with M0 
on single node (letters are dimension names: C=Customer, 
S=Supplier, D=Date, P=Part). 

4.4 Document-oriented Data 
Warehouses versus Relational  
Data Warehouses  

In this section, we compare loading times and 
querying between data warehouse instantiations on 
document-oriented and relational databases. In 
document-oriented systems, we consider the data 
model M0, because it performs better than the others. 
In the relational database, we consider two models R0 
and R2 mentioned earlier. For R0, data is 
denormalized, everything is stored in one table: fact 
and dimension data. For R2, data is stored in a star-
like schema i.e. the fact data is stored in one table and 
each dimension data is stored in a separate table.  

Loading. First of all, we observe that relational 
databases demand for much less memory than 
document-oriented systems. Precisely, for scale 
factor sf=1, we need 15GB for data model M0 in 
MongoDB. Instead we need respectively 4.2GB and 
1.2GB for data models R0 and R2 in PostgreSQL. 
This is easily explained. Document-oriented systems 
repeat field names on every document and 
specifically in MongoDB data types are also stored. 
To store data with flat models we need about 4 times 
more space, due to data redundancy. The same 
proportions are also observed on loading times.  

Querying. We first compare query performance 
on the 4 query sets defined earlier (QS1, QS2, QS3, 
Q4) on a single node. We observe immmediately that 
queries run significantly faster on PostgreSQL (20 to 
100 times). This is partly due to the relatively high 
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selectivity of the considered queries. Almost all data 
fits in memory.  

Table 3: Query execution time per model, single node 
setting. 

sf=1 M0 M1 M2 M3 
Q1.1 62s 62s 37s 94s 
Q1.2 59s 61s 33s 91s 
Q1.3 58s 58s 33s 86s 
Q1 avg 60s 61s 34s✓ 90s 
Q2.1 36s 39s 85s 105s 
Q2.2 37s 41s 83s 109s 
Q2.3 37s 40s 83s 109s 
Q2 avg 37s✓ 40s 84s 108s 
Q3.1 36s 36s 89s 100s 
Q3.2 40s 40s 89s 104s 
Q3.3 38s 38s 92s 104s 
Q3 avg 38s✓ 38s 90s 103s 
Q4 74s✓ 77s 689s 701s 

Table 4: Query execution time per model, cluster setting. 

sf=1  M0 M1 M2 M3 
Q1.1 
Q1.2 
Q1.3 

150s 
141s 
141s 

152s 
142s 
141s 

50s 
47s 
47s 

129s 
125s 
127s 

Q1 avg 144s 145s 48s✓ 127s 
Q2.1 
Q2.2 
Q2.3 

140s 
140s 
140s 

140s 
142s 
138s 

85s 
84s 
86s 

107s 
103s 
111s 

Q2 avg 140s 145s 85s✓ 107s 
Q3.1 
Q3.2 
Q3.3 

137s 
140s 
142s 

138s 
143s 
143s 

97s 
99s 
98s 

105s 
107s 
108s 

Q3 avg 139s 141s 98s 106s 
Q4 173s ✓ 180s 747s 637s 

In addition, we considered OLAP queries that 
correspond to the computation of OLAP cuboids. 
These queries are computationally more expensive 
than the queries considered previously (QS1, QS2, 
QS3, Q4). More precisely, we consider here the 
generation of OLAP cuboids on combinations of 3 
dimensions. We call this query set QS5.  

Average execution times on all query sets are 
shown in Table 5. We observe that the situation is 
reversed on this query set. Query execution times are 
comparable to each other. Queries run faster on 
MongoDB with data model R0 (singlenode) than on 
PostgresSQL. Queries run fastest on PostgreSQL 
with data model R2. MongoDB is faster if we 
consider the distributed setting.  

Table 5: Average querying times by query set and approach. 

single node sf=1 M0 R0 R2 
QS1   144s 7s 1s 
QS2 140s 3s 2s  
QS3 139s 3s 2s 
Q4 173s 3s 1s 
QS5 423s 549s 247s 

On these queries we have to keep in memory 
much more data than for queries in QS1, QS2, QS3 
and QS4. Indeed, on the query sets QS1, QS2, QS3 
and QS4 the amount of data to be processed is 
reduced by filters (equivalent of SQL where 
instructions). Then data is grouped on fewer 
dimensions (0 to 2). The result is fewer data to be kept 
in memory and fewer output records. Instead for 
computing 3 dimensional cuboids, we have to process 
all data and the output has more records. Data will not 
fit in main memory in MongoDB or PostgreSQL. 
Nonetheless MongoDB seems suffering less this 
aspect than PostgreSQL.  

We can conclude that MongoDB scales better 
when the amount of data to be processed increases 
significantly. It can also take advantage of 
distribution. Instead, PostgresSQL performs very 
well when all data fits in main memory.  

5 CONCLUSIONS 

In this paper, we have studied the instantiation of data 
warehouses with document-oriented systems. For this 
purpose, we formalized and analyzed four logical 
models. Our study shows weaknesses and strengths 
across the models. We also compare the best 
performing data warehouse instantiation in 
document-oriented systems with 2 instantiations in 
relational database.  

Depending on queries and data warehouse usage, 
we observe that the ideal model differs. Some models 
require less disk space, more precisely M2 and M3. 
This is due to the redundancy of data in models M0 
and M1 that is avoided with models M2 and M3. For 
highly selective queries, we observe no ideal model. 
Queries run sometimes faster on one model and 
sometimes on another. The situation changes fast 
when queries are less selective. On data with models 
M2 and M3, we observe that querying suffers from 
joins. For queries that are poorly selective, we 
observe a significant impact on query execution times 
making these models non-recommendable.  

We also compare instantiations of data 
warehouses on a document-oriented system with a 
relational system. Results show that RDBMS is faster 
on querying raw data. But performance slows down 
quickly when data does not fit on main memory. 
Instead, the analysed document-oriented system is 
shown more robust i.e. it does not have significant 
performance drop-off with scale increase. As well, it 
is shown to benefit from distribution. This is a clear 
advantage with respect to RDBMS that do not scale 
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well horizontally; they have a lower maximum 
database size than NoSQL systems. 

In the near future, we are currently studying 
another document-oriented system and some column-
oriented systems with the same objective.  
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