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Bayes classifier

We focus on binary classification
Suppose we have two population groups P1 y P2 where elements of P1 are labelled by 1 and
elements of P2 by 0. Indeed if X and Y are both random quantities:

(X,Y ) ∈ P1,with X ∈ X ⊂ RdandY = 1

(X,Y ) ∈ P2,with X ∈ X ⊂ Rd andY = 0

The goal is to construct a classifier F : X → {0, 1}:

F (x) = 1{f (x)>0}

where f is the boundary between two classes, that can be linear or not. If it is linear we call f a
linear classification rule.
Let define by:

1 π1 = P(Y = 1) and π2 = P(Y = 0) with π1 +π2 = 1 the marginal distribution of Y (prior).

2 X|Y = 1 ∼ g1 and X|Y = 0 ∼ g2 the conditional density of X given Y (we suppose a
distribution for the two populations).
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Bayes Classifier

Then, applying the well known Bayes formula and recalling that P(X = x|Y = 1) = g1(x)∆ x :

The density of X is the mixture:

g(x) = π1g1(x) + π2g2(x)

The conditional distribution of Y given X are

P(Y = 1|X = x) =
π1g1(x)

g(x)

P(Y = 0|X = x) = 1− P(Y = 1|X = x) =
π2g2(x)

g(x)
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Example

pi= .5 # prior
n =1000 #size of the sample

population <- sample(1:0, n, rep = TRUE,
prob = c(pi, 1- pi))

table(population)
n1 <- table(population)["1"]; n2 <- table(population)["0"]

# parameters
mu.1 <- 2.5; sigma.1 <- 1
mu.2 <- 7; sigma.2 <- 2
x1 <- rnorm(n1, mu.1, sigma.1)
x2 <- rnorm(n2, mu.2, sigma.2)
x12 <- c(x1, x2)

mean(x1); mean(x2); mean(x12)
sd(x1); sd(x2); sd(x12)
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Example

hist(x1, freq = F, ylim=c(0,0.45)); curve(dnorm(x, mean = mu.1, sd = sigma.1), add = T, lwd = 2, col = ’red’)

hist(x2, freq = F, ylim=c(0,0.45)); curve(dnorm(x, mean = mu.2, sd = sigma.2), add = T, lwd = 2, col = ’blue’)

hist(x12, freq = F, ylim=c(0,0.45))

rug(x1, col = ’red’)

rug(x2, col = ’blue’)

curve(dnorm(x, mean = mu.1, sd = sigma.1), lty = 3, add = T, col = ’red’)

curve(dnorm(x, mean = mu.2, sd = sigma.2), lty = 2, add = T, col = ’blue’)
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Example

#Density:
g.mixture <- function(x, pi, mu, sigma) {

g <- pi * dnorm(x, mu[1], sigma[1]) +
(1 - pi) * dnorm(x, mu[2], sigma[2])

return(g)
}
curve(g.mixture(x, pi = n1/n, c(mu.1, mu.2),

c(sigma.1, sigma.2)), lwd = 2, add = T)
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Bayes Classifier

Then a new observation x0 is classified as following. As

P(Y = 1|X = x0) =
P(X = x0|Y = 1)π1

π1P(X = x0|Y = 1) + π2P(X = x0|Y = 0)
=
π1g1(x0)

g(x0)

we classify x0 in the group with the maximum posterior probability (Bayes rule), indeed if

π2g2(x0) > π1g1(x0)

we assign x0 to group 2, i.e y0 = 0

In the particular case that π1 = π2 we assign x0 to group 2 if

g2(x0) > g1(x0)

Any binary classifier function F can be tested under 0− 1 loss by its risk as follow:

R(F ) = E(X,Y)1{Y 6=F (X)} = P(Y 6= F (X))

The Bayes rule is

F∗(x0) =

{
1 ifP(Y = 1|X = x0) > P(Y = 0|X = x0)
0 ifP(Y = 1|X = x0) < P(Y = 0|X = x0)

and it is proved by F∗ = Argmin
F

R(F ) .

The classification boundary of Bayes rule is the set

{x : P(Y = 1|X = x) = P(Y = 0|X = x)}
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Example

x.test <- sample(c(0, 1, 3.5, 8, 10, 12))
clasificacion <- ifelse(pi * dnorm(x.test, mu.1, sigma.1) >
(1 - pi) * dnorm(x.test, mu.2, sigma.2), ’Group 1’, ’Group 2’)
cbind(x.test, poblacion = clasificacion)

x.test poblacion
[1,] "8" "Group 2"
[2,] "3.5" "Group 1"
[3,] "0" "Group 1"
[4,] "10" "Group 2"
[5,] "1" "Group 1"
[6,] "12" "Group 2"
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Example

mu.1 <- 2.5; sigma.1 <- 1
mu.2 <- 7; sigma.2 <- 2
x1 <- rnorm(n1, mu.1, sigma.1)
x2 <- rnorm(n2, mu.2, sigma.2)

curve(dnorm(x, mean = mu.1, sd = sigma.1),xlim=c(-10,10), lty = 1, col = ’red’,
ylab=’densities’,main=’marginales’)
curve(dnorm(x, mean = mu.2, sd = sigma.2), lty = 1,add=T, col = ’blue’)
boundary=function(x)
{dnorm(x,mu.1,sigma.1)/dnorm(x,mu.2,sigma.2)-1
}
curve(boundary(x), lty = 1,add=T, col = ’black’)
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Bayes classifier and classification boundary

As

P(Y = 1|X = x0) =
π1g1(x0)

g(x0)
and P(Y = 0|X = x0) =

π2g2(x0)

g(x0)

the Bayes decision boundary is {
x :

g1(x)

g2(x)
=
π2

π1

}
Any binary classifier divides the input space X as X = R1 ∪ R0 where

R1 = {x ∈ X : F (x) = 1} and R0 = {x ∈ X : F (x) = 0}

#Equal prior

boundary=function(x)

{dnorm(x,mu.1,sigma.1)/dnorm(x,mu.2,sigma.2)-1

}

library(rootSolve) #required by the function uniroot.all

raices <- uniroot.all(boundary,c(-100,100))

raices

[1] -2.293689 4.293689

So the optimal classification regions are

R∗1 = (−2.293, 4.293) and R∗0 = (−∞,−2.293) ∪ (4.293, +∞)
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Bayes classifier and classification boundary

Suppose we have observing a difference at the prior. How does this affect the classification rule?
If π1 = 0.25 and π2 = 0.75, the Bayes decision boundary is{

x :
g1(x)

g2(x)
=
π2

π1

}
=

{
x :

g1(x)

g2(x)
= 3

}
boundary=function(x)
{dnorm(x,mu.1,sigma.1)/dnorm(x,mu.2,sigma.2)-3
}

library(rootSolve) #required by the function uniroot.all
raices <- uniroot.all(boundary,c(-100,100))

raices
[1] -1.814038 3.814038
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Classification error and cost
For any decision function we can make two possible mistakes:

assign to class 1 an observation when its true label is 0 (false positive)

assign to class 0 an observation when its true label is 1 (false negative)

We denote by

C(1, 0) the cost of misclassifying an observation of class 1 to 0

C(0, 1) the cost of misclassifying an observation of class 0 to 1

We assume that C(i , i) = 0 ∀ i and C(i , j) ≥ 0 ∀i , j .

We can think about the expected cost risk of classifying an instance x in class 1 as

R(1|X = x) =
∑
j

P(j |X = x)C(j , 1) = P(0|X = x)C(0, 1)

Then the classifier takes the decision of classifying x in the positive class, if the risk of classifying
x in the negative class is more important of classifying in the positive class:

F∗(x) = 1⇔ R(1|X = x) ≤ R(0|X = x) ⇔ P(0|X = x)C(0, 1) ≤ P(1|X = x)C(1, 0)

⇔
P(1|X = x)

P(0|X = x)
>

C(0, 1)

C(1, 0)

As P(0|X = x) = 1− P(1|X = x) we get a threshold p to assign class 1 to x if

P(1|X = x) ≥ p =
C(0, 1)

C(1, 0) + C(0, 1)
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Classification error and cost
So

F∗(x) =

{
1 if P(Y=1|X=x)

P(Y=0|X=x)
>

C(0,1)
C(1,0)

0 if P(Y=1|X=x)
P(Y=0|X=x)

<
C(0,1)
C(1,0)

Remark: if C(0, 1) >> C(1, 0), threshold p ≈ 1 and the classification is usually 0. And if
C(0, 1) << C(1, 0), threshold p ≈ 0 and the classification is usually 1.

The boundary is the set{
x :

P(Y = 1|X = x)

P(Y = 0|X = x)
=

C(0, 1)

C(1, 0)

}
=

{
x :

g1(x)

g2(x)
=
π2C(0, 1)

π1C(1, 0)

}

In example above if we assume that C(0, 1) = 2 and C(1, 0) = 1, π1 = π2 the Bayes boundary
bound is {

x :
g1(x)

g2(x)
= 2

}
boundary=function(x)
{dnorm(x,mu.1,sigma.1)/dnorm(x,mu.2,sigma.2)-2
}

library(rootSolve) #required by the function uniroot.all
raices <- uniroot.all(boundary,c(-100,100))

raices
[1] -2 4
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Bayes classifier, error and cost

In a certain sense we can think:

Prediction \ Reality Positive 1 Negative 0
Positive 1 True Positive (TP) False Positive (FP)

C(1, 1) C(0, 1) Type II error
Negative 0 False Negative (FN) True Negative (TN)

C(1, 0) Type I error C(0, 0)

Table: Confusion matrix

and

P(1|X = x) ≥ p =
C(0, 1)

C(1, 0) + C(0, 1)
=

FP

FN + FP

Arguments above are very important when we deal with:

Imbalanced problems: the two groups are not equally represented in the dataset. For
example if we suppose we have observing a rare event (a disease for example) that occurs
among 5% of the population. If observations of class 1 are infected and observations of
class 2 are healthy, we have π1 = 0.1 and π2 = 0.9.

The misclassification error is not the same for both class. If we want to give a treatment to
the population, it is more serious to say that a patient is healthy when it has a disease, than
the contrary.
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Linear Regression models

As E(Y|X = x) = P(Y = 1|X = x) we suppose that is linear of the form β0 + x′β1
We recall that the Minimum Least Square estimator of β = (β0, β1

′)′ is

βLS = Argmin
β
||y − Xβ||2 = Argmin

β
(y − Xβ)′(y − Xβ)

where y = (y1, . . . , yn) with yi ∈ {0, 1} and X is the data matrix with all elements of the first
column equal 1.
It is well known that in most of case: βLS = (X ′X )−1X ′y and the classification rule is

f (x) = βLS
0 + x′β1

LS − 0.5

and the prediction is

ŷ = F̂ (x) =

{
1 if f̂ (x) > 0

0 if f̂ (x) < 0

Remarks:

Very simple

Low variance, but much bias

suppose a linear boundary and f̂ (x) should be a probability....
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Not all is linear
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Not all is linear

for (0, 0) and (1, 1) we have f (x ,w ,w0) = w ′x + w0 < 0

for (1, 0) and (0, 1) we have f (x ,w ,w0) = w ′x + w0 ≥ 0

Then 
0w1 + 0w2 + w0 < 0 (1)
w1 + w2 + w0 < 0 (2)
w1 + w0 ≥ 0 (3)
w2 + w0 ≥ 0 (4)

Then (3) + (4)− (2)⇒ w0 ≥ 0 which is absurd. Then the data is non linearly separable.
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ROC curve

Suppose that the population consists of individuals who have a tumor, which can be malignant or
benign. It is clear that the rule P(Y = 1|X = x) > 0.5 then Y = 1 is not appropriate.

The sensibility is the graphic of curve Se(t) = P(p(x) > t|Y = 1), 0 ≤ t ≤ 1

Varying t, the curve of Se gives proportion of individuals to whom malignancy is detected.
For t = 0 all individuals would be malignant, and for t = 1 all would be benign. This is the
True Positive Rate.

The specificity is the graphic of curve Sp(t) = P(p(x) < t|Y = 0), 0 ≤ t ≤ 1

Varying t, the curve of Sp gives proportion of individuals to whom a benign tumor is
detected. For t = 0 all individuals would be benign, and for t = 1 all would be malignant. It
is a major problem in medical diagnosis to determine the cut-off value such that it detects
the greatest number of malignant tumors, without committing too many errors (deciding
that it is malignant when in fact it is benign).

The ROC (Receiving Operating Characteristic) curve summarizes the two sensitivity and
specificity curves. It is the curve that results from representing the points(

1− Sp(t); Se(t)
)

0 ≤ t ≤ 1

that is, 1-Specificity (False Positive Rate) on the OX axis, and Sensitivity (True Positive Rate) on
the OY axis.

The ROC curve is not necessarly above the diagonal and convex, but it is monotone, and
the more it moves away from the diagonal, the better the discrimination (TPR = f (FPR)).

For t = 0 we have TPR = FPR = 1 and for t = 1 we have TPR = FPR = 0. As t
decreases, TPR and FPR increase.
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ROC curve

Prediction \ Reality Positive 1 Negative 0
Positive 1 True Positive (TP) False Positive (FP)
Negative 0 False Negative (FN) True Negative (TN)

P N

Table: Confusion matrix

For t = 0:

Prediction \ Reality Positive 1 Negative 0
Positive 1 P N
Negative 0 0 0

For t = 1:

Prediction \ Reality Positive 1 Negative 0
Positive 1 0 0
Negative 0 P N

For t = t∗ (ideal):

Prediction \ Reality Positive 1 Negative 0
Positive 1 P 0
Negative 0 0 N
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ROC Curve
Accuracy: TP+TN

TP+FN+FP+TN
= TP+TN

P+N

Sensibility (True Positive Rate); TP
TP+FN

= TP
P

(OY axis)

Specificity (True Negative Rate): TN
FP+TN

= TN
N

1-Specificity (False Positive Rate): FP
FP+TN

= FP
N

(OX axis)
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ROC Curve

TP

FN TN

FP

TP

FP

TN

FN

0% 100%P(FP)

100%

P(TP)

We choose the optimal t such that ROC point at s is the nearest of (0, 1), i.e minimizing
(1− Se(t))2 + (1− Sp(t))2. However:

it ignores the predicted probability values and the goodness-of-fit of the model

it summarizes the test performance over regions of the ROC space in which one would
rarely operate

it weights omission and commission errors equally
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