Graph Representation Learning

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/

Acknowledgment: Y. Li, S. S. Saboksayr and M. Wasserman

Facultad de Ingeniería, UdelaR Montevideo, Uruguay February 11, 2021

Machine learning on graphs: Motivation

- Successful models for representation learning of structured data
 - Sequences (e.g., text, videos) via recurrent neural networks (RNNs)
 - Image classification via convolutional neural networks (CNNs)

- ► Data not always regular ⇒ Complex relational structures
 - Graphs with social networks, computational chemistry, biology, ...
- Challenge: apply models designed for regular data to graphs
 - Graph structures can be arbitrary and vary across scenarios
 - Convolutions do not generalize to irregular graph domains

M. Bronstein et al, "Geometric deep learning: Going beyond Euclidean data," *IEEE Signal Processing Magazine*, vol. 34, 2017

What is this lecture about?

Graph representation learning (GRL)

- Learn low-dimensional vectors (embeddings) for graph data
- Learning types:
 - Supervised: learn representations for node or graph classification
 - Unsupervised: learn representations that preserve graph structure
- Underlying graph domain:
 - Transductive: fixed graph structure (e.g., a large social network)
 - Inductive: input graphs can vary (e.g., multiple molecules)
- Information from graph nodes:
 - Featureless: no additional information (i.e., graph signals)
 - With features: nodes possess usable attributes

The network embedding problem

A taxonomy of graph embedding models

Unsupervised graph embedding

Applications

- ► Learn a mapping from a discrete graph to a continuous domain
- Given $G(\mathcal{V}, \mathcal{E})$ with weighted adjacency matrix $\mathbf{W} \in \mathbb{R}^{N_v \times N_v}$
- ► Goal: learn (low) *d*-dimensional vector representation {z_i}_{i∈V} ⇒ Criterion is to preserve local and global graph properties
- Output is node embedding matrix $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_{N_v}]^\top \in \mathbb{R}^{N_v \times d}$ \Rightarrow Pick $d \ll N_v$ for scalability
 - \Rightarrow Effectively a dimensionality reduction technique
- Extensions to embed the whole graph via $\mathbf{z} \in \mathbb{R}^d$ possible

Adjacency spectral embedding

• Ex: SBM with $N_{\nu} = 1500$, Q = 3 and mixing parameters

$$oldsymbol{lpha} oldsymbol{lpha} = \left[egin{array}{c} 1/3 \ 1/3 \ 1/3 \end{array}
ight], \quad oldsymbol{\Pi} = \left[egin{array}{cccc} 0.5 & 0.1 & 0.05 \ 0.1 & 0.3 & 0.05 \ 0.05 & 0.05 & 0.9 \end{array}
ight]$$

- Sample adjacency (left), ZZ[⊤] (center), rows of Z (right)
- Use embeddings to bring to bear geometric methods of analysis

Role of graph signals

▶ Graph signals (a.k.a. node attributes or features) $\mathbf{X} \in \mathbb{R}^{N_v \times F}$

Ex: Age, gender in social network, fMRI signals, product ratings

Embeddings capture structural and semantic graph information

$$\{\mathbf{W},\mathbf{X}\}\mapsto\mathbf{Z}$$

Absent X, the embedding {W} → Z is termed featureless
 ⇒ Mapping only preserves structural information

Machine Learning on Graphs

Graph Representation Learning

Transductive and inductive embeddings

Transductive network embedding

- Embed nodes within a fixed (often large) graph
 - ► Ex: Friend or product recommendation via link prediction
 - Ex: Node classification in semi-supervised learning

Given new nodes, need to update and re-train the model

Inductive network embedding

- Learn mapping to representations that generalize to unseen graphs
 - Ex: Embed brain graphs for subject classification
 - Ex: Embed dynamic graphs for temporal clustering
- Signals X typically needed for inductive embedding

Unsupervised network embedding

- Only graph topology W is given
 - Preserve graph structures by optimizing a reconstruction loss
 - Decode embedding Z to approximate W well
- ► Ex: compression, visualization, clustering, link prediction

Supervised network embedding

- ► In addition to **W** (and **X**), node or graph labels **y**^S available
 - Optimize embeddings for downstream tasks
 - Combine reconstruction and task-specific loss functions
- Ex: node classification, graph classification

An encoder-decoder perspective

W. L. Hamilton et al, "Representation learning on graphs: Methods and applications," *IEEE Data Engineering Bulletin*, 2018

The network embedding problem

A taxonomy of graph embedding models

Unsupervised graph embedding

Applications

Encompassing graph embedding model

- Graph Encoder Decoder Model (GraphEDM)
 - \Rightarrow Unifying framework to review and compare GRL methods
 - \Rightarrow Open-source library with methods and applications

I. Chami et al, "Machine learning on graphs: A model and comprehensive taxonomy," *arXiv:2005.03675 [cs.LG]*, 2020

Q: What are the framework's constituent components?

https://github.com/google/gcnn-survey-paper

- ► Undirected graph $G(\mathcal{V}, \mathcal{E})$, with $|\mathcal{V}| = N_v$ and $|\mathcal{E}| = N_e$ ⇒ Weighted adjacency matrix $\mathbf{W} \in \mathbb{R}^{N_v \times N_v}$
- Optional graph signals (node features) $\mathbf{X} \in \mathbb{R}^{N_v \times F}$
- ▶ For (semi)-supervised learning tasks, also need target labels of:
 - ▶ Nodes (N), for node classification and clustering
 - ► Edges (E), for relationship classification or link prediction
 - ► Graphs (G), for graph clustering and classification
- ▶ Supervision signal (labels) denoted as y^S , where $S \in \{N, E, G\}$

Encoder

► Graph encoder network

$$\mathsf{ENC}_{\mathbf{\Theta}^E}: \mathbb{R}^{N_v \times N_v} \times \mathbb{R}^{N_v \times F} \mapsto \mathbb{R}^{N_v \times d}$$

 \Rightarrow Learnable parameters Θ^{E}

Combines graph structure with graph signals to produce an embedding

$$\mathbf{Z} = ENC(\mathbf{W}, \mathbf{X}; \mathbf{\Theta}^{E})$$

 \Rightarrow Captures different graph properties based on type of supervision

Machine Learning on Graphs

Decoder

$$\mathbf{Z} \longrightarrow \mathbb{DEC}(\mathbf{Z}; \mathbf{\Theta}^D) \longrightarrow \mathbf{\hat{W}}$$

Graph decoder network

$$\mathsf{DEC}_{\Theta^D}: \mathbb{R}^{N_v \times d} \mapsto \mathbb{R}^{N_v \times N_v}$$

 \Rightarrow Learnable parameters Θ^{D}

• Uses **Z** to produce (dis)similarity scores \hat{W}_{ij} for all $\{i, j\} \in \mathcal{V}^{(2)}$

$$\hat{\mathbf{W}} = \mathsf{DEC}(\mathbf{Z}; \mathbf{\Theta}^D)$$

\Rightarrow Unsupervised graph reconstruction

 \Rightarrow Approximate **W** or general (dis)similarity matrix s(W)

Decoder

$$\mathbf{Z} \longrightarrow \mathbb{DEC}(\mathbf{Z}; \mathbf{\Theta}^S) \longrightarrow \hat{\mathbf{y}}^S$$

Classification network

$$\mathsf{DEC}_{\Theta^S}: \mathbb{R}^{N_v \times d} \mapsto \mathbb{R}^{N_v \times |\mathcal{Y}|}$$

 \Rightarrow Learnable parameters Θ^{S} , label space $\mathcal Y$

Uses Z to produce node-wise distributions over labels

$$\hat{\mathbf{y}}^{S} = \mathsf{DEC}(\mathbf{Z}; \mathbf{\Theta}^{S})$$

 \Rightarrow (Semi)-supervised learning for node/graph classification

Output

- ► Reconstructed graph similarity matrix $\hat{\mathbf{W}} \in \mathbb{R}^{N_v \times N_v}$ ⇒ Used to train unsupervised embedding algorithms
- \blacktriangleright For (semi)-supervised learning tasks, outputs are predicted labels \hat{y}^{S}
 - The label output space varies depending on the type of supervision
- ► Node-level: $\hat{\mathbf{y}}^N \in \mathcal{Y}^{N_v}$ or $\hat{\mathbf{Y}}^N \in [0, 1]^{N_v \times |\mathcal{Y}|}$ ⇒ When $|\mathcal{Y}| = d$, can use softmax activation on **Z**'s rows
- Edge-level: Ŷ^E ∈ 𝔅^{N_v×N_v}, where typically 𝔅 = {0,1}^{#relation types}
 ⇒ When #relation types = 1 (i.e., link prediction), output Ŷ

► Graph-level:
$$\hat{y}^{G} \in \mathcal{Y}$$

⇒ Using **W**, convert **Z** to \hat{y}^{G} via graph pooling

Loss functions

Supervised loss

 $\Rightarrow \mathcal{L}^{S}_{SUP}$ compares predicted labels \hat{y}^{S} to ground truth y^{S}

Ex: semi-supervised node classification (S = N, $V = V_{obs} \cup V_{miss}$)

$$\mathcal{L}_{\mathsf{SUP}}^{N}(\mathbf{y}^{N}, \hat{\mathbf{y}}^{N}; \boldsymbol{\Theta}) = \sum_{i \in \mathcal{V}_{obs}} \ell(y_{i}^{N}, \hat{y}_{i}^{N}; \boldsymbol{\Theta})$$

Graph regularization loss

 $\Rightarrow \mathcal{L}_{G,\mathsf{REG}}$ compares \hat{W} with target (dis)similarity matrix s(W)

$$\mathcal{L}_{G,\mathsf{REG}}(\mathsf{W},\hat{\mathsf{W}};\mathbf{\Theta}) = d_1(s(\mathsf{W}),\hat{\mathsf{W}})$$

- $d_1(\cdot, \cdot)$: distance or dissimilarity function
- Leverage G via s(W) to regularize model parameters Θ

Objective function

Weight regularization loss

 $\Rightarrow \mathcal{L}_{\mathsf{REG}}$ regularizes trainable parameters Θ to reduce overfitting

$$\mathcal{L}_{\mathsf{REG}}(\mathbf{\Theta}) = \sum_{oldsymbol{ heta} \in \mathbf{\Theta}} \|oldsymbol{ heta}\|_2^2$$

Overall GraphEDM objective function

 $\mathcal{L}(\boldsymbol{\Theta}) = \alpha \mathcal{L}_{\mathsf{SUP}}^{\mathcal{S}}(\mathbf{y}^{\mathcal{S}}; \boldsymbol{\Theta}) + \beta \mathcal{L}_{\mathcal{G},\mathsf{REG}}(\mathbf{W}, \hat{\mathbf{W}}; \boldsymbol{\Theta}) + \mathcal{L}_{\mathsf{REG}}(\boldsymbol{\Theta})$

 \Rightarrow Train in a supervised ($lpha \neq 0$) or unsupervised (lpha = 0) fashion

Q: End-to-end supervised learning or two-step learning?

Categorize GRL methods based on encoder and loss function used

- Shallow embedding methods $\mathbf{Z} = ENC(\Theta^{E}) = \Theta^{E}$
 - A simple embedding lookup
- Graph auto-encoding methods $Z = ENC(W; \Theta^{E})$
 - ► Transductive like shallow embeddings, no X so works for fixed G
- Graph regularization methods Z = ENC(X; Θ^E)
 - Leverage W via $\mathcal{L}_{G,REG}$ to regularize node embeddings
- Neighborhood aggregation methods Z = ENC(W, X; Θ^E)
 - Use W to propagate information among nodes and learn Z

The network embedding problem

A taxonomy of graph embedding models

Unsupervised graph embedding

Applications

Unsupervised graph embedding

- ► Goal: Learn node embeddings that preserve graph structure
- Optimize to reconstruct some node (dis)similarity matrix $s(\mathbf{W})$

$$\mathcal{L}(\Theta) = \alpha \mathcal{L}_{\text{SUP}}^{S}(\mathbf{y}^{S}, \mathbf{y}^{S}; \Theta) + \beta \mathcal{L}_{G, \text{REG}}(\mathbf{W}, \hat{\mathbf{W}}; \Theta) + \mathcal{L}_{\text{REG}}(\Theta)$$

- Decoder network outputs \hat{W} , with $\hat{W}_{ij} = d_2(\mathbf{z}_i, \mathbf{z}_j)$
- Graph regularization loss $\mathcal{L}_{G,REG} = d_1(s(W), \hat{W})$
- Optimize over training set $\{i, j\} \in \mathcal{V}_{obs}^{(2)}$, use SGD or spectral methods
- ▶ Target pairwise node similarity matrix $s(\mathbf{W})$ can take many forms
 - Ex: Reconstruct first-order proximity via $[s(\mathbf{W})]_{ij} = W_{ij}$ Ex: Higher-order proximity $[s(\mathbf{W})]_{ij} = |\mathcal{N}_i \cap \mathcal{N}_j|$, Jaccard, Adamic-Adar Ex: Prob. $[s(\mathbf{W})]_{ij} = P(v_j | v_i)$ that $i, j \in \mathcal{V}$ co-occur on random walks

Shallow embedding methods

$$\mathbf{Z} = \mathsf{ENC}(\mathbf{\Theta}^{E}) = \mathbf{\Theta}^{E} \in \mathbb{R}^{N_v imes d}$$

 \Rightarrow A simple embedding lookup, optimize Z directly

- ► Two classess based on the type of decoder $\hat{\mathbf{W}} = \mathsf{DEC}(\mathbf{Z}; \Theta^{D})$
 - Distance-based methods: $\hat{W}_{ij} = d_2(\mathbf{z}_i, \mathbf{z}_j)$
 - Outer product-based methods: $\hat{\mathbf{W}} = \mathbf{Z}\mathbf{Z}^{\top} \Rightarrow \hat{W}_{ij} = \mathbf{z}_i^{\top}\mathbf{z}_j$
- Inspired by dimensionality reduction via low-rank matrix factorization
 More recent approaches rely on random walks (NLP analogies)

Distance-based methods

▶ Idea: embeddings preserve distances in *G* [encoded in *s*(**W**)]

$$\mathcal{L}_{G,\mathsf{REG}}(\mathsf{W},\hat{\mathsf{W}};\boldsymbol{\Theta}) = d_1(s(\mathsf{W}),\hat{\mathsf{W}}) = \sum_{i,j\in\mathcal{V}_{obs}^{(2)}} ([s(\mathsf{W})]_{ij} - \hat{W}_{ij})^2$$

 \Rightarrow Euclidean distance decoder: $\hat{W}_{ij} = d_2(\mathbf{z}_i, \mathbf{z}_j) = \|\mathbf{z}_i - \mathbf{z}_j\|_2$

- Multi-dimensional scaling (MDS) preserves local connectivity
 Set [s(W)]_{ii} = 1 (or W_{ii}) if W_{ii} > 0 and 0 otherwise
- IsoMAP preserves global geodesic distances in the manifold
 - ▶ Set e.g., $[s(\mathbf{W})]_{ij} = d_G(i, j)$, shortest-path distance between $i, j \in V$

► Capture information in G via spectral properties of L = D - W ⇒ Locality-preserving nonlinear dimensionality reduction scheme

$$\label{eq:constraint} \underset{Z \in \mathbb{R}^{N_{\nu} \times d}}{\text{min trace}} (Z^\top L Z), \quad \text{s. to } Z^\top D Z = I$$

Equivalently written as a graph regularization term

$$\mathcal{L}_{G,\mathsf{REG}}(\mathbf{W},\hat{\mathbf{W}};\mathbf{\Theta}) = d_1(s(\mathbf{W}),\hat{\mathbf{W}}) = \sum_{i,j\in\mathcal{V}_{obs}^{(2)}} W_{ij}\hat{W}_{ij}^2$$

⇒ Euclidean distance decoder: $\hat{W}_{ij} = d_2(\mathbf{z}_i, \mathbf{z}_j) = \|\mathbf{z}_i - \mathbf{z}_j\|_2$ ⇒ Embeddings close in \mathbb{R}^d if *i*, *j* well connected in *G*

M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," *Neural Computation*, 2003.

► Ex: Spectral embedding of 'gene similarity' matrix (d = 2)
 ⇒ Consistent with origins of individuals in European map

J. Novembre, "Genes mirror geography within Europe," Nature, 2008

Machine Learning on Graphs

Non-Euclidean embedding spaces

Idea: embed graphs with hierarchical structure into hyperbolic space

$$\mathcal{L}_{G, \mathsf{REG}}(\mathbf{W}, \hat{\mathbf{W}}; \mathbf{\Theta}) = d_1(s(\mathbf{W}), \hat{\mathbf{W}}) = -\sum_{i, j \in \mathcal{V}_{obs}^{(\mathbf{2})}} W_{ij} \log rac{e^{-W_{ij}}}{\sum_{k \mid \mathbf{W}_{ik} = 0} e^{-\hat{W}_{ik}}}$$

 \Rightarrow Poincaré distance decoder:

$$\hat{W}_{ij} = d_2(\mathsf{z}_i, \mathsf{z}_j) = \operatorname{arcosh}\left(1 + 2 \frac{\|\mathsf{z}_i - \mathsf{z}_j\|_2^2}{(1 - \|\mathsf{z}_i\|_2^2)(1 - \|\mathsf{z}_i\|_2^2)}
ight)$$

- Capture similarity and hierarchy
- Use Riemannian optimization tools

M. Nickel and D. Kiela, "Poincaré embeddings for learning hierarchical representations," *NeurIPS*, 2017

Matrix factorization methods

▶ Idea: learn low-rank representation of similarity matrix *s*(**W**)

 $\mathcal{L}_{G,\mathsf{REG}}(\mathsf{W},\hat{\mathsf{W}};\Theta) = d_1(s(\mathsf{W}),\hat{\mathsf{W}}) = \|s(\mathsf{W}) - \hat{\mathsf{W}}\|_F^2$

 $\Rightarrow \mathsf{Outer product decoder: } \hat{\mathbf{W}} = \mathsf{DEC}(\mathbf{Z}; \mathbf{\Theta}^D) = \mathbf{Z}\mathbf{Z}^\top$

 \Rightarrow Implies an inner-product approximation $[s(\mathbf{W})]_{ij} \approx \mathbf{z}_i^\top \mathbf{z}_j$

- ► Graph factorization (GF) preserves first-order similarity in G
 - ▶ Set $[s(\mathbf{W})]_{ij} = W_{ij}$ and evaluate $\mathcal{L}_{G,\mathsf{REG}}(\mathbf{W},\hat{\mathbf{W}};\mathbf{\Theta})$ on $(i,j) \in \mathcal{E}$
- GraRep preserves higher-order similarity in G
 - ▶ Set e.g., $[s(W)]_{ij} = [W^k]_{ij}$, $k \ge 2$, for length-k path counts
- HOPE preserves general similarity measures in (directed) G
 - Jaccard, Adamic-Adar and related neighborhood scores
- Closely related to adjacency spectral embedding (ASE) for RDPGs

Zachary's karate club

• Ex: Zachary's karate club graph with $N_v = 34$, $N_e = 78$ (left)

- ASE node embeddings (rows of **Z**) for d = 2 (right)
 - Club's administrator (i = 0) and instructor (j = 33) are orthogonal
- Interpretability of embeddings a valuable asset for RDPGs
 - \Rightarrow Vector magnitudes indicate how well connected nodes are
 - \Rightarrow Vector angles indicate positions in latent space

Machine Learning on Graphs

Graph Representation Learning

> Permeate advances in language modeling and feature learning in NLP

- Ex: Skip-gram neural network model for word2vec embeddings
- From text corpora (word sequences) to graphs (node sequences)

▶ Idea: similar z_i to nodes that tend to co-occur in random walks over G

► View sentences in NLP as random walks over the vocabulary

- ▶ Generate short random walks on *G* to sample node sequences
- Learn node positional distributions just like words [Perozzi et al'14]
- ▶ Prob. P (j | i) of visiting j in a length-T random walk from i ⇒ Asymmetric similarity measure [s(W)]_{ij} to decode from Z

Random walk approaches

- Training pairs $\{i, j\} \in \mathcal{V}_{obs}^{(2)}$ sampled from short random walks
 - ▶ For each $i \in \mathcal{V}$, N pairs $\{i, j_1\}, \ldots, \{i, j_N\}$ sampled from P $(j \mid i)$
 - Length of each walk is $T \in \{2, \ldots, 10\}$

Cross-entropy loss as graph regularization term

$$\mathcal{L}_{G,\mathsf{REG}}(\mathbf{W},\hat{\mathbf{W}};\mathbf{\Theta}) = -\sum_{i,j\in\mathcal{V}_{obs}^{(2)}}\log\hat{\mathcal{W}}_{ij}$$

 \Rightarrow Composition of softmax and outer product decoder

$$\hat{W}_{ij} = \frac{e^{\mathbf{z}_i^\top \mathbf{z}_j}}{\sum_{k \in \mathcal{V}} e^{\mathbf{z}_i^\top \mathbf{z}_k}}$$

 \Rightarrow Implies an approximation $\hat{W}_{ij} \approx [s(\mathbf{W})]_{ij} = \mathsf{P}\left(j \mid i\right)$

• Evaluating the softmax denominator is challenging ($\mathcal{O}(N_v)$ complexity)

DeepWalk and node2vec

- DeepWalk samples unbiased random walks
 - Transition probability matrix $P = D^{-1}W$
 - Hierchical softmax technique to form $\sum_{k \in \mathcal{V}} e^{\mathbf{z}_i^\top \mathbf{z}_k}$ using binary trees
- ► Node2Vec offers a flexible definition of (biased) random walks
 - Smoothly interpolates between walks akin to BFS or DFS
 - Effective for capturing structural roles or community structures
 - Approximates $\sum_{k \in \mathcal{V}^*} e^{\mathbf{z}_i^\top \mathbf{z}_k}$ via samples \mathcal{V}^*

- ▶ Hyperparameters p (return) and q (in-out). After $v_s \rightarrow v_*$
 - (i) Control probability of revisiting nodes ($v_* \rightarrow v_s$); or
 - (ii) Staying close to the preceding node ($v_*
 ightarrow v_1$); or
 - (iii) Moving outward farther away ($v_* \rightarrow \{v_2, v_3\}$)

Biased random walks

► Ex: character interaction graph from the novel 'Les Miserables'

node2vec interpolates between capturing global and local structure

- Left coloring indicates membership to communities (global positions)
- Right coloring indicates roles played within (local) neighborhoods

A. Grover and J. Leskovec, "node2vec: Scalable feature learning for networks," *KDD*, 2016

- ► Shallow embeddings: encoder a simple embedding lookup ⇒ Directly optimizes a unique embedding z_i for each node i ∈ V
- No parameters sharing between nodes in the encoder
 - Statistically inefficient, parameter sharing can act as a regularizer
 - Computationally inefficient, number of parameters is $\mathcal{O}(N_v)$
- ► Fails to leverage graph signals during encoding
 - Attributes highly informative w.r.t. the node's position and role in G
- Inherently transductive
 - Challenge for dynamic networks or large graphs not stored in memory
 - ► Does not generalize to other graphs beyond *G* (used for training)

Autoencoders

$$\mathbf{Z} = \mathsf{ENC}(\mathbf{W}; \mathbf{\Theta}^{E})$$

 \Rightarrow Directly incorporate **W** into the encoder

Use deep neural network encoder and decoder functions

 \Rightarrow Ability to model non-linearities

- \Rightarrow Leads to more complex representations
- Models trained by minimizing a reconstruction error objective

Neighborhood autoencoder methods

• Let $\mathbf{w}_i \in \mathbb{R}^{N_v}$ denote the *i*-th column of **W**

 \Rightarrow Captures neighborhood information of $i \in \mathcal{V}$

Autoencoder objective: reconstruct w_i from learnt embedding z_i
Structural deep network embedding (SDNE) minimizes

$$\mathcal{L}_{G,\mathsf{REG}}(\mathbf{W}, \hat{\mathbf{W}}; \mathbf{\Theta}) = \sum_{i} \|\mathbf{w}_{i} - \hat{\mathbf{w}}_{i}\|_{2}^{2} + \gamma \sum_{i,j} W_{ij} \|\mathbf{z}_{i} - \mathbf{z}_{j}\|_{2}^{2}$$

 \Rightarrow Incorporates the Laplacian eigenmaps objective

Uses deep autoencoders per node (shared parameters)

$$\mathbf{z}_i = \text{ENC}(\mathbf{w}_i; \mathbf{\Theta}^E), \quad \hat{\mathbf{w}}_i = \text{DEC}(\mathbf{z}_i; \mathbf{\Theta}^D)$$

- ► Via **w**_i, encoder regularized with G's topology
- Drawback: input dimension fixed to N_{ν} , costly for large G

D. Wang et al, "Structural deep network embedding," KDD, 2016

Graph neural networks

► Graph Neural Networks

$$\mathbf{Z} = \mathsf{ENC}(\mathbf{W}, \mathbf{X}; \mathbf{\Theta}^{\mathsf{E}})$$

 \Rightarrow Use graph signals X and topology W in encoder function

• Generate embedding \mathbf{z}_i by aggregating signals within \mathcal{N}_i

- Convolutional: local and distributed implementation
- Efficiency: parameter dimensions independent of N_{ν}
- Regularization: effected via parameter sharing across nodes
- Inductive: generate embeddings for nodes not seen in training

Convolutional graph autoencoders

Graph autoencoders (GAE) use a GCN encoder to learn embeddings

 $\mathbf{Z} = \operatorname{\mathsf{GCN}}(\mathbf{W}, \mathbf{X}; \boldsymbol{\Theta}^{\mathsf{E}})$

 \blacktriangleright Sigmoid cross entropy loss between W and decoder output \hat{W}

$$\mathcal{L}_{G,\mathsf{REG}}(\mathbf{W},\hat{\mathbf{W}};\mathbf{\Theta}) = -\sum_{i,j\in\mathcal{V}_{obs}^{(\mathbf{2})}} (1\!-\!W_{ij})\log(1\!-\!\sigma(\hat{\mathcal{W}}_{ij}))\!+\!W_{ij}\log\sigma(\hat{\mathcal{W}}_{ij})$$

⇒ Outer product decoder: $\hat{\mathbf{W}} = \text{DEC}(\mathbf{Z}; \Theta^D) = \mathbf{Z}\mathbf{Z}^\top$ ⇒ Non-probabilistic model, suitable for unweighted graphs

Variational graph autoencoders

Goal: train a probablistic decoder to generate realistic graphs

$$\hat{\mathbf{W}} \sim p(\mathbf{W} \mid \mathbf{Z})$$

given latent variables from a probabilistic encoder $Z \sim q(Z | X, W)$

- Minimize reconstruction error given training graphs and signals
- Post training, drop the encoder and generate graphs $\hat{\mathbf{W}} \sim p(\mathbf{W} \mid \mathbf{Z})$
 - Given latent variables $Z \sim p(Z)$ sampled from a prior distribution

T. N. Kipf and M. Welling, "Variational graph auto encoders," arXiv:1611.07308 [stat.ML], 2016

Machine Learning on Graphs

Probabilistic encoder and decoder

Encoder: simple inference model parameterized by GCNs

$$q(\mathsf{Z}\,ig|\,\mathsf{X},\mathsf{W}) = \prod_{i\in\mathcal{V}} q(\mathsf{z}_i\,ig|\,\mathsf{X},\mathsf{W}), ext{ with } q(\mathsf{z}_i\,ig|\,\mathsf{X},\mathsf{W}) = \mathcal{N}(\mathsf{z}_i;oldsymbol{\mu}_i, ext{diag}(oldsymbol{\sigma}_i^2))$$

Two separate GCNs to generate mean and variance parameters

$$\mu_{Z} = GCN_{\mu}(W, X), \quad \log \sigma_{Z} = GCN_{\sigma}(W, X)$$

• Given μ_z and log σ_z , sample latent embeddings via

$$\mathsf{Z} = \mu_\mathsf{Z} + \exp(\log \sigma_\mathsf{Z}) \circ \epsilon, \quad \epsilon \sim \mathcal{N}(\mathsf{0},\mathsf{I})$$

Decoder: generative model based on outer product decoder

$$p(\mathbf{W} \mid \mathbf{Z}) = \prod_{i,j \in \mathcal{V}^{(2)}} p(W_{ij} \mid \mathbf{z}_i, \mathbf{z}_j), \text{ with } p(W_{ij} = 1 \mid \mathbf{z}_i, \mathbf{z}_j) = \sigma(\mathbf{z}_i^\top \mathbf{z}_j)$$

• $\sigma(\cdot)$ stands for the logistic sigmoid function

 \blacktriangleright Prior: latent node embeddings assumed $z_i \overset{i.i.d.}{\sim} \mathcal{N}(0,I)$

Maximize the evidence likelihood lower bound (ELBO)

$$\mathcal{L}(\Theta) = \sum_{i} \mathbb{E}_{q(\mathsf{Z}|\mathsf{X}_{i},\mathsf{W}_{i})} \left[\log p(\mathsf{W}_{i} \mid \mathsf{Z}) \right] - \mathsf{KL}(q(\mathsf{Z} \mid \mathsf{X}_{i},\mathsf{W}_{i}), p(\mathsf{Z}))$$

- $KL(\cdot, \cdot)$ stands for Kullback-Leibler divergence
- Learnable parameters Θ are the GCN filters \mathbf{H}_k
- ▶ Requires a set of training graphs {W₁, X₁},..., {W_P, X_P}
- Generate a distribution over Z to satisfy two (conflicting) goals
 (a) Sampled Z rich enough for the decoder to reconstruct W
 (b) Distribution q(Z | X, W) is as close as possible to the prior p(Z)
- Goal (b) is critical to generate new graphs after training
 ⇒ Sample Z ~ p(Z) → Decode Ŵ ~ p(W_i | Z)

VGAE in action

- Ex: Cora dataset with $N_v = 2708$ papers and $N_e = 5429$ citations
 - ► Graph signals: presence/absence of 1433 words from dictionary

Learned latent space using the VGAE model for a link prediction task
 ⇒ Colors indicate class labels (discipline, not used for training)

The network embedding problem

A taxonomy of graph embedding models

Unsupervised graph embedding

Applications

Applications

- GRL has been succesfully applied in a wide range of domains
 - Unsupervised learning to preserve graph structure
 - Supervised learning for prediction or classification

- Ex: brain network analysis for patient-control study
 - (Un)supervised GRL for graph reconstruction and classification
- Ex: social network analysis for temporal graph clustering
 - Unsupervised setting to learn graph-level representation

Networks of the brain

- Challenge: understand human brain function and structure
 - Neuroimaging advances \Rightarrow Data increase in volume and complexity
 - Graph-centric analysis and methods of network science [Sporns'10]
- Brain networks can reflect two connectivity patterns
 - ► Structural connectivity (SC). How is the brain wired? ⇒ Anatomical tracts connecting brain regions (DTI)
 - ► Functional connectivity (FC). How the brain functions?
 - \Rightarrow Correlation between neural signals in different regions (fMRI)
- ▶ Key problem: deciphering the relationship between SC and FC
 - Simulations of nonlinear cortical activity models [Honey et al'09]
 - Diffusion-based parametric inverse problem [Abdelnour et al'14]
 - Network deconvolution [Li-Mateos'19]
- Goal: pursue SC-to-FC mapping as a regression problem
 - \Rightarrow Reconstruct FC network from SC network

Problem statement

Study the generation of FC patterns from SC graphs

- **Goal**: learn the mapping from brain SC networks to FC networks
- ► Approach: reconstruct FC networks from the given SC networks
- Model: GCN-based encoder-decoder system

Analysis: investigate latent variables within the system

Model architecture: encoder

- ▶ Input SC network $\mathbf{A} \in \mathbb{R}^{N \times N}$, N regions from brain atlas
 - \Rightarrow Edge weights represent SC between brain regions
 - \Rightarrow Preprocessing: $\hat{\mathbf{A}} := \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}$, $\tilde{\mathbf{A}} = \mathbf{I} + \mathbf{A}$
- Learn vertex representations (i.e., embeddings) that capture
 (i) Nodal attributes, e.g. intrinsic properties of brain regions
 (ii) Graph topology information, e.g. regional connection strengths
- ► A single-layer GCN used for encoder to learn node embeddings

 $\mathbf{Y} = \mathsf{ReLU}(\mathbf{\hat{A}X} \mathbf{\Theta}) \in \mathbb{R}^{N \times F}$

- $\mathbf{X} \in \mathbb{R}^{N \times T}$: input signal matrix
- $\Theta \in \mathbb{R}^{T \times F}$: learnable GCN filter coefficients
- ReLU(x) = max(0, x) activation for training the network

Model architecture: decoder

▶ Node embeddings $\mathbf{Y} \in \mathbb{R}^{N \times F}$ go through the outer-product decoder

$$\mathsf{Z} = \mathsf{tanh}(\mathsf{ReLU}(\mathsf{Y}\mathsf{Y}^{\mathsf{T}})) \in \mathbb{R}^{\mathsf{N} \times \mathsf{N}}$$

- Weights in empirical FC networks restricted to [0,1]
 - Ensure the output of the decoder in the same range
 - Choose tanh and ReLU over sigmoid
- Loss function: MSE between Z and empirical FC

Model architecture: latent variables

▶ **YY**^T: rank-*F* approximation of FC graph before activation

Extract and analyze each of the rank-1 components y_iy_i^T

$$\mathbf{Z}_i = \tanh(\mathsf{ReLU}(\mathbf{y}_i \mathbf{y}_i^T)), \quad i = 1, \dots, F$$

- Z_i ⇔ outputs of individual filters in graph convolutional layer
 ⇒ View as building blocks of FC network
- Reveal details about generation of FC patterns from SC networks

Numerical tests: data

• P = 1058 healthy subjects from Human Connectome Project (HCP)

Preprocessed SC network A from diffusion MRI

 \Rightarrow Fiber counts between N = 68 cortical surface regions

Preprocessed FC network from functional MRI

- \Rightarrow Blood oxygen-level dependent (BOLD) signals
- \Rightarrow Estimated FC \Leftrightarrow Pearson correlation between BOLD signals
- One-hot encoding as the signal on each graph node $(X = I_N)$

Numerical tests: FC reconstruction performance

- MSE between reconstructed and empirical FC networks
 - Average test reconstruction error = 0.0304 with std = 0.0011
 - Capture population patterns of SC-FC relationship

Machine Learning on Graphs

Numerical tests: component graphs

Investigate the latent variables learnt during model training

- Output of each graph filter in the graph convolution layer
- Building blocks Z_i that generate reconstructed FC graph

Subgraphs may reveal key insights about SC-to-FC mapping

Numerical tests: component graphs

- Left: subnetwork of regions in frontal and parietal lobe
 - Precentral (PRC), Paracentral (PARA), motor/sensory functions
 - Postcentral (POC), Superior Parietal (SP), spatial/somatosensory
- Right: subnetwork of regions in Inferior Frontal Gyrus
 - Parsopercularis (POP), Parsorbitalis (POB), Parstriangularis (PT)
 - Critically involved in complex brain functions [Greenlee et al'07]

Supervised GRL for brain network classification

Model the relationship between brain structural and functional network

- ► Goal: summarize SC-FC relationship by simultaneously learning
 - Node embeddings to reconstruct FC from the given SC networks
 - Graph embeddings for graph classification
- Model: supervised graph encoder-decoder system

Analysis: investigate group-wise difference within reconstructed FCs

Model architecture: classifier

Apply row-wise average-pooling on the encoder output Y

 \Rightarrow Vector summarizing SC-FC relationship, i.e., graph embedding

- Construct logistic regression classifier to predict subject labels
 - Sigmoid cross-entropy loss between predicted and empirical labels
- ► Loss function: $\mathcal{L} = \mathcal{L}_{MSE}(\mathbf{Z}, \mathbf{FC}) + \lambda \times \mathcal{L}_{CLA}(\hat{l}, l)$

Numerical tests: results

- P = 466 subjects from Human Connectome Project (HCP)
 - Two classes: 245 non-drinkers, 221 heavy drinkers
- MSE between reconstructed and empirical FC networks
 - ► Average test reconstruction error = 0.034174 with std = 0.00208
 - Captured population patterns of SC-FC relationship
- Classification accuracy: $67.4 \pm 2\%$
 - Captured discriminative patterns within each group

Reduced dimensional graph embeddings exhibit cluster structure

Numerical tests: reconstructed FC

- ► Investigate group-wise difference within reconstructed FCs
 - Captured difference between subjects in latent representations
- ▶ Test for significant group-wise difference in functional connections
 - Edge-wise T-tests (p < 0.05) with FDR correction

Connections weaker (left) & stronger (right) in drinkers

Numerical tests: class differences

Left: subnetwork of connections weaker in drinkers

- Entorhinal, Parahippocampus, limbic system impaired in drinkers
- Overall decrease in connection strengths in drinkers
- Right: subnetwork of connections stronger in drinkers
 - ► Involve regions in multiple cortices ⇒ neural compensation
 - Additional connections compensate for alcohol damages

- ► Goal: Reveal temporal stages of the evolution of dynamic graphs ⇒ Cast as a problem of clustering graph sequences
- Approach: Unsupervised distance-based graph-level RL
- ▶ Model: Siamese GRL network + K-means clustering
 - Learn graph-level embedding in unsupervised manner
 - \Rightarrow Preserve network structure and distances between graphs
 - ► Cluster learned graph embeddings via K-means algorithm ⇒ Each cluster represents one temporal stage
- Siamese encoder better for input graphs with divergent structures

Networks of international football

- T = 145 football graphs from year 1872 to 2016
 - Nodes: $N_v = 238$ national teams playing official games
 - Edges: $W_{ij}(t)$ is the number of $\{i, j\}$ games during year t
 - Data comprises 39,052 total games over 145 years

Expect to unveil various developmental stages in football history

Model architecture: encoder

▶ Input: $\binom{145}{2} = 10440$ pairs $\{\mathbf{W}_{t_1}, \mathbf{W}_{t_2}\}$ of football graphs

- Model: Siamese encoder network with two GRL pipelines
 - Two-layer GCN with parameters shared across pipelines
- Output: graph embeddings $\{z_{t_1}, z_{t_2}\}$ for each input graph
 - Concatenate node embeddings learned at each layer
 - Average graph pooling from node embeddings

Model architecture: decoder

Idea: embeddings preserve distances between graph pairs

$$\mathcal{L}_{G,\mathsf{REG}}(\{\mathbf{W}_t\}, \hat{\mathbf{W}}; \Theta) = \sum_{t_1, t_2} ([s(\{\mathbf{W}_t\})]_{t_1, t_2} - \hat{W}_{t_1, t_2})^2$$

 \Rightarrow Euclidean distance decoder: $\hat{W}_{t_1,t_2} = \|\mathbf{z}_{t_1} - \mathbf{z}_{t_2}\|_2$

Prescribed distances between input graphs encoded in

$$[\mathsf{s}(\{\mathsf{W}_t\})]_{t_1,t_2} = d_G(\mathsf{W}_{t_1},\mathsf{W}_{t_1})$$

 \Rightarrow Like MDS and IsoMAP but at graph-(not node-)level

Model architecture: graph distance

- User defined graph distance $d_G(\mathbf{W}_{t_1}, \mathbf{W}_{t_1})$
- ► Ex: Spectrum distance
 - Distance between spectrum (eigenvalues) of both Laplacian matrices
- Ex: Vertex-edge-overlap (VEO)
 - Measure structural similarity between graphs

$$\mathsf{VEO}(\mathsf{W}_{t_1}, \mathsf{W}_{t_2}) = 2 \times \frac{|\mathcal{E}_{t_1} \cap \mathcal{E}_{t_2}| + |\mathcal{V}_{t_1} \cap \mathcal{V}_{t_2}|}{|\mathcal{E}_{t_1}| + |\mathcal{E}_{t_2}| + |\mathcal{V}_{t_1}| + |\mathcal{V}_{t_2}|}$$

Distance computed as one minus normalized VEO

Graph clustering results

 \blacktriangleright K-means clustering applied to learned graph embeddings in \mathbb{R}^{48}

 \Rightarrow Number of clusters K = 5 chosen by elbow rule

Cluster 1: early 20th century

Mostly regions around UK and the River Plate

> Decreased activity in Europe and sustained growth in South America

Cluster 3: Post-World War II recovery

Noticeable bridging between Europe and America

Cluster 4: Modern development

Modern expansion of football with Africa and Asia involved

Cluster 5: Current landscape

Global nature of the game is patently apparent

Open research directions

► GRL is a very active area of research. Many open questions remain:

- Scalability, interpretability, fairness, theoretical guarantees
- Robust and unified evaluation protocols and benchmarks
- Modeling of directed, dynamic and multi-layer graphs
- Beyond pairwise decoders: decoding higher-order motifs
- Expressivity via non-Euclidean embeddings?

Graph Representation Learning

Glossary

- Convolutional neural network
- Graph representation learning
- Node and graph embedding
- (Un)supervised learning
- Transductive and inductive
- Link prediction
- Encoder-decoder model
- Learnable parameters
- (Dis)similarity scores
- Graph pooling
- Graph regularization loss
- End-to-end learning

- Shallow embedding
- Graph autoencoders
- Neigborhood aggregation
- Higher-order proximity
- Matrix factorization
- Random walks
- Laplacian eigenmaps
- Hyperbolic geometry
- Variational autoencoders
- Brain network analysis
- Graph convolutional network