Machine Learning on Graphs

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/

Facultad de Ingeniería, UdelaR Montevideo, Uruguay
February 1, 2021

Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction

Who am I, where to find me, lecture times

- Gonzalo Mateos

Dept. of ECE, University of Rochester
Email: gmateosb@ece.rochester.edu

- Where? We meet online via Zoom

Meeting ID: 9196202 5440, passcode sent via email

- When? Daily from February 1 to $5,9: 00$ am to $12: 15 \mathrm{pm}$
- Class website
https://eva.fing.edu.uy/course/view.php?id=1484
- We will help you with questions, labs and the project
- Marcelo Fiori

IMERL, FIng, UdelaR
Email: mfiori@fing.edu.uy

- Federico La Rocca

IIE, FIng, UdelaR
Email: flarroca@fing.edu.uy

- Grateful for the help and for inviting me to teach this course
- Fernando Gama

EECS Dept., UC Berkeley
Email: fgama@berkeley.edu

- Graph neural networks (GNNs) expert
- Developer of PyTorch library to implement GNNs https://github.com/alelab-upenn/graph-neural-networks

Prerequisites

(I) Graph theory and statistical inference

- Graphs are mathematical abstractions of networks
- Statistical inference useful to "learn" from network data
- Basic knowledge expected. Asked you to go over review slides
(II) Probability theory and linear algebra
- Random variables, distributions, expectations, Markov processes
- Vector/matrix notation, systems of linear equations, eigenvalues
(III) Programming
- Will use e.g., Python for labs and your project
- You can use the language/network analysis package your prefer
- Several useful resources provided in the class website

Labs and project

(I) Exploratory labs (3 handouts, 10 hours total) worth 20\%

- Coding assignments to experiment with data, libraries and methods
- Collaboration accepted, welcomed, and encouraged
(II) Research project on a topic of your choice, worth 80%
- Important part of this class. Work in pairs. Two deliverables:

1) Proposal by Monday February 15, worth 15%
2) Final report by Friday March 26 , worth 65%

- This is a special topics, research-oriented graduate level class
\Rightarrow Focus should be on thinking, reading, asking, implementing

Networks and graphs

- As per the dictionary: A collection of inter-connected things
- Ok. There are multiple things, they are connected. Two extremes

```
Circadian Rhythm
```


1) A real (complex) system of inter-connected components
2) A graph $G(\mathcal{V}, \mathcal{E})$ representing the system

- Understand complex systems \Leftrightarrow Understand networks behind them

Historical background

- Network-based analysis in the sciences has a long history
- Mathematical foundations of graph theory (L. Euler, 1735)

- The seven bridges of Königsberg
- Laws of electrical circuitry (G. Kirchoff, 1845)
- Molecular structure in chemistry (A. Cayley, 1874)
- Network representation of social interactions (J. Moreno, 1930)
- Power grids (1910), telecommunications and the Internet (1960)
- Google (1997), Facebook (2004), Twitter (2006), .. .

Why networks? Why now?

- Understand complex systems \Leftrightarrow Understand networks behind them

- Relatively small field of study up until \sim the mid-90s
- Epidemic-like explosion of interest recently. A few reasons:
- Systems-level perspective in science, away from reductionism
- Ubiquitous high-throughput data collection, computational power
- Globalization, the Internet, connectedness of modern societies
- Data complexity: heterogeneity, dependence, dynamism, ...
- Impact: social networking, drug design, smart infrastructure, ...

Economic impact

- Google Market cap:
$\$ 1.24$ trillion
- Facebook

Market cap:
$\$ 736$ billion

- Cisco

Market cap: \$188 billion

- Apple Market cap:
$\$ 2.22$ trillion

- Prediction of epidemics, e.g. the 2009 H1N1 pandemic

- Human Connectome Project to map-out brain circuitry

HUMAN
Connectome PROJECT

Homeland security impact

- Social network analysis key to capturing S. Hussein

UNelasaified

Scientific discovery impact

- Machine learning on graphs key to solving protein folding

- Predict protein's 3D structure given 1D amino acid sequence
\Rightarrow Astronomical $\left(\approx 10^{300}\right)$ number of possible foldings

Network data science: goals and characteristics

- Universal language for describing complex systems and data
- Striking similarities in networks across science, nature, technology
- What are the goals of network data science?
- Reveal patterns and statistical properties of network data
- Understand the underpinnings of network behavior and structure
- Engineer more resource-efficient, robust, socially-intelligent networks
- Characteristics: interdisciplinary, empirical, quantitative, computational
- Empirical study of graph-valued data to find patterns and principles
- Collection, measurement, summarization, visualization?
- Mathematical models. Graph theory meets statistical inference
- Understand, predict, discern nominal vs anomalous behavior?
- Algorithms for graph analytics
- Computational challenges, scalability, tractability vs optimality?

Broad scope and areas of interest

- Network data science key to advance
- Climate systems
- Network neuroscience
- Collaborative intelligence/autonomy
- Information networks
- Societies and civilization
- Urban systems
- Critical infraestructure

- Broad topics of interest
- Coupling of natural, technological and social networks
- Resilience and adaptation: climate change, migration, pandemics, ...

What is this class about?

- Our focus: Machine learning for network data
- Measurements of or from a system conceptualized as a network
- Unique challenges
- Relational aspect of the data
- Complex statistical dependencies
- High-dimensional and often massive in quantity
- Lack of strong structural and geometric priors
- Will examine how these challenges arise in relation to
- Visualization
- Summarization and representation learning
- Sampling and inference
- Modeling

Machine learning on graphs: tasks

- Graph visualization and pattern discovery
- Ex: How is the science and technology enterprise developing?
- Graph modeling and generation
- Ex: Generate new molecules with antibacterial activity?
- Clustering and community detection
- Ex: Which groups of individuals have similar political beliefs?
- Link prediction
- Ex: Predict user-item interactions in recommendation systems?
- Node classification and semi-supervised learning
- Ex: Can we identify protein function from their physical binding?
- Graph classification
- Ex: Diagnose subjects with cognitive decline from brain connectomes?

Example: Predicting protein function

- Baker's yeast data, formally known as Saccharomyces cerevisiae
- Graph: 134 vertices (proteins) and 241 edges (protein interactions)

- Signal: functional annotation intracellular signaling cascade (ICSC)
- Signal transduction, how cells react to the environment
- $x_{i}=1$ if protein i annotated ICSC (yellow), $x_{i}=0$ otherwise (blue)

Example: Unveiling network communities

- The political blogosphere for the US 2004 presidential election

- Community structure of liberal and conservative blogs is apparent
\Rightarrow People have a stronger tendency to interact with "equals"

Example: Network neuroscience

- Challenge: understanding human brain function and structure

- Does brain connectivity change for heavy drinkers [Li et al'20]?

Machine learning on graphs: fundamental challenge

- We've become good at learning from data in Euclidean domains

- But we want to learn from data defined on graphs

\Rightarrow Challenge: no geometry (\mathcal{V} is a set), irregular neighborhoods
\Rightarrow Ordering? Translation? Convolution? Structural priors?

Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction

From graphs to graph signals

Internet

Clean energy and grid analytics

- Network as graph $G=(\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- Desiderata: Process, analyze and learn from network data [Kolaczyk'09] \Rightarrow Use G to study graph signals, data associated with nodes in \mathcal{V}
- Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Graph signal processing (GSP)

- Graph G with adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$ $\Rightarrow A_{i j}=$ proximity between i and j
- Define a signal $x \in \mathbb{R}^{N}$ on top of the graph $\Rightarrow x_{i}=$ signal value at node i

- Graph Signal Processing \rightarrow Exploit structure encoded in \mathbf{A} to process \mathbf{x}
- Q: Graph signals common and interesting as networks are?
- Q: Why do we expect the graph structure to be useful in processing \mathbf{x} ?

Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
- $A_{i j}=$ Output of sector i that becomes input to sector j (62 sectors)

Oil and Gas

Finance

- Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
- Administrative services (AS), Professional services (MP)
- Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)
- Only interactions stronger than a threshold are shown

Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
- $A_{i j}=$ Output of sector i that becomes input to sector j (62 sectors)

- A few sectors have widespread strong influence (services, finance, energy)
- Some sectors have strong indirect influences (oil)
- The heavy last row is final consumption
- This is an interesting network \Rightarrow Signals on this graph are as well

Disaggregated GDP of the United States

- Signal $\mathbf{x}=$ output per sector $=$ disaggregated GDP \Rightarrow Network structure used to, e.g., reduce GDP estimation noise

- Signal is as interesting as the network itself. Arguably more
- Same is true for brain connectivity and fMRI brain signals, ...
- Gene regulatory networks and gene expression levels, ...
- Online social networks and information cascades, ...

Importance of signal structure in time

- Signal and Information Processing is about exploiting signal structure
- Discrete time described by cyclic graph
\Rightarrow Time n follows time $n-1$
\Rightarrow Signal value x_{n} similar to x_{n-1}
- Formalized with the notion of frequency

- Cyclic structure \Rightarrow Fourier transform $\Rightarrow \tilde{\mathbf{x}}=\mathbf{F}^{H} \mathbf{x}$ $\left(F_{k n}=\frac{e^{j 2 \pi k n / N}}{\sqrt{N}}\right)$
- Fourier transform \Rightarrow Projection on eigenvector space of cycle

Covariances and principal components

- Random signal with mean $\mathbb{E}[\mathbf{x}]=0$ and covariance $\mathbf{C}_{x}=\mathbb{E}\left[\mathbf{x x}^{H}\right]$ \Rightarrow Eigenvector decomposition $\mathrm{C}_{\mathrm{x}}=\mathrm{V} \wedge \mathrm{V}^{H}$
- Covariance matrix $\mathbf{A}=\mathbf{C}_{x}$ is a graph
\Rightarrow Not a very good graph, but still
- Precision matrix \mathbf{C}_{x}^{-1} a common graph too \Rightarrow Conditional dependencies of Gaussian \mathbf{x}

- Covariance matrix structure \Rightarrow Principal components (PCA) $\Rightarrow \tilde{\mathbf{x}}=\mathbf{V}^{H} \mathbf{x}$
- PCA transform \Rightarrow Projection on eigenvector space of (inverse) covariance
- Q: Can we extend these principles to general graphs and signals?

Graph Fourier Transform

- Adjacency \mathbf{A}, Laplacian \mathbf{L}, or, generically graph shift $\mathbf{S}=\mathbf{V} \wedge \mathbf{V}^{-1}$

$$
\Rightarrow S_{i j}=0 \text { for } i \neq j \text { and }(i, j) \notin \mathcal{E} \text { (captures local structure in } G \text {) }
$$

- The Graph Fourier Transform (GFT) of \mathbf{x} is defined as

$$
\tilde{\mathbf{x}}=\mathrm{V}^{-1} \mathbf{x}
$$

- While the inverse GFT (iGFT) of $\tilde{\mathrm{x}}$ is defined as

$$
x=V \tilde{x}
$$

\Rightarrow Eigenvectors $\mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{N}\right]$ are the frequency basis (atoms)

- Additional structure
\Rightarrow If \mathbf{S} is normal, then $\mathbf{V}^{-1}=\mathbf{V}^{H}$ and $\tilde{x}_{k}=\mathbf{v}_{k}^{H} \mathbf{x}=\left\langle\mathbf{v}_{k}, \mathbf{x}\right\rangle$
\Rightarrow Parseval holds, $\|\mathbf{x}\|^{2}=\|\tilde{\mathbf{x}}\|^{2}$
- GFT \Rightarrow Projection on eigenvector space of graph shift operator S

Frequency modes of the Laplacian

- Total variation of signal \mathbf{x} with respect to \mathbf{L}

$$
\operatorname{TV}(\mathbf{x})=\mathbf{x}^{\top} \mathbf{L x}=\sum_{i, j=1, j>i}^{N} A_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

\Rightarrow Smoothness measure on the graph G (Dirichlet energy)

- For Laplacian eigenvectors $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{N}\right] \Rightarrow \mathrm{TV}\left(\mathbf{v}_{k}\right)=\lambda_{k}$

$$
\Rightarrow \text { Can view } 0=\lambda_{1}<\cdots \leq \lambda_{N} \text { as frequencies }
$$

- Ex: gene network, $N=10, k=1, k=2, k=9$

Is this a reasonable transform?

- Particularized to cyclic graphs \Rightarrow GFT \equiv Fourier transform
- Also for covariance graphs \Rightarrow GFT \equiv PCA transform
- But really, this is an empirical question. GFT of disaggregated GDP

- Spectral domain representation characterized by a few coefficients \Rightarrow Notion of bandlimitedness: $\mathbf{x}=\sum_{k=1}^{K} \tilde{x}_{k} \mathbf{v}_{k}$
\Rightarrow Sampling, compression, filtering, pattern recognition

Graph frequency analysis of brain signals

- GFT of brain signals during a visual-motor learning task [Huang et al'16] \Rightarrow Decomposed into low, medium and high frequency components

- Brain: Complex system where regularity coexists with disorder [Sporns'11]
\Rightarrow Signal energy mostly in the low and high frequencies
\Rightarrow In brain regions akin to the visual and sensorimotor cortices

PyGSP: Graph Signal Processing in Python

- PyGSP is a Python package to ease SP on graphs. Free software Available from https://github.com/epfl-|ts2/pygsp

Where do we go from here?

- Goal: successful learning from network data
\Rightarrow Representation methods that effectively exploit graph structure
- From GSP to graph neural networks (GNNs)
- Linear graph filters and convolutions plus pointwise nonlinearities
- Permutation equivariance, stability to graph perturbations, transferability
- Theoretical insights on GNN's strong generalization potential

Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction

Nearest-neighbor prediction

- Consider classification of a signal $\mathbf{x}:=\left\{x_{i}\right\}_{i \in \mathcal{V}}$ on a graph

Network process prediction

Predict x_{i}, given observations of the adjacency matrix \mathbf{A} and of all attributes $\mathbf{x}^{(-i)}$ but x_{i}.

- Semi-supervised learning: only a small fraction of nodes labeled
- Idea: exploit the network graph structure in A for classification
- For binary $x_{i} \in\{0,1\}$, say, simple nearest-neighbor method predicts

$$
\hat{x}_{i}=\mathbb{I}\left\{\frac{\sum_{j \in \mathcal{N}_{i}} x_{j}}{\left|\mathcal{N}_{i}\right|}>\tau\right\}
$$

\Rightarrow Average of the observed signal in \mathcal{N}_{i} (neighborhood of i)
\Rightarrow Called 'guilt-by-association' or graph-smoothing method

Example: predicting law practice

- Network $G^{o b s}$ of working relationships among lawyers [Lazega'01]
- Nodes are $N_{v}=36$ partners, edges indicate partners worked together

- Data includes various node-level attributes $\left\{x_{i}\right\}_{i \in \mathcal{V}}$ including \Rightarrow Type of practice, i.e., litigation (red) and corporate (cyan)
- Suspect lawyers collaborate more with peers in same legal practice
\Rightarrow Knowledge of collaboration useful in predicting type of practice

Example: predicting law practice (cont.)

- Q: In predicting practice x_{i}, how useful is the value of one neighbor?
\Rightarrow Breakdown of 115 edges based on practice of incident lawyers

	Litigation	Corporate
Litigation	29	43
Corporate	43	43

- Looking at the rows in this table
- Litigation lawyers collaborators are 40% litigation, 60% corporate
- Collaborations of corporate lawyers are evenly split
\Rightarrow Suggests using a single neighbor has little predictive power
- But $60 \%(29+43=72)$ of edges join lawyers with common practice
\Rightarrow Suggests on aggregate knowledge of collaboration informative

Example: predicting law practice (cont.)

- Incorporate information of all collaborators as in nearest-neighbors
- Let $x_{i}=0$ if lawyer i practices litigation, and $x_{i}=1$ for corporate

- Nearest-neighbor prediction rule

$$
\hat{x}_{i}=\mathbb{I}\left\{\frac{\sum_{j \in \mathcal{N}_{i}} x_{j}}{\left|\mathcal{N}_{i}\right|}>0.5\right\}
$$

\Rightarrow Infers correctly 13 of the 16 corporate lawyers (i.e., 81%)
\Rightarrow Infers correctly 16 of the 18 litigation lawyers (i.e., 89\%)
\Rightarrow Overall error rate is just under 15%

Where do we go from here?

- Nearest-neighbor methods may seem rather informal and simple
\Rightarrow But competitive with more formal, model-based approaches
- Model the signal $\mathbf{x}:=\left\{x_{i}\right\}_{i \in \mathcal{V}}$ given an observed graph \mathbf{A}
\Rightarrow Markov random field (MRF) models
\Rightarrow Kernel-regression models using graph kernels
- Key: implicit is a smoothness assumption of \mathbf{x} w.r.t. G
\Rightarrow Usually understood as $\mathrm{TV}(\mathbf{x})=\mathbf{x}^{\top} \mathbf{L x}$ being small
- Will adopt as graph regularization for machine learning tasks

$$
\min _{x} f(\mathbf{x})+\mathbf{x}^{\top} \mathbf{L x}
$$

... and in the context of graph learning from data

$$
\min _{\mathbf{L}} \mathbf{x}^{\top} \mathbf{L} \mathbf{x}+g(\mathbf{L})
$$

Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction

Unveiling network communities

- Nodes in real-world networks organize into communities

Ex: families, clubs, political organizations, proteins by function, ...

- Community (a.k.a. group, cluster, module) members are:
\Rightarrow Well connected among themselves
\Rightarrow Relatively well separated from the rest
- Exhibit high cohesiveness w.r.t. the underlying relational patterns
- Q: How can we automatically identify such cohesive subgroups?

Zachary's karate club

- Social interactions among members of a karate club in the 70s

- Zachary witnessed the club split in two during his study
\Rightarrow Toy network, yet canonical for community detection algorithms
\Rightarrow Offers "ground truth" community membership (a rare luxury)

Electrical power grid

- Split power network into areas with minimum inter-area interactions

- Applications:
- Decide control areas for distributed power system state estimation
- Parallel computation of power flow
- Controlled islanding to prevent spreading of blackouts

High-school students

- Network of social interactions among high-school students

- Strong assortative mixing, with race as latent characteristic

Physicists working on Network Science

- Coauthorship network of physicists publishing networks' research

- Tightly-knit subgroups are evident from the network structure

College football

- Vertices are NCAA football teams, edges are games during Fall'00

- Mid American
- Big East
- Atlantic Coast
- SEC

O Conference USA

- Big 12

Western Athletic

- Pacific 10

O Mountain West

- Big 10
- Sun Belt

〇 Independents

- Communities are the NCAA conferences and independent teams

Facebook friendships

- Facebook egonet with 744 vertices and 30K edges

- Asked "ego" to identify social circles to which friends belong \Rightarrow Company, high-school, basketball club, squash club, family

Community detection and graph partitioning

- Community detection is a challenging clustering problem

C1) No consensus on the structural definition of community
C2) Node subset selection often intractable
C3) Lack of ground-truth for validation

- Useful for exploratory analysis of network data

Ex: clues about social interactions, content-related web pages

Graph partitioning

Split \mathcal{V} into given number of non-overlapping groups of given sizes

- Criterion: number of edges between groups is minimized (more soon) Ex: task-processor assignment for load balancing
- Number and sizes of groups unspecified in community detection \Rightarrow Identify the natural fault lines along which a network separates

Community detection in a nutshell

- Given a graph $G(\mathcal{V}, \mathcal{E})$ with adjacency matrix \mathbf{A} (left)

- Find row/column permutation to reveal block-diagonal structure (right)

Ex: NCAA college football network we saw earlier [Mateos-Giannakis'12]

Graph partitioning is hard

- Ex: Graph bisection problem, i.e., partition \mathcal{V} into two groups
- Suppose the groups \mathcal{V}_{1} and \mathcal{V}_{2} are non-overlapping
- Suppose groups have equal size, i.e., $\left|\mathcal{V}_{1}\right|=\left|\mathcal{V}_{2}\right|=N_{v} / 2$
- Minimize edges running between vertices in different groups
- Simple problem to describe, but hard to solve

Number of ways to partition $\mathcal{V}: \quad\binom{N_{v}}{N_{v} / 2} \approx \frac{2^{N_{v}}}{\sqrt{N_{v}}}$
\Rightarrow Used Stirling's formula $N_{v}!\approx \sqrt{2 \pi N_{v}}\left(N_{v} / e\right)^{N_{v}}$
\Rightarrow Exhaustive search intractable beyond toy small-sized networks

- No smart (i.e., polynomial time) algorithm, NP-hard problem
\Rightarrow Seek good heuristics, e.g., relaxations of natural criteria

Graph bisection

- Undirected graph $G(\mathcal{V}, \mathcal{E})$. Partition \mathcal{V} into two groups
- Groups \mathcal{V}_{1} and $\mathcal{V}_{2}=\mathcal{V}_{1}^{C}$ are non-overlapping
- Groups have given size, i.e., $\left|\mathcal{V}_{1}\right|=N_{1}$ and $\left|\mathcal{V}_{2}\right|=N_{2}$

- Q: What is a natural criterion to partition the graph?

Graph cut

- Desiderata: Community members should be
\Rightarrow Well connected among themselves; and
\Rightarrow Relatively well separated from the rest of the nodes

- Def: A cut C is the number of edges between groups \mathcal{V}_{1} and $\mathcal{V} \backslash \mathcal{V}_{1}$

$$
C:=\operatorname{cut}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)=\sum_{i \in \mathcal{V}_{1}, j \in \mathcal{V}_{2}} A_{i j}
$$

- Natural criterion: minimize cut, i.e., edges across groups \mathcal{V}_{1} and \mathcal{V}_{2}

From graph cuts

- Binary community membership variables per vertex

$$
u_{i}= \begin{cases}+1, & \text { vertex } i \text { belongs to } \mathcal{V}_{1} \\ -1, & \text { vertex } i \text { belongs to } \mathcal{V}_{2}\end{cases}
$$

- We can indicate two vertices are in different groups as

$$
\mathbb{I}\left\{u_{i} \neq u_{j}\right\}=\frac{1}{2}\left(1-u_{i} u_{j}\right)= \begin{cases}1, & i \text { and } j \text { in different groups } \\ 0, & i \text { and } j \text { in the same group }\end{cases}
$$

- Cut expressible in terms of the variables u_{i} as

$$
C=\sum_{i \in \mathcal{V}_{1}, j \in \mathcal{V}_{\mathbf{2}}} A_{i j}=\frac{1}{2} \sum_{i, j \in \mathcal{V}} A_{i j}\left(1-u_{i} u_{j}\right)
$$

- First summand in $C=\frac{1}{2} \sum_{i, j} A_{i j}\left(1-u_{i} u_{j}\right)$ is

$$
\sum_{i, j \in \mathcal{V}} A_{i j}=\sum_{i \in \mathcal{V}} d_{i}=\sum_{i \in \mathcal{V}} d_{i} u_{i}^{2}=\sum_{i, j \in \mathcal{V}} d_{i} u_{i} u_{j} \mathbb{I}\{i=j\}
$$

- Used $u_{i}^{2}=1$ since $u_{i} \in\{ \pm 1\}$. The cut becomes

$$
C=\frac{1}{2} \sum_{i, j \in \mathcal{V}}\left(d_{i} \mathbb{I}\{i=j\}-A_{i j}\right) u_{i} u_{j}=\frac{1}{2} \sum_{i, j \in \mathcal{V}} L_{i j} u_{i} u_{j}
$$

- Cut in terms of $L_{i j}$, entries of the graph Laplacian $\mathbf{L}=\mathbf{D}-\mathbf{A}$, i.e.,

$$
C(\mathbf{u})=\frac{1}{2} \mathbf{u}^{\top} \mathbf{L} \mathbf{u}, \quad \mathbf{u}:=\left[u_{1}, \ldots, u_{N_{v}}\right]^{\top}
$$

Graph cut minimization

- Since $\left|\mathcal{V}_{1}\right|=N_{1}$ and $\left|\mathcal{V}_{2}\right|=N_{2}=N_{v}-N_{1}$, we have the constraint

$$
\sum_{i \in \mathcal{V}} u_{i}=\sum_{i \in \mathcal{V}_{1}}(+1)+\sum_{i \in \mathcal{V}_{2}}(-1)=N_{1}-N_{2} \Rightarrow 1^{\top} \mathbf{u}=N_{1}-N_{2}
$$

- Minimum-cut criterion for graph bisection yields the formulation

$$
\hat{\mathbf{u}}=\arg \min _{\mathbf{u} \in\{ \pm 1\}^{N_{v}}} \mathbf{u}^{\top} \mathbf{L u}, \quad \text { s. to } \mathbf{1}^{\top} \mathbf{u}=N_{1}-N_{2}
$$

- Binary constraints $\mathbf{u} \in\{ \pm 1\}^{N_{v}}$ render cut minimization hard

Laplacian matrix properties

- Smoothness: For any vector $\mathbf{x} \in \mathbb{R}^{N_{v}}$ of "vertex values", one has

$$
\mathbf{x}^{\top} \mathbf{L} \mathbf{x}=\sum_{i, j \in \mathcal{V}} L_{i j} x_{i} x_{j}=\sum_{(i, j) \in \mathcal{E}}\left(x_{i}-x_{j}\right)^{2}
$$

which can be minimized to enforce smoothness of functions on G

- Positive semi-definiteness: Follows since $\mathbf{x}^{\top} \mathbf{L x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{N_{v}}$
- Spectrum: All eigenvalues of \mathbf{L} are real and non-negative \Rightarrow Eigenvectors form an orthonormal basis of $\mathbb{R}^{N_{v}}$
- Rank deficiency: Since $\mathbf{L 1}=\mathbf{0}, \mathbf{L}$ is rank deficient
- Spectrum and connectivity: The smallest eigenvalue λ_{1} of \mathbf{L} is 0
- If the second-smallest eigenvalue $\lambda_{2} \neq 0$, then G is connected
- If \mathbf{L} has n zero eigenvalues, G has n connected components
- Since $\mathbf{u}^{\top} \mathbf{L u}=\sum_{(i, j) \in \mathcal{E}}\left(u_{i}-u_{j}\right)^{2}$, the minimum-cut formulation is

$$
\hat{\mathbf{u}}=\arg \min _{\mathbf{u} \in\{ \pm 1\}^{N_{v}}} \sum_{(i, j) \in \mathcal{E}}\left(u_{i}-u_{j}\right)^{2}, \quad \text { s. to } \mathbf{1}^{\top} \mathbf{u}=N_{1}-N_{2}
$$

- Q: Does this equivalent cost function make sense? A: Absolutely!
\Rightarrow Edges joining vertices in the same group do not add to the sum
\Rightarrow Edges joining vertices in different groups add 4 to the sum

- Minimize cut: assign values u_{i} to nodes i such that few edges cross 0
- Relax the constraint $\mathbf{u} \in\{ \pm 1\}^{N_{v}}$ to $\mathbf{u} \in \mathbb{R}^{N_{v}},\|\mathbf{u}\|_{2}=1$

$$
\hat{\mathbf{u}}=\arg \min _{\mathbf{u}} \mathbf{u}^{\top} \mathbf{L} \mathbf{u}, \quad \text { s. to } \mathbf{1}^{\top} \mathbf{u}=N_{1}-N_{2} \text { and } \mathbf{u}^{\top} \mathbf{u}=1
$$

\Rightarrow Straightforward to solve using Lagrange multipliers

- Characterization of the solution $\hat{\mathbf{u}}$ [Fiedler '73]:

$$
\hat{\mathbf{u}}=\mathbf{v}_{2}+\frac{N_{1}-N_{2}}{N_{v}} \mathbf{1}
$$

\Rightarrow The 'second-smallest' eigenvector \mathbf{v}_{2} of \mathbf{L} satisfies $\mathbf{1}^{\top} \mathbf{v}_{2}=0$
\Rightarrow Minimum cut is $C(\hat{\mathbf{u}})=\hat{\mathbf{u}}^{\top} \mathbf{L} \hat{\mathbf{u}}=\mathbf{v}_{2}^{\top} \mathbf{L} \mathbf{v}_{2} \propto \lambda_{2}$

- If the graph G is disconnected then we know $\lambda_{2}=0=C(\hat{\mathbf{u}})$
\Rightarrow If G is amenable to bisection, the cut is small and so is λ_{2}

Spectral graph bisection

- Q: How to obtain the binary cluster labels $\mathbf{u} \in\{ \pm 1\}^{N_{v}}$ from $\hat{\mathbf{u}} \in \mathbb{R}^{N_{v}}$?
\Rightarrow Maximize the similarity measure $\mathbf{u}^{\top} \hat{\mathbf{u}}$

$$
u_{i}=f\left(\mathbf{v}_{2}\right):=\left\{\begin{array}{lc}
+1, & {\left[\mathbf{v}_{2}\right]_{i} \text { among the } N_{1} \text { largest entries of } \mathbf{v}_{2}} \\
-1, & \text { otherwise }
\end{array}\right.
$$

- Spectral graph bisection algorithm

S1: Compute Laplacian matrix \mathbf{L} with entries $L_{i j}=D_{i j}-A_{i j}$
S2: Find 'second smallest' eigenvector \mathbf{v}_{2} of \mathbf{L}
S3: Candidate membership of vertex i is $\bar{u}_{i}=f\left(\left[\mathbf{v}_{2}\right]\right)\left(\right.$ or $\left.\underline{u}_{i}=f\left(\left[-\mathbf{v}_{2}\right]\right)\right)$
S4: Among $\overline{\mathbf{u}}$ and $\underline{\mathbf{u}}$ pick the one that minimizes $C(\mathbf{u})$

- Nomenclature: \mathbf{v}_{2} is known as the Fiedler vector
\Rightarrow Eigenvalue λ_{2} is Fiedler value, or algebraic connectivity of G

Spectral gap in Fiedler vector entries

- Suppose G is disconnected and has two connected components
- L is block diagonal, two smallest eigenvectors indicate groups, i.e.,

$$
\mathbf{v}_{1}=[1,1, \ldots, 1,0, \ldots, 0]^{\top} \text { and } \mathbf{v}_{2}=[0,0, \ldots, 0,1, \ldots, 1]^{\top}
$$

- If G is connected but amenable to bisection, $\mathbf{v}_{1}=\mathbf{1}$ and $\lambda_{2} \approx 0$
- Also, $\mathbf{1}^{\top} \mathbf{v}_{2}=\sum_{i}\left[\mathbf{v}_{2}\right]_{i}=0 \Rightarrow$ Positive and negative entries in $\mathbf{v}_{\mathbf{2}}$

Unknown community sizes

- Consider the graph bisection problem with unknown group sizes \Rightarrow Minimizing the graph cut may be no longer meaningful!

\Rightarrow Cost $C:=\sum_{i \in \mathcal{V}_{1}, j \in \mathcal{V}_{2}} A_{i j}$ agnostic to groups' internal structure
- Better criterion is the ratio cut R defined as

$$
R:=\frac{C}{\left|\mathcal{V}_{1}\right|}+\frac{C}{\left|\mathcal{V}_{2}\right|}
$$

\Rightarrow Balanced partitions: small community is penalized by the cost

- Fix a bisection U of G into groups \mathcal{V}_{1} and \mathcal{V}_{2}
- Define $\mathbf{f}: \mathbf{f}(U)=\left[f_{1}, \ldots, f_{N_{v}}\right]^{\top} \in \mathbb{R}^{N_{v}}$ with entries

$$
f_{i}=\left\{\begin{array}{cc}
\sqrt{\frac{\left|\mathcal{V}_{2}\right|}{\left|\left|1_{1}\right|\right.}}, & \text { vertex } i \text { belongs to } \mathcal{V}_{1} \\
-\sqrt{\frac{\left|\mathcal{V}_{1}\right|}{\left|\mathcal{V}_{2}\right|}}, & \text { vertex } i \text { belongs to } \mathcal{V}_{2}
\end{array}\right.
$$

- One can establish the following properties:

P1: $\mathbf{f}^{\top} \mathbf{L f}=N_{\mathrm{v}} R(U)$;
P2: $\sum_{i} f_{i}=0$, i.e., $\mathbf{1}^{\top} \mathbf{f}=0$; and
P3: $\|\mathbf{f}\|^{2}=N_{v}$

- From P1-P3 it follows that ratio-cut minimization is equivalent to

$$
\min _{\mathbf{f}} \mathbf{f}^{\top} \mathbf{L f}, \quad \text { s. to } \mathbf{1}^{\top} \mathbf{f}=0 \text { and } \mathbf{f}^{\top} \mathbf{f}=N_{v}
$$

Ratio cut and spectral graph bisection

- Ratio-cut minimization is also NP-hard. Relax to obtain

$$
\hat{\mathbf{u}}=\arg \min _{\mathbf{u} \in \mathbb{R}^{N_{v}}} \mathbf{u}^{\top} \mathbf{L} \mathbf{u}, \quad \text { s. to } \mathbf{1}^{\top} \mathbf{u}=0 \text { and } \mathbf{u}^{\top} \mathbf{u}=N_{v}
$$

- Partition \hat{U} also given by the spectral graph bisection algorithm

S1: Compute Laplacian matrix \mathbf{L} with entries $L_{i j}=D_{i j}-A_{i j}$
S2: Find 'second smallest' eigenvector \mathbf{v}_{2} of \mathbf{L}
S3: Cluster membership of vertex i is $u_{i}=\operatorname{sign}\left(\left[\mathbf{v}_{2}\right]_{i}\right)$

- Alternative criterion is the normalized cut NC defined as

$$
\begin{aligned}
& N C=\frac{C}{\operatorname{vol}\left(\mathcal{V}_{1}\right)}+\frac{C}{\operatorname{vol}\left(\mathcal{V}_{2}\right)}, \quad \operatorname{vol}\left(\mathcal{V}_{i}\right):=\sum_{v \in V_{i}} d_{v}, i=1,2 \\
\Rightarrow & \text { Corresponds to using the normalized Laplacian } \mathbf{D}^{-1} \mathbf{L}
\end{aligned}
$$

Example: Zachary's karate club

- Spectral ratio cut minimization
- Shapes of vertices indicate community membership
- Dotted line indicates partition found by the algorithm
- Vertex colors indicate the strength of their membership

Beyond two communities

- Q: What about detecting $K>2$ communities?
- The ratio cut of a K-way partition U in groups $\left\{\mathcal{V}_{i}\right\}_{i=1}^{K}$ is

$$
R(U):=\sum_{i=1}^{K} \frac{C\left(\mathcal{V}_{i}, \mathcal{V}_{i}^{c}\right)}{\left|\mathcal{V}_{i}\right|}
$$

- Relaxed ratio-cut minimization problem formulated as

$$
\hat{\mathbf{U}}=\arg \min _{\mathbf{U} \in \mathbb{R}^{N_{\nu} \times K}} \operatorname{trace}\left(\mathbf{U}^{\top} \mathbf{L} \mathbf{U}\right), \quad \text { s. to } \mathbf{U}^{\top} \mathbf{U}=\mathbf{I}
$$

- Partition \hat{U} given by the spectral clustering algorithm

S1: Compute Laplacian matrix \mathbf{L} with entries $L_{i j}=D_{i j}-A_{i j}$
S2: Find ' K smallest' eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{K}$ of \mathbf{L}
S3: Set $\hat{\mathbf{U}}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{K}\right]$, embedding of node i is row $\hat{\mathbf{u}}_{i}^{\top} \in \mathbb{R}^{\mathbf{1} \times K}$
S4: Assign to clusters via K-means on node embeddings

Example: Gene cartography

- Two-dimensional embedding of 'gene similarity' matrix
\Rightarrow Consistent with origins of individuals in European map

J. Novembre, "Genes mirror geography within Europe," Nature, 2008

Where do we go from here?

- Q: Why does spectral graph partitioning work? A: Note that

$$
\operatorname{trace}\left(\hat{\mathbf{U}}^{\top} \mathbf{L} \hat{\mathbf{U}}\right)=\sum_{(i, j) \in \mathcal{E}} A_{i j}\left\|\hat{\mathbf{u}}_{i}^{\top}-\hat{\mathbf{u}}_{j}^{\top}\right\|^{2}
$$

\Rightarrow Embeddings close in \mathbb{R}^{K} if i, j well connected in G
\Rightarrow Also known as Laplacian eigenmaps [Belkin-Niyogi'01]

- Key: encode graph structure into low-dimensional embeddings

Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction

Link prediction

Original graph

Link prediction

- Suppose we observe vertex attributes $\mathbf{x}=\left[x_{1}, \ldots, x_{N_{V}}\right]^{\top}$; and
- Edge status only observed for subset of pairs $\mathcal{V}_{o b s}^{(2)} \subset \mathcal{V}^{(2)}=\mathcal{V} \times \mathcal{V}$
- Goal: predict edge status for all other pairs, i.e., $\mathcal{V}_{\text {miss }}^{(2)}=\mathcal{V}^{(2)} \backslash \mathcal{V}_{o b s}^{(2)}$
- Let $G(\mathcal{V}, \mathcal{E})$ be a random graph, with adjacency matrix $\mathbf{A} \in\{0,1\}^{N_{\nu} \times N_{v}}$ $\Rightarrow \mathbf{A}^{o b s}$ and $\mathbf{A}^{\text {miss }}$ denote entries in $\mathcal{V}_{o b s}^{(2)}$ and $\mathcal{V}_{\text {miss }}^{(2)}$

Link prediction

Predict entries in $\mathbf{A}^{\text {miss }}$, given observations $\mathbf{A}^{\text {obs }}=\mathbf{a}^{\text {obs }}$ and possibly various vertex attributes $\mathbf{X}=\mathbf{x} \in \mathbb{R}^{N_{v}}$

- Edge status information may be missing due to:
\Rightarrow Difficulty in observation, issues of sampling
\Rightarrow Edge is not yet present, wish to predict future status
- Given a model for \mathbf{X} and $\left(\mathbf{A}^{\text {obs }}, \mathbf{A}^{\text {miss }}\right)$, jointly predict $\mathbf{A}^{\text {miss }}$ based on

$$
\mathrm{P}\left[\mathbf{A}^{m i s s} \mid \mathbf{A}^{o b s}=\mathbf{a}^{o b s}, \mathbf{X}=\mathbf{x}\right]
$$

\Rightarrow More manageable to predict the variables $A_{i j}^{m i s s}$ individually

Informal scoring methods

- Idea: compute score $s(i, j)$ for missing 'potential edges' $\{i, j\} \in \mathcal{V}_{\text {miss }}^{(2)}$
\Rightarrow Predicted edges returned by retaining the top n^{*} scores
- Scores designed to assess certain local structural properties of $G^{\text {obs }}$
\Rightarrow Distance-based, inspired by the small-world principle

$$
s(i, j)=-\operatorname{dist}_{G \cos }(i, j)
$$

\Rightarrow Neighborhood-based, e.g., the number of common neighbors

$$
s(i, j)=\left|\mathcal{N}_{i}^{o b s} \cap \mathcal{N}_{j}^{o b s}\right| \text { or } s(i, j)=\frac{\left|\mathcal{N}_{i}^{o b s} \cap \mathcal{N}_{j}^{o b s}\right|}{\left|\mathcal{N}_{i}^{\text {obs }} \cup \mathcal{N}_{j}^{\text {obs }}\right|}
$$

\Rightarrow Favor loosely-connected common neighbors [Adamic-Adar'03]

$$
s(i, j)=\sum_{k \in \mathcal{N}_{i}^{\text {obs }} \cap \mathcal{N}_{j}^{\text {obs }}} \frac{1}{\log \left|\mathcal{N}_{k}^{\text {obs }}\right|}
$$

Tests on co-authorship networks

- Results from a link prediction study in [Liben Nowell-Kleinberg'03]

Classification methods

- Idea: use training data $\mathbf{a}^{\text {obs }}$ and \mathbf{x} to build a binary classifier
\Rightarrow Classifier is in turn used to predict the entries in $\mathbf{A}^{\text {miss }}$
- Logistic regression classifiers most popular, based on the model

$$
\log \left[\frac{\mathrm{P}_{\beta}\left(A_{i j}=1 \mid \mathbf{Z}_{i j}=\mathbf{z}\right)}{\mathrm{P}_{\beta}\left(A_{i j}=0 \mid \mathbf{Z}_{i j}=\mathbf{z}\right)}\right]=\boldsymbol{\beta}^{\top} \mathbf{z}, \quad \text { where }
$$

(i) $\boldsymbol{\beta} \in \mathbb{R}^{K}$ is a vector of regression coefficients; and
(ii) $\mathbf{Z}_{i j}$ is a vector of explanatory variables indexed by $\{i, j\}$

$$
\mathbf{Z}_{i j}=\left[g_{1}\left(\mathbf{A}_{(-i j)}^{o b s}, \mathbf{X}\right), \ldots, g_{K}\left(\mathbf{A}_{(-i j)}^{o b s}, \mathbf{X}\right)\right]^{\top}
$$

- Functions $g_{k}(\cdot)$ encode useful predictive information in $\mathbf{a}_{(-i j)}^{\text {obs }}$ and \mathbf{x} Ex: vertex attributes, score functions, network statistics

Logistic regression classifier

- Train: Obtain MLE $\hat{\boldsymbol{\beta}}$ via iteratively-reweighted LS
- Test: Potential edges (i, j) declared present based on probabilities

$$
\mathrm{P}_{\hat{\beta}}\left(A_{i j}=1 \mid \mathbf{Z}_{i j}=\mathbf{z}\right)=\frac{\exp \left(\hat{\boldsymbol{\beta}}^{\top} \mathbf{z}\right)}{1+\exp \left(\hat{\boldsymbol{\beta}}^{\top} \mathbf{z}\right)}
$$

- Logistic regression assumes $\mathbf{A}_{i j}$ conditionally independent given z \Rightarrow Seldom the case with relational network data
- Underlying mechanism of data missingness is important
\Rightarrow Classification for link prediction reminiscent of cross-validation
\Rightarrow Assumption that data are missing at random is fundamental

Latent variable models

- In addition to a lineal predictor $\boldsymbol{\beta}^{\top} \mathbf{z}$, latent models describe $A_{i j}$ \Rightarrow As a function of vertex-specific latent variables \mathbf{u}_{i} and \mathbf{u}_{j}

- Latent models are flexible to capture underlying social mechanisms Ex: homophily (transitivity) and stochastic equivalence (groups)

Latent class and distance models

- Latent distance model: node i has unobserved position $\mathbf{U}_{i} \in \mathbb{R}^{d}$
- Positions \mathbf{U}_{i} in latent space assumed i.i.d. e.g., Gaussian distributed
- Model cond. probability of edge $A_{i j}$ as function of $\boldsymbol{\beta}^{\top} \mathbf{z}-\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2}$
- Homophily: Nearby nodes in latent space more likely to link
- Latent class model: node i belongs to unobserved class $U_{i} \in\{1, \ldots, k\}$
- Classes U_{i} assumed i.i.d. e.g., multinomial distributed
- Model cond. probability of edge $A_{i j}$ as function of $\boldsymbol{\beta}^{\top} \mathbf{z}-\theta_{u_{i}, u_{j}}$
- Stochastic equivalence: Nodes in same class equally likely to link
P. D. Hoff, "Modeling homophily and stochastic equivalence in symmetric relational data," NIPS, 2008

Logistic regression with latent variables

- Let $\mathrm{M} \in \mathbb{R}^{N_{\nu} \times N_{v}}$ be an unknown, random, and symmetric matrix

$$
\mathbf{M}=\mathbf{U}^{\top} \boldsymbol{\Lambda} \mathbf{U}+\mathbf{E}, \quad \text { where }
$$

(i) $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{N_{v}}\right]$ is a random orthonormal matrix of latent variables;
(ii) $\boldsymbol{\Lambda}$ is a random diagonal matrix; and
(iii) \mathbf{E} is a symmetric matrix of i.i.d. noise entries $\epsilon_{i j}$

- Latent eigenmodel subsumes the class and distance variants [Hoff'08]
\Rightarrow Notice that $M_{i j}=\mathbf{u}_{i}^{T} \boldsymbol{\Lambda} \mathbf{u}_{j}+\epsilon_{i j}$
- The logistic regression model with latent variables is

$$
\log \left[\frac{\mathrm{P}_{\beta}\left(A_{i j}=1 \mid \mathbf{Z}_{i j}=\mathbf{z}, M_{i j}=m\right)}{\mathrm{P}_{\beta}\left(A_{i j}=0 \mid \mathbf{Z}_{i j}=\mathbf{z}, M_{i j}=m\right)}\right]=\boldsymbol{\beta}^{\top} \mathbf{z}+m
$$

- $A_{i j}$ still assumed conditionally independent given $\mathbf{Z}_{i j}$ and $M_{i j}$
\Rightarrow But they are conditionally dependent given only $\mathbf{Z}_{i j}$

Bayesian link prediction

- Specify distributions for $\mathbf{U}, \mathbf{\Lambda}, \mathbf{E}$ to make statistical link predictions
- Bayesian inference natural \Rightarrow Specify a prior for $\boldsymbol{\beta}$ as well
- To predict those entries in $\mathbf{A}^{\text {miss }}$, threshold the posterior mean

$$
\mathbb{E}\left[\left.\frac{\exp \left(\boldsymbol{\beta}^{\top} \mathbf{Z}_{i j}+M_{i j}\right)}{1+\exp \left(\boldsymbol{\beta}^{\top} \mathbf{Z}_{i j}+M_{i j}\right)} \right\rvert\, \mathbf{A}^{o b s}=\mathbf{a}^{o b s}, \mathbf{Z}_{i j}=\mathbf{z}\right]
$$

- Use MCMC algorithms to approximate the posterior distribution
- Gaussian distributions attractive for their conjugacy properties
- Higher complexity than MLE for standard logistic regression \Rightarrow Need to generate draws for N_{v}^{2} unobserved variables $\left\{U_{i j}\right\}$ \Rightarrow Major cost reduction with reduced $\operatorname{rank}(\mathbf{U})=k \ll N_{v}$ models

Example: predicting lawyer collaborations

- Network $G^{o b s}$ of working relationships among lawyers [Lazega'01]
- Nodes are $N_{v}=36$ partners, edges indicate partners worked together

- Data includes various node-level attributes:
- Seniority (node labels indicate rank ordering)
- Office location (triangle, square or pentagon)
- Type of practice, i.e., litigation (red) and corporate (cyan)
- Gender (three partners are female labeled 27, 29 and 34)
- Goal: predict cooperation among social actors in an organization

Methods tested

- Define the following set of explanatory variables:

$$
\begin{aligned}
& Z_{i j}^{(1)}=\text { seniority }_{i}+\text { seniority }_{j}, \quad Z_{i j}^{(2)}=\text { practice }_{i}+\text { practice }_{j} \\
& Z_{i j}^{(3)}=\mathbb{I}\left\{\text { practice }_{i}=\text { practice }_{j}\right\}, \quad Z_{i j}^{(4)}=\mathbb{I}\left\{\text { gender }_{i}=\text { gender }_{j}\right\} \\
& Z_{i j}^{(5)}=\mathbb{I}\left\{\text { office }_{i}=\text { office }_{j}\right\}, \quad Z_{i j}^{(6)}=\left|\mathcal{N}_{i}^{o b s} \cap \mathcal{N}_{j}^{o b s}\right|
\end{aligned}
$$

Method 1: standard logistic regression with $Z_{i j}^{(1)}, \ldots, Z_{i j}^{(5)}$
Method 2: standard logistic regression with $Z_{i j}^{(1)}, \ldots, Z_{i j}^{(6)}$
Method 3 informal scoring method with $s(i, j)=Z_{i j}^{(6)}$
Method 4: logistic regression with $Z_{i j}^{(1)}, \ldots, Z_{i j}^{(5)}$ and latent eigenmodel

- Five-fold cross-validation over the set of $36(36-1) / 2=630$ vertex pairs
\Rightarrow For each fold, $630 / 5=126$ pairs in $\mathbf{A}^{\text {miss }}$ and the rest in $\mathbf{A}^{\text {obs }}$

Receiver operating characteristic

- Receiver operating characteristic curves show predictive performance

- Method 1 performs worst \Rightarrow Agnostic to network structure
- Informal Method 3 yields slightly worst performance than 2 and 4

Where do we go from here?

- Got our first glimpse onto statistical models for network data
- Network-based versions of canonical statistical models
\Rightarrow Regression models - Exponential random graph models (ERGMs)
\Rightarrow Latent variable models - Stochastic block models and graphons
- Link prediction an instance of network topology inference problems Q: If G (or a portion thereof) is unobserved, can we infer it from data?

Topology Identification and Topology Identification
Learning Over Graphs: Learning Over Graphs:
Accounting for Nonlinearities and Dynamics

- Networks and graphs
- Network data science
- Machine learning on graphs
- Graph signal processing
- Graph Fourier transform
- Laplacian
- Convolution
- Graph neural networks
- Semi-supervised learning
- Nearest-neighbor prediction
- Signal smoothness
- Graph regularization
- Community detection
- Graph cut
- Spectral clustering
- Node embedding
- Graph representation learning
- Link prediction
- Logistic regression
- Latent variable models
- Bayesian inference
- Stochastic block models
- Graphons
- Network topology inference

