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Machine learning on graphs: Motivation

I Successful models for representation learning of structured data
I Sequences (e.g., text, videos) via recurrent neural networks (RNNs)
I Image classification via convolutional neural networks (CNNs)

I Data not always regular ⇒ Complex relational structures
I Graphs with social networks, computational chemistry, biology, . . .

I Challenge: apply models designed for regular data to graphs
I Graph structures can be arbitrary and vary across scenarios
I Convolutions do not generalize to irregular graph domains

M. Bronstein et al, “Geometric deep learning: Going beyond
Euclidean data,” IEEE Signal Processing Magazine, vol. 34, 2017
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What is this lecture about?

Graph representation learning (GRL)
I Learn low-dimensional vectors (embeddings) for graph data

I Learning types:
I Supervised: learn representations for node or graph classification
I Unsupervised: learn representations that preserve graph structure

I Underlying graph domain:
I Transductive: fixed graph structure (e.g., a large social network)
I Inductive: input graphs can vary (e.g., multiple molecules)

I Information from graph nodes:
I Featureless: no additional information (i.e., graph signals)
I With features: nodes possess usable attributes
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Roadmap

The network embedding problem

A taxonomy of graph embedding models

Unsupervised graph embedding

Applications
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Network embedding

I Learn a mapping from a discrete graph to a continuous domain

I Given G (V, E) with weighted adjacency matrix W ∈ RNv×Nv

I Goal: learn (low) d-dimensional vector representation {zi}i∈V
⇒ Criterion is to preserve local and global graph properties

I Output is node embedding matrix Z = [z1, . . . , zNv ]
> ∈ RNv×d

⇒ Pick d � Nv for scalability
⇒ Effectively a dimensionality reduction technique

I Extensions to embed the whole graph via z ∈ Rd possible
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Adjacency spectral embedding

I Ex: SBM with Nv = 1500, Q = 3 and mixing parameters

α =

[
1/3
1/3
1/3

]
, Π =

[
0.5 0.1 0.05
0.1 0.3 0.05
0.05 0.05 0.9

]

I Sample adjacency (left), ZZ> (center), rows of Z (right)

I Use embeddings to bring to bear geometric methods of analysis
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Role of graph signals

I Graph signals (a.k.a. node attributes or features) X ∈ RNv×F

I Ex: Age, gender in social network, fMRI signals, product ratings

I Embeddings capture structural and semantic graph information

{W,X} 7→ Z

I Absent X, the embedding {W} 7→ Z is termed featureless
⇒ Mapping only preserves structural information
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Transductive and inductive embeddings

Transductive network embedding
I Embed nodes within a fixed (often large) graph

I Ex: Friend or product recommendation via link prediction
I Ex: Node classification in semi-supervised learning

I Given new nodes, need to update and re-train the model

Inductive network embedding
I Learn mapping to representations that generalize to unseen graphs

I Ex: Embed brain graphs for subject classification
I Ex: Embed dynamic graphs for temporal clustering

I Signals X typically needed for inductive embedding
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Unsupervised and supervised embeddings

Unsupervised network embedding
I Only graph topology W is given

I Preserve graph structures by optimizing a reconstruction loss
I Decode embedding Z to approximate W well

I Ex: compression, visualization, clustering, link prediction

Supervised network embedding
I In addition to W (and X), node or graph labels yS available

I Optimize embeddings for downstream tasks
I Combine reconstruction and task-specific loss functions

I Ex: node classification, graph classification
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An encoder-decoder perspective

W. L. Hamilton et al, “Representation learning on graphs: Methods
and applications,” IEEE Data Engineering Bulletin, 2018
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Roadmap

The network embedding problem

A taxonomy of graph embedding models

Unsupervised graph embedding

Applications
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Encompassing graph embedding model

I Graph Encoder Decoder Model (GraphEDM)
⇒ Unifying framework to review and compare GRL methods
⇒ Open-source library with methods and applications

I. Chami et al, “Machine learning on graphs: A model and
comprehensive taxonomy,” arXiv:2005.03675 [cs.LG], 2020

I Q: What are the framework’s constituent components?

https://github.com/google/gcnn-survey-paper
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Input

I Undirected graph G (V, E), with |V| = Nv and |E| = Ne

⇒ Weighted adjacency matrix W ∈ RNv×Nv

I Optional graph signals (node features) X ∈ RNv×F

I For (semi)-supervised learning tasks, also need target labels of:
I Nodes (N), for node classification and clustering
I Edges (E), for relationship classification or link prediction
I Graphs (G), for graph clustering and classification

I Supervision signal (labels) denoted as yS , where S ∈ {N,E ,G}
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Encoder

I Graph encoder network

ENCΘE : RNv×Nv × RNv×F 7→ RNv×d

⇒ Learnable parameters ΘE

I Combines graph structure with graph signals to produce an embedding

Z = ENC(W,X;ΘE )

⇒ Captures different graph properties based on type of supervision
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Decoder

I Graph decoder network

DECΘD : RNv×d 7→ RNv×Nv

⇒ Learnable parameters ΘD

I Uses Z to produce (dis)similarity scores Ŵij for all {i , j} ∈ V(2)

Ŵ = DEC(Z;ΘD)

⇒ Unsupervised graph reconstruction
⇒ Approximate W or general (dis)similarity matrix s(W)
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Decoder

I Classification network

DECΘS : RNv×d 7→ RNv×|Y|

⇒ Learnable parameters ΘS , label space Y

I Uses Z to produce node-wise distributions over labels

ŷS = DEC(Z;ΘS)

⇒ (Semi)-supervised learning for node/graph classification
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Output

I Reconstructed graph similarity matrix Ŵ ∈ RNv×Nv

⇒ Used to train unsupervised embedding algorithms

I For (semi)-supervised learning tasks, outputs are predicted labels ŷS

I The label output space varies depending on the type of supervision

I Node-level: ŷN ∈ YNv or ŶN ∈ [0, 1]Nv×|Y|

⇒ When |Y| = d , can use softmax activation on Z’s rows

I Edge-level: ŶE ∈ YNv×Nv , where typically Y = {0, 1}#relation types

⇒ When #relation types = 1 (i.e., link prediction), output Ŵ

I Graph-level: ŷG ∈ Y
⇒ Using W, convert Z to ŷG via graph pooling
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Loss functions

I Supervised loss
⇒ LS

SUP compares predicted labels ŷS to ground truth yS

Ex: semi-supervised node classification (S = N, V = Vobs ∪ Vmiss)

LN
SUP(y

N , ŷN ;Θ) =
∑
i∈Vobs

`(yN
i , ŷ

N
i ;Θ)

I Graph regularization loss
⇒ LG ,REG compares Ŵ with target (dis)similarity matrix s(W)

LG ,REG(W, Ŵ;Θ) = d1(s(W), Ŵ)

I d1(·, ·): distance or dissimilarity function
I Leverage G via s(W) to regularize model parameters Θ

Machine Learning on Graphs Graph Representation Learning 18



Objective function

I Weight regularization loss
⇒ LREG regularizes trainable parameters Θ to reduce overfitting

LREG(Θ) =
∑
θ∈Θ

‖θ‖22

I Overall GraphEDM objective function

L(Θ) = αLS
SUP(y

S , ŷS ;Θ) + βLG ,REG(W, Ŵ;Θ) + LREG(Θ)

⇒ Train in a supervised (α 6= 0) or unsupervised (α = 0) fashion

I Q: End-to-end supervised learning or two-step learning?
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Graph embedding taxonomy

I Categorize GRL methods based on encoder and loss function used

I Shallow embedding methods Z = ENC(ΘE ) = ΘE

I A simple embedding lookup

I Graph auto-encoding methods Z = ENC(W;ΘE )
I Transductive like shallow embeddings, no X so works for fixed G

I Graph regularization methods Z = ENC(X;ΘE )
I Leverage W via LG ,REG to regularize node embeddings

I Neighborhood aggregation methods Z = ENC(W,X;ΘE )
I Use W to propagate information among nodes and learn Z
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Roadmap

The network embedding problem

A taxonomy of graph embedding models

Unsupervised graph embedding

Applications
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Unsupervised graph embedding

I Goal: Learn node embeddings that preserve graph structure

I Optimize to reconstruct some node (dis)similarity matrix s(W)

L(Θ) =
���

���
���:α = 0

αLS
SUP(y

S , ŷS ;Θ) + βLG ,REG(W, Ŵ;Θ) + LREG(Θ)

I Decoder network outputs Ŵ, with Ŵij = d2(zi , zj)
I Graph regularization loss LG ,REG = d1(s(W), Ŵ)
I Optimize over training set {i , j} ∈ V(2)

obs , use SGD or spectral methods

I Target pairwise node similarity matrix s(W) can take many forms
Ex: Reconstruct first-order proximity via [s(W)]ij = Wij

Ex: Higher-order proximity [s(W)]ij = |Ni ∩Nj |, Jaccard, Adamic-Adar
Ex: Prob. [s(W)]ij = P

(
vj
∣∣ vi) that i , j ∈ V co-occur on random walks
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Shallow embeddings

I Shallow embedding methods

Z = ENC(ΘE ) = ΘE ∈ RNv×d

⇒ A simple embedding lookup, optimize Z directly

I Two classess based on the type of decoder Ŵ = DEC(Z;ΘD)
I Distance-based methods: Ŵij = d2(zi , zj)
I Outer product-based methods: Ŵ = ZZ> ⇒ Ŵij = z>i zj

I Inspired by dimensionality reduction via low-rank matrix factorization
⇒ More recent approaches rely on random walks (NLP analogies)
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Distance-based methods

I Idea: embeddings preserve distances in G [encoded in s(W)]

LG ,REG(W, Ŵ;Θ) = d1(s(W), Ŵ) =
∑

i,j∈V(2)
obs

([ s(W)]ij − Ŵij)
2

⇒ Euclidean distance decoder: Ŵij = d2(zi , zj) = ‖zi − zj‖2

I Multi-dimensional scaling (MDS) preserves local connectivity
I Set [s(W)]ij = 1 (or Wij) if Wij > 0 and 0 otherwise

I IsoMAP preserves global geodesic distances in the manifold
I Set e.g., [s(W)]ij = dG (i , j), shortest-path distance between i , j ∈ V
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Laplacian eigenmaps

I Capture information in G via spectral properties of L = D−W
⇒ Locality-preserving nonlinear dimensionality reduction scheme

min
Z∈RNv×d

trace(Z>LZ), s. to Z>DZ = I

I Equivalently written as a graph regularization term

LG ,REG(W, Ŵ;Θ) = d1(s(W), Ŵ) =
∑

i,j∈V(2)
obs

WijŴ
2
ij

⇒ Euclidean distance decoder: Ŵij = d2(zi , zj) = ‖zi − zj‖2
⇒ Embeddings close in Rd if i , j well connected in G

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Computation, 2003.
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Gene cartography

I Ex: Spectral embedding of ‘gene similarity’ matrix (d = 2)
⇒ Consistent with origins of individuals in European map

J. Novembre, “Genes mirror geography within Europe,” Nature, 2008
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Non-Euclidean embedding spaces

I Idea: embed graphs with hierarchical structure into hyperbolic space

LG ,REG(W, Ŵ;Θ) = d1(s(W), Ŵ) = −
∑

i,j∈V(2)
obs

Wij log
e−Ŵij∑

k|Wik=0 e
−Ŵik

⇒ Poincaré distance decoder:

Ŵij = d2(zi , zj) = arcosh

(
1+ 2

‖zi − zj‖22
(1− ‖zi‖22)(1− ‖zi‖22)

)

I Capture similiarty and hierarchy

I Use Riemannian optimization tools

M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical
representations,” NeurIPS, 2017
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Matrix factorization methods

I Idea: learn low-rank representation of similarity matrix s(W)

LG ,REG(W, Ŵ;Θ) = d1(s(W), Ŵ) = ‖s(W)− Ŵ‖2F

⇒ Outer product decoder: Ŵ = DEC(Z;ΘD) = ZZ>

⇒ Implies an inner-product approximation [s(W)]ij ≈ z>i zj

I Graph factorization (GF) preserves first-order similarity in G
I Set [s(W)]ij = Wij and evaluate LG ,REG(W, Ŵ;Θ) on (i , j) ∈ E

I GraRep preserves higher-order similarity in G
I Set e.g., [s(W)]ij = [Wk ]ij , k ≥ 2, for length-k path counts

I HOPE preserves general similarity measures in (directed) G
I Jaccard, Adamic-Adar and related neighborhood scores

I Closely related to adjacency spectral embedding (ASE) for RDPGs
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Zachary’s karate club

I Ex: Zachary’s karate club graph with Nv = 34, Ne = 78 (left)

I ASE node embeddings (rows of Z) for d = 2 (right)
I Club’s administrator (i = 0) and instructor (j = 33) are orthogonal

I Interpretability of embeddings a valuable asset for RDPGs
⇒ Vector magnitudes indicate how well connected nodes are
⇒ Vector angles indicate positions in latent space
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From texts to graphs

I Permeate advances in language modeling and feature learning in NLP
I Ex: Skip-gram neural network model for word2vec embeddings
I From text corpora (word sequences) to graphs (node sequences)

I Idea: similar zi to nodes that tend to co-occur in random walks over G

I View sentences in NLP as random walks over the vocabulary
I Generate short random walks on G to sample node sequences
I Learn node positional distributions just like words [Perozzi et al’14]

I Prob. P
(
j
∣∣ i) of visiting j in a length-T random walk from i

⇒ Asymmetric similarity measure [s(W)]ij to decode from Z
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Random walk approaches

I Training pairs {i , j} ∈ V(2)
obs sampled from short random walks

I For each i ∈ V, N pairs {i , j1}, . . . , {i , jN} sampled from P
(
j
∣∣ i)

I Length of each walk is T ∈ {2, . . . , 10}

I Cross-entropy loss as graph regularization term

LG ,REG(W, Ŵ;Θ) = −
∑

i,j∈V(2)
obs

log Ŵij

⇒ Composition of softmax and outer product decoder

Ŵij =
ez>i zj∑

k∈V e
z>i zk

⇒ Implies an approximation Ŵij ≈ [s(W)]ij = P
(
j
∣∣ i)

I Evaluating the softmax denominator is challenging (O(Nv ) complexity)
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DeepWalk and node2vec

I DeepWalk samples unbiased random walks
I Transition probability matrix P = D−1W
I Hierchical softmax technique to form

∑
k∈V e

z>i zk using binary trees

I Node2Vec offers a flexible definition of (biased) random walks
I Smoothly interpolates between walks akin to BFS or DFS
I Effective for capturing structural roles or community structures
I Approximates

∑
k∈V∗ e

z>i zk via samples V∗

I Hyperparameters p (return) and q (in-out). After vs → v∗
(i) Control probability of revisiting nodes (v∗ → vs); or
(ii) Staying close to the preceding node (v∗ → v1); or
(iii) Moving outward farther away (v∗ → {v2, v3})
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Biased random walks

I Ex: character interaction graph from the novel ‘Les Miserables’

I node2vec interpolates between capturing global and local structure
I Left coloring indicates membership to communities (global positions)
I Right coloring indicates roles played within (local) neighborhoods

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” KDD, 2016

Machine Learning on Graphs Graph Representation Learning 33



Limitations

I Shallow embeddings: encoder a simple embedding lookup
⇒ Directly optimizes a unique embedding zi for each node i ∈ V

I No parameters sharing between nodes in the encoder
I Statistically inefficient, parameter sharing can act as a regularizer
I Computationally inefficient, number of parameters is O(Nv )

I Fails to leverage graph signals during encoding
I Attributes highly informative w.r.t. the node’s position and role in G

I Inherently transductive
I Challenge for dynamic networks or large graphs not stored in memory
I Does not generalize to other graphs beyond G (used for training)
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Autoencoders

I Autoencoders
Z = ENC(W;ΘE )

⇒ Directly incorporate W into the encoder

I Use deep neural network encoder and decoder functions
⇒ Ability to model non-linearities
⇒ Leads to more complex representations

I Models trained by minimizing a reconstruction error objective
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Neighborhood autoencoder methods

I Let wi ∈ RNv denote the i-th column of W
⇒ Captures neighborhood information of i ∈ V

I Autoencoder objective: reconstruct wi from learnt embedding zi
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Structural deep network embedding

I Structural deep network embedding (SDNE) minimizes

LG ,REG(W, Ŵ;Θ) =
∑
i

‖wi − ŵi‖22 + γ
∑
i,j

Wij‖zi − zj‖22

⇒ Incorporates the Laplacian eigenmaps objective

I Uses deep autoencoders per node (shared parameters)

zi = ENC(wi ;Θ
E ), ŵi = DEC(zi ;ΘD)

I Via wi , encoder regularized with G ’s topology

I Drawback: input dimension fixed to Nv , costly for large G

D. Wang et al, “Structural deep network embedding,” KDD, 2016
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Graph neural networks

I Graph Neural Networks

Z = ENC(W,X;ΘE )

⇒ Use graph signals X and topology W in encoder function

I Generate embedding zi by aggregating signals within Ni

I Convolutional: local and distributed implementation
I Efficiency: parameter dimensions independent of Nv

I Regularization: effected via parameter sharing across nodes
I Inductive: generate embeddings for nodes not seen in training
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Convolutional graph autoencoders

I Graph autoencoders (GAE) use a GCN encoder to learn embeddings

Z = GCN(W,X;ΘE )

I Sigmoid cross entropy loss between W and decoder output Ŵ

LG ,REG(W, Ŵ;Θ) = −
∑

i,j∈V(2)
obs

(1−Wij) log(1−σ(Ŵij))+Wij log σ(Ŵij)

⇒ Outer product decoder: Ŵ = DEC(Z;ΘD) = ZZ>

⇒ Non-probabilistic model, suitable for unweighted graphs
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Variational graph autoencoders

I Goal: train a probablistic decoder to generate realistic graphs

Ŵ ∼ p(W
∣∣Z)

given latent variables from a probabilistic encoder Z ∼ q(Z
∣∣X,W)

I Minimize reconstruction error given training graphs and signals

I Post training, drop the encoder and generate graphs Ŵ ∼ p(W
∣∣Z)

I Given latent variables Z ∼ p(Z) sampled from a prior distribution

T. N. Kipf and M. Welling, “Variational graph auto encoders,”
arXiv:1611.07308 [stat.ML], 2016
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Probabilistic encoder and decoder

I Encoder: simple inference model parameterized by GCNs

q(Z
∣∣X,W) =

∏
i∈V

q(zi
∣∣X,W), with q(zi

∣∣X,W) = N (zi ;µi , diag(σ
2
i ))

I Two separate GCNs to generate mean and variance parameters

µZ = GCNµ(W,X), log σZ = GCNσ(W,X)

I Given µZ and logσZ, sample latent embeddings via

Z = µZ + exp(logσZ) ◦ ε, ε ∼ N (0, I)

I Decoder: generative model based on outer product decoder

p(W
∣∣Z) = ∏

i,j∈V(2)

p(Wij

∣∣ zi , zj), with p(Wij = 1
∣∣ zi , zj) = σ(z>i zj)

I σ(·) stands for the logistic sigmoid function

I Prior: latent node embeddings assumed zi
i.i.d.∼ N (0, I)
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Training the VGAE model

I Maximize the evidence likelihood lower bound (ELBO)

L(Θ) =
∑
i

Eq(Z|Xi ,Wi )

[
log p(Wi

∣∣Z)]− KL(q(Z
∣∣Xi ,Wi ), p(Z))

I KL(·, ·) stands for Kullback-Leibler divergence
I Learnable parameters Θ are the GCN filters Hk

I Requires a set of training graphs {W1,X1}, . . . , {WP ,XP}

I Generate a distribution over Z to satisfy two (conflicting) goals
(a) Sampled Z rich enough for the decoder to reconstruct W
(b) Distribution q(Z

∣∣X,W) is as close as possible to the prior p(Z)

I Goal (b) is critical to generate new graphs after training
⇒ Sample Z ∼ p(Z) → Decode Ŵ ∼ p(Wi

∣∣Z)
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VGAE in action

I Ex: Cora dataset with Nv = 2708 papers and Ne = 5429 citations
I Graph signals: presence/absence of 1433 words from dictionary

I Learned latent space using the VGAE model for a link prediction task
⇒ Colors indicate class labels (discipline, not used for training)
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Roadmap

The network embedding problem

A taxonomy of graph embedding models

Unsupervised graph embedding

Applications
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Applications

I GRL has been succesfully applied in a wide range of domains
I Unsupervised learning to preserve graph structure
I Supervised learning for prediction or classification

I Ex: brain network analysis for patient-control study
I (Un)supervised GRL for graph reconstruction and classification

I Ex: social network analysis for temporal graph clustering
I Unsupervised setting to learn graph-level representation
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Networks of the brain

I Challenge: understand human brain function and structure
I Neuroimaging advances ⇒ Data increase in volume and complexity
I Graph-centric analysis and methods of network science [Sporns’10]

I Brain networks can reflect two connectivity patterns
I Structural connectivity (SC). How is the brain wired?

⇒ Anatomical tracts connecting brain regions (DTI)
I Functional connectivity (FC). How the brain functions?

⇒ Correlation between neural signals in different regions (fMRI)

I Key problem: deciphering the relationship between SC and FC
I Simulations of nonlinear cortical activity models [Honey et al’09]
I Diffusion-based parametric inverse problem [Abdelnour et al’14]
I Network deconvolution [Li-Mateos’19]

I Goal: pursue SC-to-FC mapping as a regression problem
⇒ Reconstruct FC network from SC network
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Problem statement

Study the generation of FC patterns from SC graphs

I Goal: learn the mapping from brain SC networks to FC networks

I Approach: reconstruct FC networks from the given SC networks

I Model: GCN-based encoder-decoder system

I Analysis: investigate latent variables within the system
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Model architecture: encoder

I Input SC network A ∈ RN×N , N regions from brain atlas
⇒ Edge weights represent SC between brain regions
⇒ Preprocessing: Â := D̃−1/2ÃD̃−1/2, Ã = I + A

I Learn vertex representations (i.e., embeddings) that capture
(i) Nodal attributes, e.g. intrinsic properties of brain regions
(ii) Graph topology information, e.g. regional connection strengths

I A single-layer GCN used for encoder to learn node embeddings

Y = ReLU(ÂXΘ) ∈ RN×F

I X ∈ RN×T : input signal matrix
I Θ ∈ RT×F : learnable GCN filter coefficients
I ReLU(x) = max(0, x) activation for training the network
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Model architecture: decoder

I Node embeddings Y ∈ RN×F go through the outer-product decoder

Z = tanh(ReLU(YYT )) ∈ RN×N

I Weights in empirical FC networks restricted to [0,1]
I Ensure the output of the decoder in the same range
I Choose tanh and ReLU over sigmoid

I Loss function: MSE between Z and empirical FC
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Model architecture: latent variables

I YYT : rank-F approximation of FC graph before activation
I Extract and analyze each of the rank-1 components yiyi T

Zi = tanh(ReLU(yiyi T )), i = 1, . . . ,F

I Zi ⇔ outputs of individual filters in graph convolutional layer
⇒ View as building blocks of FC network

I Reveal details about generation of FC patterns from SC networks
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Numerical tests: data

I P = 1058 healthy subjects from Human Connectome Project (HCP)

I Preprocessed SC network A from diffusion MRI

⇒ Fiber counts between N = 68 cortical surface regions

I Preprocessed FC network from functional MRI

⇒ Blood oxygen-level dependent (BOLD) signals
⇒ Estimated FC ⇔ Pearson correlation between BOLD signals

I One-hot encoding as the signal on each graph node (X = IN)
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Numerical tests: FC reconstruction performance

I MSE between reconstructed and empirical FC networks
I Average test reconstruction error = 0.0304 with std = 0.0011
I Capture population patterns of SC-FC relationship
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Numerical tests: component graphs

I Investigate the latent variables learnt during model training
I Output of each graph filter in the graph convolution layer
I Building blocks Zi that generate reconstructed FC graph

I Subgraphs may reveal key insights about SC-to-FC mapping
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Numerical tests: component graphs

I Left: subnetwork of regions in frontal and parietal lobe
I Precentral (PRC), Paracentral (PARA), motor/sensory functions
I Postcentral (POC), Superior Parietal (SP), spatial/somatosensory

I Right: subnetwork of regions in Inferior Frontal Gyrus
I Parsopercularis (POP), Parsorbitalis (POB), Parstriangularis (PT)
I Critically involved in complex brain functions [Greenlee et al’07]
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Supervised GRL for brain network classification

Model the relationship between brain structural and functional network

I Goal: summarize SC-FC relationship by simultaneously learning
I Node embeddings to reconstruct FC from the given SC networks

I Graph embeddings for graph classification

I Model: supervised graph encoder-decoder system

I Analysis: investigate group-wise difference within reconstructed FCs
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Model architecture: classifier

I Apply row-wise average-pooling on the encoder output Y

⇒ Vector summarizing SC-FC relationship, i.e., graph embedding

I Construct logistic regression classifier to predict subject labels
I Sigmoid cross-entropy loss between predicted and empirical labels

I Loss function: L = LMSE(Z,FC) + λ× LCLA(l̂ , l)
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Numerical tests: results

I P = 466 subjects from Human Connectome Project (HCP)
I Two classes: 245 non-drinkers, 221 heavy drinkers

I MSE between reconstructed and empirical FC networks
I Average test reconstruction error = 0.034174 with std = 0.00208
I Captured population patterns of SC-FC relationship

I Classification accuracy: 67.4 ± 2%
I Captured discriminative patterns within each group

I Reduced dimensional graph embeddings exhibit cluster structure
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Numerical tests: reconstructed FC

I Investigate group-wise difference within reconstructed FCs
I Captured difference between subjects in latent representations

I Test for significant group-wise difference in functional connections
I Edge-wise T-tests (p < 0.05) with FDR correction

I Connections weaker (left) & stronger (right) in drinkers
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Numerical tests: class differences

I Left: subnetwork of connections weaker in drinkers
I Entorhinal, Parahippocampus, limbic system impaired in drinkers
I Overall decrease in connection strengths in drinkers

I Right: subnetwork of connections stronger in drinkers
I Involve regions in multiple cortices ⇒ neural compensation
I Additional connections compensate for alcohol damages

Machine Learning on Graphs Graph Representation Learning 59



Dynamic social network clustering

I Goal: Reveal temporal stages of the evolution of dynamic graphs
⇒ Cast as a problem of clustering graph sequences

I Approach: Unsupervised distance-based graph-level RL

I Model: Siamese GRL network + K-means clustering
I Learn graph-level embedding in unsupervised manner

⇒ Preserve network structure and distances between graphs
I Cluster learned graph embeddings via K-means algorithm

⇒ Each cluster represents one temporal stage

I Siamese encoder better for input graphs with divergent structures
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Networks of international football

I T = 145 football graphs from year 1872 to 2016
I Nodes: Nv = 238 national teams playing official games
I Edges: Wij(t) is the number of {i , j} games during year t
I Data comprises 39,052 total games over 145 years

I Expect to unveil various developmental stages in football history
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Model architecture: encoder

I Input:
(145

2

)
= 10440 pairs {Wt1 ,Wt2} of football graphs

I Model: Siamese encoder network with two GRL pipelines
I Two-layer GCN with parameters shared across pipelines

I Output: graph embeddings {zt1 , zt2} for each input graph
I Concatenate node embeddings learned at each layer
I Average graph pooling from node embeddings
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Model architecture: decoder

I Idea: embeddings preserve distances between graph pairs

LG ,REG({Wt}, Ŵ;Θ) =
∑
t1,t2

([ s({Wt})]t1,t2 − Ŵt1,t2)
2

⇒ Euclidean distance decoder: Ŵt1,t2 = ‖zt1 − zt2‖2
I Prescribed distances between input graphs encoded in

[ s({Wt})]t1,t2 = dG (Wt1 ,Wt1)

⇒ Like MDS and IsoMAP but at graph-(not node-)level
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Model architecture: graph distance

I User defined graph distance dG (Wt1 ,Wt1)

I Ex: Spectrum distance
I Distance between spectrum (eigenvalues) of both Laplacian matrices

I Ex: Vertex-edge-overlap (VEO)
I Measure structural similarity between graphs

VEO(Wt1 ,Wt2) = 2× |Et1 ∩ Et2 |+ |Vt1 ∩ Vt2 |
|Et1 |+ |Et2 |+ |Vt1 |+ |Vt2 |

I Distance computed as one minus normalized VEO
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Graph clustering results

I K-means clustering applied to learned graph embeddings in R48

⇒ Number of clusters K = 5 chosen by elbow rule
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Cluster 1: early 20th century

I Mostly regions around UK and the River Plate
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Cluster 2: World Wars

I Decreased activity in Europe and sustained growth in South America
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Cluster 3: Post-World War II recovery

I Noticeable bridging between Europe and America
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Cluster 4: Modern development

I Modern expansion of football with Africa and Asia involved
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Cluster 5: Current landscape

I Global nature of the game is patently apparent
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Open research directions

I GRL is a very active area of research. Many open questions remain:
I Scalability, interpretability, fairness, theoretical guarantees
I Robust and unified evaluation protocols and benchmarks
I Modeling of directed, dynamic and multi-layer graphs
I Beyond pairwise decoders: decoding higher-order motifs
I Expressivity via non-Euclidean embeddings?

Machine Learning on Graphs:
A Model and Comprehensive Taxonomy

Ines Chami⇤†, Sami Abu-El-Haija‡, Bryan Perozzi††, Christopher Ré‡‡, and Kevin Murphy††

†Stanford University, Institute for Computational and Mathematical Engineering
‡University of Southern California, Information Sciences Institute

‡‡Stanford University, Department of Computer Science
††Google AI

{chami,chrismre}@cs.stanford.edu, sami@haija.org, bperozzi@acm.org, kpmurphy@google.com

May 11, 2020

Abstract

There has been a surge of recent interest in learning representations for graph-structured data. Graph represen-
tation learning methods have generally fallen into three main categories, based on the availability of labeled data.
The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsu-
pervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to
augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural
networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite
the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to
bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a
comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several dis-
parate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes
popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph
Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single
consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this frame-
work. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these
methods, and enables future research in the area.

1 Introduction
Learning representations for complex structured data is a challenging task. In the last decade, many successful models
have been developed for certain kinds of structured data, including data defined on a discretized Euclidean domain.
For instance, sequential data, such as text or videos, can be modelled via recurrent neural networks, which can capture
sequential information, yielding efficient representations as measured on machine translation and speech recognition
tasks. Another example is convolutional neural networks (CNNs), which parameterize neural networks according to
structural priors such as shift-invariance, and have achieved unprecedented performance in pattern recognition tasks
such as image classification or speech recognition. These major successes have been restricted to particular types of
data that have a simple relational structure (e.g. sequential data, or data following regular patterns).

In many settings, data is not nearly as regular: complex relational structures commonly arise, and extracting infor-
mation from that structure is key to understanding how objects interact with each other. Graphs are a universal data
structures that can represent complex relational data (composed of nodes and edges), and appear in multiple domains
such as social networks, computational chemistry [41], biology [105], recommendation systems [64], semi-supervised
learning [39], and others. Generalizing CNNs to graphs is not trivial For graph-structured data, it is challenging to
define networks with strong structural priors, as structures can be arbitrary, and can vary significantly across different

⇤Work partially done during an internship at Google AI.
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Abstract

Machine learning on graphs is an important and ubiquitous task with applications ranging from drug
design to friendship recommendation in social networks. The primary challenge in this domain is finding
a way to represent, or encode, graph structure so that it can be easily exploited by machine learning
models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features
encoding structural information about a graph (e.g., degree statistics or kernel functions). However,
recent years have seen a surge in approaches that automatically learn to encode graph structure into
low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality
reduction. Here we provide a conceptual review of key advancements in this area of representation
learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and
graph neural networks. We review methods to embed individual nodes as well as approaches to embed
entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches,
and we highlight a number of important applications and directions for future work.

1 Introduction

Graphs are a ubiquitous data structure, employed extensively within computer science and related fields. Social
networks, molecular graph structures, biological protein-protein networks, recommender systems—all of these
domains and many more can be readily modeled as graphs, which capture interactions (i.e., edges) between
individual units (i.e., nodes). As a consequence of their ubiquity, graphs are the backbone of countless systems,
allowing relational knowledge about interacting entities to be efficiently stored and accessed [2].

However, graphs are not only useful as structured knowledge repositories: they also play a key role in modern
machine learning. Many machine learning applications seek to make predictions or discover new patterns using
graph-structured data as feature information. For example, one might wish to classify the role of a protein in a
biological interaction graph, predict the role of a person in a collaboration network, recommend new friends to
a user in a social network, or predict new therapeutic applications of existing drug molecules, whose structure
can be represented as a graph.

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Glossary

I Convolutional neural network
I Graph representation learning
I Node and graph embedding
I (Un)supervised learning
I Transductive and inductive
I Link prediction
I Encoder-decoder model
I Learnable parameters
I (Dis)similarity scores
I Graph pooling
I Graph regularization loss
I End-to-end learning

I Shallow embedding
I Graph autoencoders
I Neigborhood aggregation
I Higher-order proximity
I Matrix factorization
I Random walks
I Laplacian eigenmaps
I Hyperbolic geometry
I Variational autoencoders
I Brain network analysis
I Graph convolutional network
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