Learning Graphs from Data

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/ gmateosb/

Acknowledgment: Santiago Segarra

Facultad de Ingenieria, UdelaR
Montevideo, Uruguay
February 5, 2020

Machine Learning on Graphs Learning Graphs from Data


mailto:gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

What is this lecture about?

» Learning graphs from nodal observations

» Ex: Central to network neuroscience

= Functional network from fMRI signals

v

Most GSP works: how known graph G affects signals and filters

» Feasible for e.g., physical networks
> Links are tangible and directly observable

v

Still, acquisition of updated topology information is challenging

= Sheer size, reconfiguration, privacy and security
> Here, reverse path: how to use GSP to infer the graph topology?

» Goal: recover a latent network, or, a graph-based data representation
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Connecting the dots

» Recent tutorials on learning graphs from data
» |EEE Signal Processing Magazine and Proceedings of the IEEE
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» |EEE Trans. on Signal and Information Processing over Networks
> Special issue on Network Topology Inference (Jan. 2020)
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Network topology inference

Statistical methods for network topology inference

Learning graphs from observations of smooth signals

Identifying the structure of network diffusion processes
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Network topology inference problems

v

Q: If G (or a portion thereof) is unobserved, can we infer it from data?

v

Formulate as a statistical inference task, i.e. given
» Signal measurements x; at some or all vertices j € V
» Indicators Aj of edge status for some vertex pairs {i,} € Vﬁl
» A collection G of candidate graphs G

Goal: infer the topology of the network graph G(V, &)

v

Bring to bear existing statistical concepts and tools

= Study identifiability, consistency, robustness, complexity

v

Three canonical network topology inference problems [Kolaczyk'09]
(i) Link prediction

(ii) Association network inference

(iii) Tomographic network topology inference
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Link prediction

Original graph Link prediction

» Suppose we observe the graph signal x = [x1,...,xy]"; and

» Edge status is only observed for some subset of pairs V(()il cy®

> Goal: predict edge status for all other pairs, i.e., V,(f,.ls =V \V[(,il
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Association network inference

°
)
°
°
°
Original graph Association network
inference
» Suppose we only observe the graph signal x = [x1,...,xy]"; and

> Assume (i, /) defined by nontrivial ‘level of association” among x;, x;

» Goal: predict edge status for all vertex pairs V()
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Tomographic network topology inference

@
o
o
°
@
Original graph Tomographic
inference

» Suppose we only observe x; for vertices i C V in the ‘perimeter’ of G

» Goal: predict edge and vertex status in the ‘interior’ of G
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Association network inference

» Given a collection of N elements represented as vertices v € V
> Graph signal x = [x1,...,xn]" € RY of observed vertex attributes

» User-defined similarity sim(/,j) = f(x;, x;) specifies edges (i,j) € £

» Q: What if sim values themselves (i.e., edge status) not observable?

Association network inference

Infer non-trivial sim values from i.i.d. observations X := {xp}f=1

» Various choices to be made, hence multiple possible approaches

» Choice of sim: correlation, partial correlation, mutual information
> Choice of inference: hypothesis testing, regression, ad hoc
» Choice of parameters: testing thresholds, tuning regularization
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Correlation networks

» Pearson product-moment correlation as sim between vertex pairs

sim(i,j) :==pj = M i,jeV

Y var[xi]var ]

» Def: the correlation network graph G(V, &) has edge set
&= {(ij)eV®: p; #0f

» Association network inference < Inference of non-zero correlations
» Inference of £ typically approached as a testing problem

Ho : pij =0 versus Hi:p; #0
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Test statistics

» Common choice of test statistic are empirical correlations

. Gij
Pij = —FF—F>
VGiibjj

» Convenient alternative statistic is Fisher's transformation

L 1 1+ pj .
ZU_2|Og<1_gJ>7I,JEV
ij

P
o 1
where X = [5;] = 1 prx;
p=1

= Under Ho, 2; ~ N(0, 515) = Simple to assess significance

Zo /2

> Reject Ho at significance level «, i.e., assign edge (i) if |2;] > 255

Error rate control: P, (false edge) = Pp, <2U| > 25/2?) =«
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Networks and multiple testing

v

Interesting testing challenges emerge with large-scale networks
= Suppose we test all (}) vertex pairs, each at level a

v

Even if the true G is the empty graph, i.e., E=10
= We expect to declare (g’)a spurious edges just by chancel!

= For a large graph, this number can be considerable

Ex: For G of order N = 100 and individual tests at level o« = 0.05
= Expected number of spurious edges is 4950 x 0.05 = 250

v

v

This predicament known as the multiple testing problem in statistics
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Correction for multiple testing

» Idea: Control errors at the level of collection of tests, not individually

» False discovery rate (FDR) control, i.e., for given level v ensure

R false
R

FDR:IE[ |R>0}P[R>O]§y

» R is the total number of edges detected; and
> Rpise is the number of false edges detected

» Method of FDR control at level v [Benjamini-Hochberg'94]

Step 1: Sort p-values for all N := (g/) tests, yields p1) < ... < P(it)
Step 2: Reject Hy, i.e., declare all those edges for which

k
Pk < N v
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Partial correlations

v

Use correlations carefully: ‘correlation does not imply causation’
> Vertices /,j € V may have high p; because they influence each other

v

But pj; could be high if both i, influenced by a third vertex k € V
= Correlation networks may declare edges due to confounders

v

Partial correlations better capture direct influence among vertices
> For i,j € V consider latent vertices Sy = {k1,..., km} CV\ {i,j}

v

Partial correlation of x; and x;, adjusting for xs,, = [Xk, - - -, Xk,] ' is

cov[x;, Xj | xs, |

Pij|Sm =
\Jvar x| xs, | var [x; | xs,

’ i7jev

v

Q: How do we obtain these partial correlations?
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Computing partial correlations

» Given xs, = [k, ..., Xk,] ', the partial correlation of x; and x; is

cov[x;, Xj | xs, | B Tij|Sn

Pij|Sm =
\/var [xi ‘ Xs, | var [x; | xs,]  V7ilSn il S

> Here 0js,,0js, and ojs, are diagonal and off-diagonal elements of
. -1 2x2
Tip =X — XXy ineR

» Matrices X171, X2 and X5 = Zsz are blocks of the covariance matrix

cov { x; ] = < gi Elz > , where wy = [x;,x]" and wy := xs,
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Partial correlation networks

» Various ways to use partial correlations to define edges in G

Ex: x;, x; correlated regardless of what m vertices we condition upon

c— {(iJ) eV® :pus £0, forall S, € v{;”,{j}}

» Inference of potential edge (/,/) as a testing problem

Ho : pjjis,, = 0 for some S, € V{'{",-)’j}

. (m)
Hy : pijs,, # 0 for all S, € Wiy
» Again, given measurements X := {xp}';:1 need to:
> Select a test statistic
» Construct an appropriate null distribution
» Adjust for multiple testing
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Case study: Inferring gene-regulatory interactions

» Genes are segments of DNA encoding information about cell functions

v

Such information used in the expression of genes

= Creation of biochemical products, i.e., RNA or proteins

v

Regulation of a gene refers to the control of its expression

Ex: regulation exerted during transcription, copy of DNA to RNA
= Controlling genes are transcription factors (TFs)
= Controlled genes are termed targets

= Regulation type: activation or repression

v

Regulatory interactions among genes basic to the workings of organisms

= Inference of interactions — Finding TF/target gene pairs

v

Such relational information summarized in gene-regulatory networks
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Regulatory interactions among E. coli genes

Genes

Experiments

» Dataset: relative log expression RNA levels, for genes in E. coli
> 4,345 genes measured under 445 different experimental conditions

» Ground truth: 153 TFs, and TF/target pairs from database RegulonDB
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Methods to infer TF/target gene pairs

» Three correlation based methods to infer TF /target gene pairs

= Interactions declared if suitable p-values fall below a threshold

Method 1: Pearson correlation between TF and potential target gene

Method 2: Partial correlation, controlling for shared effects of one
(m = 1) other TF, across all 152 other TFs

Method 3: Full partial correlation, simultaneously controlling for
shared effects of all (m = 152) other TFs

» In all cases applied Fisher transformation to obtain z-scores
= Asymptotic Gaussian distributions for p-values, with P = 445

» Compared inferred graphs to ground-truth network from RegulonDB
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Performance comparisons

» ROC and Precision/Recall curves for Methods ', 2, and 3
= Precision: fraction of predicted links that are true
= Recall: fraction of true links that are correctly predicted
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» Method = performs worst, but none is stellar
= Correlation not strong indicator of regulation in this data

» All methods share a region of high precision, but a very small recall
= Limitations in number/diversity of profiles [Faith et al’07]

Machine Learning on Graphs Learning Graphs from Data



Predicting new TF/target gene pairs

> In biology, often interest is in predicting new interactions

[

4

» 11 interactions found for TF Irp, 10 experimentally confirmed (dotted)
= b interacting target genes were new (magenta, red, cyan)

= 4 present in RegulonDB (magenta, cyan), but not as Irp targets
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Undirected Gaussian graphical models

» Suppose variables {x;};cy have multivariate Gaussian distribution

= Consider pjjy\ (i, conditioning on all other vertices (m = N — 2)

Theorem
Under the Gaussian assumption, vertices i,j € V have partial correlation

Piv\{ijy =0
if and only if x; and x; are conditionally independent given {xx }rew\{i.j}
» Def: the conditional independence graph G(V, ) has edge set
& ={(if) €V : pyvn iy # 0}
= A special and popular case of partial correlation networks

» Also known as Gaussian Markov random field (GMRF)
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Covariance selection

v

Let X be the covariance matrix of x = [x1, ..., xn]

Def: the precision matrix is @ := £ ! with entries 0

v

Key result: For GMRFs, the partial correlations can be expressed as

Pijiv\{ij} = — 0.0
i jj

= Non-zero entries in @ < Edges in the graph G

v

Inferring G from X known as covariance selection [Dempster'74]

= Classical methods are ‘network-agnostic,” and effectively test

Ho : pipojijy =0 versus Hy : pypoigy # 0

v

Often not scalable, and P < N so estimation of ¥ challenging
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Graphical Lasso

» Sparsity-regularized maximum-likelihood estimator of @ [Yuan-Lin'07]
O carg max {Iog det @ — trace(X0O) — )\||®||1}

= Effective when P < N, encourages interpretable models

= Scalable solvers using coordinate-descent [Friedman et al’08]

» Performance guarantee: Graphical lasso with A = 2,/ '°%,N satisfies

d2., log N

16~ @l < |/ o=

= Ground-truth @g, maximum nodal degree dpax

» Support consistency for P = Q(d?

max

log N) [Ravikumar et al'11]
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GMRFs with Laplacian constraints

> Graphical model selection with Laplacian constraints @ = L

» Off-diagonal entries 8;; = L;j = —A; <0 = Attractive GMRF
» Laplacian is singular (L1 = 0) = Improper GMRF

» Estimate a proper GMRF via diagonal loading [Lake-Tenembaum'07]

eg&?»;(zo {Iog det © — trace(X0) — /\||@H1}

s. to® =L+l
L1=0,L;<0,i#j

= Interpret 4! as variance of Gaussian isotropic fluctuations

» Favors graphs over which the signals are smooth

P
trace(£L) ZXTLXP ZTV(XP)
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Covariance selection meets linear regression

» ldea: separately estimate neighborhoods N; .= {j: (i,j) €}, i€V

» Conditional mean of x; given x\; := [x1,...,Xi—1,Xi41,. .. xy] T is
E [x|x] =x[;8"

» Entries of B(i) expressible in terms of those in ~ = £, namely

G _ Y
g =5

= Non-zero ,81([) < Non-zero 0 in =~ < Edge (i,j) in G
= In other words, supp(3") := {; : ﬂ}i) £0} =N,
> Suggests inference of G via least-squares (LS) regression, since
(0 _ : T a2 .
B argmﬁl)nIE [(x, x\,ﬂ) } , €V
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Neighborhood-based sparse regression

» Cycle over vertices i € V and estimate N; = supp(fi(’)), where

P
~(7) .
B €arg min {Z(pr —x,.;8)% + /\Iﬁlll}

RN-1
Be p=1

= Separable lasso problems per vertex

» No guarantee that B}i) # 0 implies B,(J) # 0 and vice versa
= Combine information in N; and ./\A/; to enforce symmetry

= OR rule: (i,j) e & if B}i) #0or 5,-0) # 0. Likewise, AND rule

» Support consistency for either rule [Meinshausen-Biihlmann'06]
» Suitable choice of ), sparsity of @g, and sample complexity P
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Conceptual roadmap for GMRF model selection

Testing partial correlations

For each (i,7) € V x V, test the hypothesis

Hy : pijjyni; =0 versus  Hy : pyjjpni; # 0

PijlV\ij = —

Covariance selection

= pijvnig F 0 0 #0
03i055

0. =x"1

Infer non-zero entries 6;; # 0 of the precision matrix

By =~

Neighborhood-based regression

bsj i
9—1 = BV £0e6,;#0

8% = arg Hgn]E [(zi - x\Ti,@)z]

For each i € V, infer non-zero regression coefficients ﬂ]@ #0in
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Comparative summary

> Parallelizable neighborhood-based regression (NBR)
= Conditional likelihood per vertex i € V, disregards @ > 0
= Tends to be computationally faster

» Graphical Lasso minimizes a (regularized) global likelihood
L(©®; X) = logdet © — trace(£0)
= Tends to be (statistically) more efficient

» NBR method tractable even for discrete or mixed graphical models
= Ising-model selection for x € {—1,+1}" [Ravikumar'10]
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Learning graphs from smooth signals

Statistical methods for network topology inference

Learning graphs from observations of smooth signals

Identifying the structure of network diffusion processes
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Problem formulation

Rationale

» Seek graphs on which data admit certain regularities

> Nearest-neighbor prediction
» Semi-supervised learning
» Efficient information-processing transforms

» Many real-world graph signals are smooth

» Graphs based on similarities among vertex attributes
» Network formation driven by homophily, proximity in latent space

Problem statement

Given observations X' := {x,}F_;, identify a graph G such that
signals in X' are smooth on G.

» Criterion: Dirichlet energy on the graph G with Laplacian L
TV(x) = x' Lx
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Example: Predicting protein function

» Baker's yeast data, formally known as Saccharomyces cerevisiae
> Graph: 134 vertices (proteins) and 241 edges (protein interactions)

» Signal: functional annotation intracellular signaling cascade (ICSC)

» Signal transduction, how cells react to the environment
» x; = 1 if protein i annotated ICSC ( ), x; = 0 otherwise (blue)
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Example: Predicting law practice

» Working relationships among lawyers [Lazega'01]
» Graph: 36 partners, edges indicate partners worked together

Ep

e

» Signal: various node-level attributes x = {x;};cy including

= Type of practice, i.e., litigation (red) and corporate (cyan)

» Suspect lawyers collaborate more with peers in same legal practice

= Knowledge of collaboration useful in predicting type of practice
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Laplacian-based factor analysis model

» Consider an unknown graph G with Laplacian L = VAV
= Adopt GFT basis V as signal representation matrix

» Factor-analysis model for the observed graph signal [Dong et al’16]
x=Vx+e

= Latent variables x ~ A(0,AT)
= lsotropic error term € ~ N(0, o21)

» Smoothness: prior encourages low-pass bandlimited x
= Small eigenvalues of L (low freq.) — High-power factor loadings
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Inference as denoising via graph kernel regression

» Maximum a posteriori (MAP) estimator of the latent variables x
Xmap = arg mxin {IIx = Vx|” + ax " Ax}
= Parameterized by the unknown V and A
» Define predictor y := Vx, regularizer expressible as
x"Ax =y VAVTy =yTLy = TV(y)

= Laplacian-based TV denoiser of x, smoothness prior on y

= Kernel-ridge regression with unknown K := LT (graph filter)
» ldea: jointly search for L and denoised representation y = Vx

min {|lx = y||* + ay "Ly}
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Formulation and algorithm

> Given signals X' := {x,}}_; in X = [x1,...,xp] € RV*P, solve

- _ vy T Bz
Tl\p{HX Y|z + atrace (Y LY)+2||L||,_-}

)

s.to trace(L)=N,L1=0, L;=L; <0, i#]

= Objective function: Fidelity + smoothness + edge sparsity

= Not jointly convex in L and Y, but bi-convex

» Algorithmic approach: alternating minimization (AM), O(N3) cost
(S1) Fixed Y: solve for L via interior-point method, ADMM
(S2) Fixed L: low-pass, graph filter-based smoother of the signals in X

Y =(I+aLl) !X
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Impact of regularizers on sparsity and accuracy

» Generate multiple signals on a synthetic Erdés-Rényi graph

= Recover the graph for different values of o and 3

Number of edges

a - logion

» More edges promoted by increasing 5 and decreasing «

> In the low noise regime, the ratio 5/« determines behavior
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Example: Temperature graph in Switzerland

» N = 89 stations measuring monthly temperature averages (1981-2010)
= Learn a graph G on which the temperatures vary smoothly

» Geographical distance not a good idea =- different altitudes

fenne [ ;
8! o /
Colmard  (Freiburg < Colmare  (Freiburg <

Konstanz bt o]

o S
P Ay e T .
@ sant al\e\ %
‘ . n‘c" & oo

b Llca'!'nslem i

Novara

» Recover altitude partition from spectral clustering on G
= Red (high stations) and blue (low stations) clusters
» K-means applied directly to the temperatures (right) fails
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Signal smoothness meets edge sparsity

» Recall X = [x1,...,xp] € RV*P let x| € R1*P denote its i-th row

= Euclidean distance matrix Z € RY*N, where Z; := ||%; — %;|2
> Neat trick: link between smoothness and sparsity [Kalofolias'16]
& 1
D TV(x,) = trace(X LX) = SIA°Z
p=1

= Sparse £ when data come from a smooth manifold

= Favor candidate edges (i, ) associated with small Zj;
» Shows that edge sparsity on top of smoothness is redundant

» Parameterize graph learning problems in terms of A (instead of L)

= Advantageous since constraints on A are decoupled
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Scalable topology identification framework

> General purpose model for learning graphs [Kalofolias'16]

o {140 2], a1 log(a1) + A1}
s. to diag(A) =0, Aj =A;>0,i#j

= Logarithmic barrier forces positive degrees

= Penalize large edge-weights to control sparsity
» Primal-dual solver amenable to parallelization, O(N?) cost

» Laplacian-based factor analysis encore. Tackle (S1) as

i {18021 —tog(E (1A = 1)+ 5 (IALI? + Jal) |

s. to  diag(A) =0, Aj =A;>0,i#j

Machine Learning on Graphs Learning Graphs from Data



Example: Learning the graph of USPS digits

» 1001 images of the 10 digits, but highly imbalanced (2.6/2)

= 10 classes via graph recovery plus spectral clustering

» Compare two methods based on smoothness and k-NN graph

0.45

°
° @ °
® & 2

Clustering error

o
v
3]

Spectral Clustering

Connectivity

0.2

[Dong etal]
()ursg
k-NN

NA__

T
1
1
1
1
1
1
1
1

\

= =# disconnected (Dong etal)
——# components (Dong etal)
=i components EOurs)
# components (k-NN)
----- number of classes

10 15
graph density

20

NN

» Performance more robust to graph density

10 15 20
graph density

= Likely attributable to non-singleton nodes
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Graph learning via edge subset selection

» ldea: parameterize the unknown topology via an edge indicator vector

» Complete graph on N nodes, having M := (g’) edges
= Incidence matrix B := [by,...,by] € RVM

> Laplacian of a candidate graph G(V, &) [Chepuri et al'17]

M
L(w) = wmbmb),
m=1

= Binary edge indicator vector w := w1, ...,wym]" € {0,1}M
= Offers an explicit handle on the number of edges ||w|o = ||

Problem: Given observations X' := {xp}l’;’:l, learn an unweighted graph

G(V, ) such that signals in X" are smooth on G and |€| = K.
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Cardinality-constrained Boolean optimization

» Natural formulation is to solve the non-convex problem

in  trace(XTL(w)X .t =K
werPOl,q}M race( (w)X), s. to |wllo

» Solution obtained through a simple rank-ordering procedure
» Compute edge scores ¢, := trace(X " (bnb,,)X)
» Set wm = 1 for those K edges having the smallest scores

» More pragmatic AWGN setting where x, =y, +€,, p=1,...,P

i X —Y|? t YT L(w)Y t =K
v,w?{'&w{u |F + atrace( (W)Y)}, s to [wllo

= Tackle via AM or semidefinite relaxation (SDR)
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Comparative summary

» Noteworthy features of the edge subset selection approach

v Direct control on edge sparsity

v/ Simple algorithm in the noise-free case

v Devoid of Laplacian feasibility constraints
X Does not guarantee connectivity of G

X No room for optimizing edge weights

» Scalable framework in [Kalofolias'16] also quite flexible

min (A 0 21 + g(A)}
s. to  diag(A) =0, Aj=A;>0,i#j

= Subsumes the factor-analysis model [Dong et al'16]

= Recovers Gaussian kernel weights Aj; := exp (—”’_(;75’”2> for
g(A) =0 Aj(log(Ay) — 1)
ij
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Case study: Classification of network data

> Labeled graph signals X, := {x,(f)},f“:l from C different classes
= Signals in each class possess a very distincitve structure

» As.: Class c signals are smooth w.r.t. unknown G.(V, &)

» Multiple linear subspace model
= Signals spanned by few Laplacian modes (GFT components)

= Like susbpace clustering [Vidal'11l], but with supervision

Problem statement

Given training signals X = Ule X, learn discriminative graphs A,
under smoothness priors to classify test signals via GFT projections.
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Discriminative graph learning

» Discriminative graph learning per class ¢ [Saboksayr et al'21]

C
min d [Aco Zels — 01" log(Ac) + 5 [AcE— > A o Zul,
i k#c

s. to  diag(Ac) =0, [A]; =[Ac]i >0, i #J

= Capture the underlying graph topology (class ¢ structure)
= Discriminability to boost classification performance

» Q: Given graphs {AC}CC:I, how do we classify a test signal x?
> Pass x through a filter-bank with C low-pass filters (LPFs)

%Fc = diag(h)VIx = &= argmax {|%F.c|?}
c

= LPF frequency response h, learned class-c GFT basis V.
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Emotion recognition from EEG records

v

Discriminative graph learning for emotion recognition from EEG signals

v

DEAP dataset = 32 subjects watch music videos (40 trials each)
> Asked to rate videos: valence, arousal, like/dislike, dominance
» Focus on valence labels: low (1-5 rating) and high (6-10 rating)
» Signals acquired from N = 32 EEG channels

v

We perform a subject-specific valence classification task
= Learn C = 2 graphs and project onto the 8 smoothest modes
= Report leave-one (trial)-out classification accuracy

v

Mean classification accuracy over subjects is 92.73%
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Valence classification

. b
Centeal e ¥ - o “n Wi a om
) . 1 ] LIS I"I

N

Occipital "

Frontal Centeal Temporal Paietal Oceipital

Low valence High valence Different connections (p=0.002)

> Connectivity increases with emotion intensity (frontal lobe links)

High valence

Low valence

» Asymmetric frontal activity apparent from the 8 smoothest modes
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Learning graphs from diffused signals

Statistical methods for network topology inference

Learning graphs from observations of smooth signals

Identifying the structure of network diffusion processes
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Problem formulation

Setup
» Undirected network G with unknown graph shift S

» Observe signals {y;}7_; defined on the unknown graph

Y1 Y2 ys3

Problem statement

Given observations {y;}¥ ;, determine the network S knowing that
{yi}£_, are outputs of a diffusion process on S.
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Generating structure of a diffusion process

» Signal y; is the response of a linear diffusion process to input x;

yi = QQH(lfa/S)X,' = Zﬂ,S’x;, I = 1,...,P
=1 1=0

= Common generative model, e.g., heat diffusion, consensus

> Cayley-Hamilton asserts we can write diffusion as (L < N)

(Zh,s) =Hx;, i=1,...,P

= Graph filter H is shift invariant [Sandryhaila-Moura'13]
= H diagonalized by the eigenvectors V of the shift operator

> Goal: estimate undirected network S from signal reaIizations {yi}e,

= Unknowns: filter order L, coefficients {h,}, L. inputs {x;}7;
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Blueprint of our solution

STEP 1: Estimate
AP the eigenvectors of
{yz i=1 &

S V :noisy

STEP 2: Find
eigenvalues via
optimization

0o}

A priori info and Sparsity and shift
desirable features operator feasibility
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Step 1: Obtaining the eigenvectors of S

> y is the output of a local diffusion of a white input
00 N—-1
y=ap H(I —aS)x = (Z h/S’)x = Hx
=1 =0
» The covariance C, of y shares V with S
C, = H? = i3l + 2hoh; S + h3S? + ...

» Mapping S — C, is polynomial
= Correlation methods = C, =S
= Precision methods (graphical Lasso) —+ C, = S~!
= Structural EM methods = C, = (I — S) 2
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Correlated input signals

» Q: What if the signal x is colored?

= Matrices S and C, no longer simultaneously diagonalizable since
C, =HCH
» Key: still H = EIL:_OI hS' diagonalized by the eigenvectors V of S

= Infer V by estimating the unknown diffusion (graph) filter H

= Step 1 boils down to system identification + eigendecomposition

A~

System H

{Yi 71:3_1 Identification Eigendecomposition - V

» Henceforth assume C, is non-singluar and known
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System ID as matrix quadratic equation

> Q: What are the solutions of the quadratic equation C, = HC,H?

Proposition: Define C,y = C)1</2CyC,1</2, with eigenvectors V.
Then all admissible symmetric graph filters H are of the form

H = C;Y/2CY/2V,  diag(b)V]  C /2,

XyX XyX =X

where b € {—1,1}" is a binary (signed) vector.

> Even if we know C, perfectly, H is not identifiable

= Not surprising since we only have second-moment information

= Unique solution H = C;1/2C)10{X2C;1/2 for positive semidefinite H

» Consider having access to multiple input distributions {C, »}"_;
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Boolean quadratic program

» Define A, := (c;},{zvxyx7m) ® (c;},{zciﬂimvxyx,m) and form
A —As 0 cee 0 0
0 A —A; - 0 0
V.= . . . . .
0 0 0 o Ap-1 —Apm

v

With by, € {~1,1}" and b = [b{,b], ... ,b],]", then Wb* =0

» In practice only {€, ,}¥_, are available = Estimate b* as

b* = argmin RTARTS
be{—1,1}

v

Solution b* of binary quadratic program (BQP) = Filter estimate

XyX,m X,m

M
N IZ —1/241/2 ¢ iag(b* W T —1/2
H= M m=1 Cx,m/ C / nyx,md|ag(bm)VXyX7mC /
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Semidefinite relaxation

» System identification reduces to solving the NP-hard BQP

b* = argmin bT\iJTlilb
be{—1,1} "M

» Define W =W ¥ and B = bb", BQP equivalent to

Ir3n>ir[1]tr(VA\/B) s. to rank(B)=1, B;=1,i=1,...,NM

» Drop source of non-convexity = Semidefinite relaxation (SDR)

B* = argmin tr(WB) s.to B;=1,i=1,...,NM
B>0
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Performance guarantee

» For/=1,...,L, draw z; ~ N(0,B*), round b, = sign(z/), to obtain

I* = argmin b/ Wb,
I=1,...,L

Theorem: Let b* be the BQP solution and 5,* the SDR output.
Then,

A

(b)TWb* < E [(B) W] < %(B*)TWB* o,

where 7 = (1 - %) AmaX(W)NM.
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Summary of Step 1

{y:}
Yifi=1 STEP 1: Estimate
the eigenvectors of

S

STEP 2: Find
eigenvalues via
optimization

[0}

A priori info and Sparsity and shift
desirable features operator feasibility
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Summary of Step 1

STEP 1: Estimate
the eigenvectors of

S

A priori info and

desirable features

STEP 2: Find

[0}

eigenvalues via
optimization

Sparsity and shift
operator feasibility
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Summary of Step 1

_>{y1}lp;1—>[ Sample covariance ]
| C,

[ Eigendecomposition ]_ \%

H(S)

STEP 2: Find
eigenvalues via
optimization

0o}

{x;}| white

A priori info and Sparsity and shift
desirable features operator feasibility
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Summary of Step 1

—>{}’i ﬁl—’[ System ID ] Semi-definite relaxation of
- I:I boolean quadratic program

[ Eigendecomposition ]_ \%

H(S)

STEP 2: Find
eigenvalues via
optimization

o

{Xi }{; 1 colored

A priori info and Sparsity and shift
desirable features operator feasibility
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Step 2: Obtaining the eigenvalues

» We can use extra knowledge/assumptions to choose one graph

= Of all graphs, select one that is optimal in some sense

N

S*:=argmin f(S,\) s to S= Z)\kaVkTv Ses
S,A k=1

» Set S contains all admissible scaled adjacency matrices
SZ:{S | S,J >0, SEMA,I Si =0, stlj:]-}
= Can accommodate Laplacian matrices as well

> Problem is convex if we select a convex objective (S, A)
Ex: Sparsity (f(S) = ||S||l1), min. energy (f(S) = ||S]|£), mixing (f(A) = —A2)
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Sparse graph recovery

» Whenever the problem’s feasibility set is non-trivial

= (S, A) determines the features of the recovered graph

Ex: Identify sparsest shift S; that explains observed signal structure
= Set the objective (S, \) = ||S||o
» Non-convex problem, relax to ¢;-norm minimization, e.g., [Tropp'06]

N
S :=argmin ||S|l; s to S= Z)xkkakT, Ses
S,A k=1

» Q: Does the solution Sj coincide with the ¢y solution S§?
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Recovery guarantee for /7 relaxation

» D is the index set such that vec(S)p = diag(S)
> K indexes the support of s§ = vec(S})

» Define M:=V ® V, where © is the Khatri-Rao product
= Form R := [(l — MMT)DC7 e ® 1/\/,1]

Theorem: S; = Sj if the two following conditions are satisfied
1) rank(Rx) = |K|; and
2) There exists a constant ¢ > 0 such that

YR = [k (672RRT + 1elice) M floo < 1

» Cond. 1) ensures uniqueness of solution S

» Cond. 2) guarantees existence of a dual certificate for /o optimality
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Sparse recovery guarantee

» Generate 1000 ER random graphs (N = 20, p = 0.1) such that
= Feasible set is not a singleton

= Cond. 1) in sparse recovery theorem is satisfied

> Noiseless case: (1 norm guarantees recovery as long as ¢Yr < 1

180 !

[ Recovery Success
160 [_1Recovery Failure |7

# of experiments

0 1 2 3 4 5 6 7
Matrix £, norm

» Condition is sufficient but not necessary

= Tightest possible bound on this matrix norm
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Noisy spectral templates

» Step 1 actually yields V, a noisy version of the spectral templates

= With d(-,-) denoting a (convex) distance between matrices

min [|S]1 s to §=31, MUkl], SeS, d(S,8) <e

{S,A\,S}

Q: How does the noise in V affect the recovery?

v

v

Stable recovery can be established = depends on noise level

= Reformulate problem as min, [|t||; s. to |[RTt — b, <e

v

Conditions 1) and 2) but based on R, guaranteed d(S*,S%) < Ce
= ¢ large enough to guarantee feasibility of S

= Constant C depends on V and the support K
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Incomplete spectral templates

» Partial access to V. = Only K known eigenvectors Vi = [vi, ..., vk]

min_ [Slly s. to S=Sg+ I Mviv), SES, SgVik =0
{SvsRaA}

» Q: How does the (partial) knowledge of V affect the recovery?

» Define P := [Py, Py] in terms of Vi, and T := [Iyz, Opz« nz2]
= Reformulate problem as min; || Tt||; stoPTt=b

Theorem: S* = S if the two following conditions are satisfied
1) rank([P14,P2"]) = |K| + N?; and
2) There exists a constant 6 > 0 such that

mp = | Tie(62PPT + T T ) ™M {loo < 1
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Social graphs from imperfect templates

» ldentification of multiple social networks with N = 32
= Defined on the same node set of students from Ljubljana
= Synthetic signals from diffusion processes in the graphs

» Recovery for incomplete (left) and noisy (right) spectral templates

—o-Network 1 —o-Network 1

® —#- Network 2 A —#-Network 2
Network 3 Network 3

—A-Network 4 = 05 —A- Network 4

o

®
o o

. O

o

o
I3
>

o

IS
o
w

Recovery error
Recovery error

o
N

o

0 0
16 18 20 22 24 26 28 10° 10* 10° 10°
Number of spectral templates Number of observations

» Error (left) decreases with increasing nr. of spectral templates

» Error (right) decreases with increasing number of observed signals

Machine Learning on Graphs Learning Graphs from Data



Performance comparisons

» Comparison with graphical lasso and sparse correlation methods
» Evaluated on 100 realizations of ER graphs with N =20 and p = 0.2

—e—Our for H,
.7 |-G OurforH,

F-measure
o
[}

, —s— Correl. for H‘
0.5 i - Correl for H,
’ ‘ GlLasso for H
0.4l S 1
v GlLasso for H2
0'3&:=-_-¢=:::Q_____*_____-*— ————— 3
0.2 . . . .
10’ 102 10° 10* 10° 10°

Number of observations

» Graphical lasso implicitly assumes a filter Hy = (pl + S)*l/2
= For this filter spectral templates work, but not as well

» For general diffusion filters Hy spectral templates still work fine
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Inferring the structure of a protein

» Our method can be used to sparsify a given network
= Keep direct and important edges or relations
= Discard indirect relations that can be explained by direct ones

» Use eigenvectors V of given network as noisy eigenvectors of S

Ex: Infer contact between amino-acid residues in BPT1 BOVIN
= Use mutual information of amino-acid covariation as input

Ground truth Mutual info. Network deconv. Our approach

» Network deconvolution assumes a specific filter model [Feizi13]
= We achieve better performance by being agnostic to this

Machine Learning on Graphs Learning Graphs from Data



Sensitivity of recovered edges

» Sensitivity of the top edge predictions
= Fraction of the real contact edges recovered

» For ¢ = 0 we force S to be mutual information matrix S’

» For larger values of ¢, we get a better recovery

07 07
e | SpecTemp (¢ = 0.0) e | SpecTemp (e = 0.0)
5 08|~ -SpecTemp (c = 0.5) 7 £ 06{|~ -SpecTemp (¢ =05)
2 —SpecTemp (e = 1.0) Ve 5] —SpecTemp (e = 1.0)
g 057|- -Mutual information 7 g 057|= -Mutual information
8 Network deconvolution [= g Network deconvolution
Z 04 Z 04
3 P | 3
2 Z P 54
503 P ///—, P - 5 03
o2 7.4-/' Soz2
g e/ kst
3 z 3
F 01 # & 01
0 ot
0 50 100 150 200 250 0 50 100 150 200 250

Top predictions Top predictions
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Unveiling urban mobility patterns

» Detect mobility patterns in New York City from Uber pickup data

» Times and locations (N = 30) from January 1st to June 29th 2015
» Pickups within 6-11am as input signal x and 3-8pm as output y
» M = 2 graph processes: weekday (m = 1) and weekend (m = 2) pickups

carteld (i
s
Cifton passaic

A
‘North/Bergefy
/

Machine Learning on Graphs

» Most edges between Manhattan
and the other boroughs

» Few edges within Manhattan
= Uber mostly for commute

» Hubs at JFK, Newark and
LaGuardia airports
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Summary

» GSP approach to network inference in the graph spectral domain

= Two step approach: i) Obtain V; ii) Estimate S given V

» How to obtain the spectral templates V
= Based on covariance of diffused signals

= Other sources: network operators, network deconvolution

» Infer S via convex optimization
= Objectives promote desirable physical properties
= Constraints encode a priori information on structure

= Robust formulations for noisy and incomplete templates
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What about streaming data?

Setup
» Sparse network G with unknown graph shift S

> Observe
= Streaming signals {y.;},_, defined on S
= Edge status s;; for (i,j) e QCV xV

Y1 y2 ys3

Problem statement

Given observations {y;},_; and edge status in Q, determine the
network S knowing that {y;},_; are generated via diffusion on S.
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Batch topology inference revisited

v

Suppose that the input is white, i.e., Cx =E [xx ] =1

= The covariance matrix of y = Hx is a polynomial in S

C, = E [Hx(Hx) | = H? = 11 + 2homS + h3S2 + ..

v

Implies C,S = SC,, shift-invariant second-order statistics (stationarity)

v

Formulation: given C,, search for S that is sparse and feasible

S:=argmin ||S|;  subject to: [|SC, —C,S||r<¢, S€S
s

> Set S contains all admissible adjacency matrices

8:{S|S,J > O,ST: S,S,‘,’ = (),S,'_,'ZS,",'7 (I,_]) S Q}
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Batch proximal gradient algorithm

v

Dualize the constraint to arrive at the convex, composite cost F(S)

S* € argmin F(S) := HSHl—l—ﬁHSéy - €52
ses 2
g(S)

v

Smooth component g(S) has an M=4u)2,_ (€, )-Lipschitz gradient

PN

Vg(s) = N[(Séy - Cys)éy - éy(Séy - éys)}

v

Convergent PG updates with stepsize v < % at iteration k =1,2,...
Sk+1 = Proxy.|,,s (Sk —7Vg(Sk))

v

Proximal operator

0, i=j
[Sk+1lj = Sij» (i,J) €Q
max(0, [D«]jj —v), otherwise.
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Online proximal gradient algorithm

» Q: Online estimation from streaming data y1,...,Y¢, Yei1,.-.7
» At time t solve the time-varying composite optimization

St € argmin Fo(S) = ||S|l + 2 |1S€, . — €,.S|2
ses 2

&:(S)

» Step 1: Recursively update the sample covariance (A:y)t

PN

1 N
Cy,t = ; ((t - l)cy7t—1 + YthT>

» Track S; = Sliding window or exponentially-weighted moving average
» Step 2: Run a single iteration of the PG algorithm [Madden et al'18]

Se+1 = Proxy,.y,.s (St — 7t Vg:(Se))

» Memory footprint and computational complexity does not grow with ¢t
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Convergence analysis

Theorem (Madden et al'18)

Let v, := ||S§+175§||F capture the variability of the optimal solution. If g; is
strongly convex with constant m; , then for all t > 1 the
iterates S; generated by the online PG algorithm satisfy

t—1
* I/T
IS¢ — Sill < Lt1<||so—so||F+Z )

7=0

where Ly = max {|1 — yemq|, |1 — M|}, Lo = [1E_o Ly

> Corollary: Define L; := max,;—q...+L;, Pt == max,—o,. +Vr. Then

* T t * ﬁt
_ < _
ISe =il < (Ee-1) IS0~ Sl + 7

- Lt—-1

» For m; > m, M, <M, and 7. =2/(m; + M;) é[t§%<l
» Misadjustment grows with 2; and bad conditioning (M — oo or m — 0)
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Zachary's karate club network

» Zachary's karate club social network with N = 34 nodes
> Diffusion filter H =322 h/A', b ~ U0, 1]
> Generate streaming signals y1,...,Y¢, Yet1, ... via yr = Hxe
> Both batch and online inference for different Q (one edge observed)
» Dynamic S;: flip 10% of the edges at random at t = 5000

Ground truth: F-measure 1 , (6,17) known: F-measure 0. 98
5 L L T T W TR
10 = 0™ - - 30 -l 1
—o- Optimal: (6,17) known L - 08 08
—— Running: (6,17) known B RTH 5] ¥
—o- Optimal: (15,34) known 0= 5 0° 20 = El R
—— Running: (15,34) known L= q ) 15" 1.
4 04 5 04
10 —o- Optimal: No a priori 10 r'_ 10 r . 4
o — Running: No a priori 02 IJ-_ . 02
3 5 5 h_l .
El mr ZefL ) Fl g = 0
o 10 20 30 10 20 30
=
i (15,34) known: F-measure 039 No a priori: F-measure 0.74
= = I i T -
[} ] o4
3
ol : 1 o8 30
51 'l 25 " 03
0pE I 00 20
15 r - T os 15 . o2
10 Fi 10 R
10! t 02 5
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 _I 17 . 0 ) 0
Number of iterations 10 20 30 10 20 30

» The online scheme attains the performance of its batch counterpart
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Facebook friendship graph

» Facebook friendship graph with N = 2888 nodes. Ego-nets of 7 users

Number of observations ‘ 103 10* 10° 10°
F-measure ‘ 0.45 0.77 087 0.94

» Ground-truth A (left) and S, for t = 10* (center) and t = 10° (right)

2500 |

200

1500

1000

500 ¥

0 S0 1000 1500 2000

0 500 1000 1500 2000 2500 0 1000 1500 2000

> Scalable to graphs with several thousand nodes
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A rich framework for network inference

{Yi}fﬂ ~
ety —HE) s
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A rich framework for network inference

{ P = {Yi}le Network N
P S etwor]
X/L Z:1 H(S) S

» Prior knowledge on the filter class [Segarra et al'17]
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A rich framework for network inference

~ N(0,C,)
A
1 P
! i=1

{x;}F i) Network Q
x4 etworl
» Prior knowledge on the filter class [Segarra et al'17]

» Colored inputs to the diffusion process [Shafipour et al'17, '19]
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A rich framework for network inference

{ P = {Yi}le Network N
P S etwor]
X/L Z:1 H(S) S

» Prior knowledge on the filter class [Segarra et al'17]
» Colored inputs to the diffusion process [Shafipour et al'17, '19]
» Inference for directed graphs [Shafipour et al'18]
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A rich framework for network inference

Joint Network

Inference
2) 2
2 P

Prior knowledge on the filter class [Segarra et al'17]
Colored inputs to the diffusion process [Shafipour et al'17, '19]
Inference for directed graphs [Shafipour et al'18]

vV v .v.Y

Joint inference of multiple networks [Segarra et al'17]
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A rich framework for network inference

P
i=1

{Yi} e
‘ P Net ‘ Communities in
o2 —{HE) S

Prior knowledge on the filter class [Segarra et al'17]
Colored inputs to the diffusion process [Shafipour et al'17, '19]
Inference for directed graphs [Shafipour et al'18]

Joint inference of multiple networks [Segarra et al'17]

vV v.v. vy

Recovering the community structure [Wai et al'18, '19]
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Learning heat diffusion graphs

» Superimposed heat diffusion processes on G [Thanou et al'17]

» Dictionary consisting of heat diffusion filters with different rates

= Signals modeled as a linear combination of few (sparse) atoms

» Graph learning task as a regularized inverse problem
= The graph (hence, the filters) is unknown

= The sparse combination coefficients are unknown
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Learning heat diffusion graphs: Formulation

. _ !
> Heat rates 7 = [1y,...,7s] | of the S filters Hy = e~ = =0 %

> Given signals X' := {x,}F_; in X = [x1,...,xp] € R¥*P, solve

> P
i x—Kﬂ‘ L||2
LrpF;g{H o Irplh o+ BILE
p=
s.to K= [e*TlL,e*TzL,...,e*TSL]

trace(L)=N, L1=0, L;=L;<0,i#j, 7.>0

= R € RMY**P are sparse combination coefficients
= Objective function: Fidelity + sparsity + regularizer

» Non-convex optimization, challenged by matrix exponentials

> Proximal alternating linearized minimization (PALM)
» Savings via low-degree polynomial approximation of H;
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Comparative summary

» Main distinctive points of this model
= Assumes a specific filter type: heat diffusion
= Parametrized by a single scalar: the diffusion rate
= Inputs to these filters are required to be sparse

» In comparison, for the spectral templates method
= Filters are arbitrary, not just diffusion

= Information about inputs is statistical instead of structural

» Inherent trade-off between model and data driven approaches
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Concluding remarks

» How to use the information in X to identify G(V, &)
= Mostly focused on static and undirected graphs

= GSP offers some novel insights and tools

» Emerging topic areas we did not cover
= Directed graphs and causal structure identification
= Dynamic networks and multi-layer graphs

= Nonlinear models of interaction

» Open research directions
= Performance guarantees such as those for graphical lasso
= Does smoothness alone suffice? Can sparsity be forgone?
= Bi-level network inference: graphs for downstream tasks

= Discrete signals, non-linear graph filter based models
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Glossary

Topology inference

Link prediction

Association networks
Network tomography
Correlation networks
Multiple testing
Gene-regulatory network
Gaussian graphical model
Covariance selection
Neigborhood-based regression

Smoothness prior

vV V. Y Y V¥V VY VYV VYV Vv VvV VY

Factor analysis model
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vV V. vV vV Y YV YV YV VYV VvV VY

Edge subset selection
Discriminative graph learning
Network diffusion process
Spectral templates

Graph filter identification
Semidefinite relaxation
Robust topology recovery
Streaming signals

Online proximal gradient
Dynamic network

Heat diffusion graphs
Directed graphs
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