
Technical Debt in Low-code platforms

Cecilia Apa

ceapa@fing.edu.uy



2

Low-code development platforms
(Specific development context)

• Low-code - introduced by the industry analyst Forrester 
Research (2014)

A low-code development platform (LCDP) 
is software that provides a development environment 
used to create application software through graphical 
user interfaces and configuration instead of traditional 

hand-coded computer programming. A low-code 
model enables developers of varied experience levels 
to create applications using a visual user interface in 

combination with model-driven logic.

Wikipedia definition



3

“Plataformas Low-Code - ¿Qué hay de nuevo viejo? JIS.uy 2019 talk



4

LCDP Benefits

• Reduce the amount of traditional hand coding
• Enabling accelerated delivery of business applications. 
• Lower the initial cost of setup, training, deployment and 

maintenance.
• A wider range of people can contribute to the 

application's development (not only those with formal 
programming skills).



5

Technical Debt and LCDP

• There is incipient scientific literature on Technical 
Debt and LCDP

• In some grey literature LCDP has been “promoted” 
as a solution to certain TD problems.



6

LCDP grey literature

• “Avoiding the Legacy Trap With Low-Code” [1]
– “When developers can build features and applications faster, they have more 

time to pay down technical debt”

– “Avoiding coding-related technical debt is easy with OutSystems because best 
practices are built into the platform.”

• “Benefits of Low-Code” [2]
– “Low-code makes you forget about app obsolescence and technical 

debt with built-in safeguards to ease application changes and 
maintenance”

• “How to Transform Technical Debt into Toast” [3]
– “One of the most significant sources of technical debt: hand-coding.”

– “Low-code development platforms, on the other hand, offer 
organizations a way to reduce the accruing of technical debt.”



7

LCDP grey literature

• “TECHNICAL DEBT - THE PROMISE AND PERIL OF LOW-CODE 
APPLICATIONS” [4]
– “While powerful, enterprise systems can be technical debt traps.”

– “If business users are empowered to build their own tools and can 
build them rapidly, we are trading one form of technical debt for 
another.”

• “What CIOs need to know about low code software 
development” [5]
– “Low code without integration, for this reason, is viewed as a tech 

debt expander.”



8

What the Uruguayan software 
practitioners said?

• In the MIS.uy Focus Group
– They experienced TD in a particular Low-Code 

platform (GeneXus)

– There is no software tools that helps to identify, 
measure and monitor TD in LCDP.

• I was a LCDP practitioner (many, many years 
ago)
– I experienced the concept of TD in the software 

that I developed and maintain at this time.



9

Motivation

• There is no scientific research about Technical 
Debt in the context of LCDP

• There is a concern from software industry 
practitioners on how to manage TD using 
LCDP
– Lack of tools

• LCDP has been promoted as a solution to 
some TD problems



10

Research method

• Select a representative 
LCDP to investigate TD
– To Characterize TD

– Identify similarities and 
differences between 
No-LCDP



11

GeneXus

• Uruguayan software company founded in 
1988
– GeneXus™ 1.0 was released in 1989
– Today:



12

GeneXus in Uruguay

• Strong community
– GeneXus meetings (Uruguay, Chile, Colombia, Japan, 

China)
• Gx29 – 4000 participants from 30 different countries.

• Used in large companies and in government agencies

• Evaluated by Forrester as "the best low-code 
platform you’ve never heard of".

• There is a need of improve TDM from the Uruguayan 
practitioners that use GeneXus.



13

References

[1] Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing Technical 
Debt in Software Engineering. Dagstuhl Reports 16162, Germany (2016)

[2] https://www.outsystems.com/blog/posts/avoiding-legacy-trap-low-code/

[3] https://lowcode.com/what-is-low-code/

[4] https://www.outsystems.com/blog/posts/transform-technical-debt/

[5] 
https://www.meraksystems.com/blog/2019/10/14/technical-debt-the-promi
se-and-peril-of-low-code-applications.html

[6] 
https://www.cio.com/article/3410878/what-cios-need-to-know-about-low-co
de-software-development.html

https://www.outsystems.com/blog/posts/avoiding-legacy-trap-low-code/
https://lowcode.com/what-is-low-code/
https://www.outsystems.com/blog/posts/transform-technical-debt/
https://www.meraksystems.com/blog/2019/10/14/technical-debt-the-promise-and-peril-of-low-code-applications.html
https://www.meraksystems.com/blog/2019/10/14/technical-debt-the-promise-and-peril-of-low-code-applications.html
https://www.cio.com/article/3410878/what-cios-need-to-know-about-low-code-software-development.html
https://www.cio.com/article/3410878/what-cios-need-to-know-about-low-code-software-development.html

