Práctico 2

- 1. Sean $X_1 \sim \mathcal{N}(0,1)$ y $U \in \{-1,1\}$ tal que $\mathbb{P}(U=1) = \mathbb{P}(U=-1) = 0,5$ independiente de X_1 . Consideramos la variable aleatoria $X_2 = UX_1$.
 - a) Pruebe que $X_2 \sim \mathcal{N}(0,1)$ pero que $\mathbf{X} = (X_1, X_2)$ no es un vector con distribución normal.
 - b) Simule n = 100 datos del vector (X_1, X_2) y analizar gráficamente las distribuciones univariadas (mediante histogramas y densidades normales, por ejemplo) y conjunta (diagrama de dispersión).
- 2. Recordar que (X,Y) tiene distribución normal estándar bivariada con correlación ρ si existe $Z \sim \mathcal{N}(0,1)$ independiente de X tal que $Y = \rho X + \sqrt{1-\rho^2}Z$.
 - a) Probar que si X = x entonces $Y \sim \mathcal{N}(\rho x, 1 \rho^2)$
 - b) Usando que f(y|x) = f(x,y)/f(x), probar que la densidad conjunta es

$$f(x,y) = \frac{1}{(2\pi)\sqrt{1-\rho^2}} e^{-\frac{1}{2}\begin{pmatrix} x & y \end{pmatrix} \Sigma^{-1}\begin{pmatrix} x \\ y \end{pmatrix}}$$

siendo
$$\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

3. Consideramos un vector aleatorio $\mathbf{X} \in \mathbb{R}^p$ con distribución normal de parámetros (μ, Σ) , que particionamos como $\mathbf{X} = (\mathbf{X_1}, \mathbf{X_2}) \in \mathbb{R}^{p_1} \times \mathbb{R}^{p_2}$, $p_1 + p_2 = p$. El vector de esperanzas y la matriz de varianzas-covarianzas también queda partida por bloques como $\mu = (\mu_1, \mu_2)'$ y $Var(\mathbf{X}) = \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$ donde $\Sigma_{11} = Var(\mathbf{X_1}) \in \mathcal{M}_{p_1 \times p_1}$, $\Sigma_{22} = Var(\mathbf{X_2}) \in \mathcal{M}_{p_2 \times p_2}$, $\Sigma_{12} = Cov(\mathbf{X_1}, \mathbf{X_2}) \in \mathcal{M}_{p_1 \times p_2}$ y $\Sigma_{21} = \Sigma_{12}'$ La distribución condicionada de $\mathbf{X_1}$ condicionada a $\mathbf{X_2} = X_2^0$ es normal con vector de esperanzas:

$$\mathbb{E}(\mathbf{X}_1|\mathbf{X}_2 = X_2^0) = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2^0 - \mu_2)$$

y matriz de varianzas-covarianzas:

$$Var(\mathbf{X_1}|\mathbf{X_2} = X_2^0) = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$$

Sea $\mathbf{X} = (X_1, X_2, X_3)'$ un vector normal con media $\mu = (-1, 1, 0)'$ y matriz $\Sigma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & 2 \end{pmatrix}$

- a) Encuentre la distribución de la variable aleatoria $Y = X_1 + 2X_2 3X_3$
- b) Encuentre un vector $\mathbf{a} = (a_1, a_2)$ tal que las variables aleatorias X_1 y $X_1 a'\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ sean independientes
- c) Calcule la distribución de X_3 condicionada a $(X_1, X_2)' = (x_1^0, x_0^2)$.

- 4. a) Pruebe que si $X \sim \mathcal{N}(\mu, \sigma^2)$ entonces $Y = \left(\frac{X-\mu}{\sigma}\right)^2 \sim \chi^2(1)$.
 - b) Pruebe que si $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ y $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ son variables aleatorias independientes, entonces $\left(\frac{X_1 \mu_1}{\sigma_1}\right)^2 + \left(\frac{X_2 \mu_2}{\sigma_2}\right)^2 \sim \chi^2(2)$ (se sugiere utilizar la función generatriz de momentos).
 - c) Generalizar para n.
- 5. Considere un vector aleatorio \mathbf{X} con distribución normal estándar en \mathbb{R}^p ($\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{I_p})$), y para cada $p = 1, 2, \dots, 16$ estime la probabilidad $\mathbb{P}(\mathbf{X}'\mathbf{X} \leq 1)$.

Se sugiere reproducir el mismo esquema de simulación por Monte Carlo del documento sobre la maldición de la dimensionalidad.

- 6. Probar que si \mathbf{z} es normal estándar en \mathbb{R}^p , entonces su función generatriz de momentos $M: \mathbb{R}^p \to \mathbb{R}$ definida como $M(t) = \mathbb{E}(e^{t'\mathbf{z}})$ es $e^{t't/2}$. Deducir que la función generatriz de momentos de $\mathbf{x} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$ es $e^{t'\mu+t'\Sigma t/2}$.
- 7. a) Consideramos en \mathbb{R}^p las n variables independientes $\mathbf{y_i} \sim \mathcal{N}(\mu_i, \Sigma_i)$. Pruebe que

$$\sum_{i=1}^{n} a_i \mathbf{y_i} \sim \mathcal{N}\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \Sigma_i\right)$$

Sugerencia: utilizar el resultado del ejercicio anterior.

- b) Mostrar que la condición de que las variables sean independientes es necesaria para que la combinación lineal sea normal.
- c) Mostrar que la combinación lineal de densidades es una densidad pero que la combinación lineal de densidades de variables aleatorias normales no es la densidad de una variable aleatoria normal.
- 8. Sea \mathbf{x} un vector aleatorio con distribución mezclada cuya densidad está dada por $f(\mathbf{x}) = \sum_{i=1}^{G} \pi_i f_i(\mathbf{x})$.

Si (μ_i, Σ_i) es el vector de medias y la matriz de varianzas y covarianzas, respectivamente, de la componente i-éstima de la mezcla, probar que

$$\mu = \mathbb{E}(\mathbf{x}) = \sum_{i=1}^{G} \pi_i \mu_i \quad \text{ y } \quad \Sigma = \mathbb{V}ar(\mathbf{x}) = \sum_{i=1}^{G} \pi_i \Sigma_i + \sum_{i=1}^{G} \pi_i (\mu_i - \mu)(\mu_i - \mu)'$$

Sugerencia: utilizar la fórmula de esperanza condicionada.

9. Genere y represente 5000 datos normales con media (0,0)' y matriz de varianzas-covarianzas

$$\left(\begin{array}{cc} 1 & 0.8 \\ 0.8 & 1 \end{array}\right)$$

- a) Represente la nube de puntos generada y estime con estos datos el vector de medias y la matriz de varianzas-covarianzas.
- b) Investigue sobre la función mahalanobis del paquete mvtnorm. Aplique a las distancias de Mahalanobis obtenida sobre una muestra test de 1000 datos, un test de bondad de ajuste de Kolmogorov-Smirnov para ver si se ajusta a una $\chi^2(2)$.
- c) Usando la función quantile, calcule una distancia d tal que el 10 % de los puntos dista del centro más que d. Represente la nube de puntos marcando de color rojo el 10 % de puntos más distantes del centro.
- d) Añade a los puntos generados un dato atípico. Repita las preguntas anteriores para la nueva muestra comparando los resultados obtenidos en ambos casos.