
Techno logy So lu t ions fo r the Ente rpr i s e

November/December 2017� Vol. 19, No. 6

www.computer.org/itpro

IT PROFESSIONAL ■ N
N

O
VEM

BER
/D

ECEM
BER

 2017	
G

R
APH

 D
ATABASES	

Volum
e 19 , N

um
ber 6

Fake News
Economics, p. 8
Cybersecurity
Vulnerability
Trends, p. 66

34	 IT Pro November/December 2017	 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 1520-9202/17/$33.00 © 2017 IEEE

GRAPH DATABASES

Modeling Graph
Database Schema

Noa Roy-Hubara, Lior Rokach, and Bracha Shapira, Ben-Gurion University of the Negev, Israel

Peretz Shoval, Ben-Gurion University of the Negev, Israel, and Netanya College

The authors’ approach to creating a graph database schema (GDBS) is
based on an entity-relationship diagram of the application domain,
which is mapped to a GDBS in a two-step process.

T
here are many ways to store data. Un-
til recently, data was most commonly
stored in relational databases. The
evolution of the Web and the explosive

growth of big data have placed new demands
on database technology, bringing the relational
model to its limits. What worked well for many
years for structured data is not well suited for the
unstructured, massive amounts of data that are
part of the Web and new Web applications, such
as social networks.

Sam Madden characterizes big data by the
three V’s:1 velocity, volume, and variety. Another
study lists the characteristics of new demands on
database technology: high concurrency of read-
ing and writing with low latency, efficient big data

and access requirements, high scalability, high
availability, and lower management and opera-
tional costs.2 Relational databases cannot fulfill
all these demands, so new types of databases have
emerged, including NoSQL (“not only SQL”)
databases. NoSQL can be categorized into four
main types: key-value stores, column-oriented,
document stores, and graph databases.2–4

The NoSQL world is rapidly developing, but
these databases still have many shortcomings
that prevent users from adopting them and limit
their use. The lack of a database design meth-
odology is one such shortcoming. One claim is
that good database design is crucial to obtain-
ing a sound database, and that further research
is required for NoSQL to meet the needs of big

	 computer.org/ITPro	 3 5

data, unstructured data, imperfect data, and the
like.5 Other research claims that the need for
logical data models in the NoSQL world is a cen-
tral issue;6 it seems, the authors say, that NoSQL
systems don’t distinguish between logical and
physical schemata, which complicates database
maintenance. NoSQL databases are considered
schema-less, but data modeling and schema will
always remain important.7

In this study, we focus on graph databases,
which work well with interconnected data—that
is, data with many relationships.8,9 These data-
bases provide an easy way to model relationships
between different data types, and they have many
traversal algorithms that are helpful in find-
ing patterns. The main components of a graph

database are nodes and edges (relationships).
Edges are usually directed (that is, an edge has a
start and an end node). Nodes and edges have la-
bels and might have properties. Graph databases
have no schema; some claim that this provides
more flexibility.8,9 However, the flexibility associ-
ated with having no schema has drawbacks; with-
out a schema, it is difficult to enforce integrity
constraints. For example, a node in the database
can be connected to any other node, regardless of
whether it makes sense.

Here, we propose a method for modeling graph
databases. More specifically, we suggest a method
for creating a schema for graph databases based
on a conceptual schema of the application
domain. We use an entity-relationship diagram

Related Work in Modeling NoSQL Databases

Several studies have attempted to create a model
for NoSQL databases. Some researchers have

focused on a specific kind of NoSQL database or on
specific providers’ databases, whereas others have
tried to model all four types of NoSQL databases.
Here, we review only two relevant studies, owing to
space limitations.

Karamjit Kaur and Rinkle Rani developed a model-
ing methodology that is suitable for all four types of
NoSQL databases.1 They demonstrated their model us-
ing a case study presented with an entity-relationship
diagram (ERD). Their case study was then “modeled”
on a document-oriented database (MongoDB) and a
graph database (Neo4j). They showed how the case
study transforms into a database, but the transfor-
mation was not backed by rules, explanations, and
so on. In our opinion, the article does not provide a
methodology but rather demonstrates a use case for
document-based and graph NoSQL databases.

Roberto De Virgilio, Antonio Maccioni, and Riccardo
Torlone proposed a methodology for transforming
requirements into a graph database.2 Their solution
is based on an ERD representation of the domain
of interest. Their strategy is to aggregate objects
based on a weighting function. In essence, the ERD
is transformed into an oriented ERD (OERD), a graph
based on weighing rules in which each edge receives
a numeric value. The authors compared their method
to a modeling strategy called Sparse. At first glance,
the proposed method seems like a good solution
to the modeling problem, but a closer inspection

reveals several drawbacks. First, the ERD that they
use is limited; it does not contain elements such as
weak entities, generalizations, and ternary relations.
Second, the weighing function and aggregation rules
are not well defined but only explained intuitively; in
our opinion, deeper explanations are needed. Finally,
the comparison of their method to the alternative is
based on query response time, but there are many
more nodes in the Sparse modeling strategy com-
pared to the proposed method. Obviously, when
considering response time, a method will perform
much better if it has to traverse fewer nodes.

Our proposed method for creating a graph data-
base schema overcomes existing limitations. As men-
tioned in the main text, our method assumes that
a conceptual schema of the domain of application
exists—a rich ERD that includes various constructs
that were not included in previous studies, such as
weak entity types, ternary relationships, generaliza-
tion, and is-a hierarchy. The ERD is then mapped to
a graph database schema using specified rules. The
resulting schema preserves the integrity constraints
of the original conceptual schema.

References
1.	 K. Kaur and R. Rani, “Modeling and Querying Data in

NoSQL Databases,” Proc. IEEE Int’l Conf. Big Data, 2013;

doi:10.1109/BigData.2013.6691765.

2.	 R. De Virgilio, A. Maccioni, and R. Torlone, “Model-Driven

Design of Graph Databases,” Proc. Int’l Conf. Conceptual

Modeling, 2014, pp. 172–185.

36	 IT Pro November/December 2017

GRAPH DATABASES

(ERD) as the conceptual schema and provide a
two-step process for mapping the ERD to a graph
database schema (GDBS). The proposed method
can easily be adapted for use with a class diagram
instead of an ERD.

Graph Database Schema
Before presenting our proposed method for cre-
ating a graph database schema, we provide an ex-
ample of the requirements for a graph database in
the movie recommendation system domain. We
then present the ERD that models these require-
ments. Later in this section, we define the com-
ponents of our target GDBS.

Movie Recommendation System
Requirements
The example is based on the movie recommenda-
tion system domain, which provides information

about movies and stores users’ movie ratings. The
system stores the following information for each
movie: a unique ID; name; genre; lists of actors,
directors, and producers; release date; average rat-
ing; users who rated the movie; and a timestamp
for each rating. A user can rate a movie multiple
times. The ratings range from 1 to 5 stars.

Each user, director, actor, and producer has a
unique ID, name, date of birth, and gender. An
actor might act in many movies, a director might
direct many movies, and a producer might pro-
duce many movies. A movie can be directed by
more than one director, produced by more than
one producer, and have many actors. An actor
can play several roles in the same movie. An ac-
tor might also be a director or a producer, and
vice versa. In addition, the system stores monthly
data for each movie, including monthly revenue
and users’ average monthly rating.

Figure 1. The entity-relationship diagram for the movie recommendation system. Subtypes are not
exclusive—actors can also be directors, producers can be actors, and so on. Also, the subtypes cover
all possible people in the system, as indicated by the total cover (T) constraint.

name
release

date

movie-ID ID

title avg
rating roles

name date of birth gender

Person

ActorActed inMovie

Directed
Director

ProducerProduced

Refers to

Genre ofGenre
1...n

1...n

1...n

1...n

1...n
1...n

1...n

1...n

1...n

1...n

0...n

0...n

1...1

Monthly revenueincome

avg
rating year month

Rate

Rating

username

Userdate

numeric
rating

verbal
rating

T

	 computer.org/ITPro	 3 7

All this information is stored so that the sys-
tem can make accurate movie recommendations.
Take, for example, a user who watched the movie
Titanic and gave it a 5-star rating. Based on such
information, that user will be able to make the
following queries to find other movies that he or
she will enjoy:

•	 Find other users who watched Titanic and rated
it with 5 stars.

•	 Find movies directed by the same director as
Titanic and containing an actor who also acted
in Titanic.

•	 Find movies of the same genre as Titanic that
were released in the same year or later.

ERD for the Movie Recommendation
System
Figure 1 presents the ERD for the aforemen-
tioned required system. In the figure, Actor,
Director, Producer, and User are subtypes of Person.
These subtypes are not exclusive; an actor can
also be a director, a producer can also be an actor,
and so on. The subtypes cover all the possible
people in the system—that is, there are no other
subtypes of Person, as indicated by the total cover
(T) constraint connecting the subtype arrows.

Rate is a ternary relation (n:n:n) between User,
Movie, and Rating: a movie can be rated by many
users with different ratings; each rating has a
date. Monthly revenue is a weak entity that is relat-
ed to its “strong” entity Movie; it stores monthly
information for each movie. Note the partial key
attributes year 1 month.

Graph Database Schema Components
The proposed graph database schema consists
of nodes, edges, properties, and cardinality
constraints.

Node. A node represents an entity in the real
world. Similar to the entity-relationship model,
which makes a distinction between entity type
and entity occurrence, or to a class diagram, in
which there is a distinction between class and
object, here a node signifies both a node type
and node occurrence. A node has a label (name)
and properties, one of which is a key property
that enables its unique identification. For exam-
ple, for the node label Movie, the node properties

are movie-ID (key), title, release date, and average
(avg.) rating. In Figure 2, a node is represented
by a rectangle divided into two parts: the upper
(smaller) part includes the node label; the lower
(larger) part includes the property names. (This
is similar to a graphic symbol of a class in a class
diagram, except that here the node does not in-
clude method names.) Note that the key attri-
bute is underlined.

Edge. An edge represents a relationship between
two nodes. Similar to nodes, here, too, we dis-
tinguish between edge type and edge occurrence,
which is an edge between two specific nodes.

As in most graph databases,8 an edge has
a direction—that is, it has a start node and an
end node. An edge might also have properties.
An edge has a name (which need not be unique
because it can be identified by its start and
end nodes).

For example, for the edge name actors in mov-
ies, the start node is Movie and the end node is
Actor. The property is roles (enabling an actor to
play more than one role in a movie). We could
define the start and end nodes in the opposite
direction as well; it actually does not matter,
because in either direction, the graph database

Figure 2. Examples of nodes, edges, properties, and
cardinality constraints. A node is represented by a
rectangle divided into two parts, the node label (upper)
and the property names (lower). An edge is represented
by a line with an arrow head pointing from the start
node to the end node. Key properties are underlined,
and cardinality constraints are denoted using the
minimum and maximum number of nodes that can
participate in each edge type.

Monthly revenue

year,month,movielD
income

avg rating

MonthlyRevenueForMovie

GenreOf

Movie

movie-ID
title not-null
release date

avg rating

Movie

movie-ID
title not-null
release date

avg rating

Genre

name

0...n

1...n

1...n

1...1

38	 IT Pro November/December 2017

GRAPH DATABASES

system will be able to answer a given request,
possibly by posing the query somewhat differ-
ently. An edge is represented by a line with an
arrow head pointing from the start node to the
end node. The edge name is written above or
near the arrow.

Property. As said previously, both nodes and
edges can have properties. Properties might have
constraints:

•	 Key. Each node has a key that might be one or a
combination of several properties. For example,
movie-ID is a key of Movie; movie-ID 1 year 1
month together are the key for Monthly revenue.

•	 Not-null. The property must have a value for all
instances of the node or edge. For example, title
is a not-null property of Movie (meaning that
every movie must have a title).

•	 Set. The property can have many values. For
example, roles is a set property of the edge be-
tween Movie and Actor, given that an actor
might play many roles in a movie.

•	 Index. The system maintains an index for this
property. It can be assumed that the key prop-
erty implies that it is indexed, but any other
property can also be indexed. (The question
of which properties to index is beyond this
article’s scope.)

In Figure 2, properties of a node are written in
the bottom part of the node’s rectangle, starting
with the (underlined) key property. Properties
of the edge, if they exist, are written in paren-
theses after the edge name. A constraint of a
property, if it exists, is written after the prop-
erty name.

Cardinality constraints. The proposed graph
database schema, which extends existing graph
databases, includes cardinality constraints be-
tween the nodes of each edge. For this, we use
the same notations used in the ERD—that is,
next to each node, we write the minimum and
maximum number of nodes that can participate
in each edge type.

For example, Figure 2 shows a 1:n relation-
ship between Movie and Monthly revenue, and an
n:n relationship between Movie and Genre. Note
the similarity to the respective relationships in
Figure 1.

Mapping an ERD to a Graph
Database Schema
The method for creating the aforementioned
GDBS from an ERD consists of two steps: ad-
justing the ERD so it is ready for GDBS cre-
ation, and mapping the adjusted ERD to the
GDBS.

Adjusting the ERD
An ERD can include constructs that cannot be
mapped directly to a GDBS, which consists of
only nodes and binary edges. So, in the first step,
we adjust some of the original ERD constructs
to semantically equivalent ERD constructs that
can be mapped later on. Specifically, we adjust
the following constructs: ternary relationships,
aggregation (whole-parts) relationships, and
inheritance (is-a) relationships.

Ternary relationships. A ternary relationship is
mapped to a weak entity, with binary relations
to the entities involved in the ternary relation. If
the relation has properties, they are added to the
weak entity. The name of the weak entity might
be identical to the name of the original ternary
relationship, or be composed of the names of the
involved entities, or be any name that resembles
its role.

For example, the ternary relation among the
entities User, Movie, and Rating is mapped to a
weak entity with three binary relationships to
these entities, as Figure 3 shows. In this example,
the ternary relation is n:n:n; therefore, the weak
entity has weak binary relationships with its
three strong entities. In cases in which the ter-
nary relation is n:n:1, the weak entity would have
two weak binary relationships with the strong
entities, which are on the “n” side of the ternary
relationship, and an ordinary relationship with
the entity on the “1” side.

Aggregation (whole-parts) relationships. An
aggregation relationship (for example, a car is
composed of an engine, wheels, gears, and so
on) is mapped to an ordinary binary relation-
ship in which the cardinality of the “parts” en-
tity is 0:n or 1:n (depending on whether the parts
entity is mandatory), whereas the cardinality of
the “whole” entity is always 1:1. (Due to space
limitations, an example for this case is not in-
cluded in this article.)

	 computer.org/ITPro	 3 9

Inheritance (is-a) relationships. Inheritance re-
lationships can be mapped in two different ways.
The question of which of the two is better in
terms of efficiency and time to process queries
will be addressed in further research.

In method A, there is no change of the original
entities. According to this method, the involved
entities remain unchanged, but the is-a relation-
ships are mapped to ordinary binary relation-
ships, named is-a, with cardinalities 1:1 next to
each of the involved entities. For example, if a Per-
son (super-type entity) exists, say “Tom Hanks,”
then there is only one Actor (subtype entity) that
is that “Tom Hanks.”

In method B, we remove the inheritance re-
lationships and merge the super-type with the
subtypes. We distinguish between two possi-
bilities. The first is removing the subentities and
moving their attributes and relationships to the
super-type entity, adding to it a new property
named type. This mapping is applied when the
inheritance relationship is not defined with the T
constraint nor with the exclusive (X) constraint,
meaning that there are super-types that are not
one of the subtypes or that a super-type might
belong to many subtypes. If this inheritance re-
lationship does not have an X, then the super-
type’s new property type will be defined as a set to
allow it to contain more than one value.

For example, in our ERD, Person is the super-
type of four subtypes. Assuming that there is no
T constraint, and given that there is no X con-
straint, the four subtypes will be removed, and
their properties and relationships will be added
to Person, as shown in option 1 of Figure 4.

The second possibility is removing the super-
entity and moving its properties and relationships
to each of its subtypes. This mapping is applied
in cases in which there is a T and X constraint
between the subtypes, meaning that all super-
types belong to one subtype only. Therefore,
there is no need to maintain the super-type. For
example, if in our ERD the inheritance relation-
ship between Person and its four subtypes had an
X constraint in addition to the T constraint, the
adjusted ERD would look like that shown in op-
tion 2 of Figure 4.

Mapping the Adjusted ERD to the GDBS
The mapping process consists of the following
steps.

Mapping entities to nodes. Each entity is
mapped to a node, and the entity’s properties
become the node’s properties. For example, the
Movie entity is mapped as follows:

•	 Node label: Movie

Figure 3. Ternary relation to three binary relationships. The ternary relation is n:n:n, so the weak
entity has binary relationships with its three strong entities.

movie-ID

Movie

release date

title
avg

rating

Movie
OfRatingFrom

User

date

Rating Of
User For Movie

Rating
OfMovie
AndUser

User
OfRatingFor

Movie
User

username

verbal
rating

Rating

numeric
rating

0...n

1...n

1...n
1...1

1...1

1...1

40	 IT Pro November/December 2017

GRAPH DATABASES

•	 Properties: movie-ID (key), title (not null), release
date, avg. rating

A weak entity is mapped to a node just like an
ordinary entity. The key property of this node is
composed of the keys of the related strong enti-
ties, plus the partial key of the weak entity (if this
exists). For example, the Monthly revenue entity is
mapped as follows:

•	 Node label: Monthly revenue
•	 Properties: (movie-ID 1 year 1 month) (key), in-

come, avg. rating

Mapping relationships to edges. Each relation-
ship between entities is mapped to an edge con-
necting the respective nodes. The edge’s name
might be the name of the relationship or be based
on the roles of the connected nodes.

Unlike with an ERD, in a graph database, the
edges are directed, distinguishing between the
start and end nodes of each edge. For example,

for the relationship between Movie and Genre,
there are two mapping options:

•	 Movie → Genre (that is, the start node is Movie;
the end node is Genre); possible name: “genre
of movie”

•	 Genre → Movie; possible name: “movies of genre”

It doesn’t matter which of the two nodes is de-
fined as the start node and which is defined as
the end node, because, as said, the graph data-
base enables traversing from node to node in any
direction.9

Mapping cardinality constraints. To the best of
our knowledge, current graph databases do not
define cardinality constraints—that is, the min
imum and maximum number of nodes that can
participate in an edge type. For example, Neo4j,8
a leading graph database system, has not (yet)
defined such constraints.

We propose adding cardinality constraints
to edges, equivalent to such constraints in the

Figure 4. Handling inheritance relationships. (a) In option 1, assuming that there is no T constraint or no X
constraint, the four subtypes will be removed, and their properties and relationships will be added to Person.
(b) In option 2, the inheritance relationship between Person and its four subtypes has T and X constraints.

ID

ID

ID

ID

ID

release
date

release date

title
title

avg
rating

avg
rating

roles

Movie Movie Actor

Director

Person

roles

Acted in

Directed

Produced

Rate

Acted in

Directed

Produced Producer

Rate

RatingRating

numeric
rating

verbal
rating

numeric
rating

verbal
rating

Option 2Option 1

name

name

name

type

date of birth

date of birth

date of birth

gender gender

gender

ID

ID

name

User

name

date of birth

date of birth

username

gender

gender

username

1...n
1...n

1...n
1...n

1...n

1...n 1...n

1...n

1...n

1...n

1...n

1...n

1...n

1...n

1...n

0...n 0...n

(a) (b)

	 computer.org/ITPro	 41

entity-relationship model. It is important to in-
clude such constraints because in some cases,
we want to limit the number of nodes that can be
involved in an edge type. Examples of such con-
straints are as follows: a movie may have no less
than 2 and no more than 10 actors; a user may
rate a certain movie only once.

The mapping of cardinality constraints from
the adjusted ERD to the GDBS is very simple: we
adopt the same notations as shown in Figure 5.

The Resulting GDBS
Figure 5 presents the resulting GDBS. Due to
space limitations, we show only one of the possi-
ble mappings, namely, when the inheritance rela-
tionships are mapped so that the subtype entities
are removed and their attributes and relationships
are moved up to the super-type entity.

Data Definition Language of the GDBS
Based on the resulting GDBS diagram, Figure 6
defines a data definition language of the schema,
which can be added to a graph database system
such as Neo4j.

I n our graph database modeling approach, the
ERD is adjusted to an equivalent ERD that
can be mapped; then, using specific rules,

the adjusted ERD is mapped to a GDBS consist-
ing of nodes, edges, properties, and cardinality
constraints—thus preserving the integrity con-
straint defined in the original ERD.

In future work, we plan to test the proposed
method. First, we plan to compare the two pos-
sible mappings of an original ERD to an adjusted
ERD, as described previously. Second, we plan to
compare our method to existing methods of creat-
ing graph databases (which are not actually formal
methods but practitioners’ best practices). These
comparisons will involve creating graph databases
for one or more domains (possibly using existing
databases), and utilizing different graph database
schemata and an existing graph database system
(such as Neo4j). Then, we will run various queries
and measure the execution time. In addition, we
plan to conduct controlled experiments (possibly
with students) to measure and compare the ease of
use and quality of graph database schemas created
with various methods.�

Figure 5. Graph database schema diagram. We show one possible mapping—namely, when
inheritance relationships are mapped to remove subtype entities and move their attributes and
relationships up to the super-type entity.

Movie
Person

movie-ID
title not-null
release date

avg rating

ID
name

date of birth
gender

username
type not-null

Genre

name

Monthly revenue

year,month,movieID
income

avg rating

Rating

numeric rating
verbal rating

RatingOfUserForMovie

IDperson,IDmovie,numericrating

1...n

GenreOf

MonthlyRevenueForMovie MovieOfRatingFromUser
UserOfRatingForMovie

RatingOfMovieAndUser

1...n

1...n

1...n

Actedin (roles)

Directed

Produced

1...n

1...n

1...n

1...n

1...n

1...1

1...1 1...1

0...n
0...n

1...11...n

42	 IT Pro November/December 2017

GRAPH DATABASES

References
	 1.	 S. Madden, “From Databases to Big Data,” IEEE Inter-

net Computing, vol. 16, no. 3, 2012, pp. 4–6.
	 2.	 H. Jing, E. Haihong, and L. Guan, “Survey on

NoSQL Database,” Proc. 6th Int’l Conf. Pervasive Com-
puting and Applications (ICPCA), 2011; doi:10.1109
/ICPCA.2011.6106531.

	 3.	 D. Hsieh, “NoSQL Data Modeling,” Ebay tech. blog,
10 Oct. 2014; bit.ly/2hl1mI0.

	 4.	 A. Nayak, A. Poriya, and D. Poojary, “Type of NoSQL
Databases and Its Comparison with Relational Data-
bases,” Int’l J. Applied Information Systems, vol. 5, no. 4,
2013, pp. 16–19.

	 5.	 A. Badia and D. Lemire, “A Call to Arms: Revisit-
ing Database Design,” ACM SIGMOD Record, vol. 40,
no. 3, 2011, pp. 61–69.

	 6.	 P. Atzeni et al., “The Relational Model is Dead, SQL
Is Dead, and I Don’t Feel So Good Myself,” ACM SIG-
MOD Record, vol. 42, no. 2, 2013, pp. 64–68.

	 7.	 K. Kaur and R. Rani, “Modeling and Querying Data
in NoSQL Databases,” Proc. IEEE Int’l Conf. Big Data,
2013; doi:10.1109/BigData.2013.6691765.

	 8.	 R. Angels, “A Comparison of Current Graph
Database Models,” Proc. Data Engineering Workshops
(ICDEW), 2012, pp. 171–177.

	 9.	 I. Robinson, J. Webber, and E. Eifrem, Graph Data-
bases: New Opportunities for Connected Data, O’Reilly
Media, 2015.

Noa Roy-Hubara is an MSc student in the Depart-
ment of Software and Information Systems Engineering at
Ben-Gurion University of the Negev, Israel. Her research
interests include databases, data modeling, and big data.
Roy-Hubara has recently submitted her thesis. Contact her
at nro@post.bgu.ac.il.

Lior Rokach is a professor in and the current chair
of the Department of Software and Information Systems

Figure 6. Data definition language (DDL) of the schema. This DDL can be added to a graph database
system such as Neo4j.

Create Nodes

Create node Movie
 Properties: movie-ID key, title not null, release

date, avg rating

Create node Person
 Properties: ID key, name, date of birth, gender,

type Not Null

Create node Genre
 Properties: name key

Create node Rating
 Properties: numeric rating key

Create node Monthly revenue
 Properties: (year, month, movie-ID) key, income,

avg rating

Create node RatingOfUserForMovie
 Properties: (IDperson, IDmovie, numeric rating)

key

Create Edges

Create edge ActedIn
 Properties: roles
 Start node Person (1,n)
 End node Movie (1,n)

Create edge Directed
 Start node Person (1,n)
 End node Movie (1,n)

Create edge Produced
 Start node Person (1,n)
 End node Movie (1,n)

Create edge MonthlyRevenueForMovie
 Properties
 Start node Monthly revenue (0,n)
 End node Movie (1,1)

Create edge MovieOfRatingFromUser
 Start node RatingOfUserForMovie (0,n)
 End node Movie (1,1)

Create edge UserOfRatingForMovie
 Start node RatingOfUserForMovie (1,n)
 End node Person (1,1)

Create edge RatingOfMovieAndUser
 Start node RatingOfUserForMovie (1,n)
 End node Rating (1,1)

Create edge GenreOf
 Start node Genre (1,n)
 End node Movie (1,n)

Create schema Movies

	 computer.org/ITPro	 4 3

Engineering at Ben-Gurion University of the Negev,
Israel. His main research interests are machine learning,
recommender systems, cybersecurity, and information re-
trieval. Rokach received a PhD in industrial engineering
from Tel Aviv University. Contact him at liorrk@post
.bgu.ac.il.

Bracha Shapira is a professor of software and informa-
tion systems engineering at Ben-Gurion University of the
Negev (BGU), Israel. Her main research areas are infor-
mation retrieval, recommender systems, cybersecurity,
and data mining. Shapira received a PhD in information
systems engineering from BGU. Contact her at bshapira
@bgu.ac.il.

Peretz Shoval is a professor emeritus of software and in-
formation systems engineering at Ben-Gurion University
of the Negev, Israel, and head of the information systems
program at Netanya College. His research interests include
conceptual database modeling, information systems analysis
and design methods, and information retrieval and filter-
ing. Shoval received a PhD in information systems from the
University of Pittsburgh. Contact him at shoval@bgu.ac.il.

Read your subscriptions through the
myCS publications portal at

http://mycs.computer.org

Take the CS Library
wherever you go!

IEEE Computer Society magazines and Transactions are now
available to subscribers in the portable ePub format.

Just download the articles from the IEEE Computer Society Digital
Library, and you can read them on any device that supports ePub. For more
information, including a list of compatible devices, visit

www.computer.org/epub

	mit20170600c1
	mit20170600c2
	mit2017060001
	mit2017060002
	mit2017060004
	mit2017060008
	mit2017060013
	mit2017060018
	mit2017060021
	mit2017060026
	mit2017060033
	mit2017060034
	mit2017060044
	mit2017060052
	mit2017060058
	mit2017060065
	mit2017060066
	mit2017060071
	mit2017060074
	mit20170600c3
	mit20170600c4

