COPPE 5
UFRJ]

APESC

Programa de
de Sistemas e Computagdo

Engenharia

@m‘m

REL Observatério da
Engenharia do Software

Q%

Contemporé&neo

TECHNICAL DEBT: DEFINITION AND CONCEPTS

This evidence briefing reports information
on the definition and main concepts of
technical debt.

CONCEPTS

What is Technical Debt?

Technical Debt (TD) is a concept first coined by
Ward Cunningham in 1992, but since then has
received many updates. Being adopted by Agile
practitioners, but with a broad application in all
software domains, the main definition of TD is [1]:

“In softwar hnical debt is a

Il of design or imp constructs
that are expedient in the short term but set up a
technical context that can make future changes
more costly or impossible. Technical debt presents
an actual or contingent liability whose impact is
limited to internal system qualities, primarily
maintainability and evolvability.”

systems,

Three aspects must be observed:

e TD does not incur only on source code, as
most practitioners believe. It is possible to
identify TD in the requirements elicitation
or in test cases, for instance;

e To be considered TD, the issue must cause
a short-term benefit, in exchange of a
potential future cost;

e TDis only associated with internal quality
attributes, like maintainability, so defects
are not TD! It is possible, though, to exist a
defect-type of TD (see more later in this
briefing).

So, what should be considered TD [2][3]?

e Poorly written code, that violates code
rules;

e “Shortcuts” taken during design;

e Known defects, which elimination is
postponed to  future sprints  or
development cycles;

e Architectural problems, like violation of
modularity;

e Code smells;

e General low internal quality aspects, that
affect maintainability and evolvability.

And what should not be considered TD [3]?
e Defects;
e Trivial code quality issues, that do not
violate code rules;
e lack of supporting processes;
e Unimplemented features or
functionalities.

RESEARCH REFERENCE
Silva, V. M. Technical Debt and its Management: Analysis and Application in the Brazilian Software Industry. Masters’ dissertation, Federal University of Rio de Janeiro, 2018.

What are other concepts associated with TD?
Since TD is a financial metaphor, related to the
financial debt acquired by someone to obtain a
short-term gain, some financial concepts are often
associated with TD, like:

s B P S N NI

: The effort that is reguired to

address the difference between the
current and the optimal level of design-
time quality, in an immature software
artifact or the complete software system;

e Interest: The additional effort that is
needed to be spent on maintaining the
software, because of its decayed design-
time quality;

e Repayment: The amount of effort spent
on improving design-time quality. This
effort will decrease the effort needed for
future maintenance tasks.

How can TD be classified?
The simplest classification of TD items is by its
intentionality:

e Intentional TD is the ones caused by
strategical and planned decisions, when
the team or organization decides to
achieve a short-term gain at the cost of
long-term effort. For example, the
decision on developing a simplified
architecture solution for a software,
knowing that it might not attend the
project’s future needs;

e Unintentional TD is not incurred with a
strategical purpose, and usually appears in
a project due to the immaturity or lack of
knowledge of the practitioners. For
example, a bad-written piece of code
created by an inexperienced programmer
could turn out as a TD item.

Other possible TD classification is by its type, i.e.
what was the cause of that specific TD item. Alves
et al [2] came up with 15 different TD types. The
most recurring in software projects are listed
below:

e Design debt: Associated mainly with
violations of the principles of good object-
oriented design, like extensive coupled
classes;

e Architecture debt: Refers to problems
related to the software architecture, such
as violation of modularity;

e Documentation debt: Debt related to
issues observed in the software
documentation;

e Test debt: Debt found in testing activities,
like planned tests that were not run;

e Code debt: Associated with problems
found in the source-code, that can make it
harder to maintain, usually related to bad
coding practices;

o Build debt: Refers to issues that can hinder
the build task, consuming unnecessary
time.

Who is this briefing for?

Software engineering practitioners who
want to make decisions about internal
quality issues and ientific

knowledge on managing technical debt.

Where does the information come
from?

The information on this briefing comes
from evidence collected by the author
through a literature review in several
publications, included:

e [1] Avgeriou, P. et al. Managing
Technical Debt in Software
Engineering. In Dagstuhl Reports,
2016;

e [2] Alves, N. S. et al. Identification and
management of technical debt: A
systematic mapping study. Information
and Software Technology, 2016;

e [3] Li, Z. et al. A systematic mapping
study on technical debt and its
management. Journal of Systems and
Software, 2015.

For additional information about the
Experimental Software Engineering
Group at COPPE/UFRJ:

http://lens-ese.cos.ufrj.br/ese/

For additional information about the
DELFOS Observatory:

http://www.delfos.cos.ufrj.br

Figure 5.2 — EB1 — Technical Debt: Definitions and Concepts

98



COPPE 5
UFR]

APESC

Programa de Engenharia
de Sistemas e Computacgdo

@m‘*ﬂ“

REL
Q%

Observatério da
Engenharia do Software
Contempor&neo

TECHNICAL DEBT MANAGEMENT: ACTIVITIES

This evidence briefing reports information

on the different activities to manage the

technical debt, along with practices
obtained through a survey with
practitioners and a literature review.

as to manage the

FINDINGS

What are the Technical
activities?
Through a systematic mapping study, Li et al [1]
consolidated the Technical Debt Management
(TDM) activities in eight groups, described below:
e Technical Debt (TD) identification:
Detects TD caused by technical decisions

Debt Management

in software, either intentional or
unintentional;
e TD measurement: Evaluates the

cost/benefit relationship of known TD
items in software or estimates the overall
TD;

e TD prioritization: Adopts predefined rules
to rank known TD items, to support the
decision-making process;

e TD prevention: Establishes practices to
avoid potential TD from being incurred;

e TD monitoring: Observes the evolution of
known TD items over time;

e TD repayment: Eliminates or reduces the
TD impact (principal and interest) in a
software system;

« TD P ion/d
Represents and codes TD in a predefined
standard, to address the stakeholders’
concerns;

e TD communication: Disclose the identified
TD to the stakeholders.

What are the practices to manage the TD?
The following guidelines or practices were collected
on a survey with practitioners from the Brazilian
software industry (no participant on the survey

answered practices to monitor the TD):

e TDidentification: manual code inspection,

dependency analysis, TD checklist;

o .

e TD rep D
backlog;

e TD communication: Discussion forums, TD
meetings;

e TD prioritization: Cost/benefit analysis,

classification of issues;

e TD repayment: Refactoring,
code rewriting;

e TD prevention: Coding guidelines or
standards, code revision, retrospective
meetings, Definition of Done.

redesign,

RESEARCH REFERENCE
Silva, V. M. Technical Debt and its Management: Analysis and Application in the Brazilian Software Industry. Masters’ dissertation, Federal University of Rio de Janeiro, 2018.

Silva, V. M.; Jeronimo, H.; Travassos, G. H. A Taste of the Software Industry Perception of Technical Debt and its Management in Brazil. XX| Ibero-American Conference on Software Engineering,
Bogotd, 2018.

AND PRACTICES

The following guidelines or practices were collected
from experience reports or case studies with the
industry, through a literature review:

TDM activity: TD Prevention

TD types covered: Code TD; Architecture TD; Design TD

Source artifact: Any

Type of evidence: Case study

Reference: Krishna, V.; Basu, A. Minimizing Technical

Debt: Developer's Viewpoint. International Conference on

Software Engineering and Mobile Application Modelling
nd Development, Chennai, 2012.

|

TDM activity: TD Identification; TD
Representation/Documentation; TD Prioritization; TD
Repayment; TD Prevention

TD types covered: Code TD; Architecture TD; Design TD
Source artifact: Source code

Type of evidence: Case study

Reference: Gupta, R. K. et al. Pragmatic Approach for
Managing Technical Debt in Legacy Software Project. 9th
India Software Engineering Conference, Goa, 2016.

TDM activity: TD Identification; TD Monitoring; TD
Measurement

TD types covered: Build TD

Source artifact: Specifications for building software
Type of evidence: Industry practices at Google
Reference: Morgenthaler, J. D. et al. Searching for build
debt: Experiences managing technical debt at Google. 3rd
International Workshop on Managing Technical Debt,
Piscataway, 2012.

|

TDM activity: TD Measurement

TD types covered: Code TD; Architecture TD; Test TD
Source artifact: Source code

Type of evidence: Industry practices at Ericsson
Reference: Sandberg, A. B.; Staron, M.; Antinyan, V.
Towards proactive management of technical debt by
software metrics. 14th Symposium on Programming
Languages and Software Tools, Tampere, 2015.

|

TDM activity: TD Repayment

TD types covered: Test TD

Source artifact: Source code

Type of evidence: Case study

Reference: Samarthyam, G.; Muralidharan, M.; Anna, R. K.
Understanding Test Debt. Trends in Software Testing,
Singapore, 2017

|

TDM activity: TD Identification; TD
Representation/Documentation; TD Monitoring; TD
Prioritization; TD Communication

TD types covered: Not specific to a TD type

Source artifact: Source code

Type of evidence: Industry practices at Petrobras
Reference: dos Santos, P.S. M. et al. Visualizing and
managing technical debtin agile development: An
experience report. International Conference on Agile
Software Development, Berlin, 2013.

Who is this briefing for?

Software engineering practitioners who
want to make decisions about internal
quality issues and apply scientific
knowledge on managing technical debt.

Where does the information come
from?

The information on this briefing comes
from evidence collected by the author
through a literature review and a survey
with software practitioners in the
Brazilian industry. The technical debt
management activities were described
according to the mapping study listed
below:
e [1] Li, Z. et al. A systematic mapping
debt and its
management. Journal of Systems and
Software, 2015.

study on technical

For additional information about the
Experimental Software Engineering
Group at COPPE/UFRJ:

http://lens-ese.cos.ufrj.br/ese/

For additional information about the
DELFOS Observatory:

http://www.delfos.cos.ufrj.br

Figure 5.3 — EB2 — Technical Debt Management: Activities and Practices

99



Observatério da
Engenharia do Software
Contemporé&neo

REL

APESC B

Programa de Engenharia
de Sistemas e Computacao

COPPE 5
UFR]

@ Sxpermental

TECHNICAL DEBT MANAGEMENT: TOOLS AND
STRATEGIES

Who is this briefing for?

Dokt (DT)

ca: Dept (DT

nacament ac
management acti

Software engineering practitioners who want
to make decisions about internal quality issues

ISPIRIT A tool to identify and prioritize goo.gl/dknqvp|  CodeTD | TDIdentification; TD Measurement; | ~ Source code cs (11 - .
technical debt in the form of code Architecture TD TD Prioritization EidERe s entiicnoWetesonlin=2 e
smells. Design TD technical debt.

SQALE plugin (A tool to analyze, measure, visualize | goo.gl/30iAys Code TD TD Identification; TD Measurement; Source code SP 21

for SonarQube [and prioritize TD based on SQALE A (1™ TDC Where does the information come from?.
quality model.

SonarQube  [An open platform for managing code goo.gl/6X2KGV |  Code TD | TD Identification; TD Measurement; |  Source code P (2
quality. TD Monitoring ©  [1] Vidal, S. et al. Identifying Architectural Problems

Checkstyle A tool to check Java code against g00.gl/iRFBTr [ Code TD 7D Identification Source code P 2] through Prioritization of Code Smells. SBCARS, 2016;
coding standards. . [2] Silva, V. M. et al. A Taste of the Software Industry

FindBugs A tool to identify TD using automatic | goo.gl/UFssPz | Code TD TD Identification Source code P (2 Perception of Technical Debt and its Management in
static analysis. Brazil. CIbSE, 2018;

JIRA A tool that allows task monitoring | goo.gl/gadzMv Any TD Representation/Documentation; N/A P 2] © (3] de Freitas Farias, M. A. etal. Investigating the Use of a
and management. TD Measurement ¢ Vocabulary in the Identification of

Trello A tool that allows task monitoring £00.g!/iBF60A Any TD Representation/Documentation; N/A SP 21 Technical Debt: A Controlled Experiment. ICEIS, 2016;
and management. TD Communication . [4] Cai, Y. et al. A decision-support system approach to

GitLab IA software repository manager. £00.gl/kHsxMi Any TD C i N/A OB 2] economics-driven modularity evaluation. Economics-

Cs - Case study Driven Software Architecture, 2014;

P - Survey with practitioners « (5] Eisenberg, R. J. A threshold based approach to

technical debt. Software Engineering Notes, 2012;
«  [6]Nugroho, A. et al. An empirical model of technical debt

CVM-TD Model to identify TD on code comments. Code TD TD Identification Source code P 3] and interest. Workshop on Managing Technical Debt,

Architecture TD 2011;
Design TD o [7] Martini, A. et al. An empirically developed method to

Not named [A decision-support system approach to the Design TD TD Identification; TD Monitoring; Source code EE 4] aid decisions on architectural technical debt refactoring:
modularity debt management. TD Measurement; TD Prioritization; AnaConDebt. ICSE-C, 2016;

™ «  [8] Li, . et al. Architectural debt management in value-

Notnamed [An approach to define manageable levels of Code TD D Identification; TD Monitoring; | Source code 1P [B] oriented  architecting.  Economics-Driven  Software
technical debt. Design TD TD Measurement; TD Repayment Architecture, 2014;

Test TD « (9] L, Z et al. Architectural technical debt identification

Notnamed [An approach to quantify TD. Code TD TD Identification; TD Measurement |  Source code 1P [G] based on architecture decisions and change scenarios.

Design TD WICSA, 2015;

[AnaConDebt [A method that aid architects and managersto | Archi ™ | ™ Source code EE @] O (R e AR S el S A R
\inderstand and quantify Interest on architectural technical debt. Software Quality Assurance,
architecture TD. 206 )

Notnamed |A decision-based approach usinga Architecture TD | Not specific to a TOM activity Any 3 ] @ B A T e RS

’ Technical Debt Visibility and Manageability ~ An Action

—‘W————————dﬁmﬂme I — — Research Study in Industry. PROFES, 2016;

Notnamed [An identification approach based on Architecture TD TD Identification Any EE [T o [ e e ot
prehitecture desisionsand changs;scanarios. and Test-Driven Development Help to Avoid Technical

Debt. Workshop on Managing Technical Debt, 2016;

ATD |An approach based on set of archi A ™ |TD ion/ Any EE (10 «  [13] Ramasubbu, N. et al. Integrating Technical Debt

i i related to 0. and Software Quality Management

Notnamed |A process for TD identification, Not specifictoaTD | TD Identification; TD Prioritization; Any EE [11] Processes: A Normative Framework and Field Tests. IEEE
documentation and prioritization. type TD Representation/Documentation on Software ing, 2017;

Not named |Methodology to help avoiding the Code TD TD Prevention Test cases EE [12] . [14] Letouzey, J. L. et al. Managing technical debt with the
lacumulation of technical debt. Architecture TD sqale method. IEEE software, 2012;

Design TD . [15] Seaman, C. et al. Measuring and monitoring technical
Documentation TD debt. Advances in Computers, 2011;

Not named |A normative process framework for managing | Not specificto a TD Not specific to a TDM activity Any EE [13] . [16] Kaiser, M. et al. Selling the Investment to Pay Down
technical debt in commercial software type Technical Debt: The Code Christmas Tree. AGILE, 2011;
production. o [17] Chicote, M. Startups and technical debt: managing

SQALE Method that defines additional indexes and Code TD cation; TD Measurement; |  Source code EE [14] technical debt with visual thinking. International
i to analyze and TO: i ™ ization; TD Workshop on Software Engineering for Startups, 2017;

Design TD TD.ComURlcation o [18] Harun, M. F. et al. Towards a technical debt-
management framework based on cost-benefit analysis.

7D Template |A framework to support technical debt Not specifictoaTD|  Not specific to a TDM activity Any EE [15] IGSEA; 2005

type
Notnamed |[Visualization approach. Code TD TD Identification; TD Monitoring Source code P [16] For additional information about the
D:'sg‘"T;D Experimental Software Engineering Group

Duct taped |Visualization technique. Code TD TD Representation/Documentation; | Source code P [17] at COPPE/UFRJ;

TD TD Communication

CoBeTDM  |A framework to manage and reduce TD. Code TD TD Identification; TD Monitoring; Any P [18] http://lens-ese.cos.ufrj.br/ese/

Architecture TD TD Prioritization

EE - Experimentally evaluated

For additional information about the
DELFOS Observatory:

1P - Industry practice

http://www.delfos.cos.ufrj.br

RESEARCH REFERENCE

Silva, V. M. Technical Debt and its Management: Analysis and Application in the Brazilian Software Industry. Masters’ dissertation, Federal University of Rio de Janeiro, 2018.

Silva, V. M.; Jeronimo, H.; Travassos, G. H. A Taste of the Software Industry Perception of Technical Debt and its Management in Brazil. XX| Ibero-American Conference on Software Engineering,
Bogotd, 2018.

Figure 5.4 — EB3 — Technical Debt Management: Tools and Strategies

100



