Universidad de la República Facultad de Ingeniería - IMERL

Cálculo diferencial e integral en varias variables Segundo Semestre 2020

Solución primer parcial (matutino) – Sábado 17 de octubre de 2020

(I) Múltiple opción. Total: 30 puntos

Puntajes: 5 puntos si la respuesta es correcta, 0 punto por no contestar y -1 si la respuesta es incorrecta. Indique sus respuestas en los casilleros correspondientes, con letras mayúsculas imprenta: A, B, C, D o E.

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5	Ejercicio 6
D	В	A	В	A	E

Ejercicio 1

Se considera el polinomio complejo $P(z)=z^3+2z^2+\frac{3}{2}z+\frac{1}{2}$, y las siguientes afirmaciones:

- (I) Existen dos raíces tales que su suma es igual a la raíz restante.
- (II) La distancia entre dos raíces distintas siempre es constante.
- (III) El producto de todas las raíces es igual al inverso de la suma de todas sus raíces.

Entonces:

- A) Todas las afirmaciones son correctas.
- B) Ninguna afirmación es correcta.
- C) Solo las afirmaciones (II) y (III) son correctas.
- D) Solo las afirmaciones (I) y (III) son correctas.
- E) Solo la afirmación (I) es correcta.

Solución:

Calculemos las raíces de P(z).

Se puede ver que tenemos raíz evidente z = -1, ya que 1 + 3/2 = 2 + 1/2. Por lo tanto podemos escribir $P(z) = (z + 1)(z^2 + z + 1/2)$, calculando las raíces del segundo término tenemos,

$$z = \frac{-1 \pm \sqrt{1-2}}{2} = \frac{-1 \pm i}{2}.$$

Ahora si realizamos la suma de estas últimas dos, nos da $\frac{-1+i}{2} + \frac{-1-i}{2} = -1$, por lo que (I) es verdadera. Es claro que $\left|\frac{-1+i}{2} - \frac{-1-i}{2}\right| = \frac{1}{2}$, mientras que $\left|\frac{-1+i}{2} - (-1)\right| = \left|\frac{1+i}{2}\right| = \sqrt{1/2}$. Por lo tanto (II) es falsa. Para ver la tercera afirmación veamos si la suma de las raíces por el producto de las mismas da 1.

$$\left(-1 + \frac{-1+i}{2} + \frac{-1-i}{2}\right)(-1)\frac{(-1+i)}{2}\frac{(-1-i)}{2} = (-2)(-1)\frac{(-1)^2 - i^2}{4} = \frac{2}{2} = 1$$

Entonces (III) es verdadera.

En conclusión, solo (I) y (III) son verdaderas.

Respuesta: D.

Ejercicio 2

Sea y(x) la solución a la ecuación diferencial $y'' + 2y' + 2y = 5e^x$ que cumple y(0) = 1, y'(0) = 2. Calcule $y(\pi/2)$:

A)
$$y(\pi/2) = e^{-\pi/2} - e^{\pi/2}$$

B)
$$y(\pi/2) = e^{-\pi/2} + e^{\pi/2}$$

C)
$$y(\pi/2) = e^{-\pi/2}$$

D)
$$y(\pi/2) = e^{\pi/2}$$

E)
$$y(\pi/2) = \frac{\pi}{2}e^{\pi/2}$$

Solución:

Las raíces del polinomio característico $\lambda^2 + 2\lambda + 2$ son -1 + i y -1 - i, por lo tanto la solución general de la ecuación homogénea es $y_H(x) = e^{-x}(c_1 \cos(x) + c_2 \sin(x))$.

Observar que e^x verifica la condición $(e^x)'' + 2(e^x)' + 2e^x = 5e^x$, por lo tanto es una solución particular, es decir $y_P(x) = e^x$.

Juntando todo tenemos que la solución general de la ecuación es $y(x) = e^{-x}(c_1 \cos(x) + c_2 \sin(x)) + e^x$. Aplicando condiciones iniciales, tenemos que $y(0) = c_1 + 1 = 1$ y $y'(0) = 1 - c_1 + c_2 = 2$, de donde se sigue $c_1 = 0$ y $c_2 = 1$. Es decir $y = e^{-x} \sin(x) + e^x$.

Si evaluamos en $\pi/2$ obtenemos $y(\pi/2) = e^{-\pi/2} + e^{\pi/2}$.

Respuesta: **B**.

Ejercicio 3

Se consideran las siguientes afirmaciones:

- (I) Si A es un conjunto cerrado y $p \notin A$, entonces no existe ninguna sucesión con elementos de A que converja a p.
- (II) Sea $a_n = (-1)^n + \frac{1}{n}$. Entonces existen infinitas subsucesiones de a_n que convergen a -1.
- (III) Si a_n es no acotada, entonces toda subsucesión de a_n también es no acotada.

Entonces:

- A) Solo las afirmaciones (I) y (II) son correctas.
- B) Todas las afirmaciones son correctas.
- C) Solo las afirmaciones (II) y (III) son correctas.
- D) Ninguna afirmación es correcta.
- E) Solo la afirmación (I) es correcta.

Solución:

Si A es cerrado y $p \notin A$, entonces $p \in A^c$ que es abierto, por lo tanto p es un punto interior de A^c . Por lo tanto, cualquier sucesión que converja a p a partir de un momento tiene que estar incluida en A^c . Es decir, (I) es verdadera.

Dado $r \in \mathbb{N}$ consideremos el subconjunto de los naturales $K_r = \{1, \dots, r\} \cup \{2n + 1 : n \in \mathbb{N}\}$. Es claro que la subsucesión a_k tal que $k \in K_r$ converge a -1. Dado que r es cualquier natural, tenemos infinitas subsucesiones que convergen a -1. Es decir, (II) es verdadera.

Considerar la sucesión que toma valor n en los pares y 1 es los impares. Es claro que a_n es no acotada, pero a_{2n+1} si lo es. Es decir, (III) es falsa.

En conclusión solo (I) y (II) son verdaderas.

Respuesta: A.

Ejercicio 4

Sea a_n una sucesión de términos positivos tal que $\sum a_n$ es convergente. Considere las siguientes series

$$\sum_{n=1}^{\infty} e^{a_n^2} - 1 \quad \text{y} \quad \sum_{n=1}^{\infty} \cos(a_n) \sin(a_n).$$

Entonces:

- A) Ambas series son divergentes.
- B) Ambas series son convergentes.
- C) Solo la primera serie es convergente.

- D) Solo la segunda serie es convergente.
- E) La segunda serie no se puede clasificar a priori, por no ser de signo constante.

Solución:

Al ser $\sum a_n$ convergente, tenemos que $a_n \xrightarrow{n \to +\infty} 0$ y por lo tanto, $\lim_{n \to +\infty} \frac{e^{a_n^2} - 1}{a_n} = \lim_{n \to +\infty} \frac{a_n^2}{a_n} = 0$, por lo que a partir de un momento tenemos $e^{a_n^2} - 1 < a_n$. Por comparación, al ser ambas de términos positivos, tenemos que $\sum_{n=1}^{\infty} e^{a_n^2} - 1$ es convergente.

Como $a_n \xrightarrow{n \to +\infty} 0$, a partir de un momento vamos a tener $a_n \in [0, \pi/2]$, es decir $0 \le \cos(a_n) \le 1$. Por lo tanto, a partir de un momento $\cos(a_n) \sin(a_n) \le \sin(a_n)$ y $\sin(a_n) \sim a_n$, por lo que $\sum \sin(a_n)$ y $\sum a_n$ se comportan de la misma manera. Entonces, $\sum \sin(a_n)$ converge y por comparación también lo hace $\sum_{n=1}^{\infty} \cos(a_n) \sin(a_n)$.

En conclusión, ambas son convergentes.

Respuesta: **B**.

Ejercicio 5

Sean α, β, γ tres reales positivos. Considere la integral impropia $\int_0^1 \frac{dx}{(\sin(x))^{\alpha}(e^x - 1)^{\beta}(\cos(x))^{\gamma}}.$ Entonces para que la integral sea convergente debe cumplirse:

- A) $\alpha + \beta < 1$.
- B) $\alpha + \beta + \gamma < 1$.
- C) $\alpha < 1, y \beta + \gamma > \frac{1}{2}$
- D) $\alpha + \beta + \gamma > 1$.
- E) $\alpha + \beta < \frac{1}{2}$.

Solución:

Observar que esta integral es de segunda especie, y el único problema que sen(x) y $e^x - 1$ se anulan en 0.

Si $f(x) = \frac{1}{(\sin(x))^{\alpha}(e^x-1)^{\beta}(\cos(x))^{\gamma}}$, tenemos que cuando x tiende a 0, f(x) es equivalente a $\frac{1}{x^{\alpha+\beta}}$, por lo que la integral se comporta del mismo modo que $\int_0^1 \frac{dx}{x^{\alpha+\beta}}$ que es convergente si y sólo si $\alpha+\beta<1$. Respuesta: **A**.

Ejercicio 6

Sea
$$A = \{(\frac{1}{n}, (-1)^n) : n \in \mathbb{N}\} \subset \mathbb{R}^2$$
.

Seleccione la opción correcta (recuerde que A' es el conjunto de puntos de acumulación de A):

- A) $A' = \emptyset$.
- B) A es compacto.
- C) A' = A.
- D) A es cerrado.
- E) $A \subset \partial A$.

Solución:

Observar que tanto (0,1) como (0,-1) pertenecen a A' y no al conjunto A. Por lo que, $A' \neq \emptyset$ y $A' \neq A$. Además, como $A' \not\subset A$, entonces A no puede ser cerrado y tampoco compacto.

Por lo tanto $A \subset \partial A$.

Respuesta: E.

(II) Desarrollo. Total: 10 puntos

- 1. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales. Completar las siguientes definiciones:
 - a) (a_n) es convergente a $p \in \mathbb{R}$ si dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $a_n \in B(p, \epsilon)$ para todo $n \geq n_0$.
 - b) (a_n) es monónona creciente si $a_{n+1} \ge a_n$ para todo $n \in \mathbb{N}$.
 - c) (a_n) es acotada si existe un $k \in \mathbb{R}$ tal que $\{a_n\} \subset B(0,k)$.
- 2. Dar ejemplos de:
 - a) Una sucesión convergente que no es monótona.
 - b) Una sucesión acotada que no es convergente.

Solución:

La sucesión $a_n = \frac{(-1)^n}{n}$ es convergente pero no monótona. La sucesión $a_n = (-1)^n$ es acotada pero no convergente.

3. Consideremos la sucesión de término general $a_n = \frac{1 + \log(n)}{n^3}$.

Probar que es monótona (decreciente), acotada y convergente.

Solución:

Consideremos la función $f(x) = \frac{1 + \log(x)}{x^3}$, tenemos entonces que la derivada es

$$f'(x) = \frac{x^2(-2 - 3\log(x))}{x^6}.$$

Por lo tanto, la derivada es negativa si $x \ge 1$, esto implica que f(x) es monótona decreciente si $x \ge 1$, y por tanto nuestra sucesión es monótona decreciente.

Además, como 1 + log(n) > 0 y $n^3 > 0$ para todo $n \in \mathbb{N}$, tenemos que $a_n > 0$ y al ser monótona decreciente tenemos que $1 = a_1 \ge a_n > 0$ para todo $n \in \mathbb{N}$. Es decir, a_n está acotada.

Al ser monótona y acotada, tiene que ser convergente (Teorema 2.9).