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Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction
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Who am I, where to find me, lecture times

I Gonzalo Mateos
Dept. of ECE, University of Rochester
Email: gmateosb@ece.rochester.edu

I Where? We meet online via Zoom
Meeting ID: 919 6202 5440, passcode sent via email

I When? Daily from February 1 to 5, 9:00 am to 12:15 pm

I Class website
https://eva.fing.edu.uy/course/view.php?id=1484
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Local instructor team

I We will help you with questions, labs and the project

I Marcelo Fiori
IMERL, FIng, UdelaR
Email: mfiori@fing.edu.uy

I Federico La Rocca
IIE, FIng, UdelaR
Email: flarroca@fing.edu.uy

I Grateful for the help and for inviting me to teach this course
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Tomorrow’s guest lecturer

I Fernando Gama
EECS Dept., UC Berkeley
Email: fgama@berkeley.edu

I Graph neural networks (GNNs) expert

I Developer of PyTorch library to implement GNNs
https://github.com/alelab-upenn/graph-neural-networks
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Prerequisites

(I) Graph theory and statistical inference
I Graphs are mathematical abstractions of networks
I Statistical inference useful to “learn” from network data
I Basic knowledge expected. Asked you to go over review slides

(II) Probability theory and linear algebra
I Random variables, distributions, expectations, Markov processes
I Vector/matrix notation, systems of linear equations, eigenvalues

(III) Programming
I Will use e.g., Python for labs and your project
I You can use the language/network analysis package your prefer
I Several useful resources provided in the class website
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Labs and project

(I) Exploratory labs (3 handouts, 10 hours total) worth 20%
I Coding assignments to experiment with data, libraries and methods
I Collaboration accepted, welcomed, and encouraged

(II) Research project on a topic of your choice, worth 80%
I Important part of this class. Work in pairs. Two deliverables:

1) Proposal by Monday February 15, worth 15%
2) Final report by Friday March 26, worth 65%

I This is a special topics, research-oriented graduate level class
⇒ Focus should be on thinking, reading, asking, implementing
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Networks and graphs

I As per the dictionary: A collection of inter-connected things
I Ok. There are multiple things, they are connected. Two extremes3

Fig. 1.3 Network representation of the circadian clock mechanism in Drosophila melanogaster
(fruit fly), as of June 30, 2003, from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2].

1

Fig. 2.1 Left: a complete graph. Right: a portion of a 4-regular graph.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

1) A real (complex) system of inter-connected components
2) A graph G (V, E) representing the system

I Understand complex systems ⇔ Understand networks behind them
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Historical background

I Network-based analysis in the sciences has a long history

I Mathematical foundations of graph theory (L. Euler, 1735)

I The seven bridges of Königsberg

I Laws of electrical circuitry (G. Kirchoff, 1845)
I Molecular structure in chemistry (A. Cayley, 1874)
I Network representation of social interactions (J. Moreno, 1930)
I Power grids (1910), telecommunications and the Internet (1960)
I Google (1997), Facebook (2004), Twitter (2006), . . .
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Why networks? Why now?

I Understand complex systems ⇔ Understand networks behind them

I Relatively small field of study up until ∼ the mid-90s

I Epidemic-like explosion of interest recently. A few reasons:
I Systems-level perspective in science, away from reductionism
I Ubiquitous high-throughput data collection, computational power
I Globalization, the Internet, connectedness of modern societies
I Data complexity: heterogeneity, dependence, dynamism, . . .

I Impact: social networking, drug design, smart infrastructure, . . .
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Economic impact

I Google
Market cap:
$1.24 trillion

I Facebook
Market cap:
$736 billion

I Cisco
Market cap:
$188 billion

I Apple
Market cap:
$2.22 trillion

Machine Learning on Graphs Introduction 11



Healthcare impact

I Prediction of epidemics, e.g. the 2009 H1N1 pandemic

Real Predicted 

I Human Connectome Project to map-out brain circuitry
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Homeland security impact

I Social network analysis key to capturing S. Hussein
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Scientific discovery impact

I Machine learning on graphs key to solving protein folding

I Predict protein’s 3D structure given 1D amino acid sequence
⇒ Astronomical (≈ 10300) number of possible foldings
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Network data science: goals and characteristics

I Universal language for describing complex systems and data
I Striking similarities in networks across science, nature, technology

I What are the goals of network data science?
I Reveal patterns and statistical properties of network data
I Understand the underpinnings of network behavior and structure
I Engineer more resource-efficient, robust, socially-intelligent networks

I Characteristics: interdisciplinary, empirical, quantitative, computational

I Empirical study of graph-valued data to find patterns and principles
I Collection, measurement, summarization, visualization?

I Mathematical models. Graph theory meets statistical inference
I Understand, predict, discern nominal vs anomalous behavior?

I Algorithms for graph analytics
I Computational challenges, scalability, tractability vs optimality?
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Broad scope and areas of interest

I Network data science key to advance
I Climate systems
I Network neuroscience
I Collaborative intelligence/autonomy
I Information networks
I Societies and civilization
I Urban systems
I Critical infraestructure

I Broad topics of interest
I Coupling of natural, technological and social networks
I Resilience and adaptation: climate change, migration, pandemics, . . .
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What is this class about?

I Our focus: Machine learning for network data

I Measurements of or from a system conceptualized as a network

I Unique challenges
I Relational aspect of the data
I Complex statistical dependencies
I High-dimensional and often massive in quantity
I Lack of strong structural and geometric priors

I Will examine how these challenges arise in relation to
I Visualization
I Summarization and representation learning
I Sampling and inference
I Modeling
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Machine learning on graphs: tasks

I Graph visualization and pattern discovery
I Ex: How is the science and technology enterprise developing?

I Graph modeling and generation
I Ex: Generate new molecules with antibacterial activity?

I Clustering and community detection
I Ex: Which groups of individuals have similar political beliefs?

I Link prediction
I Ex: Predict user-item interactions in recommendation systems?

I Node classification and semi-supervised learning
I Ex: Can we identify protein function from their physical binding?

I Graph classification
I Ex: Diagnose subjects with cognitive decline from brain connectomes?
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Example: Predicting protein function

I Baker’s yeast data, formally known as Saccharomyces cerevisiae
I Graph: 134 vertices (proteins) and 241 edges (protein interactions)

4

Fig. 8.4 Network of interactions among proteins known to be responsible for cell communication
in yeast. Yellow vertices denote proteins that are known to be involved in intracellular signaling
cascades, a specific form of communication in the cell. The remaining proteins are indicated in
blue.

I Signal: functional annotation intracellular signaling cascade (ICSC)
I Signal transduction, how cells react to the environment
I xi = 1 if protein i annotated ICSC (yellow), xi = 0 otherwise (blue)
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Example: Unveiling network communities

I The political blogosphere for the US 2004 presidential election

I Community structure of liberal and conservative blogs is apparent
⇒ People have a stronger tendency to interact with “equals”
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Example: Network neuroscience

I Challenge: understanding human brain function and structure

I Does brain connectivity change for heavy drinkers [Li et al’20]?

Machine Learning on Graphs Introduction 21



Machine learning on graphs: fundamental challenge

I We’ve become good at learning from data in Euclidean domains

I But we want to learn from data defined on graphs

⇒ Challenge: no geometry (V is a set), irregular neighborhoods
⇒ Ordering? Translation? Convolution? Structural priors?
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Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction
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From graphs to graph signals

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

⇒ Use G to study graph signals, data associated with nodes in V

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Graph signal processing (GSP)

I Graph G with adjacency matrix A ∈ RN×N

⇒ Aij = proximity between i and j

I Define a signal x ∈ RN on top of the graph
⇒ xi = signal value at node i

2
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5

x1

x2

x3

x4

x5

I Graph Signal Processing → Exploit structure encoded in A to process x

I Q: Graph signals common and interesting as networks are?

I Q: Why do we expect the graph structure to be useful in processing x?
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Network of economic sectors of the United States

I Bureau of Economic Analysis of the U.S. Department of Commerce
I Aij = Output of sector i that becomes input to sector j (62 sectors)

Oil and Gas Services Finance

PC

CO

OG

AS

MP

RAFR

SC MP

IC

I Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
I Administrative services (AS), Professional services (MP)
I Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)

I Only interactions stronger than a threshold are shown
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Network of economic sectors of the United States

I Bureau of Economic Analysis of the U.S. Department of Commerce
I Aij = Output of sector i that becomes input to sector j (62 sectors)

I A few sectors have widespread
strong influence (services,
finance, energy)

I Some sectors have strong
indirect influences (oil)

I The heavy last row is final
consumption

I This is an interesting network ⇒ Signals on this graph are as well
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Disaggregated GDP of the United States

I Signal x = output per sector = disaggregated GDP
⇒ Network structure used to, e.g., reduce GDP estimation noise

I Signal is as interesting as the network itself. Arguably more
I Same is true for brain connectivity and fMRI brain signals, ...
I Gene regulatory networks and gene expression levels, ...
I Online social networks and information cascades, ...
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Importance of signal structure in time

I Signal and Information Processing is about exploiting signal structure

I Discrete time described by cyclic graph
⇒ Time n follows time n − 1
⇒ Signal value xn similar to xn−1

I Formalized with the notion of frequency
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I Cyclic structure ⇒ Fourier transform ⇒ x̃ = FHx
(
Fkn =

e j2πkn/N√
N

)
I Fourier transform ⇒ Projection on eigenvector space of cycle
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Covariances and principal components

I Random signal with mean E [x] = 0 and covariance Cx = E
[
xxH

]
⇒ Eigenvector decomposition Cx = VΛVH

I Covariance matrix A = Cx is a graph
⇒ Not a very good graph, but still

I Precision matrix C−1
x a common graph too

⇒ Conditional dependencies of Gaussian x
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I Covariance matrix structure ⇒ Principal components (PCA) ⇒ x̃ = VHx

I PCA transform ⇒ Projection on eigenvector space of (inverse) covariance

I Q: Can we extend these principles to general graphs and signals?
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Graph Fourier Transform

I Adjacency A, Laplacian L, or, generically graph shift S = VΛV−1

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (captures local structure in G )

I The Graph Fourier Transform (GFT) of x is defined as

x̃ = V−1x

I While the inverse GFT (iGFT) of x̃ is defined as

x = Vx̃

⇒ Eigenvectors V = [v1, ..., vN ] are the frequency basis (atoms)

I Additional structure
⇒ If S is normal, then V−1 = VH and x̃k = vHk x =< vk , x >
⇒ Parseval holds, ‖x‖2 = ‖x̃‖2

I GFT ⇒ Projection on eigenvector space of graph shift operator S
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Frequency modes of the Laplacian

I Total variation of signal x with respect to L

TV(x) = x>Lx =
N∑

i,j=1,j>i

Aij(xi − xj)
2

⇒ Smoothness measure on the graph G (Dirichlet energy)

I For Laplacian eigenvectors V = [v1, · · · , vN ] ⇒ TV(vk) = λk
⇒ Can view 0 = λ1 < · · · ≤ λN as frequencies

I Ex: gene network, N =10, k =1, k =2, k =9
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Is this a reasonable transform?

I Particularized to cyclic graphs ⇒ GFT ≡ Fourier transform
I Also for covariance graphs ⇒ GFT ≡ PCA transform

I But really, this is an empirical question. GFT of disaggregated GDP

I Spectral domain representation characterized by a few coefficients
⇒ Notion of bandlimitedness: x =

∑K
k=1 x̃kvk

⇒ Sampling, compression, filtering, pattern recognition
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Graph frequency analysis of brain signals

I GFT of brain signals during a visual-motor learning task [Huang et al’16]
⇒ Decomposed into low, medium and high frequency components

10

Fig. 6. Distribution of decomposed signals for the 6 week experiment. (a) Absolute magnitudes for all brain regions with respect to xL – brain signals varing smoothly
across the network – averaged across all sample points for each individual and across all participants at the first scan session of the 6 week dataset. (b) With respect
to xM and (c) with respect to xH – signals fluctuating vibrantly across the brain. (d), (e), and (f) are averaged xL,xM and xH at the last scan session of the 6 week
dataset, respectively. Only regions with absolute magnitudes higher than a fixed threshold is colored.

Fig. 7. Distribution of decomposed signals for the 3 day experiment. (a), (b), and (c) are xL,xM and xH averaged across all sample points for each subject and across
participants in the 3 day experiment, respectively. Regions with absolute value less than a threshold are not colored.

xM and xH. At the macro or large timescale, we average the
decomposed signals xL for all sample points within each scanning
session with different sequence type, and evaluate the variance
of the magnitudes of the averaged signals across all the scanning
sessions and sequence types [40], [41]. For the 6 week experiment,
there are 4 scanning sessions and 3 different sequence types, so
the variance is with respect to 12 points. For the 3 day experiment,
there are 3 scanning sessions and only 1 sequence type, and
therefore the variance is for 3 points. As for the micro or minute-
scale, we average the decomposed signals xL for all sample points
within each minute, and evaluate the variance of the magnitudes of
the averaged signals across all minute windows for each scanning

session with different sequence types. The evaluated variance is
then averaged across all participants of the experiment of interest.

Figure 8 displays the variance of the decomposed signals
xL,xM and xH at two different temporal scales of the two
experiments. For the 6 week dataset, 3 session-sequence com-
binations, with number proportional to the level of exposure of
participants to the sequence (1-MIN refers to MIN sequence at
session 1, 5 denotes MIN sequence at session 4, 9 entails EXT
sequence at session 3) are selected out of the 12 combinations in
total for a cleaner illustration, but all the other session-sequence
combinations exhibit similar properties. Following the definition
of frequency decomposition as in (14), it is expected for the low
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I Brain: Complex system where regularity coexists with disorder [Sporns’11]
⇒ Signal energy mostly in the low and high frequencies
⇒ In brain regions akin to the visual and sensorimotor cortices
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PyGSP: Graph Signal Processing in Python

I PyGSP is a Python package to ease SP on graphs. Free software

Available from https://github.com/epfl-lts2/pygsp

Machine Learning on Graphs Introduction 35



Where do we go from here?

I Goal: successful learning from network data
⇒ Representation methods that effectively exploit graph structure

I From GSP to graph neural networks (GNNs)
I Linear graph filters and convolutions plus pointwise nonlinearities
I Permutation equivariance, stability to graph perturbations, transferability
I Theoretical insights on GNN’s strong generalization potential

1053-5888/17©2017IEEE18

M any scientific fields study data with an underlying 
structure that is non-Euclidean. Some examples 
include social networks in computational social sci-
ences, sensor networks in communications, func-

tional networks in brain imaging, regulatory networks in 
genetics, and meshed surfaces in computer graphics. In 
many applications, such geometric data are large and com-
plex (in the case of social networks, on the scale of billions) 
and are natural targets for machine-learning techniques. 
In particular, we would like to use deep neural networks, 
which have recently proven to be powerful tools for a broad 
range of problems from computer vision, natural-language 
processing, and audio analysis. However, these tools have 
been most successful on data with an underlying Euclidean or 
grid-like structure and in cases where the invariances of these 
structures are built into networks used to model them.

Geometric deep learning is an umbrella term for  emerging 
techniques attempting to generalize (structured) deep neural mod-
els to non-Euclidean domains, such as graphs and manifolds. The 
purpose of this article is to overview different examples of geometric 
deep-learning problems and present available solutions, key difficul-
ties, applications, and future research directions in this nascent field.

Overview of deep learning
Deep learning refers to learning complicated concepts by building them from 
simpler ones in a hierarchical or multilayer manner. Artificial neural networks are 
popular realizations of such deep multilayer hierarchies. In the past few years, the growing 
computational power of modern graphics processing unit (GPU)-based computers and the avail-
ability of large training data sets have allowed successfully training neural networks with many layers 
and degrees of freedom (DoF) [1]. This has led to qualitative breakthroughs on a wide variety of tasks, from 
speech recognition [2], [3] and machine translation [4] to image analysis and computer vision [5]– [11] (see [12] 

Michael M. Bronstein, Joan Bruna, Yann LeCun,  
Arthur Szlam, and Pierre Vandergheynst

Going beyond Euclidean data

Geometric Deep Learning
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GRAPH SIGNAL PROCESSING: 
FOUNDATIONS AND EMERGING DIRECTIONS
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Fernando Gama, Elvin Isufi, Geert Leus, 
and Alejandro Ribeiro

Network data can be conveniently modeled as a graph sig-
nal, where data values are assigned to nodes of a graph that 
describes the underlying network topology. Successful 

learning from network data is built upon methods that effec-
tively exploit this graph structure. In this article, we leverage 
graph signal processing (GSP) to characterize the representa-
tion space of graph neural networks (GNNs). We discuss the 
role of graph convolutional filters in GNNs and show that any 
architecture built with such filters has the fundamental proper-
ties of permutation equivariance and stability to changes in the 
topology. These two properties offer insight about the workings 
of GNNs and help explain their scalability and transferability 
properties, which, coupled with their local and distributed na-
ture, make GNNs powerful tools for learning in physical net-
works. We also introduce GNN extensions using edge-varying 
and autoregressive moving average (ARMA) graph filters and 
discuss their properties. Finally, we study the use of GNNs in 
recommender systems and learning decentralized controllers 
for robot swarms.

Introduction
Data generated by networks are increasingly common in power 
grids, robotics, biological, social and economic networks, and 
recommender systems among others. The irregular and com-
plex nature of these data poses unique challenges so that suc-
cessful learning is possible only by incorporating the structure 
into the inner-working mechanisms of the model [1].

Convolutional neural networks (CNNs) have epitomized the 
success of leveraging the data structure in temporal series and 
images transforming the landscape of machine learning in the 
last decade [2]. CNNs exploit temporal or spatial convolutions 
to learn an effective nonlinear mapping, scale to large settings, 
and avoid overfitting [2, Ch. 10]. CNNs offer also some degree 
of mathematical tractability, allowing the derivation of theo-
retical performance bounds under domain perturbations [3]. 
However, convolutions can only be applied to data in regular 
domains, hence making CNNs ineffective models when learn-
ing from irregular network data.
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Graph Neural Networks:
Architectures, Stability and Transferability

Luana Ruiz, Fernando Gama, and Alejandro Ribeiro

Abstract—Graph Neural Networks (GNNs) are information
processing architectures for signals supported on graphs. They
are presented here as generalizations of convolutional neural net-
works (CNNs) in which individual layers contain banks of graph
convolutional filters instead of banks of classical convolutional
filters. Otherwise, GNNs operate as CNNs. Filters are composed
with pointwise nonlinearities and stacked in layers. It is shown
that GNN architectures exhibit equivariance to permutation
and stability to graph deformations. These properties provide
a measure of explanation respecting the good performance of
GNNs that can be observed empirically. It is also shown that if
graphs converge to a limit object, a graphon, GNNs converge
to a corresponding limit object, a graphon neural network. This
convergence justifies the transferability of GNNs across networks
with different number of nodes.

Index Terms—Graph Neural Networks. Equivariance. Sta-
bility. Transferability. Graph Signal Processing. Graph Filters.
Graphons. Graphon Neural Networks.

I. INTRODUCTION

GRAPHS can represent lexical relationships in text anal-
ysis [1]–[3], product or customer similarities in rec-

ommendation systems [4]–[6], or agent interactions in mul-
tiagent robotics [7]–[9]. Although otherwise disparate, these
application domains share the presence of signals associated
with nodes – words, ratings or perception – out of which we
want to extract some information – text categories, ratings
of other products, or control actions. If data is available, we
can formulate empirical risk minimization (ERM) problems
to learn these data-to-information maps. However, it is a form
of ERM in which a graph plays a central role in describing
relationships between signal components. Therefore, one in
which the graph should be leveraged. Graph Neural Networks
(GNNs) are parametrizations of learning problems in general
and ERM problems in particular that achieve this goal.

In any ERM problem we are given input-output pairs in
a training set and we want to find a function that best
approximates the input-output map according to a given risk
(Sec. II). This function is later used to estimate the outputs
associated with inputs that were not part of the training set.
We say that the function has been trained and that we have
learned to estimate outputs. This simple statement hides the
well known fact that ERM problems are nonsensical unless
we make assumptions on how the function generalizes from
the training set to unobserved samples (Sec. III). We can, for
instance, assume that the map is linear, or, to be in tune with
the times, that the map is a neural network [10].

The authors are with the Dept. of Electrical and Systems Engineering, Uni-
versity of Pennsylvania. Email at {rubruiz, fgama, aribeiro} @seas.upenn.edu.
Supported by NSF HDR TRIPODS, Award #1934960.

A characteristic shared by arbitrary linear and fully con-
nected neural network parametrizations is that they do not
scale well with the dimensionality of the input signals. This
is best known in the case of signals in Euclidean space –
time and images – where scalable linear processing is based
on convolutional filters and scalable nonlinear processing is
based on convolutional neural networks (CNNs). In this paper
we describe graph filters [11], [12] and graph neural networks
[3], [13]–[16] as analogous of convolutional filters and CNNs,
but adapted to the processing of signals supported on graphs
(Sec. III). Both of these concepts are simple. A graph filter is
a polynomial on a matrix representation of the graph. Out of
this definition we build a graph perceptron with the addition
of a pointwise nonlinear function to process the output of a
graph filter (Sec. III-A). Graph perceptrons are composed –
or layered – to build a multilayer GNN (Sec. III-B). And
individual layers are augmented from single filters to filter
banks to build multiple feature GNNs (Sec. III-C).

The relevant question at this juncture is whether graph
filters and GNNs do for signals supported on graphs what
convolutional filters and CNNs do for Euclidean data. To wit,
do they enable scalable processing of signals supported on
graphs? A growing body of empirical work shows that this is
true to some extent – although results are not as impressive
as is the case of voice and image processing. As an example
that we can use to illustrate the advantages of graph filters
and GNNs, consider a recommendation system (Sec. II-B)
in which we want to use past ratings that customers have
given to products to predict future ratings [17]. Collaborative
filtering solutions build a graph of product similarities and
interpret the ratings of separate customers as signals supported
on the product similarity graph [4]. We then use past ratings
to construct a training set and learn to fill in the ratings
that a given customer would give to products not yet rated.
Empirical results do show that graph filters and GNNs work
in recommendation systems with large number of products in
which linear maps and fully connected neural networks fail
[4]–[6]. In fact, it is easy enough to arrive at three empirical
observations that motivate this paper (Sec. III-D):

(O1) Graph filters produce better rating estimates than
arbitrary linear parametrizations and GNNs produce better
estimates than arbitrary (fully connected) neural networks.
(O2) GNNs predict ratings better than graph filters.
(O3) A GNN that is trained on a graph with a certain
number of nodes can be executed in a graph with a larger
number of nodes and still produce good rating estimates.
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Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction
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Nearest-neighbor prediction

I Consider classification of a signal x := {xi}i∈V on a graph

Network process prediction

Predict xi , given observations of the adjacency matrix A and of all
attributes x(−i) but xi .

I Semi-supervised learning: only a small fraction of nodes labeled

I Idea: exploit the network graph structure in A for classification

I For binary xi ∈ {0, 1}, say, simple nearest-neighbor method predicts

x̂i = I
{∑

j∈Ni
xj

|Ni |
> τ

}
⇒ Average of the observed signal in Ni (neighborhood of i)
⇒ Called ‘guilt-by-association’ or graph-smoothing method
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Example: predicting law practice

I Network G obs of working relationships among lawyers [Lazega’01]
I Nodes are Nv = 36 partners, edges indicate partners worked together
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Fig. 6.7 Visualization of Lazega’s network of collaborative working relationships among lawyers.
Vertices represent partners and are labeled according to their seniority. Vertex shapes (i.e., triangle,
square, or pentagon) indicate three different office locations, while vertex colors correspond to the
type of practice (i.e., litigation (red) or corporate (cyan)). Edges indicate collaboration between
partners. There are three female partners (i.e., those with seniority labels 27, 29, and 34); the rest
are male. Data courtesy of Emmanuel Lazega.

I Data includes various node-level attributes {xi}i∈V including
⇒ Type of practice, i.e., litigation (red) and corporate (cyan)

I Suspect lawyers collaborate more with peers in same legal practice
⇒ Knowledge of collaboration useful in predicting type of practice
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Example: predicting law practice (cont.)

I Q: In predicting practice xi , how useful is the value of one neighbor?
⇒ Breakdown of 115 edges based on practice of incident lawyers

Litigation Corporate
Litigation 29 43
Corporate 43 43

I Looking at the rows in this table
I Litigation lawyers collaborators are 40% litigation, 60% corporate
I Collaborations of corporate lawyers are evenly split

⇒ Suggests using a single neighbor has little predictive power

I But 60% (29+43=72) of edges join lawyers with common practice
⇒ Suggests on aggregate knowledge of collaboration informative
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Example: predicting law practice (cont.)

I Incorporate information of all collaborators as in nearest-neighbors
I Let xi = 0 if lawyer i practices litigation, and xi = 1 for corporate
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Fig. 8.1 Histograms of the fraction of corporate collaborators among lawyers in the network of
Figure 6.7, separated according to the practice of each lawyer (top: litigation; bottom: corporate).

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.
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I Nearest-neighbor prediction rule

x̂i = I
{∑

j∈Ni
xj

|Ni |
> 0.5

}
⇒ Infers correctly 13 of the 16 corporate lawyers (i.e., 81%)
⇒ Infers correctly 16 of the 18 litigation lawyers (i.e., 89%)
⇒ Overall error rate is just under 15%
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Where do we go from here?

I Nearest-neighbor methods may seem rather informal and simple
⇒ But competitive with more formal, model-based approaches

I Model the signal x := {xi}i∈V given an observed graph A
⇒ Markov random field (MRF) models
⇒ Kernel-regression models using graph kernels

I Key: implicit is a smoothness assumption of x w.r.t. G
⇒ Usually understood as TV(x) = x>Lx being small

I Will adopt as graph regularization for machine learning tasks

min
x

f (x) + x>Lx

. . . and in the context of graph learning from data

min
L

x>Lx + g(L)
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Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction
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Unveiling network communities

I Nodes in real-world networks organize into communities
Ex: families, clubs, political organizations, proteins by function, . . .

I Community (a.k.a. group, cluster, module) members are:
⇒ Well connected among themselves
⇒ Relatively well separated from the rest

I Exhibit high cohesiveness w.r.t. the underlying relational patterns

I Q: How can we automatically identify such cohesive subgroups?
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Zachary’s karate club

I Social interactions among members of a karate club in the 70s2
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Fig. 1.2 Zachary’s ‘karate club’ network. Subgroups, centered around actors 1 and 34, are indi-
cated by the coloring and shape of their nodes, using blue squares and red circles, respectively.
Links between actors within the same subgroup are colored similar to their nodes, while links
between actors of different subgroups are shown in yellow.

I Zachary witnessed the club split in two during his study
⇒ Toy network, yet canonical for community detection algorithms
⇒ Offers “ground truth” community membership (a rare luxury)
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Electrical power grid

I Split power network into areas with minimum inter-area interactions

I Applications:
I Decide control areas for distributed power system state estimation
I Parallel computation of power flow
I Controlled islanding to prevent spreading of blackouts
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High-school students

I Network of social interactions among high-school students

I Strong assortative mixing, with race as latent characteristic
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Physicists working on Network Science

I Coauthorship network of physicists publishing networks’ research

I Tightly-knit subgroups are evident from the network structure
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College football

I Vertices are NCAA football teams, edges are games during Fall’00

I Communities are the NCAA conferences and independent teams
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Facebook friendships

I Facebook egonet with 744 vertices and 30K edges

I Asked “ego” to identify social circles to which friends belong
⇒ Company, high-school, basketball club, squash club, family

Machine Learning on Graphs Introduction 50



Community detection and graph partitioning

I Community detection is a challenging clustering problem
C1) No consensus on the structural definition of community
C2) Node subset selection often intractable
C3) Lack of ground-truth for validation

I Useful for exploratory analysis of network data
Ex: clues about social interactions, content-related web pages

Graph partitioning

Split V into given number of non-overlapping groups of given sizes

I Criterion: number of edges between groups is minimized (more soon)
Ex: task-processor assignment for load balancing

I Number and sizes of groups unspecified in community detection
⇒ Identify the natural fault lines along which a network separates
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Community detection in a nutshell

I Given a graph G (V, E) with adjacency matrix A (left)

I Find row/column permutation to reveal block-diagonal structure (right)

Ex: NCAA college football network we saw earlier [Mateos-Giannakis’12]
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Graph partitioning is hard

I Ex: Graph bisection problem, i.e., partition V into two groups
I Suppose the groups V1 and V2 are non-overlapping
I Suppose groups have equal size, i.e., |V1| = |V2| = Nv/2
I Minimize edges running between vertices in different groups

I Simple problem to describe, but hard to solve

Number of ways to partition V :

(
Nv

Nv/2

)
≈ 2Nv

√
Nv

⇒ Used Stirling’s formula Nv ! ≈
√
2πNv (Nv/e)Nv

⇒ Exhaustive search intractable beyond toy small-sized networks

I No smart (i.e., polynomial time) algorithm, NP-hard problem
⇒ Seek good heuristics, e.g., relaxations of natural criteria
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Graph bisection

I Undirected graph G (V, E). Partition V into two groups
I Groups V1 and V2 = VC

1 are non-overlapping
I Groups have given size, i.e., |V1| = N1 and |V2| = N2

V1 V2 

I Q: What is a natural criterion to partition the graph?
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Graph cut

I Desiderata: Community members should be
⇒ Well connected among themselves; and
⇒ Relatively well separated from the rest of the nodes

V1 V2 

I Def: A cut C is the number of edges between groups V1 and V \ V1

C := cut(V1,V2) =
∑

i∈V1,j∈V2

Aij

I Natural criterion: minimize cut, i.e., edges across groups V1 and V2
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From graph cuts . . .

I Binary community membership variables per vertex

ui =

{
+1, vertex i belongs to V1
−1, vertex i belongs to V2

I We can indicate two vertices are in different groups as

I {ui 6=uj} =
1
2

(1− uiuj) =

{
1, i and j in different groups
0, i and j in the same group

I Cut expressible in terms of the variables ui as

C =
∑

i∈V1,j∈V2

Aij =
1
2

∑
i,j∈V

Aij(1− uiuj)
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. . . to the graph Laplacian matrix

I First summand in C = 1
2

∑
i,j Aij(1− uiuj) is∑

i,j∈V

Aij =
∑
i∈V

di =
∑
i∈V

diu
2
i =

∑
i,j∈V

diuiujI {i = j}

I Used u2
i = 1 since ui ∈ {±1}. The cut becomes

C =
1
2

∑
i,j∈V

(di I {i = j} − Aij)uiuj =
1
2

∑
i,j∈V

Lijuiuj

I Cut in terms of Lij , entries of the graph Laplacian L = D− A, i.e.,

C (u) =
1
2
u>Lu, u := [u1, . . . , uNv ]>

Machine Learning on Graphs Introduction 57



Graph cut minimization

I Since |V1| = N1 and |V2| = N2 = Nv − N1, we have the constraint∑
i∈V

ui =
∑
i∈V1

(+1) +
∑
i∈V2

(−1) = N1 − N2 ⇒ 1>u = N1 − N2

I Minimum-cut criterion for graph bisection yields the formulation

û = arg min
u∈{±1}Nv

u>Lu, s. to 1>u = N1 − N2

I Binary constraints u ∈ {±1}Nv render cut minimization hard
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Laplacian matrix properties

I Smoothness: For any vector x ∈ RNv of “vertex values”, one has

x>Lx =
∑
i,j∈V

Lijxixj =
∑

(i,j)∈E

(xi − xj)
2

which can be minimized to enforce smoothness of functions on G

I Positive semi-definiteness: Follows since x>Lx ≥ 0 for all x ∈ RNv

I Spectrum: All eigenvalues of L are real and non-negative
⇒ Eigenvectors form an orthonormal basis of RNv

I Rank deficiency: Since L1 = 0, L is rank deficient

I Spectrum and connectivity: The smallest eigenvalue λ1 of L is 0
I If the second-smallest eigenvalue λ2 6= 0, then G is connected
I If L has n zero eigenvalues, G has n connected components
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Further intuition

I Since u>Lu =
∑

(i,j)∈E(ui − uj)
2, the minimum-cut formulation is

û = arg min
u∈{±1}Nv

∑
(i,j)∈E

(ui − uj)
2, s. to 1>u = N1 − N2

I Q: Does this equivalent cost function make sense? A: Absolutely!
⇒ Edges joining vertices in the same group do not add to the sum
⇒ Edges joining vertices in different groups add 4 to the sum

V1 V2

ui+1-1 0

I Minimize cut: assign values ui to nodes i such that few edges cross 0
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Minimum-cut relaxation

I Relax the constraint u ∈ {±1}Nv to u ∈ RNv , ‖u‖2 = 1

û = argmin
u

u>Lu, s. to 1>u = N1 − N2 and u>u = 1

⇒ Straightforward to solve using Lagrange multipliers

I Characterization of the solution û [Fiedler ’73]:

û = v2 +
N1 − N2

Nv
1

⇒ The ‘second-smallest’ eigenvector v2 of L satisfies 1>v2 = 0
⇒ Minimum cut is C (û) = û>Lû = v>2 Lv2 ∝ λ2

I If the graph G is disconnected then we know λ2 = 0 = C (û)

⇒ If G is amenable to bisection, the cut is small and so is λ2

Machine Learning on Graphs Introduction 61



Spectral graph bisection

I Q: How to obtain the binary cluster labels u ∈ {±1}Nv from û ∈ RNv ?
⇒ Maximize the similarity measure u>û

ui = f (v2) :=

{
+1, [v2]i among the N1 largest entries of v2
−1, otherwise

I Spectral graph bisection algorithm

S1: Compute Laplacian matrix L with entries Lij = Dij − Aij

S2: Find ‘second smallest’ eigenvector v2 of L
S3: Candidate membership of vertex i is ūi = f ([v2]) (or ui = f ([−v2]))
S4: Among ū and u pick the one that minimizes C (u)

I Nomenclature: v2 is known as the Fiedler vector
⇒ Eigenvalue λ2 is Fiedler value, or algebraic connectivity of G
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Spectral gap in Fiedler vector entries

I Suppose G is disconnected and has two connected components
I L is block diagonal, two smallest eigenvectors indicate groups, i.e.,

v1 = [1, 1, . . . , 1, 0, . . . , 0]> and v2 = [0, 0, . . . , 0, 1, . . . , 1]>

I If G is connected but amenable to bisection, v1 = 1 and λ2 ≈ 0
I Also, 1>v2 =

∑
i [v2]i = 0 ⇒ Positive and negative entries in v2
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Unknown community sizes

I Consider the graph bisection problem with unknown group sizes
⇒ Minimizing the graph cut may be no longer meaningful!

Desired cut 

Min. cut 

⇒ Cost C :=
∑

i∈V1,j∈V2
Aij agnostic to groups’ internal structure

I Better criterion is the ratio cut R defined as

R :=
C

|V1|
+

C

|V2|

⇒ Balanced partitions: small community is penalized by the cost
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Ratio-cut minimization

I Fix a bisection U of G into groups V1 and V2

I Define f : f(U) = [f1, . . . , fNv ]> ∈ RNv with entries

fi =


√
|V2|
|V1| , vertex i belongs to V1

−
√
|V1|
|V2| , vertex i belongs to V2

I One can establish the following properties:

P1: f>Lf = NvR(U);
P2:

∑
i fi = 0, i.e., 1>f = 0; and

P3: ‖f‖2 = Nv

I From P1-P3 it follows that ratio-cut minimization is equivalent to

min
f

f>Lf, s. to 1>f = 0 and f>f = Nv
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Ratio cut and spectral graph bisection

I Ratio-cut minimization is also NP-hard. Relax to obtain

û = arg min
u∈RNv

u>Lu, s. to 1>u = 0 and u>u = Nv

I Partition Û also given by the spectral graph bisection algorithm

S1: Compute Laplacian matrix L with entries Lij = Dij − Aij

S2: Find ‘second smallest’ eigenvector v2 of L
S3: Cluster membership of vertex i is ui = sign([v2]i )

I Alternative criterion is the normalized cut NC defined as

NC =
C

vol(V1)
+

C

vol(V2)
, vol(Vi ) :=

∑
v∈Vi

dv , i = 1, 2

⇒ Corresponds to using the normalized Laplacian D−1L
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Example: Zachary’s karate club

I Spectral ratio cut minimization
I Shapes of vertices indicate community membership
I Dotted line indicates partition found by the algorithm
I Vertex colors indicate the strength of their membership
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Beyond two communities

I Q: What about detecting K > 2 communities?

I The ratio cut of a K -way partition U in groups {Vi}Ki=1 is

R(U) :=
K∑
i=1

C (Vi ,Vc
i )

|Vi |

I Relaxed ratio-cut minimization problem formulated as

Û = arg min
U∈RNv×K

trace(U>LU), s. to U>U = I

I Partition Û given by the spectral clustering algorithm

S1: Compute Laplacian matrix L with entries Lij = Dij − Aij

S2: Find ‘K smallest’ eigenvectors v1, . . . , vK of L
S3: Set Û = [v1, . . . , vK ], embedding of node i is row û>i ∈ R1×K

S4: Assign to clusters via K -means on node embeddings
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Example: Gene cartography

I Two-dimensional embedding of ‘gene similarity’ matrix
⇒ Consistent with origins of individuals in European map

J. Novembre, “Genes mirror geography within Europe,” Nature, 2008
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Where do we go from here?

I Q: Why does spectral graph partitioning work? A: Note that

trace(Û>LÛ) =
∑

(i,j)∈E

Aij‖û>i − û>j ‖2

⇒ Embeddings close in RK if i , j well connected in G

⇒ Also known as Laplacian eigenmaps [Belkin-Niyogi’01]

I Key: encode graph structure into low-dimensional embeddings
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Abstract

There has been a surge of recent interest in learning representations for graph-structured data. Graph represen-
tation learning methods have generally fallen into three main categories, based on the availability of labeled data.
The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsu-
pervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to
augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural
networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite
the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to
bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a
comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several dis-
parate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes
popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph
Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single
consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this frame-
work. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these
methods, and enables future research in the area.

1 Introduction
Learning representations for complex structured data is a challenging task. In the last decade, many successful models
have been developed for certain kinds of structured data, including data defined on a discretized Euclidean domain.
For instance, sequential data, such as text or videos, can be modelled via recurrent neural networks, which can capture
sequential information, yielding efficient representations as measured on machine translation and speech recognition
tasks. Another example is convolutional neural networks (CNNs), which parameterize neural networks according to
structural priors such as shift-invariance, and have achieved unprecedented performance in pattern recognition tasks
such as image classification or speech recognition. These major successes have been restricted to particular types of
data that have a simple relational structure (e.g. sequential data, or data following regular patterns).

In many settings, data is not nearly as regular: complex relational structures commonly arise, and extracting infor-
mation from that structure is key to understanding how objects interact with each other. Graphs are a universal data
structures that can represent complex relational data (composed of nodes and edges), and appear in multiple domains
such as social networks, computational chemistry [41], biology [105], recommendation systems [64], semi-supervised
learning [39], and others. Generalizing CNNs to graphs is not trivial For graph-structured data, it is challenging to
define networks with strong structural priors, as structures can be arbitrary, and can vary significantly across different

⇤Work partially done during an internship at Google AI.
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Abstract

Machine learning on graphs is an important and ubiquitous task with applications ranging from drug
design to friendship recommendation in social networks. The primary challenge in this domain is finding
a way to represent, or encode, graph structure so that it can be easily exploited by machine learning
models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features
encoding structural information about a graph (e.g., degree statistics or kernel functions). However,
recent years have seen a surge in approaches that automatically learn to encode graph structure into
low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality
reduction. Here we provide a conceptual review of key advancements in this area of representation
learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and
graph neural networks. We review methods to embed individual nodes as well as approaches to embed
entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches,
and we highlight a number of important applications and directions for future work.

1 Introduction

Graphs are a ubiquitous data structure, employed extensively within computer science and related fields. Social
networks, molecular graph structures, biological protein-protein networks, recommender systems—all of these
domains and many more can be readily modeled as graphs, which capture interactions (i.e., edges) between
individual units (i.e., nodes). As a consequence of their ubiquity, graphs are the backbone of countless systems,
allowing relational knowledge about interacting entities to be efficiently stored and accessed [2].

However, graphs are not only useful as structured knowledge repositories: they also play a key role in modern
machine learning. Many machine learning applications seek to make predictions or discover new patterns using
graph-structured data as feature information. For example, one might wish to classify the role of a protein in a
biological interaction graph, predict the role of a person in a collaboration network, recommend new friends to
a user in a social network, or predict new therapeutic applications of existing drug molecules, whose structure
can be represented as a graph.

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Roadmap

Introductions, context and motivation

Graph signal processing

Semi-supervised node classification

Network community detection

Link prediction
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Link prediction

1

Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
graph inference. Bottom right: Tomographic network inference.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.
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Original graph Link prediction 

I Suppose we observe vertex attributes x = [x1, . . . , xNv ]>; and

I Edge status only observed for subset of pairs V(2)
obs ⊂ V(2)= V × V

I Goal: predict edge status for all other pairs, i.e., V(2)
miss = V(2) \ V(2)

obs
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Problem statement

I Let G (V, E) be a random graph, with adjacency matrix A ∈ {0, 1}Nv×Nv

⇒ Aobs and Amiss denote entries in V(2)
obs and V(2)

miss

Link prediction

Predict entries in Amiss , given observations Aobs = aobs and possibly
various vertex attributes X = x ∈ RNv

I Edge status information may be missing due to:
⇒ Difficulty in observation, issues of sampling
⇒ Edge is not yet present, wish to predict future status

I Given a model for X and (Aobs ,Amiss), jointly predict Amiss based on

P
[
Amiss

∣∣Aobs = aobs ,X = x
]

⇒ More manageable to predict the variables Amiss
ij individually
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Informal scoring methods

I Idea: compute score s(i , j) for missing ‘potential edges’ {i , j} ∈ V(2)
miss

⇒ Predicted edges returned by retaining the top n∗ scores

I Scores designed to assess certain local structural properties of G obs

⇒ Distance-based, inspired by the small-world principle

s(i , j) = −distG obs (i , j)

⇒ Neighborhood-based, e.g., the number of common neighbors

s(i , j) = |N obs
i ∩N obs

j | or s(i , j) =
|N obs

i ∩N obs
j |

|N obs
i ∪N obs

j |

⇒ Favor loosely-connected common neighbors [Adamic-Adar’03]

s(i , j) =
∑

k∈N obs
i ∩N

obs
j

1
log |N obs

k |
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Tests on co-authorship networks

I Results from a link prediction study in [Liben Nowell-Kleinberg’03]
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Classification methods

I Idea: use training data aobs and x to build a binary classifier
⇒ Classifier is in turn used to predict the entries in Amiss

I Logistic regression classifiers most popular, based on the model

log

[
Pβ(Aij = 1

∣∣Zij = z)

Pβ(Aij = 0
∣∣Zij = z)

]
= β>z, where

(i) β ∈ RK is a vector of regression coefficients; and
(ii) Zij is a vector of explanatory variables indexed by {i , j}

Zij = [g1(Aobs
(−ij),X), . . . , gK (Aobs

(−ij),X)]>

I Functions gk(·) encode useful predictive information in aobs(−ij) and x

Ex: vertex attributes, score functions, network statistics
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Logistic regression classifier

I Train: Obtain MLE β̂ via iteratively-reweighted LS

I Test: Potential edges (i , j) declared present based on probabilities

Pβ̂(Aij = 1
∣∣Zij = z) =

exp
(
β̂
>
z
)

1 + exp
(
β̂
>
z
)

I Logistic regression assumes Aij conditionally independent given z
⇒ Seldom the case with relational network data

I Underlying mechanism of data missingness is important
⇒ Classification for link prediction reminiscent of cross-validation
⇒ Assumption that data are missing at random is fundamental
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Latent variable models

I In addition to a lineal predictor β>z, latent models describe Aij

⇒ As a function of vertex-specific latent variables ui and uj

Homophily Stochastic equivalence 

I Latent models are flexible to capture underlying social mechanisms
Ex: homophily (transitivity) and stochastic equivalence (groups)
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Latent class and distance models

I Latent distance model: node i has unobserved position Ui ∈ Rd

I Positions Ui in latent space assumed i.i.d. e.g., Gaussian distributed
I Model cond. probability of edge Aij as function of β>z− ‖ui − uj‖2
I Homophily: Nearby nodes in latent space more likely to link

I Latent class model: node i belongs to unobserved class Ui ∈ {1, . . . , k}
I Classes Ui assumed i.i.d. e.g., multinomial distributed
I Model cond. probability of edge Aij as function of β>z− θui ,uj
I Stochastic equivalence: Nodes in same class equally likely to link

P. D. Hoff, “Modeling homophily and stochastic equivalence in
symmetric relational data,” NIPS, 2008
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Logistic regression with latent variables

I Let M ∈ RNv×Nv be an unknown, random, and symmetric matrix

M = U>ΛU + E, where

(i) U = [u1, . . . , uNv ] is a random orthonormal matrix of latent variables;
(ii) Λ is a random diagonal matrix; and
(iii) E is a symmetric matrix of i.i.d. noise entries εij

I Latent eigenmodel subsumes the class and distance variants [Hoff’08]
⇒ Notice that Mij = uT

i Λuj + εij

I The logistic regression model with latent variables is

log

[
Pβ(Aij = 1

∣∣Zij = z,Mij = m)

Pβ(Aij = 0
∣∣Zij = z,Mij = m)

]
= β>z + m

I Aij still assumed conditionally independent given Zij and Mij

⇒ But they are conditionally dependent given only Zij
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Bayesian link prediction

I Specify distributions for U,Λ,E to make statistical link predictions
I Bayesian inference natural ⇒ Specify a prior for β as well

I To predict those entries in Amiss , threshold the posterior mean

E

 exp
(
β>Zij + Mij

)
1 + exp

(
β>Zij + Mij

) ∣∣Aobs = aobs ,Zij = z


I Use MCMC algorithms to approximate the posterior distribution

I Gaussian distributions attractive for their conjugacy properties

I Higher complexity than MLE for standard logistic regression
⇒ Need to generate draws for N2

v unobserved variables {Uij}
⇒ Major cost reduction with reduced rank(U) = k � Nv models
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Example: predicting lawyer collaborations

I Network G obs of working relationships among lawyers [Lazega’01]
I Nodes are Nv = 36 partners, edges indicate partners worked together
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Fig. 6.7 Visualization of Lazega’s network of collaborative working relationships among lawyers.
Vertices represent partners and are labeled according to their seniority. Vertex shapes (i.e., triangle,
square, or pentagon) indicate three different office locations, while vertex colors correspond to the
type of practice (i.e., litigation (red) or corporate (cyan)). Edges indicate collaboration between
partners. There are three female partners (i.e., those with seniority labels 27, 29, and 34); the rest
are male. Data courtesy of Emmanuel Lazega.

I Data includes various node-level attributes:
I Seniority (node labels indicate rank ordering)
I Office location (triangle, square or pentagon)
I Type of practice, i.e., litigation (red) and corporate (cyan)
I Gender (three partners are female labeled 27, 29 and 34)

I Goal: predict cooperation among social actors in an organization
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Methods tested

I Define the following set of explanatory variables:

Z
(1)
ij = seniorityi + seniorityj , Z

(2)
ij = practicei + practicej

Z
(3)
ij = I

{
practicei = practicej

}
, Z

(4)
ij = I

{
genderi = genderj

}
Z

(5)
ij = I {officei = officej}, Z

(6)
ij = |N obs

i ∩N obs
j |

Method 1: standard logistic regression with Z
(1)
ij , . . . ,Z

(5)
ij

Method 2: standard logistic regression with Z
(1)
ij , . . . ,Z

(6)
ij

Method 3 informal scoring method with s(i , j) = Z
(6)
ij

Method 4: logistic regression with Z
(1)
ij , . . . ,Z

(5)
ij and latent eigenmodel

I Five-fold cross-validation over the set of 36(36− 1)/2 = 630 vertex pairs
⇒ For each fold, 630/5 = 126 pairs in Amiss and the rest in Aobs
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Receiver operating characteristic

I Receiver operating characteristic curves show predictive performance
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Fig. 7.2 ROC curves summarizing the capabilities to predict collaborative working relationships
in the lawyer dataset of Section 6.5.4, for method 1 (red), based on logistic regression, with the
explanatory variables Z(1) through Z(5), method 2 (blue), which is method 1 augmented with the
variable Z(6), method 3 (brown), an informal scoring method based on scores s(i, j) = Z(6)

i j , and
method 4 (yellow), the method of Hoff [200,201], using the same variables as in method 1.

Method 1 

Random 

Method 4 

Method 3 
Method 2 

I Method 1 performs worst ⇒ Agnostic to network structure

I Informal Method 3 yields slightly worst performance than 2 and 4
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Where do we go from here?

I Got our first glimpse onto statistical models for network data

I Network-based versions of canonical statistical models
⇒ Regression models - Exponential random graph models (ERGMs)
⇒ Latent variable models - Stochastic block models and graphons

I Link prediction an instance of network topology inference problems
Q: If G (or a portion thereof) is unobserved, can we infer it from data?
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The construction of a meaningful graph topology plays a 
crucial role in the effective representation, processing, 
analysis, and visualization of structured data. When a nat-

ural choice of the graph is not readily available from the data 
sets, it is thus desirable to infer or learn a graph topology from 
the data. In this article, we survey solutions to the problem of 
graph learning, including classical viewpoints from statistics 
and physics, and more recent approaches that adopt a graph 
signal processing (GSP) perspective. We further emphasize 
the conceptual similarities and differences between classical 
and GSP-based graph-inference methods and highlight the 
potential advantage of the latter in a number of theoretical and 
practical scenarios. We conclude with several open issues and 
challenges that are keys to the design of future signal pro-
cessing and machine-learning algorithms for learning graphs 
from data.

Introduction
Modern data analysis and processing tasks typically involve 
large sets of structured data, where the structure carries criti-
cal information about the nature of the data. One can find nu-
merous examples of such data sets in a wide diversity of ap-
plication domains, including transportation networks, social 
networks, computer networks, and brain networks. Typically, 

graphs are used as mathematical tools to describe the struc-
ture of such data. They provide a flexible way of  representing 
the relationship between data entities. In the past decade, 
numerous signal processing and machine-learning algorithms 
have been introduced for analyzing structured data on a priori 
known graphs [1]– [3]. However, there are often settings where 
the graph is not readily available, and the structure of the data 
has to be estimated to permit the effective representation, pro-
cessing, analysis, or visualization of the data. In this case, a 
crucial task is to infer a graph topology that describes the char-
acteristics of the data observations, hence capturing the under-
lying relationship between these entities.

Consider an example in brain signal analysis: suppose we 
are given blood-oxygen-level-dependent (BOLD) signals, i.e., 
time series extracted from functional magnetic resonance 
imaging data that reflect the activities of different regions of 
the brain. An area of significant interest in neuroscience is the 
inference of functional connectivity, i.e., to capture the relation-
ship between brain regions that correlate or synchronize given a 
certain condition of a patient, which may help reveal underpin-
nings of some neurodegenerative diseases (see Figure 1). This 
leads to the problem of inferring a graph structure, given the 
multivariate BOLD time series data.

Formally, the problem of graph learning is the following: 
given M  observations on N  variables or data entities rep-
resented in a data matrix ,X RN M! #  and given some prior 
knowledge (e.g., distribution, data model, and so on) about 
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ABSTRACT | Identifying graph topologies as well as processes 

evolving over graphs emerge in various applications involving 

gene-regulatory, brain, power, and social networks, to name 

a few. Key graph-aware learning tasks include regression, 

classification, subspace clustering, anomaly identification, 

interpolation, extrapolation, and dimensionality reduction. 

Scalable approaches to deal with such high-dimensional tasks 

experience a paradigm shift to address the unique modeling and 

computational challenges associated with data-driven sciences. 

Albeit simple and tractable, linear time-invariant models are 

limited since they are incapable of handling generally evolving 

topologies, as well as nonlinear and dynamic dependencies 

between nodal processes. To this end, the main goal of this paper 

is to outline overarching advances, and develop a principled 

framework to capture nonlinearities through kernels, which are 

judiciously chosen from a preselected dictionary to optimally 

fit the data. The framework encompasses and leverages (non)

linear counterparts of partial correlation and partial Granger 

causality, as well as (non)linear structural equations and vector 

autoregressions, along with attributes such as low rank, sparsity, 

and smoothness to capture even directional dependencies with 

abrupt change points, as well as time-evolving processes over 

possibly time-evolving topologies. The overarching approach 

inherits the versatility and generality of kernel-based methods, 

Digital Object Identifier: 10.1109/JPROC.2018.2804318

and lends itself to batch and computationally affordable 

online learning algorithms, which include novel Kalman filters 

over graphs. Real data experiments highlight the impact of 

the nonlinear and dynamic models on consumer and financial 

networks, as well as gene-regulatory and functional connectivity 

brain networks, where connectivity patterns revealed exhibit 

discernible differences relative to existing approaches.

KEYWORDS | Kernel-based models; network topology 

inference; nonlinear modeling; time-varying networks

I. IN TRODUCTION

The science of networks and networked interactions has 

recently emerged as a major catalyst for understanding 

the behavior of complex systems [28], [67], [90], [109]. 

Such systems are typically described by graphs, and can 

be man-made or natural. For example, human interac-

tion over the web commonly occurs over social networks 

such as Facebook and Twitter, while sophisticated brain 

functions are the result of complex physical interactions 

among neurons; see, e.g., [95] and references therein. 

Other complex networks show up in diverse fields includ-

ing financial markets, genomics, proteomics, power grids, 
and transportation systems, to name a few.

Despite their popularity, single-layer networks may fall 

short in describing complex systems. For instance, mode-

ling interactions between two individuals using a single edge 

weight can be an oversimplification of reality. Generalizing 
their single-layer counterparts, multilayer networks allow 

nodes to belong to different groups, termed layers [10], [66]. 
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Topology Identification and 
Learning Over Graphs: 
Accounting for Nonlinearities 
and Dynamics
This article focuses on the problem of learning graphs from data, in particular, to 
capture the nonlinear and dynamic dependencies.
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Glossary

I Networks and graphs
I Network data science
I Machine learning on graphs
I Graph signal processing
I Graph Fourier transform
I Laplacian
I Convolution
I Graph neural networks
I Semi-supervised learning
I Nearest-neighbor prediction
I Signal smoothness
I Graph regularization

I Community detection
I Graph cut
I Spectral clustering
I Node embedding
I Graph representation learning
I Link prediction
I Logistic regression
I Latent variable models
I Bayesian inference
I Stochastic block models
I Graphons
I Network topology inference
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