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Machine learning on graphs: Motivation

» Successful models for representation learning of structured data

> Sequences (e.g., text, videos) via recurrent neural networks (RNNs)
> Image classification via convolutional neural networks (CNNs)

A

» Data not always regular = Complex relational structures

» Graphs with social networks, computational chemistry, biology, ...

» Challenge: apply models designed for regular data to graphs

» Graph structures can be arbitrary and vary across scenarios
» Convolutions do not generalize to irregular graph domains
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What is this lecture about?

Graph representation learning (GRL)

» Learn low-dimensional vectors (embeddings) for graph data

» Learning types:

» Supervised: learn representations for node or graph classification
» Unsupervised: learn representations that preserve graph structure

» Underlying graph domain:

» Transductive: fixed graph structure (e.g., a large social network)
> Inductive: input graphs can vary (e.g., multiple molecules)

» Information from graph nodes:

» Featureless: no additional information (i.e., graph signals)
» With features: nodes possess usable attributes

Machine Learning on Graphs Graph Representation Learning



The network embedding problem
A taxonomy of graph embedding models
Unsupervised graph embedding

Applications
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Network embedding

Learn a mapping from a discrete graph to a continuous domain

v

Given G(V, &) with weighted adjacency matrix W € RN

v

v

Goal: learn (low) d-dimensional vector representation {z;}icy
= Criterion is to preserve local and global graph properties

Output is node embedding matrix Z = [z1,...,zpy,]" € RM*d
= Pick d < N, for scalability
= Effectively a dimensionality reduction technique

v

Extensions to embed the whole graph via z € RY possible

v
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Adjacency spectral embedding

» Ex: SBM with N, = 1500, @ = 3 and mixing parameters
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» Sample adjacency (left), ZZT (center), rows of Z (right)
» Use embeddings to bring to bear geometric methods of analysis
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Role of graph signals

» Graph signals (a.k.a. node attributes or features) X € RMxF
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» Ex: Age, gender in social network, fMRI signals, product ratings
» Embeddings capture structural and semantic graph information
{W, X} — Z

» Absent X, the embedding {W} — Z is termed featureless

= Mapping only preserves structural information
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Transductive and inductive embeddings

Transductive network embedding

» Embed nodes within a fixed (often large) graph

» Ex: Friend or product recommendation via link prediction
» Ex: Node classification in semi-supervised learning

Bipartite graph Auto-Encoder Link prediction

» Given new nodes, need to update and re-train the model

Inductive network embedding
» Learn mapping to representations that generalize to unseen graphs

» Ex: Embed brain graphs for subject classification
» Ex: Embed dynamic graphs for temporal clustering

» Signals X typically needed for inductive embedding
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Unsupervised and supervised embeddings

Unsupervised network embedding

» Only graph topology W is given
» Preserve graph structures by optimizing a reconstruction loss
» Decode embedding Z to approximate W well

» Ex: compression, visualization, clustering, link prediction

Supervised network embedding

» In addition to W (and X), node or graph labels y> available

» Optimize embeddings for downstream tasks
» Combine reconstruction and task-specific loss functions

» Ex: node classification, graph classification
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An encoder-decoder perspective
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The network embedding problem
A taxonomy of graph embedding models
Unsupervised graph embedding

Applications
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Encompassing graph embedding model

» Graph Encoder Decoder Model (GraphEDM)
= Unifying framework to review and compare GRL methods

= Open-source library with methods and applications

DEC(Z; ©°) LEyp [

DEC(Z; ©P) Lg rEG

Output '
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» Q: What are the framework's constituent components?
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» Undirected graph G(V, &), with |[V| =N, and |E] = N,
= Weighted adjacency matrix W € RV xMN
» Optional graph signals (node features) X € RMxF
> For (semi)-supervised learning tasks, also need target labels of:

» Nodes (N), for node classification and clustering
» Edges (E), for relationship classification or link prediction
» Graphs (G), for graph clustering and classification

» Supervision signal (labels) denoted as y°, where S € {N, E, G}

Machine Learning on Graphs Graph Representation Learning



s {1]
&)

» Graph encoder network

ENCge : RN XN 5 RNXF pINvxd
= Learnable parameters ©F
» Combines graph structure with graph signals to produce an embedding
Z = ENC(W, X; ©F)
= Captures different graph properties based on type of supervision
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» Graph decoder network
DECgp : RW*? s RN
= Learnable parameters ®P
» Uses Z to produce (dis)similarity scores W; for all {i,j} € V®
W = DEC(Z; ®P)

= Unsupervised graph reconstruction
= Approximate W or general (dis)similarity matrix s(W)
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Decoder

a Dl GS)

» Classification network
DECgs : RWxd oy RNvXIVI
= Learnable parameters ®°, label space )
» Uses Z to produce node-wise distributions over labels
§° = DEC(Z; ©°)

= (Semi)-supervised learning for node/graph classification
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Output

Reconstructed graph similarity matrix W € RM* N

v

= Used to train unsupervised embedding algorithms

v

For (semi)-supervised learning tasks, outputs are predicted labels §°

» The label output space varies depending on the type of supervision

v

Node-level: §¥ € YN or YN € [0, 1]N >V
= When |)| = d, can use softmax activation on Z's rows

v

Edge-level: YE € %M. where typically ) — {0, 1}reation types
= When #relation types = 1 (i.e., link prediction), output W

v

Graph-level: ¢ €Y
= Using W, convert Z to y° via graph pooling
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Loss functions

» Supervised loss
= L2,p compares predicted labels §° to ground truth y°

Ex: semi-supervised node classification (S = N, V = Vops U Viniss)
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» Graph regularization loss

= L¢ rec compares W with target (dis)similarity matrix s(W)
L6 rec(W, W; ©) = dy(s(W), W)

> di(+,-): distance or dissimilarity function
> Leverage G via s(W) to regularize model parameters ©

Machine Learning on Graphs Graph Representation Learning



Objective function

DEC(Z; ©7)

Output ;

» Weight regularization loss
= Lreg regularizes trainable parameters © to reduce overfitting

Lrec(©) = Z 1613

6coe

» Overall GraphEDM objective function
L£(®) = aL3yp(y*,9° ©) + BLc rec(W, W; ©) + Lrec(©)
= Train in a supervised (a # 0) or unsupervised (a = 0) fashion

» Q: End-to-end supervised learning or two-step learning?
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Graph embedding taxonomy

Categorize GRL methods based on encoder and loss function used

v

v

Shallow embedding methods Z = ENC(®F) = ©F
> A simple embedding lookup

v

Graph auto-encoding methods Z = ENC(W; ©F)

» Transductive like shallow embeddings, no X so works for fixed G

v

Graph regularization methods Z = ENC(X; ©F)

> Leverage W via L rec to regularize node embeddings

v

Neighborhood aggregation methods Z = ENC(W, X; ©F)
» Use W to propagate information among nodes and learn Z
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The network embedding problem
A taxonomy of graph embedding models
Unsupervised graph embedding

Applications
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Unsupervised graph embedding

» Goal: Learn node embeddings that preserve graph structure

» Optimize to reconstruct some node (dis)similarity matrix s(W)

a=0
L(©) :W-F BLG rec(W, W; ©) + Lrec(©)

» Decoder network outputs W, with W = da(z/, ;)
> Graph regularization loss L rec = di(s(W), W)
» Optimize over training set {/,j} € V2 use SGD or spectral methods

obs’

> Target pairwise node similarity matrix s(W) can take many forms

Ex: Reconstruct first-order proximity via [s(W)]; = W
Ex: Higher-order proximity [s(W)]; = |N; N Aj|, Jaccard, Adamic-Adar
Ex: Prob. [s(W)]; = P (v;| vi) that i,j € V co-occur on random walks
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Shallow embeddings
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» Shallow embedding methods

Z = ENC(©F) = ©F ¢ RV
= A simple embedding lookup, optimize Z directly

» Two classess based on the type of decoder W = DEC(Z; ")

» Distance-based methods: Wj; = da(zi, z;)
» Outer product-based methods: W = ZZ" = W; = 2/ z;

» Inspired by dimensionality reduction via low-rank matrix factorization

= More recent approaches rely on random walks (NLP analogies)
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Distance-based methods

> ldea: embeddings preserve distances in G [encoded in s(W)]

Le rec(W, W; ©) = dy(s(W), W Z ([s(W)]; — Wj)?
ijev®

obs
= Euclidean distance decoder: W = da(2;,2;) = ||z — zj]|2

» Multi-dimensional scaling (MDS) preserves local connectivity
> Set [s(W)]; =1 if Wj; > 0 and 0 otherwise

» IsoMAP preserves global geodesic distances in the manifold
> Set e.g., [s(W)]j = ds(i,j), shortest-path distance between i,j € V
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Laplacian eigenmaps

» Capture information in G via spectral properties of L =D — W
= Locality-preserving nonlinear dimensionality reduction scheme

min trace(Z'LZ), s.toZ'DZ=1
ZeRvid

» Equivalently written as a graph regularization term

L rec(W,W; ©) = di(s(W),W) = Z WUVT/U2
ijevs)

obs

= Euclidean distance decoder: W = da(2;,2;) = ||z — zj]|2

= Embeddings close in RY if i, j well connected in G
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Gene cartography

» Ex: Spectral embedding of ‘gene similarity’ matrix (d = 2)

= Consistent with origins of individuals in European map
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Non-Euclidean embedding spaces

» ldea: embed graphs with hierarchical structure into hyperbolic space

~ ~ e u
Ls rec(W,W; ©) = di(s(W),W) = — Z Wi log = v
e KWy=0 €~ K
1 JEV e
= Poincaré distance decoder:
; Iz — 213
W = da(z;,2;) = arcosh (1 +2 J
’ ! (1= lzil5) (1 — [z]3)

» Capture similiarty and hierarchy

» Use Riemannian optimization tools
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Matrix factorization methods

> ldea: learn low-rank representation of similarity matrix s(W)
L rec(W, W; ©) = dy(s(W), W) = ||s(W) — W2

— Outer product decoder: W = DEC(Z; ©P) = zZT

= Implies an inner-product approximation [s(W)]; = z/ z;

» Graph factorization (GF) preserves first-order similarity in G
> Set [s(W)]; = W; and evaluate L¢ rec(W,W; ©) on (i,)) € £

» GraRep preserves higher-order similarity in G
> Set e.g., [s(W)]; = [W¥];, k > 2, for length-k path counts

» HOPE preserves general similarity measures in (directed) G
» Jaccard, Adamic-Adar and related neighborhood scores

» Closely related to adjacency spectral embedding (ASE) for RDPGs
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Zachary's karate club

» Ex: Zachary's karate club graph with N, = 34, N, = 78 (left)

» ASE node embeddings (rows of Z) for d = 2 (right)

» Club’s administrator (i = 0) and instructor (j = 33) are orthogonal

» Interpretability of embeddings a valuable asset for RDPGs
= Vector magnitudes indicate how well connected nodes are
= Vector angles indicate positions in latent space
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From texts to graphs

v

Permeate advances in language modeling and feature learning in NLP

» Ex: Skip-gram neural network model for word2vec embeddings
» From text corpora (word sequences) to graphs (node sequences)

v

Idea: similar z; to nodes that tend to co-occur in random walks over G

v

View sentences in NLP as random walks over the vocabulary

» Generate short random walks on G to sample node sequences
> Learn node positional distributions just like words [Perozzi et al'14]

v

Prob. P (j| i) of visiting j in a length-T random walk from i

= Asymmetric similarity measure [s(W)]; to decode from Z
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Random walk approaches

» Training pairs {/,j} € Vﬁl

» Foreach i €V, N pairs {i,j1},...,{i,jn} sampled from P (j|/)
> Length of each walk is T € {2,...,10}

sampled from short random walks

» Cross-entropy loss as graph regularization term

Lérec(W,W;0) = — Z log W;
eV

= Composition of softmax and outer product decoder

:

~ e%i %

Wi=s
2kev €

= Implies an approximation VT/,-J- ~ [s(W)]; =P (j | i)
» Evaluating the softmax denominator is challenging (O(N,) complexity)
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DeepWalk and node2vec

» DeepWalk samples unbiased random walks
» Transition probability matrix P = D™'W
S . T . .
> Hierchical softmax technique to form _, |, e * using binary trees

» Node2Vec offers a flexible definition of (biased) random walks
» Smoothly interpolates between walks akin to BFS or DFS
» Effective for capturing structural roles or community structures
> Approximates >, . €% % via samples Vx

o 1/q 32
Vs U1
[} L J
vy @ /4 x1/p

Vs @

» Hyperparameters p (return) and g (in-out). After vs — v,
(i) Control probability of revisiting nodes (v, — vs); or
(ii) Staying close to the preceding node (vi. — v1); or
(iii) Moving outward farther away (v — {v2,v3})
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Biased random walks

» Ex: character interaction graph from the novel ‘Les Miserables'

Community structure Structural equivalence / roles
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» node2vec interpolates between capturing global and local structure

> Left coloring indicates membership to communities (global positions)
> Right coloring indicates roles played within (local) neighborhoods
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Limitations

v

Shallow embeddings: encoder a simple embedding lookup

= Directly optimizes a unique embedding z; for each node i € V

v

No parameters sharing between nodes in the encoder

» Statistically inefficient, parameter sharing can act as a regularizer
» Computationally inefficient, number of parameters is O(N,)

v

Fails to leverage graph signals during encoding
» Attributes highly informative w.r.t. the node’s position and role in G

v

Inherently transductive

» Challenge for dynamic networks or large graphs not stored in memory
» Does not generalize to other graphs beyond G (used for training)
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Autoencoders

V] [’G,REG

» Autoencoders

Z = ENC(W; ©F)

= Directly incorporate W into the encoder

» Use deep neural network encoder and decoder functions
= Ability to model non-linearities
= Leads to more complex representations

» Models trained by minimizing a reconstruction error objective
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Neighborhood autoencoder methods

> Let w; € RM denote the i-th column of W
= Captures neighborhood information of i € V

Deep autoencoder network
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» Autoencoder objective: reconstruct w; from learnt embedding z;
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Structural deep network embedding

» Structural deep network embedding (SDNE) minimizes
L rec(W,W; ©) Z lwi — Wi |3 +WZ Willzi - 2|3

= Incorporates the LapIaC|an eigenmaps objectlve
» Uses deep autoencoders per node (shared parameters)
z; = ENC(w;; ©F), W; = DEC(z;; ©P)
» Via w;, encoder regularized with G's topology

» Drawback: input dimension fixed to N,, costly for large G
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Graph neural networks

—— L& REG

» Graph Neural Networks
Z = ENC(W, X; ©F)
= Use graph signals X and topology W in encoder function

» Generate embedding z; by aggregating signals within A;
» Convolutional: local and distributed implementation
» Efficiency: parameter dimensions independent of N,
» Regularization: effected via parameter sharing across nodes
» Inductive: generate embeddings for nodes not seen in training
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Convolutional graph autoencoders

Hidden layer Hidden layer
N

Input Y ve Output

ReLU o L ReLU

» Graph autoencoders (GAE) use a GCN encoder to learn embeddings
Z = GCN(W, X; ©F)
» Sigmoid cross entropy loss between W and decoder output W

Lorea(W,W;0) = — 37 (1-Wy) log(1—o( W)+ Wj log o (W)
7Jevobs
— Outer product decoder: W = DEC(Z; ©P) = 2ZT
= Non-probabilistic model, suitable for unweighted graphs
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Variational graph autoencoders
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e~N(0,T)

» Goal: train a probablistic decoder to generate realistic graphs
W ~ p(W | Z)
given latent variables from a probabilistic encoder Z ~ q(Z | X, W)
» Minimize reconstruction error given training graphs and signals

» Post training, drop the encoder and generate graphs W ~ p(W ] Z)
» Given latent variables Z ~ p(Z) sampled from a prior distribution
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Probabilistic encoder and decoder

» Encoder: simple inference model parameterized by GCNs

a(Z| X, W) = [T a(zi | X, W), with (z; | X, W) = N(z; y, diag(r2)
ievy
» Two separate GCNs to generate mean and variance parameters
pz = GCN, (W, X), logoz = GCN, (W, X)

> Given pz and log oz, sample latent embeddings via

Z=pz+exp(logoz)oe, €~ N(0,I)

» Decoder: generative model based on outer product decoder

pPW[2)= [ p(Wjlzi.2), with p(W; =1|z,2)) = o(2] 2)
ijev®
» o(-) stands for the logistic sigmoid function
» Prior: latent node embeddings assumed z; o N(0,1)
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Training the VGAE model

» Maximize the evidence likelihood lower bound (ELBO)

L(©®) = ZEq(ax,,w,-) [log p(W; | Z)] — KL(q(Z | Xi, W;), p(Z))

1
» KL(-,-) stands for Kullback-Leibler divergence
» Learnable parameters ® are the GCN filters Hy
> Requires a set of training graphs {W1,X1},...,{Wp,Xp}

» Generate a distribution over Z to satisfy two (conflicting) goals

(a) Sampled Z rich enough for the decoder to reconstruct W
(b) Distribution g(Z ’ X, W) is as close as possible to the prior p(Z)

» Goal (b) is critical to generate new graphs after training
= Sample Z ~ p(Z) — Decode W ~ p(W, | Z)
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VGAE in action

» Ex: Cora dataset with N, = 2708 papers and N, = 5429 citations
> Graph signals: presence/absence of 1433 words from dictionary

> Learned latent space using the VGAE model for a link prediction task
= Colors indicate class labels (discipline, not used for training)
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The network embedding problem
A taxonomy of graph embedding models
Unsupervised graph embedding

Applications
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Applications

» GRL has been succesfully applied in a wide range of domains

» Unsupervised learning to preserve graph structure
» Supervised learning for prediction or classification

DEC(Z; ©7)

S
Lsyp [+

L rEG

» Ex: brain network analysis for patient-control study
> (Un)supervised GRL for graph reconstruction and classification

» Ex: social network analysis for temporal graph clustering
» Unsupervised setting to learn graph-level representation
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Networks of the brain

» Challenge: understand human brain function and structure

» Neuroimaging advances = Data increase in volume and complexity
> Graph-centric analysis and methods of network science [Sporns’10]

» Brain networks can reflect two connectivity patterns

» Structural connectivity (SC). How is the brain wired?
= Anatomical tracts connecting brain regions (DTI)

» Functional connectivity (FC). How the brain functions?
= Correlation between neural signals in different regions (fMRI)

» Key problem: deciphering the relationship between SC and FC

» Simulations of nonlinear cortical activity models [Honey et al'09]
» Diffusion-based parametric inverse problem [Abdelnour et al'14]
» Network deconvolution [Li-Mateos'19]

» Goal: pursue SC-to-FC mapping as a regression problem

= Reconstruct FC network from SC network
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Problem statement

Study the generation of FC patterns from SC graphs
» Goal: learn the mapping from brain SC networks to FC networks

» Approach: reconstruct FC networks from the given SC networks

» Model: GCN-based encoder-decoder system

nodal ﬂnrlbutes

x :
structural Encader Decoder :
network
Prepocessing ‘ Relu(AX®) tanh(Relu(YY"))
4
\

Graph encoder-decoder system

Z; = tanh(Relu(y,vy,T)),i =12...F

Buidng e RO )
block 1 blook F

> . investigate latent variables within the system
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Model architecture: encoder

» Input SC network A € RVXN N regions from brain atlas
= Edge weights represent SC between brain regions
= Preprocessing: A := D~1/2AD~Y/2 A=1+A

> Learn vertex representations (i.e., embeddings) that capture

(i) Nodal attributes, e.g. intrinsic properties of brain regions
(i) Graph topology information, e.g. regional connection strengths

» A single-layer GCN used for encoder to learn node embeddings
= ReLU(AX®) € RV*F

» X € R"*7: input signal matrix
» @ € R™*F: learnable GCN filter coefficients
» RelLU(x) = max(0, x) activation for training the network
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Model architecture: decoder

nodal attr bum

structural ;
network
T,‘ Prepocessing }—» Relu(AX©) tanh(Relu (vv’)) 2 FC
Graph encoder-decoder system

Z; = tanh(Relu(y;y;")),i = 1,2... F

1
» Node embeddings ¥ € RVN*F go through the outer-product decoder

Z = tanh(ReLU(Y Y T)) € RVXN

> Weights in empirical FC networks restricted to [0,1]
> Ensure the output of the decoder in the same range

» Choose tanh and ReLU over sigmoid

» Loss function: MSE between Z and empirical FC
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Model architecture: latent variables

structural N Encoder Decoder :
network . A A Y o
~ Prepocessing Relu(AXO) tanh(Relu(YY")) ‘ Fc
z

Graph encoder-decoder system
Z; = tanh(Relu(y;y;")),i =1,2... F
[ 1

Buiding Buiing
block 1 bock P

> T: rank-F approximation of FC graph before activation

» Extract and analyze each of the rank-1 components T

Z; =tanh(ReLU(y,v; 7)), i=1,...,F

» 7, < outputs of individual filters in graph convolutional layer
= View as building blocks of FC network

» Reveal details about generation of FC patterns from SC networks
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Numerical tests: data

» P = 1058 healthy subjects from Human Connectome Project (HCP)

» Preprocessed SC network A from diffusion MRI

= Fiber counts between N = 68 cortical surface regions

Brain atlas Tractography Brain graph

» Preprocessed FC network from functional MRI
= Blood oxygen-level dependent (BOLD) signals
= Estimated FC < Pearson correlation between BOLD signals

» One-hot encoding as the signal on each graph node

Machine Learning on Graphs Graph Representation Learning



Numerical tests: FC reconstruction performance

» MSE between reconstructed and empirical FC networks

» Average test reconstruction error = 0.0304 with std = 0.0011
» Capture population patterns of SC-FC relationship
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Numerical tests: component graphs

» Investigate the latent variables learnt during model training
» Output of each graph filter in the graph convolution layer
» Building blocks Z; that generate reconstructed FC graph

0.15
03

0.10
0.2
01 0.05
0.0 0.00

» Subgraphs may reveal key insights about SC-to-FC mapping
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Numerical tests: component graphs

1.POI S
’-P%F = =T —_JLDE L PT
LPOR,
ZINS
03611 l,sltgz&ﬁ, 04720

0.0511 0.0533

> Left: subnetwork of regions in frontal and parietal lobe
> Precentral (PRC), Paracentral (PARA), motor/sensory functions
> Postcentral (POC), Superior Parietal (SP), spatial /somatosensory
» Right: subnetwork of regions in Inferior Frontal Gyrus
> Parsopercularis (POP), Parsorbitalis (POB), Parstriangularis (PT)

» Critically involved in complex brain functions [Greenlee et al’07]
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Supervised GRL for brain network classification

Model the relationship between brain structural and functional network

» Goal: summarize SC-FC relationship by simultaneously learning
» Node embeddings to reconstruct FC from the given SC networks

» Graph embeddings for graph classification

» Model: supervised graph encoder-decoder system

Graph encoder-decoder system
nodal attributes

X vy

structural ¢ Encoder Decoder

network ) A A
4.‘ Prepocessing }—» Relu(AX®) tanh(Relu(YY"))
A Y z
D Lyvse(Z,FC)
1 . A
h:ﬁZy,,I:LZ___N @ Leral,))
i

Logistic regression classifier

> . investigate group-wise difference within reconstructed FCs
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Model architecture: classifier

Graph encoder-decoder system
nodal attributes

X

A2

structural Encoder Decoder :
network A R .
n Prepocessing ‘ Relu(AX®) tanh(Relu(YY")) FC
Y z

: Lmse(Z,FC)
1 . N
b= Yi=12.N @ Lealid
7

Logistic regression classifier

» Apply row-wise average-pooling on the encoder output

= Vector summarizing SC-FC relationship, i.e., graph embedding

» Construct logistic regression classifier to predict subject labels

» Sigmoid cross-entropy loss between predicted and empirical labels

> Loss function: £ = Lmse(Z,FC) + A x Lcia(l, 1)
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Numerical tests: results

» P = 466 subjects from Human Connectome Project (HCP)
» Two classes: 245 non-drinkers, 221 heavy drinkers

» MSE between reconstructed and empirical FC networks

> Average test reconstruction error = 0.034174 with std = 0.00208
» Captured population patterns of SC-FC relationship

» Classification accuracy: 67.4 + 2%
» Captured discriminative patterns within each group

% Non-drinker
x g +  Drinker

» Reduced dimensional graph embeddings exhibit cluster structure
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Numerical tests: reconstructed FC

> Investigate group-wise difference within reconstructed FCs
» Captured difference between subjects in latent representations

» Test for significant group-wise difference in functional connections
» Edge-wise T-tests (p < 0.05) with FDR correction

> Connections weaker (left) & stronger (right) in drinkers
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Numerical tests: class differences

> Left: subnetwork of connections weaker in drinkers
> Entorhinal, Parahippocampus, limbic system impaired in drinkers

» Overall decrease in connection strengths in drinkers

» Right: subnetwork of connections stronger in drinkers
> Involve regions in multiple cortices = neural compensation

» Additional connections compensate for alcohol damages
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Dynamic social network clustering

v

Goal: Reveal temporal stages of the evolution of dynamic graphs
= Cast as a problem of clustering graph sequences

v

Approach: Unsupervised distance-based graph-level RL

v

Model: Siamese GRL network 4+ K-means clustering

> Learn graph-level embedding in unsupervised manner

= Preserve network structure and distances between graphs
> Cluster learned graph embeddings via K-means algorithm

= Each cluster represents one temporal stage

v

Siamese encoder better for input graphs with divergent structures
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Networks of international football

» T = 145 football graphs from year 1872 to 2016
» Nodes: N, = 238 national teams playing official games
> Edges: Wj(t) is the number of {i,j} games during year t
» Data comprises 39,052 total games over 145 years

» Expect to unveil various developmental stages in football history
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Model architecture: encoder

> Input: (1‘215) = 10440 pairs {W¢,,W,,} of football graphs

i .
o W, .
R o = B
.
L] L] hd

) DEC |-l LG REG

L 3
L ]
A T Cad B
L 3

Wi

» Model: Siamese encoder network with two GRL pipelines
» Two-layer GCN with parameters shared across pipelines

» Output: graph embeddings {z,,z:,} for each input graph
» Concatenate node embeddings learned at each layer
> Average graph pooling from node embeddings
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Model architecture: decoder

° Wy,
SR S
L]

DEC |-t 2 LaREG

» Idea: embeddings preserve distances between graph pairs

EG,REG({Wt}awi 0)= Z([S({Wt})]ti,tz - Wf1,f2)2

t,t2
= Euclidean distance decoder: W, 1, = ||z¢, — 1,2
» Prescribed distances between input graphs encoded in
[s({WeD]a,e. = d6(We, Wy, )
= Like MDS and IsoMAP but at graph-(not node-)level
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Model architecture: graph distance

» LG REG

» User defined graph distance dg(W,,, Wy;,)

» Ex: Spectrum distance
> Distance between spectrum (eigenvalues) of both Laplacian matrices

» Ex: Vertex-edge-overlap (VEO)
» Measure structural similarity between graphs

€6 NEe| + [Via N Ve
|5f1| + |gl‘2| + |Vt1| + |Vtz‘

» Distance computed as one minus normalized VEO

VEO(WtI,Wtz) =2x
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Graph clustering results

» K-means clustering applied to learned graph embeddings in R*®

= Number of clusters K =5 chosen by elbow rule
T
% T

@
B ‘@ g

"
o wwar
12 ®
20 g s
2 7 31 4
5 4 5
7 F S ® @ (f w16
69 9
2% 3 61 = S
£ 54 ™
o % g 63 o
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Cluster 1: early 20th century

» Mostly regions around UK and the River Plate

Machine Learning on Graphs Graph Representation Learning



Cluster 2: World Wars

» Decreased activity in Europe and sustained growth in South America
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Cluster 3: Post-World War Il recovery

» Noticeable bridging between Europe and America
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Cluster 4: Modern development

» Modern expansion of football with Africa and Asia involved
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Cluster 5: Current landscape

» Global nature of the game is patently apparent
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Open research directions

» GRL is a very active area of research. Many open questions remain:
» Scalability, interpretability, fairness, theoretical guarantees

» Robust and unified evaluation protocols and benchmarks

v

Modeling of directed, dynamic and multi-layer graphs

v

Beyond pairwise decoders: decoding higher-order motifs

» Expressivity via non-Euclidean embeddings?

M | MORGAN&CLAYPOOL PUBLISHERS
&&

Graph |
Representation
Learning

William L. Hamilton

Machine Learning on Graphs Graph Representation Learning



Glossary

Convolutional neural network
. ] Shallow embedding
Graph representation learning
, Graph autoencoders
Node and graph embedding . .
i i Neigborhood aggregation
(Un)supervised learning ) o
) ) . Higher-order proximity
Transductive and inductive . o
. o Matrix factorization
Link prediction
Random walks
Encoder-decoder model ) )
Laplacian eigenmaps
Learnable parameters )
o Hyperbolic geometry
(Dis)similarity scores o
: Variational autoencoders
Graph pooling . )
Brain network analysis

vV V. vV YV YV VY VYV VvV VY

Graph regularization loss

vV V. Y Y V¥V VY VY VvV VvV VvV VY

. Graph convolutional network
End-to-end learning
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