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The authors’ approach to creating a graph database schema (GDBS) is 
based on an entity-relationship diagram of the application domain, 
which is mapped to a GDBS in a two-step process.

T
here are many ways to store data. Un-
til recently, data was most commonly 
stored in relational databases. The 
evolution of the Web and the explosive 

growth of big data have placed new demands 
on database technology, bringing the relational 
model to its limits. What worked well for many 
years for structured data is not well suited for the 
unstructured, massive amounts of data that are 
part of the Web and new Web applications, such 
as social networks.

Sam Madden characterizes big data by the 
three V’s:1 velocity, volume, and variety. Another 
study lists the characteristics of new demands on 
database technology: high concurrency of read-
ing and writing with low latency, efficient big data 

and access requirements, high scalability, high 
availability, and lower management and opera-
tional costs.2 Relational databases cannot fulfill 
all these demands, so new types of databases have 
emerged, including NoSQL (“not only SQL”) 
databases. NoSQL can be categorized into four 
main types: key-value stores, column-oriented, 
document stores, and graph databases.2–4

The NoSQL world is rapidly developing, but 
these databases still have many shortcomings 
that prevent users from adopting them and limit 
their use. The lack of a database design meth-
odology is one such shortcoming. One claim is 
that good database design is crucial to obtain-
ing a sound database, and that further research 
is required for NoSQL to meet the needs of big 
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data, unstructured data, imperfect data, and the 
like.5 Other research claims that the need for 
logical data models in the NoSQL world is a cen-
tral issue;6 it seems, the authors say, that NoSQL 
systems don’t distinguish between logical and 
physical schemata, which complicates database 
maintenance. NoSQL databases are considered 
schema-less, but data modeling and schema will 
always remain important.7

In this study, we focus on graph databases, 
which work well with interconnected data—that 
is, data with many relationships.8,9 These data-
bases provide an easy way to model relationships 
between different data types, and they have many 
traversal algorithms that are helpful in find-
ing patterns. The main components of a graph  

database are nodes and edges (relationships). 
Edges are usually directed (that is, an edge has a 
start and an end node). Nodes and edges have la-
bels and might have properties. Graph databases 
have no schema; some claim that this provides 
more flexibility.8,9 However, the flexibility associ-
ated with having no schema has drawbacks; with-
out a schema, it is difficult to enforce integrity 
constraints. For example, a node in the database 
can be connected to any other node, regardless of 
whether it makes sense.

Here, we propose a method for modeling graph 
databases. More specifically, we suggest a method  
for creating a schema for graph databases based 
on a conceptual schema of the application  
domain. We use an entity-relationship diagram 

Related Work in Modeling NoSQL Databases

Several studies have attempted to create a model 
for NoSQL databases. Some researchers have 

focused on a specific kind of NoSQL database or on 
specific providers’ databases, whereas others have 
tried to model all four types of NoSQL databases. 
Here, we review only two relevant studies, owing to 
space limitations.

Karamjit Kaur and Rinkle Rani developed a model-
ing methodology that is suitable for all four types of 
NoSQL databases.1 They demonstrated their model us-
ing a case study presented with an entity-relationship 
diagram (ERD). Their case study was then “modeled” 
on a document-oriented database (MongoDB) and a 
graph database (Neo4j). They showed how the case 
study transforms into a database, but the transfor-
mation was not backed by rules, explanations, and 
so on. In our opinion, the article does not provide a 
methodology but rather demonstrates a use case for 
document-based and graph NoSQL databases.

Roberto De Virgilio, Antonio Maccioni, and Riccardo 
Torlone proposed a methodology for transforming 
requirements into a graph database.2 Their solution 
is based on an ERD representation of the domain 
of interest. Their strategy is to aggregate objects 
based on a weighting function. In essence, the ERD 
is transformed into an oriented ERD (OERD), a graph 
based on weighing rules in which each edge receives 
a numeric value. The authors compared their method 
to a modeling strategy called Sparse. At first glance, 
the proposed method seems like a good solution 
to the modeling problem, but a closer inspection 

reveals several drawbacks. First, the ERD that they 
use is limited; it does not contain elements such as 
weak entities, generalizations, and ternary relations. 
Second, the weighing function and aggregation rules 
are not well defined but only explained intuitively; in 
our opinion, deeper explanations are needed. Finally, 
the comparison of their method to the alternative is 
based on query response time, but there are many 
more nodes in the Sparse modeling strategy com-
pared to the proposed method. Obviously, when 
considering response time, a method will perform 
much better if it has to traverse fewer nodes.

Our proposed method for creating a graph data-
base schema overcomes existing limitations. As men-
tioned in the main text, our method assumes that 
a conceptual schema of the domain of application 
exists—a rich ERD that includes various constructs 
that were not included in previous studies, such as 
weak entity types, ternary relationships, generaliza-
tion, and is-a hierarchy. The ERD is then mapped to 
a graph database schema using specified rules. The 
resulting schema preserves the integrity constraints 
of the original conceptual schema.
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(ERD) as the conceptual schema and provide a 
two-step process for mapping the ERD to a graph 
database schema (GDBS). The proposed method 
can easily be adapted for use with a class diagram 
instead of an ERD.

Graph Database Schema
Before presenting our proposed method for cre-
ating a graph database schema, we provide an ex-
ample of the requirements for a graph database in 
the movie recommendation system domain. We 
then present the ERD that models these require-
ments. Later in this section, we define the com-
ponents of our target GDBS.

Movie Recommendation System 
Requirements
The example is based on the movie recommenda-
tion system domain, which provides information 

about movies and stores users’ movie ratings. The 
system stores the following information for each 
movie: a unique ID; name; genre; lists of actors, 
directors, and producers; release date; average rat-
ing; users who rated the movie; and a timestamp 
for each rating. A user can rate a movie multiple 
times. The ratings range from 1 to 5 stars.

Each user, director, actor, and producer has a 
unique ID, name, date of birth, and gender. An 
actor might act in many movies, a director might 
direct many movies, and a producer might pro-
duce many movies. A movie can be directed by 
more than one director, produced by more than 
one producer, and have many actors. An actor 
can play several roles in the same movie. An ac-
tor might also be a director or a producer, and 
vice versa. In addition, the system stores monthly 
data for each movie, including monthly revenue 
and users’ average monthly rating.

Figure 1. The entity-relationship diagram for the movie recommendation system. Subtypes are not 
exclusive—actors can also be directors, producers can be actors, and so on. Also, the subtypes cover 
all possible people in the system, as indicated by the total cover (T) constraint.
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All this information is stored so that the sys-
tem can make accurate movie recommendations. 
Take, for example, a user who watched the movie 
Titanic and gave it a 5-star rating. Based on such 
information, that user will be able to make the 
following queries to find other movies that he or 
she will enjoy:

•	 Find other users who watched Titanic and rated 
it with 5 stars.

•	 Find movies directed by the same director as 
Titanic and containing an actor who also acted 
in Titanic.

•	 Find movies of the same genre as Titanic that 
were released in the same year or later.

ERD for the Movie Recommendation 
System
Figure 1 presents the ERD for the aforemen-
tioned required system. In the figure, Actor,  
Director, Producer, and User are subtypes of Person. 
These subtypes are not exclusive; an actor can 
also be a director, a producer can also be an actor, 
and so on. The subtypes cover all the possible 
people in the system—that is, there are no other 
subtypes of Person, as indicated by the total cover 
(T) constraint connecting the subtype arrows.

Rate is a ternary relation (n:n:n) between User, 
Movie, and Rating: a movie can be rated by many 
users with different ratings; each rating has a 
date. Monthly revenue is a weak entity that is relat-
ed to its “strong” entity Movie; it stores monthly 
information for each movie. Note the partial key 
attributes year 1 month.

Graph Database Schema Components
The proposed graph database schema consists 
of nodes, edges, properties, and cardinality 
constraints.

Node. A node represents an entity in the real 
world. Similar to the entity-relationship model, 
which makes a distinction between entity type 
and entity occurrence, or to a class diagram, in 
which there is a distinction between class and 
object, here a node signifies both a node type 
and node occurrence. A node has a label (name) 
and properties, one of which is a key property 
that enables its unique identification. For exam-
ple, for the node label Movie, the node properties 

are movie-ID (key), title, release date, and average 
(avg.) rating. In Figure 2, a node is represented 
by a rectangle divided into two parts: the upper 
(smaller) part includes the node label; the lower 
(larger) part includes the property names. (This 
is similar to a graphic symbol of a class in a class 
diagram, except that here the node does not in-
clude method names.) Note that the key attri-
bute is underlined.

Edge. An edge represents a relationship between 
two nodes. Similar to nodes, here, too, we dis-
tinguish between edge type and edge occurrence, 
which is an edge between two specific nodes.

As in most graph databases,8 an edge has 
a direction—that is, it has a start node and an 
end node. An edge might also have properties. 
An edge has a name (which need not be unique 
because it can be identified by its start and  
end nodes).

For example, for the edge name actors in mov-
ies, the start node is Movie and the end node is 
Actor. The property is roles (enabling an actor to 
play more than one role in a movie). We could 
define the start and end nodes in the opposite 
direction as well; it actually does not matter, 
because in either direction, the graph database 

Figure 2. Examples of nodes, edges, properties, and 
cardinality constraints. A node is represented by a 
rectangle divided into two parts, the node label (upper) 
and the property names (lower). An edge is represented 
by a line with an arrow head pointing from the start 
node to the end node. Key properties are underlined, 
and cardinality constraints are denoted using the 
minimum and maximum number of nodes that can 
participate in each edge type.
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system will be able to answer a given request, 
possibly by posing the query somewhat differ-
ently. An edge is represented by a line with an 
arrow head pointing from the start node to the 
end node. The edge name is written above or 
near the arrow.

Property. As said previously, both nodes and 
edges can have properties. Properties might have 
constraints:

•	 Key. Each node has a key that might be one or a 
combination of several properties. For example, 
movie-ID is a key of Movie; movie-ID 1 year 1 
month together are the key for Monthly revenue.

•	 Not-null. The property must have a value for all 
instances of the node or edge. For example, title 
is a not-null property of Movie (meaning that 
every movie must have a title).

•	 Set. The property can have many values. For 
example, roles is a set property of the edge be-
tween Movie and Actor, given that an actor 
might play many roles in a movie.

•	 Index. The system maintains an index for this 
property. It can be assumed that the key prop-
erty implies that it is indexed, but any other 
property can also be indexed. (The question 
of which properties to index is beyond this  
article’s scope.)

In Figure 2, properties of a node are written in 
the bottom part of the node’s rectangle, starting 
with the (underlined) key property. Properties 
of the edge, if they exist, are written in paren-
theses after the edge name. A constraint of a 
property, if it exists, is written after the prop-
erty name.

Cardinality constraints. The proposed graph 
database schema, which extends existing graph 
databases, includes cardinality constraints be-
tween the nodes of each edge. For this, we use 
the same notations used in the ERD—that is, 
next to each node, we write the minimum and 
maximum number of nodes that can participate 
in each edge type.

For example, Figure 2 shows a 1:n relation-
ship between Movie and Monthly revenue, and an  
n:n relationship between Movie and Genre. Note 
the similarity to the respective relationships in 
Figure 1.

Mapping an ERD to a Graph  
Database Schema
The method for creating the aforementioned 
GDBS from an ERD consists of two steps: ad-
justing the ERD so it is ready for GDBS cre-
ation, and mapping the adjusted ERD to the 
GDBS.

Adjusting the ERD
An ERD can include constructs that cannot be 
mapped directly to a GDBS, which consists of 
only nodes and binary edges. So, in the first step, 
we adjust some of the original ERD constructs 
to semantically equivalent ERD constructs that 
can be mapped later on. Specifically, we adjust 
the following constructs: ternary relationships, 
aggregation (whole-parts) relationships, and  
inheritance (is-a) relationships.

Ternary relationships. A ternary relationship is 
mapped to a weak entity, with binary relations 
to the entities involved in the ternary relation. If 
the relation has properties, they are added to the 
weak entity. The name of the weak entity might 
be identical to the name of the original ternary 
relationship, or be composed of the names of the 
involved entities, or be any name that resembles 
its role.

For example, the ternary relation among the 
entities User, Movie, and Rating is mapped to a 
weak entity with three binary relationships to 
these entities, as Figure 3 shows. In this example, 
the ternary relation is n:n:n; therefore, the weak 
entity has weak binary relationships with its 
three strong entities. In cases in which the ter-
nary relation is n:n:1, the weak entity would have 
two weak binary relationships with the strong 
entities, which are on the “n” side of the ternary 
relationship, and an ordinary relationship with 
the entity on the “1” side.

Aggregation (whole-parts) relationships. An 
aggregation relationship (for example, a car is 
composed of an engine, wheels, gears, and so 
on) is mapped to an ordinary binary relation-
ship in which the cardinality of the “parts” en-
tity is 0:n or 1:n (depending on whether the parts 
entity is mandatory), whereas the cardinality of 
the “whole” entity is always 1:1. (Due to space 
limitations, an example for this case is not in-
cluded in this article.)
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Inheritance (is-a) relationships. Inheritance re-
lationships can be mapped in two different ways. 
The question of which of the two is better in 
terms of efficiency and time to process queries 
will be addressed in further research.

In method A, there is no change of the original 
entities. According to this method, the involved 
entities remain unchanged, but the is-a relation-
ships are mapped to ordinary binary relation-
ships, named is-a, with cardinalities 1:1 next to 
each of the involved entities. For example, if a Per-
son (super-type entity) exists, say “Tom Hanks,” 
then there is only one Actor (subtype entity) that 
is that “Tom Hanks.”

In method B, we remove the inheritance re-
lationships and merge the super-type with the 
subtypes. We distinguish between two possi-
bilities. The first is removing the subentities and 
moving their attributes and relationships to the 
super-type entity, adding to it a new property 
named type. This mapping is applied when the 
inheritance relationship is not defined with the T 
constraint nor with the exclusive (X) constraint, 
meaning that there are super-types that are not 
one of the subtypes or that a super-type might 
belong to many subtypes. If this inheritance re-
lationship does not have an X, then the super-
type’s new property type will be defined as a set to 
allow it to contain more than one value.

For example, in our ERD, Person is the super-
type of four subtypes. Assuming that there is no 
T constraint, and given that there is no X con-
straint, the four subtypes will be removed, and 
their properties and relationships will be added 
to Person, as shown in option 1 of Figure 4.

The second possibility is removing the super-
entity and moving its properties and relationships 
to each of its subtypes. This mapping is applied 
in cases in which there is a T and X constraint 
between the subtypes, meaning that all super-
types belong to one subtype only. Therefore, 
there is no need to maintain the super-type. For 
example, if in our ERD the inheritance relation-
ship between Person and its four subtypes had an 
X constraint in addition to the T constraint, the 
adjusted ERD would look like that shown in op-
tion 2 of Figure 4.

Mapping the Adjusted ERD to the GDBS
The mapping process consists of the following 
steps.

Mapping entities to nodes. Each entity is 
mapped to a node, and the entity’s properties 
become the node’s properties. For example, the 
Movie entity is mapped as follows:

•	 Node label: Movie

Figure 3. Ternary relation to three binary relationships. The ternary relation is n:n:n, so the weak 
entity has binary relationships with its three strong entities.
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•	 Properties: movie-ID (key), title (not null), release 
date, avg. rating

A weak entity is mapped to a node just like an 
ordinary entity. The key property of this node is 
composed of the keys of the related strong enti-
ties, plus the partial key of the weak entity (if this 
exists). For example, the Monthly revenue entity is 
mapped as follows:

•	 Node label: Monthly revenue
•	 Properties: (movie-ID 1 year 1 month) (key), in-

come, avg. rating

Mapping relationships to edges. Each relation-
ship between entities is mapped to an edge con-
necting the respective nodes. The edge’s name 
might be the name of the relationship or be based 
on the roles of the connected nodes.

Unlike with an ERD, in a graph database, the 
edges are directed, distinguishing between the 
start and end nodes of each edge. For example, 

for the relationship between Movie and Genre, 
there are two mapping options:

•	 Movie → Genre (that is, the start node is Movie; 
the end node is Genre); possible name: “genre 
of movie”

•	 Genre → Movie; possible name: “movies of genre”

It doesn’t matter which of the two nodes is de-
fined as the start node and which is defined as 
the end node, because, as said, the graph data-
base enables traversing from node to node in any 
direction.9

Mapping cardinality constraints. To the best of 
our knowledge, current graph databases do not 
define cardinality constraints—that is, the min
imum and maximum number of nodes that can 
participate in an edge type. For example, Neo4j,8 
a leading graph database system, has not (yet)  
defined such constraints.

We propose adding cardinality constraints 
to edges, equivalent to such constraints in the  

Figure 4. Handling inheritance relationships. (a) In option 1, assuming that there is no T constraint or no X 
constraint, the four subtypes will be removed, and their properties and relationships will be added to Person.  
(b) In option 2, the inheritance relationship between Person and its four subtypes has T and X constraints.

ID

ID

ID

ID

ID

release
date

release date

title
title

avg
rating

avg
rating

roles

Movie Movie Actor

Director

Person

roles

Acted in

Directed

Produced

Rate

Acted in

Directed

Produced Producer

Rate

RatingRating

numeric
rating

verbal
rating

numeric
rating

verbal
rating

Option 2Option 1

name

name

name

type

date of birth

date of birth

date of birth

gender gender

gender

ID

ID

name

User

name

date of birth

date of birth

username

gender

gender

username

1...n
1...n

1...n
1...n

1...n

1...n 1...n

1...n

1...n

1...n

1...n

1...n

1...n

1...n

1...n

0...n 0...n

(a) (b)



	 computer.org/ITPro	 41

entity-relationship model. It is important to in-
clude such constraints because in some cases, 
we want to limit the number of nodes that can be 
involved in an edge type. Examples of such con-
straints are as follows: a movie may have no less 
than 2 and no more than 10 actors; a user may 
rate a certain movie only once.

The mapping of cardinality constraints from 
the adjusted ERD to the GDBS is very simple: we 
adopt the same notations as shown in Figure 5.

The Resulting GDBS
Figure 5 presents the resulting GDBS. Due to 
space limitations, we show only one of the possi-
ble mappings, namely, when the inheritance rela-
tionships are mapped so that the subtype entities 
are removed and their attributes and relationships 
are moved up to the super-type entity.

Data Definition Language of the GDBS
Based on the resulting GDBS diagram, Figure 6 
defines a data definition language of the schema, 
which can be added to a graph database system 
such as Neo4j.

I n our graph database modeling approach, the 
ERD is adjusted to an equivalent ERD that 
can be mapped; then, using specific rules, 

the adjusted ERD is mapped to a GDBS consist-
ing of nodes, edges, properties, and cardinality 
constraints—thus preserving the integrity con-
straint defined in the original ERD.

In future work, we plan to test the proposed 
method. First, we plan to compare the two pos-
sible mappings of an original ERD to an adjusted 
ERD, as described previously. Second, we plan to 
compare our method to existing methods of creat-
ing graph databases (which are not actually formal 
methods but practitioners’ best practices). These 
comparisons will involve creating graph databases 
for one or more domains (possibly using existing 
databases), and utilizing different graph database 
schemata and an existing graph database system 
(such as Neo4j). Then, we will run various queries 
and measure the execution time. In addition, we 
plan to conduct controlled experiments (possibly 
with students) to measure and compare the ease of 
use and quality of graph database schemas created 
with various methods.�

Figure 5. Graph database schema diagram. We show one possible mapping—namely, when 
inheritance relationships are mapped to remove subtype entities and move their attributes and 
relationships up to the super-type entity.
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Figure 6. Data definition language (DDL) of the schema. This DDL can be added to a graph database 
system such as Neo4j.

Create Nodes

Create node Movie
 Properties: movie-ID key, title not null, release 

date, avg rating

Create node Person
 Properties: ID key, name, date of birth, gender, 

type Not Null

Create node Genre
 Properties: name key

Create node Rating 
 Properties: numeric rating key

Create node Monthly revenue 
 Properties: (year, month, movie-ID) key, income, 

avg rating

Create node RatingOfUserForMovie
 Properties: (IDperson, IDmovie, numeric rating) 

key

Create Edges

Create edge ActedIn
 Properties: roles
 Start node Person (1,n) 
 End node Movie (1,n) 

Create edge Directed
 Start node Person (1,n) 
 End node Movie (1,n)

Create edge Produced
 Start node Person (1,n) 
 End node Movie (1,n)
 
Create edge MonthlyRevenueForMovie
 Properties 
 Start node Monthly revenue (0,n) 
 End node Movie (1,1) 

Create edge MovieOfRatingFromUser
 Start node RatingOfUserForMovie (0,n) 
 End node Movie (1,1) 

Create edge UserOfRatingForMovie
 Start node RatingOfUserForMovie (1,n) 
 End node Person (1,1) 

Create edge RatingOfMovieAndUser
 Start node RatingOfUserForMovie (1,n) 
 End node Rating (1,1) 

Create edge GenreOf
 Start node Genre (1,n) 
 End node Movie (1,n)
 

Create schema Movies
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