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Framework of Machine Learning

General framework:
L a data basis.

We search about f : X → Y a good predictor or a good explainer.

Supervised Learning: L = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y ⊂ Rd × R
X : input variable, independent variable, explanatory (real o multidimensional), continuous,
categorical, binary, ordinal.

Y : output variable, dependent variable, real o categorical.

I Classification: y ∈ {−1, 1} (binary) or y ∈ {1, . . . ,K} (multiclass).
I Regression: y ∈ R.

Unsupervised Learning L = {x1, . . . , xn} ⊂ X ⊂ Rd

I Clustering
I Density estimation

In all cases, the sample L is a collection of n independent realizations of a multivariate
random variable (X ,Y ) or X
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Classification and Regression Trees

Figure: Construcción geométrica. Joaquin Torres Garćıa (1929)
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Classification and Regression Trees

It is a Machine Learning method.

The idea of binary trees consists of recursively dividing the data set until reaching k
terminal nodes (sheets)

Explanatory variables can be quantitative or qualitative.

At each stage of the algorithm, the best rule that divides the node into two is sought, in the
most homogeneous way possible. This rule is of the type:

Xi ≤ c vs Xi > c ifXi is quantitative

Xi ∈ A vs Xi ∈ A ifXi is categorical

It is sought in each division to reduce the impurity of the parent node when its two children
nodes appear.

A stopping criterion is needed: for example minimum quantity of observations in the leaves
or threshold on the criterion of impurity.
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Classification and Regression Trees

The construction of a tree requires defining:

A partition criterion: how to perform binary subdivisions.

A stop criterion: to consider when a node is considered terminal and the process is stopped.

An assignment criterion: for the assignment of the label to each sheet.

But it is the same principle in classification and in regression (this fact is different for another
method like SVM for example)

M.Bourel (IMERL, UdelaR) CART - TAA 2019 April 3, 2019 7 / 41



Classification and Regression Trees

A partition of space X is found and we assign a value (regression problem) or a category
(classification problem) at each elements of the partition. This can be written linearly as

E(Y |X = x) =

q∑
i=1

cj1Nj
(x)

where

ĉj =

∑
i :Xi∈Nj

Yi

#Nj
(regression)

ĉj = majority class inNj (classification)

Class: piecewise constant functions
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Classification and Regression Trees
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Partition criteria

All observations are in a root node. By means of a criterion of partition (criterion that involves
the characteristics of the observations) this root is divided into two sub-samples, that is, two
child nodes so that the children are more homogeneous in relation to Y that the parent node
(decrease in impurity). And the process is repeated again.

A node is pure or homogeneous if it contains a single class. Otherwise is impure or heterogeneous.
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Partition criteria (classification)

An impurity function φ : {p = (p1, . . . , pK ) ∈ RK : pi ≥ 0,
K∑
i=1

pi = 1} → R must:

be symmetric (that is, if the pj is swapped, the function does not change).

have minimums in the canonical basis of RK .

its only maximum is
(

1
K
, 1
K
, . . . , 1

K

)
Example of impurity functions:

1 φ(p) = 1− ||p||∞ = 1−max
k
{p1, . . . , pK} (classification error)

2 φ(p) = −
K∑

k=1
pk log(pk ) (entropy)

3 φ(p) = 1−
K∑

k=1
p2
k =

K∑
k=1

pk (1− pk ) =
∑
k 6=k′

pkpk′ (Gini Index)

Note that:

The entropy of a node with a single class is zero, because the probability is one and
log(1) = 0 (log is in base 2). Entropy reaches maximum (log(K)) value when all classes
have the same probability.

Gini index of a node with a single class is zero. Gini index reaches maximum (1− 1/K)
value when all classes have the same probability.

Classification error of a node with a single class is zero. Classification error reaches
maximum (1− 1/K) value when all classes have the same probability.
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Gini index

Figure: Gini coefficient map 2009

For a discrete probability distribution with probability mass function pi , i = 1, . . . n, where pi is
the fraction of the population with income or wealth yi > 0, the Gini coefficient is

G =
1

2µ

n∑
i=1

n∑
j=1

pipj |yi − yj | where µ =
n∑

i=1
yipi .
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Partition criteria (classification)

For example, assume we have a database with 100 observations: 40 are red, 30 are blue and 30
are green. Based on these data we can compute probability of each class. Since probability is
equal to frequency relative:

P(red) =
40

100
= 0, 4 P(blue) =

30

100
= 0, 3 P(green) =

30

100
= 0, 3

the entropy is −0, 4× log(0, 4)− 0, 3× log(0, 3)− 0, 3× log(0, 3) = 1, 571

the gini index is 1− (0, 42 + 0, 32 + 0, 32) = 0, 660

the classification error is 1− 0, 4 = 0, 6
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Partition criteria (classification) Node impurity

If N(t) is the quantity of observations of L that belong in node t and Nk (t) is the number of
observations in t that have label k (k ∈ {1, . . . ,K}), then the probability that an observation of
t belongs to class k is

pk (t) =
Nk (t)

N(t)

If φ an impurity function, the node’s impurity of t is defined as:

i(t) = φ
(
p1(t), p2(t), . . . , pK (t)

)
For example if φ = 1− ||p||∞ then

i(t) = 1−max
k
{p1(t), p2(t), . . . , pK (t)} = 1−max

k

{
N1(t)

N(t)
,
N2(t)

N(t)
, . . . ,

NK (t)

N(t)

}

i(t) =
N(t)− Nj∗ (t)

N(t)
=

misclassified in t

N(t)

where j∗ the majority class in t.
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Partition criteria (classification)

The Gini index and the entropy are more sensitive to changes in the probabilities of the nodes
than the classification error (the latter may have many ties).

The Gini index
K∑

k=1
pk (1− pk ) is a measure of the total variation on the K classes. If all

probabilities are close to 0 or 1, the Gini index is low (+ purity). Idem for entropy.

Figure: Hastie et al. (2001)
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Partition criteria (classification)

The impurity variation of node t respect to its two children tL and tR when performing the s e
partitions:

∆ i(t, s) = i(t)− pLi(tL)− pR i(tR) ≥ 0

∆ i(t, s) = i(t)−
N(tL)

N(t)
i(tL)−

N(tR)

N(t)
i(tR)

For example, if the impurity function is the classification error, then

∆ i(t, s) =
misclassified in t −misclassified in tL −misclassified in tR

N(t)

We choose then within all possible partitions St of t, on values and characteristic variables, the
one that verifies that

s∗(t) = Argmax
s∈St

∆ i(t, s)
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Partition criteria (classification)

The classification error is the same for the two trees but the Gini index and entropy are defined
by the tree with a pure terminal node (exercise).

Figure: Breiman et. al, [1]
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Partition criteria (classification)

The global impurity of the treeT is

I (T ) =
∑
t∈T̃

p(t)i(t)︸ ︷︷ ︸
R(t)

where T̃ is the set of leaves of T , p(t) is the probability of belonging to the node t and i(t) is
the impurity of t.

In [1], Breiman et. they prove that maximizing the impurity difference in each node is equivalent
to minimizing the global impurity of the tree.
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Partition criteria (regression)

In regression, deviance in the node is used to measure heterogeneity of a node

R(t) =
1

N

∑
Xi∈t

(Yi − Y (t))2

where Y (t) = 1
#t

∑
Xi∈t

Yi .

Observe that R(t) = 1
N

∑
Xi∈t

(Yi − Y (t))2 = #t
N

1
#t

∑
Xi∈t

(Yi − Y (t))2 = p(t)var(t)

We choose then within all possible partitions St of t, on values and characteristic variables, the
one that verifies that minimizae the internal variance after the split

s∗(t) = Argmax
s∈S

∆R(t, s)

where
∆R(t, s) = R(t)− R(tL)− R(tR) ≥ 0
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Stop criterion

If i is the classification error i(T ) = R(T ) is the estimation of the classification error and look for
the tree that has smaller global impurity equivalent to the one that has R(T ) smaller and this
will be Tmax .
The stop criterion is defined by the user beforehand. It must be chosen so that the tree is not
too large on the one hand and does not conform too much to the sample from which the tree
develops. There are two main criteria:

1 Choose a threshold from which we decide that a node is pure, that is, a β such that if
i(t) ≥ β we continue with the partition of t an if i(t) < β we stop partition in t.

If β is very small, this increases the complexity of the tree since the number of leaves can be
close to N (the size of the sample) and we lose in generalization (one sheet for each
observation).

2 Decide that a node does not divide more if it contains less than m observations.
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Classification and Regression Trees
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Classification and Regression Trees
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Assignment criteria

In a terminal node:

For classification:

The class that is most represented in each terminal node is chosen (simple majority vote. If
the maximum is reached for two or more classes, this class is assigned randomly.

For regression:

The average of the values of the dependent variable in the leaf
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Surrogate Splits

A surrogate split partitions the data in a way that is as close as possible to the primary split (the
variable whose makes the best partition). Generally, these surrogates have two major purposes:

1 enable flexibility in terms of missing data,

In the case of missing data, any observation that is missing in the split variable can be
classified using the first surrogate variable, if available, and if not available, the second
surrogate, and so forth.

2 reveal aspects of variable importance in the data.

Surrogate variables also play a role in variable importance. In addition to the structural
interpretation of the tree itself, the relative importance of each variable is often assessed
using a variable importance measure. The calculation of variable importance in the rpart
package is performed over surrogate splits: it is the sum of the goodness of split measures
for each split for which the variable was in the role splitting in the tree, and the fit for all
splits in which it was a surrogate. These importance measures are scaled to sum to 100 and
then rounded. Variables that are considered negligible are omitted. From this point of view,
a variable that does not necessarily enter the tree, may be considered important based on its
variable importance measure - driven by surrogate splits.

https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
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Surrogate Splits
Variable importance

charDollar remove num000 money charExclamation capitalLong

21 13 8 7 5 5

capitalTotal credit order receive capitalAve hp

5 4 3 3 3 3

addresses business internet people charHash free

3 2 2 2 2 1

hpl over your charRoundbracket our you

1 1 1 1 1 1

telnet

1

Node number 1: 4601 observations, complexity param=0.4765582

predicted class=nonspam expected loss=0.3940448 P(node) =1

class counts: 2788 1813

probabilities: 0.606 0.394

left son=2 (3471 obs) right son=3 (1130 obs)

Primary splits:

charDollar < 0.0555 to the left, improve=714.1697, (0 missing)

charExclamation < 0.0795 to the left, improve=711.9638, (0 missing)

remove < 0.01 to the left, improve=597.8504, (0 missing)

free < 0.095 to the left, improve=559.6634, (0 missing)

your < 0.605 to the left, improve=543.2496, (0 missing)

Surrogate splits:

num000 < 0.055 to the left, agree=0.839, adj=0.346, (0 split)

money < 0.045 to the left, agree=0.833, adj=0.321, (0 split)

credit < 0.025 to the left, agree=0.796, adj=0.169, (0 split)

capitalLong < 71.5 to the left, agree=0.793, adj=0.158, (0 split)

order < 0.18 to the left, agree=0.792, adj=0.155, (0 split)

capitalTotal < 693.5 to the left, agree=0.790, adj=0.143, (0 split)

receive < 0.035 to the left, agree=0.789, adj=0.140, (0 split)

remove < 0.01 to the left, agree=0.785, adj=0.125, (0 split)

addresses < 0.025 to the left, agree=0.785, adj=0.124, (0 split)

internet < 0.035 to the left, agree=0.777, adj=0.093, (0 split)

business < 0.065 to the left, agree=0.777, adj=0.091, (0 split)

people < 0.155 to the left, agree=0.775, adj=0.086, (0 split)

capitalAve < 5.8895 to the left, agree=0.775, adj=0.086, (0 split)

charHash < 0.0075 to the left, agree=0.771, adj=0.067, (0 split)

over < 0.145 to the left, agree=0.768, adj=0.054, (0 split)
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Pruning algorithm

Let t a node of T and we call branch coming form t to the subtree Tt of T that have t. The
pruning of branch Tt consists in suppressing all the descendant nodes of t (except t). The tree
obtained is noted by T − Tt . If T ′ is obtained from T by successive pruning of branches, we say
that T ′ is a subtree of T and we note

T ′ < T
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Pruning algorithm

So let’s take into account, in addition to the classification error of T , its complexity measured by
|T̃ | (the number of sheets). It is a trade off of combining good classification and simplicity of the
classifier.

Let α ≥ 0. The cost-complexity measure of parameter α associated with tree T is:

Cα(T ) = R(T ) + α|T̃ | (function ofα)

where R(T ) is the classification error and T̃ the complexity of T (number of leaves).
Big values of α will penalize trees with many leaves, while small values of α will give little
importance to the size. In the case that α = 0 we are left with the maximal tree that minimizes
the error. As we increase the value of α the size will be penalized, and then we get trees that are
getting smaller and smaller but with a big error.

M.Bourel (IMERL, UdelaR) CART - TAA 2019 April 3, 2019 28 / 41



Pruning algorithm

In regression the cost-complexity measure is

C(T ) =

|T̃ |∑
t=1

∑
xi∈t

(yi − ŷt)
2 + α|T̃ |

(the first sum is over the leaves of T ).

We return to the sequence of trees built together with their respective cost-complexity levels:

T1 > T2 > · · · > {t1} = TK

0 = α1 < α2 < · · · < αK

T1 is more complex but has the less error and {t1} = TK is more simple but have a big error.

¿How we choose the best of these subtrees with respect to our cost-complexity criterion?
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Pruning algorithm

With a Test sample (large sample)

If the sample is sufficiently large, we choose the pruned tree dividing in two parts the sample: L1

to train and L2 to test (L = L1 ∪ L2).
More precisely, with L1 we construct the sequence of tree and for all of them we compute

R(Tk ) =
#obs. misclassfied from L2 byTk

#L2
∀ k = 1, . . . ,K

We select Tk0
of the original sequence such that

Tk0
= Argmin

Tk

R(Tk )
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Pruning algorithm

Doing Cross validation (with few data).

Original sample M =M1 ∪M2 ∪ · · · ∪MV is divided randomly in V parts.

Define M(−v) =M\Mv par todo v = 1, . . . ,V

For all M(−v) we construct the associated maximal tree T
(−v)
max .

From tree T
(−v)
max , for all k = 0, 1, 2, . . . ,K − 1 let βk =

√
αkαk+1 and construct the

sequence of trees T
(−v)
k where T

(−v)
k < T

(−i)
max and T

(−v)
k is the best tree with

cost-complexity parameter βk .
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Pruning algorithm

Compute the classification error de T
(−v)
k over Mv

R(T
(−v)
k ) =

#misclassified ofMv byT
(−v)
k

#Mv

and the classification error of the crossvalidation for all k = 1, . . . ,K :

Rvc (Tk ) =
1

V

V∑
v=1

R
(
T

(−v)
k

)
We select from the original sequence tree Tk0

such that

Tk0
= Argmin

Tk

Rvc (Tk )
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Pruning algorithm
Scheme of the crossvalidation procedure:

We select, of the original sequence

Tk0
= Argmin

Tk

Rvc (Tk )

(is the tree that on average presents the smallest error. Actually we select the best value of βk0
that determines the “best” tree of the original sequence)
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Pruning algorithm

By the 1-SE rule

The above procedure can be unstable in the sense that they can depend on how the initial
participation is carried out both in the case of a test sample and cross-validation.

Breiman et al., (1984) suggest, instead of keeping the tree that minimizes the error according to
the presented estimators, to retain the simplest tree whose error is less than the error of the tree
with minimum error + its standard error (SE). The goal is to choose the most simple tree among
all those who have a similar error.
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with minimum error + its standard error (SE). The goal is to choose the most simple tree among
all those who have a similar error.
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1-SE rule

Errors are normalized such that root node
has error 1.

In the table of the figure, a sequence of sub-
trees is shown with their respective complex-
ity values, errors Rvc y Rres and complexity
parameter on real data. In this case, T11

would be the tree chosen by the criterion
of least cost-complexity, if we use the cross-
validation estimator. Of all the trees that
satisfy that their Rvc errors are less than
0, 603 + 0, 057 = 0, 66, we kept with the
most simple, T12, with 8 leaves.

Observe that the classification error decreases as the complexity grows, the choice of the subtree
by this criterion (Rres) will lead us to choose the maximal tree T1, which is inconvenient as we
said before, for being a model complex and over-adjusted to the training sample.
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Adjustment measure of a tree

A global measure of adjustment is to look at the global deviance D. Deviance measures the
difference in the fit between the model candidate and the saturated model (in the case of trees,
the one with as many leaves as observations).

D = −2
∑
t∈T̃

∑
k

ntk log p̂tk (for classification)

or
D =

∑
t∈T̃

(1−
∑
k

p̂2
tk ) (classification -this one is used by rpart-)

where ntk and p̂tk are, respectively, the amount and proportion of observations of class k on the
leaf t.

D =
∑
t∈T̃

∑
xi∈t

(yi − y t)
2 (for regression)

If the value of D is small, this indicates a good fit of the model to the training data.

The average residual return (residual mean deviance) and pseudo-R2 are defined as

D

N − |T̃ |
and R2 =

Droot node − D

Droot node
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Final considerations

In [1] the consistency of CART is proved: if the number of observations is increased, the
classification error of the model converges to the classification error.

CART is easy to interpret.

CART serves both for classification and for regression.

CART performs well with missing data (surrogate variables).

CART is an algorithm of the greedy type: it uses the best partition at every moment and
therefore can leave aside variables that can be important in explaining variability of the data
because they are highly correlated with variables that were used.

CART is unstable: aggregation methods to stabilize it (Bagging, Boosting, Random Forest).
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CART instability
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CART vs LM
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