
Graph Theory Review

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science

University of Rochester

gmateosb@ece.rochester.edu

http://www.ece.rochester.edu/~gmateosb/

Facultad de Ingenieria, UdelaR
Montevideo, Uruguay

December 30, 2020

Machine Learning on Graphs Graph Theory Review 1

mailto:gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

Basic definitions and concepts

Basic definitions and concepts

Movement in a graph and connectivity

Families of graphs

Algebraic graph theory

Graph data structures and algorithms

Machine Learning on Graphs Graph Theory Review 2

Graphs

1

2 3

45

6

I Graph G (V, E) ⇒ A set V of vertices or nodes
⇒ Connected by a set E of edges or links
⇒ Elements of E are unordered pairs (u, v), u, v ∈ V

I In figure ⇒ Vertices are V = {1, 2, 3, 4, 5, 6}
⇒ Edges E = {(1, 2), (1, 5),(2, 3), (3, 4), ...

(3, 5), (3, 6), (4, 5), (4, 6)}

I Often we will say graph G has order Nv := |V|, and size Ne := |E|

Machine Learning on Graphs Graph Theory Review 3

From networks to graphs

I Networks are complex systems of inter-connected components

I Graphs are mathematical representations of these systems

⇒ Formal language we use to talk about networks

I Components: nodes, vertices V
I Inter-connections: links, edges E
I Systems: networks, graphs G (V, E)

Machine Learning on Graphs Graph Theory Review 4

Vertices and edges in networks

Network Vertex Edge

Internet Computer/router Cable or wireless link
Metabolic network Metabolite Metabolic reaction
WWW Web page Hyperlink
Food web Species Predation
Gene-regulatory network Gene Regulation of expression
Friendship network Person Friendship or acquaintance
Power grid Substation Transmission line
Affiliation network Person and club Membership
Protein interaction Protein Physical interaction
Citation network Article/patent Citation
Neural network Neuron Synapse

...
...

...

Machine Learning on Graphs Graph Theory Review 5

Simple and multi-graphs

I In general, graphs may have self-loops and multi-edges

⇒ A graph with either is called a multi-graph

1

2 3

45

6

I Mostly work with simple graphs, with no self-loops or multi-edges

1

2 3

45

6

Machine Learning on Graphs Graph Theory Review 6

Directed graphs

1

2 3

45

6

I In directed graphs, elements of E are ordered pairs (u, v), u, v ∈ V
⇒ Means (u, v) distinct from (v , u)

⇒ Directed edges are called arcs

I Directed graphs often called digraphs

⇒ By convention arc (u, v) points to v

⇒ If both {(u, v), (v , u)} ⊆ E , the arcs are said to be mutual

I Ex: who-calls-whom phone networks, Twitter follower networks

Machine Learning on Graphs Graph Theory Review 7

Subgraphs

I Consider a given graph G (V, E)

1

2 3

45

6

I Def: Graph G ′(V ′, E ′) is an induced subgraph of G if V ′ ⊆ V and
E ′ ⊆ E is the collection of edges in G among that subset of vertices

I Ex: Graph induced by V ′ = {1, 4, 5}

1

5 4

Machine Learning on Graphs Graph Theory Review 8

Weighted graphs

I Oftentimes one labels vertices, edges or both with numerical values

⇒ Such graphs are called weighted graphs

I Useful in modeling are e.g., Markov chain transition diagrams

I Ex: Single server queuing system (M/M/1 queue)

λ
µ

i i+1i−10

λ

µ µ

λλ λ

µ

.

I Labels could correspond to measurements of network processes

I Ex: Node is infected or not with influenza, IP traffic carried by a link

Machine Learning on Graphs Graph Theory Review 9

Typical network representations

Network Graph representation

WWW Directed multi-graph (with loops), unweighted
Facebook friendships Undirected, unweighted
Citation network Directed, unweighted, acyclic
Collaboration network Undirected, unweighted
Mobile phone calls Directed, weighted
Protein interaction Undirected multi-graph (with loops), unweighted

...
...

I Note that multi-edges are often encoded as edge weights (counts)

Machine Learning on Graphs Graph Theory Review 10

Adjacency

I Useful to develop a language to discuss the connectivity of a graph

I A simple and local notion is that of adjacency

⇒ Vertices u, v ∈ V are said adjacent if joined by an edge in E
⇒ Edges e1, e2 ∈ E are adjacent if they share an endpoint in V

1

2 3

45

6

I In figure ⇒ Vertices 1 and 5 are adjacent; 2 and 4 are not
⇒ Edge (1, 2) is adjacent to (1, 5), but not to (4, 6)

Machine Learning on Graphs Graph Theory Review 11

Degree

I An edge (u, v) is incident with the vertices u and v

I Def: The degree dv of vertex v is its number of incident edges

⇒ Degree sequence arranges degrees in non-decreasing order

1

2 3

45

6

2

2 4

33

2

I In figure ⇒ Vertex degrees shown in red, e.g., d1 = 2 and d5 = 3
⇒ Graph’s degree sequence is 2,2,2,3,3,4

I High-degree vertices likely influential, central, prominent

Machine Learning on Graphs Graph Theory Review 12

Properties and observations about degrees

I Degree values range from 0 to Nv − 1

I The sum of the degree sequence is twice the size of the graph

Nv∑
v=1

dv = 2|E| = 2Ne

⇒ The number of vertices with odd degree is even

I In digraphs, we have vertex in-degree d in
v and out-degree dout

v

1

2 3

45

6

0, 2

1, 2 1, 2

2, 23, 1

2, 0

I In figure ⇒ Vertex in-degrees shown in red, out-degrees in blue
⇒ For example, d in

1 = 0, dout
1 = 2 and d in

5 = 3, dout
5 = 1

Machine Learning on Graphs Graph Theory Review 13

Movement in a graph and connectivity

Basic definitions and concepts

Movement in a graph and connectivity

Families of graphs

Algebraic graph theory

Graph data structures and algorithms

Machine Learning on Graphs Graph Theory Review 14

Movement in a graph

I Def: A walk of length l from v0 to vl is an alternating sequence

{v0, e1, v1, . . . , vl−1, el , vl}, where ei is incident with vi−1, vi

I A trail is a walk without repeated edges

I A path is a walk without repeated nodes (hence, also a trail)

1

2 3

45

6

I A walk or trail is closed when v0 = vl . A closed trail is a circuit

I A cycle is a closed walk with no repeated nodes except v0 = vl

I All these notions generalize naturally to directed graphs

Machine Learning on Graphs Graph Theory Review 15

Connectivity

I Vertex v is reachable from u if there exists a u − v walk

I Def: Graph is connected if every vertex is reachable from every other

1

2 3

45

6

7

I If bridge edges are removed, the graph becomes disconnected

Machine Learning on Graphs Graph Theory Review 16

Connected components

I Def: A component is a maximally connected subgraph

⇒ Maximal means adding a vertex will ruin connectivity

1

2 3

45

6

7

I In figure ⇒ Components are {1, 2, 5, 7}, {3, 6} and {4}
⇒ Subgraph {3, 4, 6} not connected, {1, 2, 5} not maximal

I Disconnected graphs have 2 or more components

⇒ Largest component often called giant component

Machine Learning on Graphs Graph Theory Review 17

Giant connected components

I Large real-world networks typically exhibit one giant component

I Ex: romantic relationships in a US high school [Bearman et al’04]

63 14 9
2 2

I Q: Why do we expect to find a single giant component?
I A: Well, it only takes one edge to merge two giant components

Machine Learning on Graphs Graph Theory Review 18

Connectivity of directed graphs

I Connectivity is more subtle with directed graphs. Two notions

I Def: Digraph is strongly connected if for every pair u, v ∈ V, u is
reachable from v (via a directed walk) and vice versa

I Def: Digraph is weakly connected if connected after disregarding arc
directions, i.e., the underlying undirected graph is connected

1

2 3

45

6

I Above graph is weakly connected but not strongly connected

⇒ Strong connectivity obviously implies weak connectivity

Machine Learning on Graphs Graph Theory Review 19

How well connected nodes are?

I Q: Which node is the most connected?

I A: Node rankings to measure website relevance, social influence

I There are two important connectivity indicators

⇒ How many links point to a node (outgoing links irrelevant)

⇒ How important are the links that point to a node

1

2 3

45

6

I Idea exploited by Google’s PageRank c© to rank webpages

... by social scientists to study trust & reputation in social networks

... by ISI to rank scientific papers, journals ... More soon

Machine Learning on Graphs Graph Theory Review 20

Families of graphs

Basic definitions and concepts

Movement in a graph and connectivity

Families of graphs

Algebraic graph theory

Graph data structures and algorithms

Machine Learning on Graphs Graph Theory Review 21

Complete graphs and cliques

I A complete graph Kn of order n has all possible edges

K2 K3 K4 K5

I Q: What is the size of Kn?

I A: Number of edges in Kn = Number of vertex pairs =
(
n
2

)
= n(n−1)

2

I Of interest in network analysis are cliques, i.e., complete subgraphs

⇒ Extreme notions of cohesive subgroups, communities

Machine Learning on Graphs Graph Theory Review 22

Regular graphs

I A d-regular graph has vertices with equal degree d

I Naturally, the complete graph Kn is (n − 1)-regular

⇒ Cycles are 2-regular (sub) graphs

I Regular graphs arise frequently in e.g.,
I Physics and chemistry in the study of crystal structures
I Geo-spatial settings as pixel adjacency models in image processing
I Opinion formation, information cycles as regular subgraphs

Machine Learning on Graphs Graph Theory Review 23

Trees and directed acyclic graphs

I A tree is a connected acyclic graph. An acyclic graph is forest

I Ex: river network, information cascades in Twitter, citation network

Directed
tree

DAG Tree

I A directed tree is a digraph whose underlying undirected graph is a tree

⇒ Root is only vertex with paths to all other vertices

I Vertex terminology: parent, children, ancestor, descendant, leaf

I The underlying graph of a directed acyclic graph (DAG) is not a tree

⇒ DAGs have a near-tree structure, also useful for algorithms

Machine Learning on Graphs Graph Theory Review 24

Bipartite graphs

I A graph G (V, E) is called bipartite when

⇒ V can be partitioned in two disjoint sets, say V1 and V2; and

⇒ Each edge in E has one endpoint in V1, the other in V23

v1 v2 v3 v4 v5

v6 v7 v8

v1

v2

v3

v4

v5

Fig. 2.3 Left: a bipartite graph. Right: a graph induced by the bipartite graph on the ‘white’ vertex
set.I Useful to represent e.g., membership or affiliation networks

⇒ Nodes in V1 could be people, nodes in V2 clubs

⇒ Induced graph G (V1, E1) joins members of same club

Machine Learning on Graphs Graph Theory Review 25

Planar graphs

I A graph G (V, E) is called planar if it can be drawn in the plane so
that no two of its edges cross each other

I Planar graphs can be drawn in the plane using straight lines only

I Useful to represent or map networks with a spatial component

⇒ Planar graphs are rare

⇒ Some mapping tools minimize edge crossings

Machine Learning on Graphs Graph Theory Review 26

Algebraic graph theory

Basic definitions and concepts

Movement in a graph and connectivity

Families of graphs

Algebraic graph theory

Graph data structures and algorithms

Machine Learning on Graphs Graph Theory Review 27

Adjacency matrix

I Algebraic graph theory deals with matrix representations of graphs

I Q: How can we capture the connectivity of G (V, E) in a matrix?

I A: Binary, symmetric adjacency matrix A ∈ {0, 1}Nv×Nv , with entries

Aij =

{
1, if (i , j) ∈ E
0, otherwise

.

⇒ Note that vertices are indexed with integers 1, . . . ,Nv

⇒ Binary and symmetric A for unweighted and undirected graph

I In words, A is one for those entries whose row-column indices denote
vertices in V joined by an edge in E , and is zero otherwise

Machine Learning on Graphs Graph Theory Review 28

Adjacency matrix examples

I Examples for undirected graphs and digraphs

2
4 3

1

2
4 3

1

Au =


0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

 , Ad =


0 1 0 1
0 0 0 0
0 0 0 0
0 1 1 0


I If the graph is weighted, store the (i , j) weight instead of 1

Machine Learning on Graphs Graph Theory Review 29

Adjacency matrix properties

I Adjacency matrix useful to store graph structure. More soon

⇒ Also, operations on A yield useful information about G

I Degrees: Row-wise sums give vertex degrees, i.e.,
∑Nv

j=1 Aij = di
I For digraphs A is not symmetric and row-, colum-wise sums differ

Nv∑
j=1

Aij = dout
i ,

Nv∑
i=1

Aij = d in
j

I Walks: Let Ar denote the r -th power of A, with entries A
(r)
ij

⇒ Then A
(r)
ij yields the number of i − j walks of length r in G

I Corollary: trace(A2)/2 = Ne and trace(A3)/6 = #4 in G

I Spectrum: G is d-regular if and only if 1 is an eigenvector of A, i.e.,

A1 = d1

Machine Learning on Graphs Graph Theory Review 30

Incidence matrix

I A graph can be also represented by its Nv × Ne incidence matrix B

⇒ B is in general not a square matrix, unless Nv = Ne

I For undirected graphs, the entries of B are

Bij =

{
1, if vertex i incident to edge j
0, otherwise

.

I For digraphs we also encode the direction of the arc, namely

Bij =

 1, if edge j is (k , i)
−1, if edge j is (i , k)
0, otherwise

.

Machine Learning on Graphs Graph Theory Review 31

Incidence matrix examples

I Examples for undirected graphs and digraphs

2
4 3

1

2
4 3

1

e1

e2

e4

e3

e5

e1

e2

e4

e3

e5

Bu =


1 0 1 0 1
1 1 0 0 0
0 0 0 1 1
0 1 1 1 0

 , Bd =


−1 0 −1 0 1
1 1 0 0 0
0 0 0 1 −1
0 −1 1 −1 0


I If the graph is weighted, modify nonzero entries accordingly

Machine Learning on Graphs Graph Theory Review 32

Graph Laplacian

I Vertex degrees often stored in the diagonal matrix D, where Dii = di

D =


2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 3


2

4 3

1

I The Nv ×Nv symmetric matrix L := D−A is called graph Laplacian

Lij =

 di , if i = j
−1, if (i , j) ∈ E
0, otherwise

, L =


2 −1 0 −1
−1 2 0 −1
0 0 1 −1
−1 −1 −1 3



Machine Learning on Graphs Graph Theory Review 33

Laplacian matrix properties

I Smoothness: For any vector x ∈ RNv of “vertex values”, one has

x>Lx =
∑

(i,j)∈E

(xi − xj)
2

which can be minimized to enforce smoothness of functions on G

I Positive semi-definiteness: Follows since x>Lx ≥ 0 for all x ∈ RNv

I Rank deficiency: Since L1 = 0, L is rank deficient

I Spectrum and connectivity: The smallest eigenvalue λ1 of L is 0
I If the second-smallest eigenvalue λ2 6= 0, then G is connected
I If L has n zero eigenvalues, G has n connected components

Machine Learning on Graphs Graph Theory Review 34

Graph data structures and algorithms

Basic definitions and concepts

Movement in a graph and connectivity

Families of graphs

Algebraic graph theory

Graph data structures and algorithms

Machine Learning on Graphs Graph Theory Review 35

Graph data structures and algorithms

I Q: How can we store and analyze a graph G using a computer?

Purely mathematical
objects

Practical tools for
network analytics

Graph data structures
and algorithms

I Data structures: efficient storage and manipulation of a graph

I Algorithms: scalable computational methods for graph analytics

⇒ Contributions in this area primarily due to computer science

Machine Learning on Graphs Graph Theory Review 36

Adjacency matrix as a data structure

I Q: How can we represent and store a graph G in a computer?

I A: The Nv × Nv adjacency matrix A is a natural choice

Aij =

{
1, if (i , j) ∈ E
0, otherwise

.

A =


0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0


2

4 3

1

I Matrices (arrays) are basic data objects in software environments

⇒ Naive memory requirement is O(N2
v)

⇒ May be undesirable for large, sparse graphs

Machine Learning on Graphs Graph Theory Review 37

Networks are sparse graphs

I Most real-world networks are sparse, meaning

Ne �
Nv (Nv − 1)

2
or equivalently d̄ :=

1

Nv

Nv∑
v=1

dv � Nv − 1

I Figures from the study by Leskovec et al ’09 are eloquent

Network dataset Order Nv Avg. degree d̄

WWW (Stanford-Berkeley) 319,717 9.65
Social network (LinkedIn) 6,946,668 8.87
Communication (MSN IM) 242,720,596 11.1
Collaboration (DBLP) 317,080 6.62
Roads (California) 1,957,027 2.82
Proteins (S. Cerevisiae) 1,870 2.39

I Graph density ρ := Ne

N2
v

= d̄
2Nv

is another useful metric

Machine Learning on Graphs Graph Theory Review 38

Adjacency and edge lists

I An adjacency-list representation of graph G is an array of size Nv

⇒ The i-th array element is a list of the vertices adjacent to i

La[1] = {2, 4}
La[2] = {1, 4}
La[3] = {4}
La[4] = {1, 2, 3} 2

4 3

1

I Similarly, an edge list stores the vertex pairs incident to each edge

Le [1] = {1, 2}
Le [2] = {1, 4}
Le [3] = {2, 4}
Le [4] = {3, 4}

I In either case, the memory requirement is O(Ne)

Machine Learning on Graphs Graph Theory Review 39

Graph algorithms and complexity

I Numerous interesting questions may be asked about a given graph

I For few simple ones, lookup in data structures suffices

Q1: Are vertices u and v linked by an edge?
Q2: What is the degree of vertex u?

I Some others require more work. Still can tackle them efficiently

Q1: What is the shortest path between vertices u and v?
Q2: How many connected components does the graph have?
Q3: Is a given digraph acyclic?

I Unfortunately, in some cases there is likely no efficient algorithm

Q1: What is the maximal clique in a given graph?

I Algorithmic complexity key in the analysis of modern network data

Machine Learning on Graphs Graph Theory Review 40

Testing for connectivity

I Goal: verify connectivity of a graph based on its adjacency list

I Idea: start from vertex s, explore the graph, mark vertices you visit

Output : List M of marked vertices in the component
Input : Graph G (e.g., adjacency list)
Input : Starting vertex s

L := {s}; M := {s}; % Initialize exploration and marking lists
% Repeat while there are still nodes to explore
while L 6= ∅ do

choose u ∈ L; % Pick arbitrary vertex to explore
if ∃ (u, v) ∈ E such that v /∈ M then

choose (u, v) with v of smallest index;
L := L ∪ {v}; M := M ∪ {v}; % Mark and augment

else
L := L \ {u}; % Prune

end

end

Machine Learning on Graphs Graph Theory Review 41

Graph exploration example

I Below we indicate the chosen and marked nodes. Initialize s = 2

L Mark
{2} 2
{2,1} 1
{2,1,5} 5
{2,1,5,6} 6
{1,5,6}
{1,5,6,4} 4
{5,6,4}
{5,4}
{5,4,3} 3
{5,3}
{5,3,7} 7
{5,3}
{3}
{3,8} 8
{3}
{}

3

2

4

5

6

7

81 1

2

34

5

6

7

8 1

2

34

5 7

86

1

2

34

5

6

7

8 1

2

34

5

6

7

8

5

1

2

34

6

7

8

2

1

34

5

6

7

81

3

2

4

5

6

7

8

S1 S2 S3

S4 S5 S6

S7 S8

I Exploration takes 2Nv steps. Each node is added and removed once

Machine Learning on Graphs Graph Theory Review 42

Breadth-first search

I Choices made arbitrarily in the exploration algorithm. Variants?

I Breadth-first search (BFS): choose for u the first element of L

Output : List M of marked vertices in the component
Input : Graph G (e.g., adjacency list)
Input : Starting vertex s

L := {s}; M := {s}; % Initialize exploration and marking lists
% Repeat while there are still nodes to explore
while L 6= ∅ do

u := first(L); % Breadth first
if ∃ (u, v) ∈ E such that v /∈ M then

choose (u, v) with v of smallest index;
L := L ∪ {v}; M := M ∪ {v}; % Mark and augment

else
L := L \ {u}; % Prune

end

end

Machine Learning on Graphs Graph Theory Review 43

BFS example

I Below we indicate the chosen and marked nodes. Initialize s = 2

L Mark
{2} 2
{2,1} 1
{2,1,5} 5
{1,5}
{1,5,4} 4
{1,5,4,6} 6
{5,4,6}
{4,6}
{4,6,3} 3
{6,3}
{3}
{3,7} 7
{3,7,8} 8
{7,8}
{8}
{}

3

2

4

5

6

7

81 1

2

34

5

6

7

8 1

2

34

5 7

86

1

2

34

5

6

7

8 1

2

34

5

6

7

8

5

1

2

34

6

7

8

2

1

34

5

6

7

81

3

2

4

5

6

7

8

S1 S2 S3

S4 S5 S6

S7 S8

I The algorithm builds a wider tree (breadth first)

Machine Learning on Graphs Graph Theory Review 44

Depth-first search

I Depth-first search (DFS): choose for u the last element of L

Output : List M of marked vertices in the component
Input : Graph G (e.g., adjacency list)
Input : Starting vertex s

L := {s}; M := {s}; % Initialize exploration and marking lists
% Repeat while there are still nodes to explore
while L 6= ∅ do

u := last(L); % Depth first
if ∃ (u, v) ∈ E such that v /∈ M then

choose (u, v) with v of smallest index;
L := L ∪ {v}; M := M ∪ {v}; % Mark and augment

else
L := L \ {u}; % Prune

end

end

Machine Learning on Graphs Graph Theory Review 45

DFS example

I Below we indicate the chosen and marked nodes. Initialize s = 2

L Mark
{2} 2
{2,1} 1
{2,1,4} 4
{2,1,4,3} 3
{2,1,4,3,7} 7
{2,1,4,3}
{2,1,4,3,8} 8
{2,1,4,3}
{2,1,4}
{2,1,4,6} 6
{2,1,4,6,5} 5
{2,1,4,6}
{2,1,4}
{2,1}
{2}
{}

4

6

7

8

S3
5

1

2

3

3

2

4

5

6

7

81 1

2

34

5

6

7

8 1

2

34

5 7

86

1

2

34

5

6

7

1

2

34

5

6

7

8

2

1

34

5

6

7

81

3

2

4

5

6

7

8

S1 S2

S4 S5 S6

S7 S8

8

I The algorithm builds longer paths (depth first)

Machine Learning on Graphs Graph Theory Review 46

Distances in a graph

I Recall a path {v0, e1, v1, . . . , vl−1, el , vl} has length l

⇒ Edges weights {we}, length of the walk is we1 + . . .+ wel

I Def: The distance between vertices u and v is the length of the
shortest u − v path. Oftentimes referred to as geodesic distance

⇒ In the absence of a u − v path, the distance is ∞
⇒ The diameter of a graph is the value of the largest distance

I Q: What are efficient algorithms to compute distances in a graph?

I A: BFS (for unit weights) and Dijkstra’s algorithm

Machine Learning on Graphs Graph Theory Review 47

Computing distances with BFS

I Use BFS and keep track of path lengths during the exploration

I Increment distance by 1 every time a vertex is marked

Output : Vector d of distances from reference vertex
Input : Graph G (e.g., adjacency list)
Input : Reference vertex s

L := {s}; M := {s}; d(s) = 0; % Initialization
% Repeat while there are still nodes to explore
while L 6= ∅ do

u := first(L); % Breadth first
if ∃ (u, v) ∈ E such that v /∈ M then

choose (u, v) with v of smallest index;
L := L ∪ {v}; M := M ∪ {v};% Mark and augment
d(v) := d(u) + 1 % Increment distance

else
L := L \ {u}; % Prune

end

end

Machine Learning on Graphs Graph Theory Review 48

Example: Distances in a social network

I BFS tree output for your friendship network

Machine Learning on Graphs Graph Theory Review 49

Glossary

I (Di) Graph

I Arc

I (Induced) Subgraph

I Incidence

I Degree sequence

I Walk, trail and path

I Connected graph

I Giant connected component

I Strongly connected digraph

I Clique

I Tree

I Bipartite graph

I Directed acyclic graph (DAG)

I Adjacency matrix

I Graph Laplacian

I Adjacency and edge lists

I Sparse graph

I Graph density

I Breadth-first search

I Depth-first search (DFS)

I Geodesic distance (BFS)

I Diameter

Machine Learning on Graphs Graph Theory Review 50

	Basic definitions and concepts
	Movement in a graph and connectivity
	Families of graphs
	Algebraic graph theory
	Graph data structures and algorithms

