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Who am |, where to find me, lecture times

» Gonzalo Mateos
Dept. of ECE, University of Rochester

Email: gmateosb@ece.rochester.edu

» Where? We meet online via Zoom
Meeting ID: 919 6202 5440, passcode sent via email
» When? Daily from February 1 to 5, 9:00 am to 12:15 pm

» Class website
https://eva.fing.edu.uy/course/view.php?id=1484
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Local instructor team

» We will help you with questions, labs and the project

» Marcelo Fiori
IMERL, FIng, UdelaR
Email: mfiori@fing.edu.uy

» Federico La Rocca
IIE, FIng, UdelaR

Email: flarroca®@fing.edu.uy

» Grateful for the help and for inviting me to teach this course
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Tomorrow's guest lecturer

» Fernando Gama
EECS Dept., UC Berkeley
Email: fgama®@berkeley.edu

» Graph neural networks (GNNs) expert

» Developer of PyTorch library to implement GNNs
https://github.com/alelab-upenn/graph-neural-networks
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Prerequisites

(

Graph theory and statistical inference

1)

» Graphs are mathematical abstractions of networks

» Statistical inference useful to “learn” from network data
>

Basic knowledge expected. Asked you to go over review slides

(1) Probability theory and linear algebra

» Random variables, distributions, expectations, Markov processes

v

Vector/matrix notation, systems of linear equations, eigenvalues

(II1) Programming
Will use e.g., Python for labs and your project
You can use the language/network analysis package your prefer

v vy

Several useful resources provided in the class website
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Labs and project

(I) Exploratory labs (3 handouts, 10 hours total) worth 20%
» Coding assignments to experiment with data, libraries and methods

» Collaboration accepted, welcomed, and encouraged

(I1) Research project on a topic of your choice, worth 80%
» Important part of this class. Work in pairs. Two deliverables:

1) Proposal by Monday February 15, worth 15%
2) Final report by Friday March 26, worth 65%

» This is a special topics, research-oriented graduate level class
= Focus should be on thinking, reading, asking, implementing
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Networks and graphs

» As per the dictionary: A collection of inter-connected things

» Ok. There are multiple things, they are connected. Two extremes

Circaian Rhythm

1) A real (complex) system of inter-connected components

2) A graph G(V,€) representing the system

» Understand complex systems < Understand networks behind them
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Historical background

» Network-based analysis in the sciences has a long history

» Mathematical foundations of graph theory (L. Euler, 1735)

» The seven bridges of Kdnigsberg

Laws of electrical circuitry (G. Kirchoff, 1845)

Molecular structure in chemistry (A. Cayley, 1874)

Network representation of social interactions (J. Moreno, 1930)
Power grids (1910), telecommunications and the Internet (1960)
Google (1997), Facebook (2004), Twitter (2006), . ..

vV v v v Y
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Why networks? Why now?

> Relatively small field of study up until ~ the mid-90s

» Epidemic-like explosion of interest recently. A few reasons:

» Systems-level perspective in science, away from reductionism
Ubiquitous high-throughput data collection, computational power
Globalization, the Internet, connectedness of modern societies
Data complexity: heterogeneity, dependence, dynamism, ...

A A

» Impact: social networking, drug design, smart infrastructure, ...
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Economic impact

» Google
Market cap:
$1.24 trillion

» Facebook
Market cap:
$736 billion

» Cisco
Market cap:
$188 billion

» Apple

Market cap:
$2.22 trillion
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Healthcare impact

» Prediction of epidemics, e.g. the 2009 HIN1 pandemic

Real Predicted

HUMAN

) Connectome

= PROJECT

Introduction
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Homeland security impact

» Social network analysis key to capturing S. Hussein
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Scientific discovery impact

® Experimental result

@® Computational prediction

T1037 / 6vra T1049 / 6yaf
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

» Predict protein's 3D structure given 1D amino acid sequence

= Astronomical (=~ 103%°) number of possible foldings
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Network data science: goals and characteristics

v

Universal language for describing complex systems and data
» Striking similarities in networks across science, nature, technology

v

What are the goals of network data science?
» Reveal patterns and statistical properties of network data
» Understand the underpinnings of network behavior and structure
» Engineer more resource-efficient, robust, socially-intelligent networks

v

Characteristics: interdisciplinary, empirical, quantitative, computational

v

Empirical study of graph-valued data to find patterns and principles
» Collection, measurement, summarization, visualization?

v

Mathematical models. Graph theory meets statistical inference
» Understand, predict, discern nominal vs anomalous behavior?

v

Algorithms for graph analytics
» Computational challenges, scalability, tractability vs optimality?
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Broad scope and areas of interest

» Network data science key to advance
» Climate systems

Network neuroscience

Collaborative intelligence/autonomy

Information networks

Societies and civilization

Urban systems

Critical infraestructure

Yy VY VvVVvYVYY

» Broad topics of interest

» Coupling of natural, technological and social networks
» Resilience and adaptation: climate change, migration, pandemics, ...
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What is this class about?

v

Our focus: Machine learning for network data

v

Measurements of or from a system conceptualized as a network

v

Unique challenges

» Relational aspect of the data

» Complex statistical dependencies

» High-dimensional and often massive in quantity
» Lack of strong structural and geometric priors

v

Will examine how these challenges arise in relation to
» Visualization
» Summarization and representation learning
» Sampling and inference
> Modeling
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Machine learning on graphs: tasks

» Graph visualization and pattern discovery

» Ex: How is the science and technology enterprise developing?
» Graph modeling and generation

» Ex: Generate new molecules with antibacterial activity?
» Clustering and community detection

» Ex: Which groups of individuals have similar political beliefs?
» Link prediction

» Ex: Predict user-item interactions in recommendation systems?
» Node classification and semi-supervised learning

» Ex: Can we identify protein function from their physical binding?
» Graph classification

» Ex: Diagnose subjects with cognitive decline from brain connectomes?
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Example: Predicting protein function

» Baker's yeast data, formally known as Saccharomyces cerevisiae
> Graph: 134 vertices (proteins) and 241 edges (protein interactions)

» Signal: functional annotation intracellular signaling cascade (ICSC)

» Signal transduction, how cells react to the environment
» x; = 1 if protein i annotated ICSC ( ), x; = 0 otherwise (blue)
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Example: Unveiling network communities

» Community structure of liberal and conservative blogs is apparent

= People have a stronger tendency to interact with “equals”
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Example: Network neuroscience

y UNIVERSITY o

OCHESTER

» Challenge: understanding human brain function and structure

Brain atlas Tractography Brain graph

,;n::.‘\"
Supra

Non-drinker
Orinker
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Machine learning on graphs: fundamental challenge

» But we want to learn from data defined on graphs

-

= Challenge: no geometry (V is a set), irregular neighborhoods
= Ordering? Translation? Convolution? Structural priors?

Machine Learning on Graphs Introduction



Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction
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From graphs to graph signals

Online social media Internet Clean energy and grid analytics

W:/

,ﬂr@/‘ [ \S ) o | o 5
(D] ﬁ’ \ ! /T \r-»\
1

@ &

» Network as graph G = (V, £): encode pairwise relationships

» Desiderata: Process, analyze and learn from network data [Kolaczyk’'09]
= Use G to study graph signals, data associated with nodes in V

» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Graph signal processing (GSP)

X2 Xa
» Graph G with adjacency matrix A € RVxN ° °
= Ajj = proximity between i and j Xl
» Define a signal x € R" on top of the graph
= x; = signal value at node | X3 Xs

» Graph Signal Processing — Exploit structure encoded in A to process x
» Q: Graph signals common and interesting as networks are?

» Q: Why do we expect the graph structure to be useful in processing x?
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Network of economic sectors of the United States

» Bureau of Economic Analysis of the U.S. Department of Commerce
» Aj = Output of sector i that becomes input to sector j (62 sectors)

Oil and Gas Services Finance

Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
Administrative services (AS), Professional services (MP)
Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)

Only interactions stronger than a threshold are shown

Machine Learning on Graphs Introduction



Network of economic sectors of the United States

» Bureau of Economic Analysis of the U.S. Department of Commerce

» Aj = Output of sector i that becomes input to sector j (62 sectors)

>

IS}
S

S

40

Economic Sectors

a
3

=)
3

[ 8- e ol ! -
40 50
Economic Sectors

» This is an interesting network
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04 » A few sectors have widespread
strong influence (services,
finance, energy)

» Some sectors have strong
008 indirect influences (oil)

0ces » The heavy last row is final
consumption

= Signals on this graph are as well
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Disaggregated GDP of the United States

» Signal x = output per sector = disaggregated GDP

= Network structure used to, e.g., reduce GDP estimation noise

3 T T T T T T

25K 4
2 4
15F -
1k t ! *
072 —IAhtF[unﬂg??.jhﬁj | ?1.:.!.T!g2 TT? ¥,¥III1’II’!??TI ‘l )
0 10 20 30 40 50 60

Economic Sectors

» Signal is as interesting as the network itself. Arguably more

> Same is true for brain connectivity and fMRI brain signals, ...
» Gene regulatory networks and gene expression levels, ...
> Online social networks and information cascades, ...
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Importance of signal structure in time

» Signal and Information Processing is about exploiting signal structure
o
» Discrete time described by cyclic graph Xe Xz
= Time n follows time n — 1
= Signal value x, similar to x,_1 ; ;
5 3
» Formalized with the notion of frequency e e
ON
» Cyclic structure = Fourier transform = % = F/x

» Fourier transform = Projection on eigenvector space of cycle
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Covariances and principal components

» Random signal with mean E [x] = 0 and covariance C, = E [xx"]

= Eigenvector decomposition C, = VAV

» Covariance matrix A = C, is a graph

= Not a very good graph, but still

» Precision matrix C;! a common graph too

= Conditional dependencies of Gaussian x ° @

» Covariance matrix structure = Principal components (PCA) = % = V/x

» PCA transform = Projection on eigenvector space of (inverse) covariance

» Q: Can we extend these principles to general graphs and signals?
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Graph Fourier Transform

v

Adjacency A, Laplacian L, or, generically graph shift S = VAV 1
= Sjj =0for i #jand (i,j) ¢ € (captures local structure in G)

v

The Graph Fourier Transform (GFT) of x is defined as

%=V 1x

v

While the inverse GFT (iGFT) of X is defined as
x = VX

= Eigenvectors V = [vq, ..., vy] are the frequency basis (atoms)

Additional structure

v

= If S is normal, then V=1 = V¥ and %, = vi’x =< vj,x >
= Parseval holds, ||x||> = ||x]|

» GFT = Projection on eigenvector space of graph shift operator S
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Frequency modes of the Laplacian

» Total variation of signal x with respect to L

N
TV(x) =x'Lx = Z Ai(x — x)?
ij=1,>i

= Smoothness measure on the graph G

» For Laplacian eigenvectors V = [v1,--- ,vy] = TV(vg) = g
= Can view 0 = \; < --- < Ay as frequencies

» Ex: gene network, N=10, k=1, k=2, k=9

b . S i@ 4-»5 et
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Is this a reasonable transform?

» Particularized to cyclic graphs = GFT = Fourier transform
» Also for covariance graphs = GFT = PCA transform

» But really, this is an empirical question. GFT of disaggregated GDP
20

T T

0 %0000 PYPVYY

Y VPP 'y PYPPYY s

10 20 30 40 50 60

» Spectral domain representation characterized by a few coefficients
= Notion of bandlimitedness: x = Zle RV

= Sampling, compression, filtering, pattern recognition
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Graph frequency analysis of brain signals

> GFT of brain signals during a visual-motor learning task [Huang et al'16]
= Decomposed into low, medium and high frequency components

» Brain: Complex system where regularity coexists with disorder [Sporns'11]
= Signal energy mostly in the low and high frequencies

= In brain regions akin to the visual and sensorimotor cortices
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PyGSP: Graph Signal Processing in Python

» PyGSP is a Python package to ease SP on graphs. Free software
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Where do we go from here?

» Goal: successful learning from network data

= Representation methods that effectively exploit graph structure

» From GSP to graph neural networks (GNNs)
» Linear graph filters and convolutions plus pointwise nonlinearities
» Permutation equivariance, stability to graph perturbations, transferability
» Theoretical insights on GNN's strong generalization potential

Graph Neural Netw

Graphs, Convolutios,and Nevral Networks
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Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction
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Nearest-neighbor prediction

» Consider classification of a signal x := {x;};cy on a graph

Network process prediction

Predict x;, given observations of the adjacency matrix A and of all
attributes x(=7) but x;.

» Semi-supervised learning: only a small fraction of nodes labeled
> |dea: exploit the network graph structure in A for classification

» For binary x; € {0,1}, say, simple nearest-neighbor method predicts
2 jen. X
=14 =N T}
' { Vil

= Average of the observed signal in \V; (neighborhood of /)
= Called 'guilt-by-association’ or graph-smoothing method
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Example: predicting law practice

» Network G° of working relationships among lawyers [Lazega’'01]
» Nodes are N, = 36 partners, edges indicate partners worked together

Ep

s

» Data includes various node-level attributes {x;};cy including

= Type of practice, i.e., litigation (red) and corporate (cyan)

» Suspect lawyers collaborate more with peers in same legal practice

= Knowledge of collaboration useful in predicting type of practice
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Example: predicting law practice (cont.)

» Q: In predicting practice x;, how useful is the value of one neighbor?

= Breakdown of 115 edges based on practice of incident lawyers

Litigation Corporate

Litigation 29 43
Corporate 43 43

» Looking at the rows in this table

> Litigation lawyers collaborators are 40% litigation, 60% corporate
» Collaborations of corporate lawyers are evenly split

= Suggests using a single neighbor has little predictive power

» But 60% (29+443=72) of edges join lawyers with common practice

= Suggests on aggregate knowledge of collaboration informative
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Example: predicting law practice (cont.)

» Incorporate information of all collaborators as in nearest-neighbors
» Let x; = 0 if lawyer i practices litigation, and x; = 1 for corporate

| i

T T T T
02 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0

Frequency
0o 2 4
L1
Frequency
01234

|

Fraction of Corporate Neighbors, Among Litigation Fraction of Corporate Neighbors, Among Corporate

» Nearest-neighbor prediction rule
D jen; Xi }
f[i=04 =22 505
{ Vil

= Infers correctly 13 of the 16 corporate lawyers (i.e., 81%)
= Infers correctly 16 of the 18 litigation lawyers (i.e., 89%)
= Overall error rate is just under 15%
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Where do we go from here?

» Nearest-neighbor methods may seem rather informal and simple
= But competitive with more formal, model-based approaches

> Model the signal x := {x;};cy given an observed graph A
= Markov random field (MRF) models
= Kernel-regression models using graph kernels

» Key: implicit is a smoothness assumption of x w.r.t. G
= Usually understood as TV(x) = x" Lx being small

» Will adopt as graph regularization for machine learning tasks
min f(x) + x ' Lx
X
...and in the context of graph learning from data

mLin x"Lx + g(L)
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Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction
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Unveiling network communities

» Nodes in real-world networks organize into communities

Ex: families, clubs, political organizations, proteins by function, ...

7N, N
AR 53
,’
N\

B\ KA

"’
AR
/e

» Community (a.k.a. group, cluster, module) members are:

= Well connected among themselves
= Relatively well separated from the rest

» Exhibit high cohesiveness w.r.t. the underlying relational patterns

» Q: How can we automatically identify such cohesive subgroups?
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Zachary's karate club

» Zachary witnessed the club split in two during his study
= Toy network, yet canonical for community detection algorithms
= Offers “ground truth” community membership
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Electrical power grid

» Applications:

» Decide control areas for distributed power system state estimation
> Parallel computation of power flow
» Controlled islanding to prevent spreading of blackouts
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© White
@ Other

» Strong assortative mixing, with race as latent characteristic
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Physicists working on Network Science

» Tightly-knit subgroups are evident from the network structure
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College football

» Vertices are NCAA football teams, edges are games during Fall’00

Mid American
Big East

Atlantic Coast
SEC
Conference USA
Big 12

Western Athletic
Pacific 10
Mountain West
Big 10

Sun Belt

Oeeoo0co0eo0o0ceeo

Independents

°9
[foRe

» Communities are the NCAA conferences and independent teams
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Facebook friendships

» Facebook egonet with 744 vertices and 30K edges

» Asked “ego” to identify social circles to which friends belong
= Company, high-school, basketball club, squash club, family
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Community detection and graph partitioning

» Community detection is a challenging clustering problem

C1) No consensus on the structural definition of community
C2) Node subset selection often intractable
C3) Lack of ground-truth for validation

» Useful for exploratory analysis of network data

Ex: clues about social interactions, content-related web pages

Graph partitioning

Split V into given number of non-overlapping groups of given sizes

» Criterion: number of edges between groups is minimized

Ex: task-processor assignment for load balancing

» Number and sizes of groups unspecified in community detection
= ldentify the natural fault lines along which a network separates
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Community detection in a nutshell

> Given a graph G(V, &) with adjacency matrix A

» Find row/column permutation to reveal block-diagonal structure

Ex: NCAA college football network we saw earlier [Mateos-Giannakis'12]
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Graph partitioning is hard

» Ex: Graph bisection problem, i.e., partition V into two groups

» Suppose the groups Vi and V> are non-overlapping
> Suppose groups have equal size, i.e., V1| = [V2| = N, /2
» Minimize edges running between vertices in different groups

» Simple problem to describe, but hard to solve

Number of ways to partition V Ny 2%
u r W, rciti . ~ —
ystop N,/2) T NG

= Used Stirling’s formula N,! =~ /27N, (N, /e)"
= Exhaustive search intractable beyond toy small-sized networks

» No smart (i.e., polynomial time) algorithm, NP-hard problem

= Seek good heuristics, e.g., relaxations of natural criteria
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Graph bisection

» Undirected graph G(V,&). Partition V into two groups

» Groups V1 and V» = V{ are non-overlapping
> Groups have given size, i.e., V1| = N1 and [Va| = Ao

S (OO,

» Q: What is a natural criterion to partition the graph?
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Graph cut

» Desiderata: Community members should be
= Well connected among themselves; and

= Relatively well separated from the rest of the nodes

2 V,
» Def: A cut C is the number of edges between groups V; and V \ V;

C:=cutV1, VL) = Z Ajj

iEV1,JEV2

» Natural criterion: minimize cut, i.e., edges across groups V; and V»
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From graph cuts . ..

» Binary community membership variables per vertex

e — +1, vertex i belongs to V;
"7 1 —1, vertex i belongs to V>

» We can indicate two vertices are in different groups as

1 [ 1, iandj in different groups
Huiu} = 5(1 - uiyj) = { 0, iandj in the same group

» Cut expressible in terms of the variables u; as

C= Y Aj= ZA,J — uju))

i€V1,jEV2 ijev
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.to the graph Laplacian matrix

> First summand in C = 3 37, - Aj(1 — uju)) is

SA=Ydi=>dui = duul{i=j}
ijev =% ey ijev
» Used u? = 1 since u; € {£1}. The cut becomes
1
C:2 Z(d]l{l—_/} Ajujuj = ZLUU,UJ
hjevy IJEV

> Cut in terms of Lj, entries of the graph Laplacian L=D — A, i.e,,

C(u)fé Ty, wi=[ug,...,un,]"
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Graph cut minimization

» Since |V1| = Ny and |Va| = N, = N, — Nq, we have the constraint

D= (H) 4 (D) =N Mo = 1Tu= Ny

IS% i€V1 i€V2
» Minimum-cut criterion for graph bisection yields the formulation

Gi=arg min u'lu, s tolTu=N; —N,
ue{£1}MW

» Binary constraints u € {4-1}" render cut minimization hard
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Laplacian matrix properties

v

Smoothness: For any vector x € RVr of “vertex values”, one has

XTLXZ Z Lin,'Xj = Z (X,- _Xj)Z

i,jJeEV (ij)e€

which can be minimized to enforce smoothness of functions on G

v

Positive semi-definiteness: Follows since xT Lx > 0 for all x € RV

v

Spectrum: All eigenvalues of L are real and non-negative

= Eigenvectors form an orthonormal basis of R

v

Rank deficiency: Since L1 =0, L is rank deficient

v

Spectrum and connectivity: The smallest eigenvalue A; of L is O

> If the second-smallest eigenvalue \> # 0, then G is connected
» If L has n zero eigenvalues, G has n connected components
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Further intuition

> Since u'Lu =37, e (ui — uj)?, the minimum-cut formulation is

i=a min E (u,—uj , s.tolTu=N; — N,
uE{:tl}’Vv
(iJ)ee

» Q: Does this equivalent cost function make sense? A: Absolutely!
=- Edges joining vertices in the same group do not add to the sum

= Edges joining vertices in different groups add 4 to the sum

i - S N

0 +1 Ui

Vs

» Minimize cut: assign values u; to nodes i such that few edges cross 0
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Minimum-cut relaxation

> Relax the constraint u € {£1}" to u € R, |u, =1

i = argmin u'lu, s.tol'lu=MN —Nrandu'u=1
u

= Straightforward to solve using Lagrange multipliers

» Characterization of the solution G [Fiedler '73]:

Ny — N
ﬁzvz+%1

= The ‘second-smallest’ eigenvector v, of L satisfies 1Tv, = 0

= Minimum cut is C(0) = 4Lk = vJ Lvy oc )\,

> If the graph G is disconnected then we know A, = 0 = C(i)

= If G is amenable to bisection, the cut is small and so is >
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Spectral graph bisection

» Q: How to obtain the binary cluster labels u € {£1}™ from G € RV?

= Maximize the similarity measure u'

+1, [v2]; among the N largest entries of v,
u; = f(Vz) = .

-1, otherwise

» Spectral graph bisection algorithm

S1: Compute Laplacian matrix L with entries L; = Dj — Aj;

S2: Find ‘second smallest’ eigenvector v, of L

S3: Candidate membership of vertex i is &; = f([v2]) (or u; = f([—v2]))
S4: Among u and u pick the one that minimizes C(u)

» Nomenclature: vy is known as the Fiedler vector

= Eigenvalue X5 is Fiedler value, or algebraic connectivity of G
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Spectral gap in Fiedler vector entries

» Suppose G is disconnected and has two connected components
» L is block diagonal, two smallest eigenvectors indicate groups, i.e.,

vi =[1,1,...,1,0,...,0]" and v» =[0,0,...,0,1,...,1]"

» If G is connected but amenable to bisection, vi =1 and \» = 0
> Also, 17v2 = 3".[v2]; = 0 = Positive and negative entries in v2

)
IS

=)
©

0.2

01

014

0.2%

"Second smallest" eigenvector v,

-0.3

6 8 10 12 14
Node index
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Unknown community sizes

» Consider the graph bisection problem with unknown group sizes

= Minimizing the graph cut may be no longer meaningful!

Desired cut

[ .
Min. cut
= Cost C:=3_,cy, ey, Aj agnostic to groups’ internal structure
» Better criterion is the ratio cut R defined as
C C
Ri=— + —
Wil Vo

= Balanced partitions: small community is penalized by the cost
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Ratio-cut minimization

» Fix a bisection U of G into groups V; and V;

» Define f: f(U) = [f,...,fy,]" € R™ with entries
. Rﬂ vertex | belongs to V;
! V1]

oy vertex i belongs to V»

» One can establish the following properties:
P1: f'Lf = N,R(V);
P2: 3, =0, ie,1"f=0; and
P3: |If|? =N,

v

From P1-P3 it follows that ratio-cut minimization is equivalent to

mfin fTLf, s.tol"f=0and fTf=N,
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Ratio cut and spectral graph bisection

» Ratio-cut minimization is also NP-hard. Relax to obtain

G=arg minu'lu, s.tol'u=0andu’u=N,
uceRM

» Partition U also given by the spectral graph bisection algorithm

S1: Compute Laplacian matrix L with entries L; = Dj — Aj;
S2: Find ‘second smallest’ eigenvector v, of L

S3: Cluster membership of vertex i is u; = sign([vz];)

» Alternative criterion is the normalized cut NC defined as

c c
NC = I L i=12
C= Sl T vel(s)’ vol( ;/ dvs i

= Corresponds to using the normalized Laplacian D~L
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Example: Zachary's karate club

» Spectral ratio cut minimization

» Shapes of vertices indicate community membership
» Dotted line indicates partition found by the algorithm
> Vertex colors indicate the strength of their membership

Machine Learning on Graphs Introduction



Beyond two communities

» Q: What about detecting K > 2 communities?

» The ratio cut of a K-way partition U in groups {V;}£ | is

» Relaxed ratio-cut minimization problem formulated as

U=arg min trace(U'LU), s. toU'U =1
UERN xK

> Partition U given by the spectral clustering algorithm

S1: Compute Laplacian matrix L with entries L;j = Djj — Aj;

S2: Find ‘K smallest’ eigenvectors vq,...,vk of L

S3: Set U = [v,...,vk], embedding of node i is row @i € R1*K
S4: Assign to clusters via K-means on node embeddings
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Example: Gene cartography

» Two-dimensional embedding of ‘gene similarity’ matrix

= Consistent with origins of individuals in European map
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Where do we go from here?

» Q: Why does spectral graph partitioning work? A: Note that
trace(0TLO) = Z AjllaT — “J~T||2
(ij)e€
= Embeddings close in R¥ if i, j well connected in G

= Also known as Laplacian eigenmaps [Belkin-Niyogi'01]

» Key: encode graph structure into low-dimensional embeddings

Mt MoRGANSCLAYPOOL PUBLISHERS
&&

Graph |
Representation
Learning

William L. Hamilton
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Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction
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Link prediction

Original graph Link prediction

» Suppose we observe vertex attributes x = [x,...,xy,]"; and

» Edge status only observed for subset of pairs Vc(,ii cv®

> Goal: predict edge status for all other pairs, i.e., V,(f,.ls =y \V[(,il
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Problem statement

» Let G(V,&) be a random graph, with adjacency matrix A € {0, 1}xM

= A°s and A™=5 denote entries in Vc(,il and Y

miss

Link prediction

Predict entries in A™° given observations A% = a°% and possibly
various vertex attributes X = x € RV

» Edge status information may be missing due to:
= Difficulty in observation, issues of sampling

= Edge is not yet present, wish to predict future status
» Given a model for X and (A%, A™*%), jointly predict A™** based on
o) [Amiss } Aobs _ aobs X = X]

=- More manageable to predict the variables A,’-}”'SS individually
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Informal scoring methods

> |dea: compute score s(i, /) for missing ‘potential edges’ {i,j} € v

miss

= Predicted edges returned by retaining the top n* scores

» Scores designed to assess certain local structural properties of G

= Distance-based, inspired by the small-world principle
S(I,_j) = 7diStGobs(i,j)
= Neighborhood-based, e.g., the number of common neighbors

|J\/”_obs ) '/\Gobs|

s(i,j) = INPP ANS| or s(iy)j) = P —
! J |/\/"_obs U /\/}obs|

= Favor loosely-connected common neighbors [Adamic-Adar’'03]

.. 1
s(ij) = Z W

b: b:
kej\f,-" sn./\/jo S
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Tests on co-authorship networks

» Results from a link prediction study in [Liben Nowell-Kleinberg'03]

50 —

2.00 —

s predictor

40 —

Loo - f common neighbors predictor
20  — %
10 —

Relative performance ratio versus random predictions

%
7

random predictor

Jaccard

PageRank

Adamic/Adar
graph distance
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Classification methods

» ldea: use training data a®** and x to build a binary classifier
= Classifier is in turn used to predict the entries in A™

» Logistic regression classifiers most popular, based on the model

log Po(Ay = 1|25 =2) =37z, where
Pa(Aj =0]2; =2)

(i) B € R¥ is a vector of regression coefficients; and

(i1) Z; is a vector of explanatory variables indexed by {/,}

U - [gl(AObS ij)> X)7 cee 7gK(A(OESij)7 X)]—r

» Functions gk(-) encode useful predictive information in a?bs) and x

Ex: vertex attributes, score functions, network statistics
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Logistic regression classifier

v

Train: Obtain MLE 3 via iteratively-reweighted LS

v

Test: Potential edges (/, /) declared present based on probabilities

o (32)

P“(A,":]. Z;':Z):—A
o | ’ 1+exp(ﬂTZ)

v

Logistic regression assumes Aj; conditionally independent given z

= Seldom the case with relational network data

v

Underlying mechanism of data missingness is important
= Classification for link prediction reminiscent of cross-validation

= Assumption that data are missing at random is fundamental
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Latent variable models

> In addition to a lineal predictor 3"z, latent models describe Ajj

= As a function of vertex-specific latent variables u; and u;

" s ”
| . »
.
. -
.
. Y -0 .
. [ [ N . .
- . -
. . . I
|
. ) *
b4 . {
| p L
- 7 % «
. be N\
. - J
hd « o J
Homophily

Stochastic equivalence

» Latent models are flexible to capture underlying social mechanisms

Ex: homophily (transitivity) and stochastic equivalence (groups)
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Latent class and distance models

» Latent distance model: node i has unobserved position U; € R?

» Positions U; in latent space assumed i.i.d. e.g., Gaussian distributed
» Model cond. probability of edge Aj; as function of 87z — |ju; — u;|2
» Homophily: Nearby nodes in latent space more likely to link

> Latent class model: node i belongs to unobserved class U; € {1,..., k}

» Classes U; assumed i.i.d. e.g., multinomial distributed
> Model cond. probability of edge Aj; as function of 37z — Ou;
» Stochastic equivalence: Nodes in same class equally likely to link
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Logistic regression with latent variables

» Let M € RM*N be an unknown, random, and symmetric matrix

M=UTAU+E, where

(i) U=1us,...,upn,] is a random orthonormal matrix of latent variables;
(i) A is a random diagonal matrix; and
(iii) E is a symmetric matrix of i.i.d. noise entries €
» Latent eigenmodel subsumes the class and distance variants [Hoff'08]
= Notice that Mj; = u/ Au; +¢;

» The logistic regression model with latent variables is

T
= Z+m
Pg(AUZO}ZU:Z,MU:m) 6

log

> Aj still assumed conditionally independent given Z;; and M;
= But they are conditionally dependent given only Z;
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Bayesian link prediction

v

Specify distributions for U, A, E to make statistical link predictions
» Bayesian inference natural = Specify a prior for 3 as well

v

To predict those entries in A™s°, threshold the posterior mean

exp (87Z; + M)

: 1+ exp (ETZU + M,-j)

‘ Aobs _ aobs’ ZU -z

v

Use MCMC algorithms to approximate the posterior distribution
» Gaussian distributions attractive for their conjugacy properties

v

Higher complexity than MLE for standard logistic regression
= Need to generate draws for N2 unobserved variables {Uj;}
= Major cost reduction with reduced rank(U) = k < N, models
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Example: predicting lawyer collaborations

» Network G° of working relationships among lawyers [Lazega'01]
> Nodes are N, = 36 partners, edges indicate partners worked together

» Data includes various node-level attributes:

Seniority (node labels indicate rank ordering)

Office location (triangle, square or pentagon)

Type of practice, i.e., litigation (red) and corporate (cyan)
Gender (three partners are female labeled 27, 29 and 34)

v

v vYyy

» Goal: predict cooperation among social actors in an organization
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Methods tested

» Define the following set of explanatory variables:

Z,.J(.l) = seniority; + seniority;, 2,5-2) = practice; + practice;

7t

if

21 = 1{office; = office;},  Z{®) = |N@b= A AP

i

-1 {practice; = practice; }, 2,5-4) = I {gender; = gender; }

2(5)

Method 1: standard logistic regression with ZI.J(.I), ez

Method 2: standard logistic regression with Z,.J(.l)7 . .,Z,.J(.6)
Method 3 informal scoring method with s(i,j) = Z,.E.G)
Method 4: logistic regression with Z,.J(.l), . .,2,5-5) and latent eigenmodel
» Five-fold cross-validation over the set of 36(36 — 1)/2 = 630 vertex pairs
= For each fold, 630/5 = 126 pairs in A™** and the rest in Aobs
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Receiver operating characteristic

» Receiver operating characteristic curves show predictive performance

o
« _|Method 3
© Method 2
o
©
r o |
2 ° Method 1
%
[
() o
]
= \
o
s Random
o |
5
T T T T T T
0.0 02 0.4 0.6 08 1.0

False Positive Rate

» Method 1 performs worst = Agnostic to network structure

» Informal Method 3 yields slightly worst performance than 2 and 4
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Where do we go from here?

» Got our first glimpse onto statistical models for network data

» Network-based versions of canonical statistical models
= Regression models - Exponential random graph models (ERGMs)

= Latent variable models - Stochastic block models and graphons

» Link prediction an instance of network topology inference problems
Q: If G (or a portion thereof) is unobserved, can we infer it from data?

=m
Topology Identification and
Learning Over Graphs:
S Accounting for Nonlinearities
Learning and Dynamics

Graptis % )
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Glossary

Networks and graphs
Network data science
Machine learning on graphs
Graph signal processing
Graph Fourier transform
Laplacian

Convolution

Graph neural networks
Semi-supervised learning
Nearest-neighbor prediction

Signal smoothness

vV V. Y Y V¥V VY VYV VY Vv VvV VY

Graph regularization
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vV V. vV vV Y ¥V VvV Y VvV VvV VY

Community detection
Graph cut

Spectral clustering

Node embedding

Graph representation learning
Link prediction

Logistic regression

Latent variable models
Bayesian inference
Stochastic block models
Graphons

Network topology inference

Introduction



	Introductions, context and motivation
	Graph signal processing
	Semi-supervised node classification
	Network community detection
	Link prediction

