
Characterizing DevOps by Hearing Multiple Voices
Breno B. Nicolau de França

PESC/COPPE/UFRJ
Universidade Federal do Rio de

Janeiro
Rio de Janeiro, Brazil

bfranca@cos.ufrj.br

Helvio Jeronimo Junior
PESC/COPPE/UFRJ

Universidade Federal do Rio de
Janeiro

Rio de Janeiro, Brazil
jeronimohjr@cos.ufrj.br

Guilherme Horta Travassos
PESC/COPPE/UFRJ

Universidade Federal do Rio de
Janeiro

Rio de Janeiro, Brazil
ght@cos.ufrj.br

ABSTRACT
Recently, DevOps has emerged as an alternative for software
organizations inserted into a dynamic market to handle daily
software demands. As claimed, it intends to make the software
development and operations teams to work collaboratively.
However, it is hard to observe a shared understanding of DevOps,
what potentially hinders the discussions in the literature and can
confound observations when conducting empirical studies.
Therefore, we performed a Multivocal Literature Review aiming
at characterizing DevOps in multiple perspectives, including data
sources from technical and gray literature. Grounded Theory
procedures were used to rigorous analyze the collected data. It
allowed us to achieve a grounded definition for DevOps, as well
as to identify its recurrent principles, practices, required skills,
potential benefits, challenges and what motivates the
organizations to adopt it. Finally, we understand the DevOps
movement has identified relevant issues in the state-of-the-
practice. However, we advocate for the scientific investigations
concerning the potential benefits and drawbacks as a consequence
of adopting the suggested principles and practices.

CCS Concepts
• Software and its engineering → Software creation and
management → Collaboration in software development.

Keywords
DevOps, Software Development and Operations, Multivocal
Literature Review, Grounded Theory

1. INTRODUCTION
Software development organizations face the challenge of rapidly
and continuously adapting themselves for unpredictable changes
to achieve their business needs, in the face of an even more
dynamic and competitive market [1]. In this context, many
software organizations have introduced agility into their
development processes to handle the frequent changes and carry
out the continuous delivery of their software products and
services. Such initiative contributed to reducing the development
time of software releases (i.e., requirements, design, coding, and
testing phases) and the periodicity between them, as well as to
maintain the software constantly available for deployment.
Nevertheless, once a software release reaches its deliverable state,

the deployment usually becomes responsibility of the software
operations team. The reduced development time and increased
periodicity between releases imply that software operations team
now needs to handle a considerable amount of constant changes in
the production environment, increasing its backlog. As a result,
software practitioners report that such adoption of agile practices
exposes inefficiencies in their release processes [2], and do not
improve the operational reliability and communication between
software development and operations teams. Erich et al [3]
reinforce it by indicating that the structural and functional division
of software development and operations departments has a
negative impact from the practitioners’ perspective.
In the face of this, it is possible to observe the recent spread of the
term “DevOps” among IT professionals. This term has its origin
in consultants and practitioner’s conferences on software systems
administration [4]. It has been discussed under diverse definitions
that, in some sense, converge to the collaboration between the
software development and operations teams, providing potential
solutions for the scenario of constant changes and deliverables
previously described. Still, IT consultants and practitioners point
out many benefits associated with DevOps, such as the
acceleration of the software delivery process and improvement on
IT stability. However, the DevOps definition and scope remains
unclear in the scientific literature or among software practitioners,
with the little scientific knowledge available to support the
discussion of its issues [3] [5]. Thus, we understand it is worth to
investigate further the concepts concerned with DevOps,
contributing to reduce the conceptual gap between the academic
research and professional practices on this topic.
Motivated by these concerns and considering that DevOps is a
subject characterized by the abundance of diverse types of sources
but lacking scientific investigation, we conducted a Multivocal
Literature Review (MLR) supported by rigorous qualitative
analysis procedures (Section 2). This study characterizes DevOps
(Section 3), w.r.t. its definition; issues motivating its adoption,
including organizational and sociotechnical perspectives; its
characteristics, such as driving principles; the universe of 51
suggested practices and the required skills for both software
development and operations teams; and the potential benefits and
challenges of adopting DevOps under the perspective of software
engineering. Section 4 discusses related works and the relevance
of the findings. Finally, we draw our conclusions based on the
findings and present the road ahead in Section 5.

2. RESEARCH METHODOLOGY
2.1 Literature Review
Initially, we started by searching (ad-hoc) the Web for DevOps
hits and trying to get a general understanding of it. This quest led
us to the contextual fact that the DevOps term and discussions
have their origins in industry, more precisely at conferences on

© 2016 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
SBES '16, September 19-23, 2016, Maringá, Brazil
© 2016 ACM. ISBN 978-1-4503-4201-8/16/09$15.00
DOI: http://dx.doi.org/10.1145/2973839.2973845

53

system administration issues around 2009 [4].
Therefore, for this study, we considered a traditional Systematic
Literature Review (SLR) [6] [7] would not be adequate, since
DevOps is recent in the Industry and SLRs have limited capacity
for capturing the state-of-the-practice, usually described in the
gray literature. Besides, the ad-hoc searching suggested DevOps
has little scientific investigation and evidence. However, as
previously mentioned, practitioners have been discussing it on
their practical perspectives. For these reasons, we considered
different data sources to address DevOps. Thus, this study can be
characterized as a Multivocal Literature Review [8]. The diversity
of sources appears in a variety of forms (e.g., academic literature,
industry reports, tool vendors’ websites, and blogs), reflecting
different purposes and perspectives [8]. It also comprises software
practitioners, represented by movement pioneers’ websites.
Even not performing an SLR, we still followed an approach
consisting of planning, execution, and analysis. In the planning
stage, we define the research goal as the analysis of different
literature sources of data with the purpose of characterizing
DevOps with respect to its definition, main characteristics,
motivating issues, and potential benefits and challenges, from the
point of view of SE researchers, in the context of ESE Group
research on emerging technologies for contemporary software
development. From this goal, we derived the research questions
(RQs), search procedures, inclusion and exclusion criteria:

x RQ1: What is the actual meaning of the term “DevOps”?
x RQ2: What are the issues motivating the adoption of DevOps?
x RQ3: What are the main characteristics associated with

DevOps?
x RQ4: What are the main expected benefits and challenges of

adopting DevOps?
Regarding the searching procedures, we used structured search,
i.e., a search was performed out on Google and Google Scholar.
For that, we selected the following terms referring to DevOps to
capture relevant data to answer the research questions: “Dev-
Ops”, “Dev” AND “Ops”, “DevOps”, “development” AND
“operations”. Our background allowed us to identify terms
addressing particular practices, e.g., “continuous delivery” and
“infrastructure as code”, as being closely associated with DevOps.
However, we did not include them in the search string since we
are interested in the characterization under the DevOps
perspective (including its related practices), rather than
characterizing the practices themselves in isolation.
The following inclusion criteria supported the selection of
relevant data sources: (I1) sources addressing the DevOps term or
the integration of software development and operation teams; and
(I2) different types of sources, such as articles, technical reports,
and tool vendors’ websites or blogs posts, i.e., including both
academia and industry. The exclusion criteria were: (E1) repeated
sources (in this case, just one was considered); (E2) duplicate
sources reporting similar results (in this case, only the most
complete was considered); (E3) sources published before 2009,
when the term was created; (E4) material not written in English;
and (E5) inaccessible sources. Particularly, the criterion E4 is
justified due to the observed lack of rigor in translations from
English to Portuguese on the sources such as blog posts and
websites, associated with lack of their original references, which
would confound the analysis.
A data extraction form was defined to capture details from the
data sources including bibliographic information and relevant
information for answering the RQs.

Regarding the execution stage, three researchers performed the
structured search, collecting the materials by applying the
inclusion and exclusion criteria in the searched hits. As one may
wonder, Google and Google Scholar present millions1 of “results”
by searching for the selected terms. To handle this issue, we
interleaved data collection and extraction. Thus, when we
observed that no additional data could be extracted from new
sources, we moved to the analysis. The extraction process was
performed in pairs, still with three researchers, in such a way that
a researcher extracted the relevant data and after that, another
researcher reviewed that extraction. For all pieces of extracted
data, at least one researcher reviewed it.

2.2 Analysis Procedures
To support the analysis process, we performed a qualitative
analysis of the extracted data using procedures from the Grounded
Theory (GT) [8]. Grounded Theory is a methodology for
qualitative research that aims to generate theories based on the
obtained data during research. However, we do not adopt GT in
full as we have no ambition of generating theories in this study,
but use some GT procedures just to support the analysis of
relevant data and identification of concepts to answer the
established RQs.
The analysis procedure is based on the coding process of
analyzing (textual) data and assigning concepts to chunks of data.
Such concepts represent the basic unit of analysis and are
identified by breaking down the data and assigning labels to it.
These labels should constantly be revisited to ensure that the
conceptualization is held consistent. This coding process is
handled in three different stages: open coding, axial coding, and
selective coding. In this study, we followed the orientations
presented by Strauss and Corbin [9], which assume a non-
sequential order, mainly between the open and axial stages, with
interleaved data collection and analysis between these stages.
Open coding is the analytical process in which researchers
identify concepts, their properties, and dimensions in the data. In
this process, the data are fragmented and conceptually labeled in
codes. In turn, codes may represent actions, events, properties,
and interactions that are relevant for the researchers. During the
open coding process, the concepts should constantly be compared
with each other to find similarities, and then they should be
grouped to form categories. Therefore, in axial coding, categories
are associated to their subcategories. It is also constantly done as
new categories emerge. Finally, in selective coding, all categories
are unified around the central core category and relationships are
established among these categories.
To answer RQ1, we performed open, axial and selective coding to
understand the concepts and their relationships better to define
DevOps around a core category (Development and Operations
Altogether in Section 3.2). For the other RQs, only the open and
axial coding was carried out, since the goal was to categorize the
aspects that would support their answering.
Aiming to support the coding process, we adopted the QDA
Miner Tool2, in which all extracted data was imported. The top
right of Figure 1 exemplifies the open coding process. In this case,
we assign concepts to pieces of extracted text (highlighted), which
represent DevOps characteristics. For each new code, we compare
it to the existing ones, aiming to understand whether it refers to
the same concept.

1 Searching “DevOps” on Google returns about 15.300.000 hits.
2 http://provalisresearch.com

54

After that, we established relationships among the codes through
reasoning about the descriptions regarding DevOps definitions to
generate the categories (axial coding).
Thus, the name assigned to a particular category aims at
representing, at a higher abstraction level, all concepts inherent to
the codes about it. For instance, the left side of Figure 1
exemplifies a category (Development and Operations Altogether)
created from the relationship among some codes (vertical or
hierarchical relationship). Besides, we established relationships
between codes of different categories (horizontal relationship)
that enabled us to understand better the categories needing
additional details. The bottom right of Figure 1 shows a
relationship among codes from different categories. For instance,
the relationship “Requires”, referring to codes: “approach for
handling frequent deployments” and “development and operations
collaborating”, which belong to different categories.

3. RESULTS
3.1 General Numbers from the Review
During the structured search, we selected 50 data sources based
on the application of inclusion and exclusion criteria. After
reading and extracting all data, we reduced to 43 sources as no
further useful data could be extracted. These sources loosely
mention DevOps but do not discuss it on a consistent basis for our
research questions. Table 1 presents the sources included by type.

Table 1. Selected sources

Types #Sources References
Academic Journal 3 [10] [11] [12]

Academic Tech. Report 2 [13] [14]
Book 1 [15]

Website 12
[16] [17] [4] [18]

[19] [20] [21] [22]
[23] [24] [25] [26]

Academic Conference
Papers 8 [27] [28] [29] [30]

[3] [31] [32] [33]

Industrial Journals 8 [34] [35] [36] [37]
[38] [39] [40] [41]

Industrial Tech. Report 8 [42] [43] [44] [2]
[45] [46] [47] [48]

Proceedings Preface 1 [49]
Total 43

More than 69% (30) of the sources are gray literature, represented
by websites, books, industry journals, and industry technical
reports. Therefore, this distribution reinforces the idea that
DevOps is little explored by the academic community yet.

3.2 DevOps Definition (RQ1)
In our literature review, we observed that several distinct
definitions were assigned to the DevOps term. Figure 2 presents
the main concepts defining DevOps according to our dataset,
identified in the stage of open coding. Both practitioners and
researchers presented these definitions, having no consensus
among them. Besides, we could observe data sources explicitly
mentioning DevOps having no precise definition.

Figure 2. Concepts defining DevOps

Erich et al. [3] also could not identify a consolidated definition for
DevOps through a systematic mapping study. Even so, they
defined DevOps as a framework, but emphasizing the problem
regarding the lack of consensus among the reviewed studies.
However, considering it as a framework would require clear
instantiation steps or rules, which is not available for DevOps.

As we identified different concepts regarding the DevOps
definition, we verified their actual meaning against three
dictionaries3. For instance, we discarded terms defining DevOps
as a methodology [46] or a method [47] since these terms imply
on the existence of a systematic approach for performing DevOps
or introducing its practices into organizations. Such strategy

3 Oxford, Cambridge, and Merriam-Webster.

Figure 1. Codes grouped into categories (open coding) and relationship among different categories (axial code)

55

played an essential role in understanding what DevOps mean.
Therefore, aiming a better understanding, we identified the
relationships among categories (Figure 3) like the ones in Figure
2. These categories were established in the axial coding.

Figure 3. Inter-related concepts (categories) composing the

DevOps definition
This way, we identified that DevOps is more frequently associated
with the idea of a movement of Information and Communication
Technology (ICT) practitioners (Figure 2). Hence, we emphasize
that the meaning of term “movement” is, according to the adopted
dictionaries, associated with a group of people working together
to achieve a common goal, as well as a situation in which people
change their way of thinking or doing something.
As a result of the coding process applied to the data, we
synthesized that DevOps is a neologism representing a movement
of ICT professionals addressing a different attitude regarding
software delivery through the collaboration between software
systems development and operation functions, based on a set of
principles and practices, such as culture, automation,
measurement and sharing. Such collaboration aims at improving
the quality of development and operations processes, as well as
the quality of software products and services.

3.3 Motivating Issues (RQ2)
We organized the issues motivating software organizations to
introduce DevOps into the following categories.
Organizational Structure and Policies: refer to the problems faced
by organizations regarding the impact of their organizational
structure and policies on their IT performance. The data sources
pointed out that the software organizations have been isolating
functionally and physically the software development and
operations teams [18] [37] [32]. Hence, organizations separate
software projects from their operation, and consequently software
maintenance is hampered since the team responsible for the
development of software is not the same one that will maintain it
after the first release [30]. In this context, the software
development team is measured by the number of delivered
features while the software operations team by the systems
stability. However, using system stability as a measure of the
success of operations triggers an immediate response of
preventing deployments as much as possible to avoid unstable
releases. In turn, it will clash with the productivity measurement
for development, focused on delivered features [37] [36] [46]
[43]. All the issues associated with the team’s structural division
increases the development cycle time, delaying delivery of
valuable functionality or corrections, reducing collaboration, and
increasing frustration and lacking of trust among teams.
Therefore, a systematic approach is required to improve the whole
organization, focusing on collaborative actions.
External Pressure: the current scenario for software development
requires organizations to respond faster due to market conditions,
such as business changes, customers frequently demanding new
features in a reliable way, and the development and support
regarding different devices [29] [33]. Moreover, the growing

demand for software as service has also led these organizations to
restructure their business processes, and now they become
responsible for both the software development and operation [34].
Release Process: considering the frequent demand for new
features, the agility in software development processes affects the
release process, leading to bottlenecks in the operations processes
[39] [41] [44]. Such phenomenon exposes issues between
software development and operations teams, in which the release
process is unable to deliver new changes, hindering the
continuous delivery of value to customers. For instance, the lack
of parallelism between the development and deployment activities
within releases increases the lead-time and slows down
opportunities of early problems discovering [46]. Another issue
regarding the release process is the fear of changing the system
after it reaches stability, making organizations adopt rigid and
bureaucratic processes for managing releases, which requires
more effort and time to introduce new changes or corrections [46].
Quality Demands: Currently, the software systems are becoming
increasingly sophisticated (large and tightly coupled) [35],
demanding even more non-functional features, such as
maintainability, interoperability, scalability [28], and a high
degree of reliability [37]. The difficulties in meeting these
requirements are associated with characteristics of both the
software systems and their development processes: long
lifecycles, which makes harder to carry out changes; and the
deployment and testing processes, which require a significant
amount of time and effort for changes and rework. Another issue
is concerned with the lack of developers’ knowledge on how to
handle non-functional features and involved tradeoffs. Also, to
compensate this lack of knowledge, software operations teams use
more powerful IT infrastructures, though more expensive and
complex [37].
Sociotechnical Issues: issues associated with both social and
technical aspects, such as cultural differences between
development and operations negatively affecting communication
[30], the need for teams with new skill sets [10], and the
intensification of existing problems due to geographic distribution
of teams, leading to lack of trust among them [40]. Finally, the
ineffective communication among different stakeholders,
including development and operations teams, is pointed out as one
of the main issues motivating the adoption of DevOps [38] [39]
[46] [29] [49] [30] [43]. Part of the communication issues are
credited to long release cycles hampering the continuous project
progress monitoring and product quality [37]. In addition, it
reduces the amount of feedback from stakeholders regarding the
current product being built [28]. Consequently, such ineffective
communication leads to software features delivering marginal
value for the business and defects discovered late in the lifecycle.

3.4 Characterization (RQ3)
We observed a set of principles, skills, and tools to support the
practices characterizing DevOps. Also, DevOps is an abstract
concept that requires being instantiated to specific organizational
contexts, instead of applying a specific set of technologies.

3.4.1 Principles
Figure 4 shows the principles associated with DevOps grouped
into six categories, which are briefly explained in the following.

Social Aspects: despite all technical principles, many of the
DevOps characteristics are associated with social aspects among
the software development and operations teams. For instance, the
so-called DevOps culture recognizes trust as a relevant

56

characteristic for influencing organizational change [41] [42] [30].
Automation: claimed to be one of the core principles of DevOps
due the benefits it could promote. It considers that manual, and
repetitive tasks can be automated to reduce unnecessary effort and
improve software delivery [17] [45]. Hence, automation would
improve not only the delivery speed, but also the infrastructure
consistency, productivity of teams, and repeatability of tasks.
Quality Assurance: to assure the quality of both development and
operations processes as products. This principle supports the
implementation of DevOps practices since it links different
stakeholders (development, operations, support, and customers) to
perform activities in an efficient and reliable way, as well as the
product and services meeting established quality standards [30].
Leanness: some DevOps practices are based on Lean Thinking
principles [50] (Figure 4). DevOps requires a lean process as it
intends to ensure a continuous flow to develop and deliver
software regularly, in small and incremental changes [35] [36]
[46] [43]. Therefore, fostering constant and fast feedback between
the development and operations, as well as with customers [35].
Sharing: information and knowledge are disseminated among
individuals to promote the exchange of personal learning and
project information. In this sense, individuals should spread
relevant information, for instance, those regarding how to
implement and to perform practices recommended in the context
of DevOps [17] [20]. Besides, information regarding changes or
new characteristics of project or product should be spread to the
involved individuals (software development and operation teams),
and it promotes the workflow visibility [37].
Measurement: an important principle often instantiated by
collecting efficient metrics to support the decision-making in the
software development and operations lifecycle [17] [37] [38].
Many data sources explicitly pointed out four DevOps principles,
which are associated with the acronym CAMS: Culture,
Automation, Measurement and Sharing [37] [30] [4] [27] [25].
From our observations, culture in CAMS is part of what we
capture as Social Aspects. Furthermore, we could identify two
additional principles: Quality Assurance and Leanness. Although,
the sources do not explicitly mention Leanness as a core principle,
we identified many of the recommended practices are
implementations of principles from the Lean Thinking.

3.4.2 Practices
Although the principles reveal the fundamental ideas and values
characterizing DevOps, the practices materialize those principles
into daily development and operations activities. Thus, one can
recognize the adoption of DevOps regarding maturity through the
observation of running practices into the organizations.
Initially, we observed several recommended practices in the
context of DevOps. Hence, to understand how and when such
practices are performed, we identified commonalities and grouped
them into categories and subcategories (axial coding). Figure 5
groups the 51 practices identified into three broad categories:
Common (33), Development (9) and Operations (9). Besides, it
shows the codes (actual practices) belonging to each category and
the associated number of sources they appear and occurrences
considering the whole data. Due to space limitation, we discuss
only most mentioned practices.
Common practices refer to those performed by both software
development and operations teams. It includes the subcategories:
Collaborative (18), Procedural (14) and Services (1).
Collaborative practices aim to foster collaboration among teams
and their members. Role rotation is a recurrent practice [36] [49]
[20] [2] [45]. It allows a team member to understand problems
and solutions better from other teams, exchanging experience and
collaborating to solve common problems. Another recurrent
practice is to notify the right responsible people regarding issues
on the software lifecycle allows coordinating the product team by
triggering actions and giving awareness so that one can anticipate
or react to problems [47] [19] [17] [31] [21].
Procedural practices represent a set of practices performed by
software development and operations teams together and
concerned with their coordination. We observed continuous
software delivery [35] [12] [43] [21] [14] and deployment
pipeline [37] [46] [14] as the most frequent practices.
It may represent an indication of their relevance in the context of
DevOps. Continuous software delivery follows the idea of
extending continuous integration cycles to include also software
release. For that, both developers and operations are required.
Also, the continuous delivery practice abstracts a process from
checking the source code until the software release into
production. Hence, the deployment pipeline is one practice to
implement continuous delivery in an automated way.

Figure 4. DevOps Principles

57

Concerning the Services subcategory, it represents practices
performed together by the software development and operations
teams and concerned with the use of different service models
(Infrastructure as a Service - IaaS, Platform as a Service - PaaS,
and Software as a Service - SaaS). We observed data sources
pointing out that automation, mainly of operation tasks, could be
supported by cloud services providing platforms (PaaS) and
infrastructure (IaaS) facilities. Additionally, development and
operations can be interfaced by exposing their tasks as services,
for instance: monitoring, version control, deployment, and others.
Among the development practices, Continuous Integration is an
agile practice inherited in DevOps [32] [16] [21] [45], in which
developers routinely merge, multiple times per day, their code
into a version control repository. Hence, each change triggers an
automatic set of tasks involving build, tests, and deployment.
Therefore, it develops integration and testing practices in a
reliable way, ensuring the build works in a specific environment.
Finally, we grouped into the Operations category the practices
performed mainly by the system administrators. Infrastructure
configuration management and automated infrastructure
provisioning are recurrent practices. In large-scale environments,
operations staff should maintain a configuration management

strategy to determine the right infrastructure configuration for a
given software version. It helps to keep track of and to automate
changes in the environment, avoiding unnecessary effort and
rework. Concerning the automated infrastructure provisioning,
this practice aims to instantiate development, testing, and
production environments in an automated way so they can be
consistent. The implementation of this practice is accomplished
through the intensive use of tools or service models.
Most of the identified practices are performed by developers and
systems administrators together. Also, such practices aim to (1)
support and encourage cooperation between development and
operation software areas, (2) support the coordination of activities
performed by these areas, and (3) integrate the execution of these
activities as services. Finally, we identified two sets of practices:
one specific to development and other specific to operations.

3.4.3 Required Skills
An issue also driving organizations to adopt DevOps is the need
to organize teams with a set of competencies meeting the current
software development demands. Therefore, the set of individuals’
skills is an important characteristic in the context of DevOps.
In this sense, members of the software development and operation
teams should be able to expand their abilities beyond their specific

Figure 5. DevOps Practices

58

roles to understand and act on specific tasks. It means that
DevOps requires team members with multiple skills (social and
technical) [14] [45] and cross-functional teams [18] [43] [20] [2].
These characteristics potentially blend expertise from multiple
sources to solve an issue or to explore potential solutions.
We identified coding as a required skill for both development and
operation [2]. Coding or scripting is necessary due to the need of
automation of tasks, including infrastructure provisioning and
deployment. Also, it is essential to have people with experience in
measurement as it can contribute to risks analysis and mitigation
[14]. We could also identify the need for team members with math
skills. Foundational skills in math improve understanding of
measurement, monitoring and performance analysis of team
members, resources, and software systems [45].
A critical failure factor is an ineffective communication among
stakeholders, justifying communication as a relevant skill in the
DevOps context since it promotes the collaboration and
integration between development and operations teams [18].

3.5 Benefits and Challenges (RQ4)
The data sources “claim” a myriad of advantages regarding the
adoption of DevOps, which we identified as potential benefits as
no evidence of their achievement is given. Moreover, we grouped
them into organizational, processes, software product and people.
DevOps is claimed to be an enabler to the achievement of
organizational goals efficiently. For instance, practitioners report
DevOps practices as a competitive advantage, potentially enabling
the increase of organizational IT performance, and consequently,
the profit, market share, and productivity also increase [45]. Thus,
high-performance organizations tend to work closer with IT to
plan initiatives, avoiding sudden and unreasonable demands over
IT teams. Besides, the use of automated solutions, such as
configuration management and infrastructure provisioning, would
lead to organizational benefits as they offer consistency of
environments across different stages of software lifecycle [47]
[38]. Ideally, it reduces efforts and costs, including the time
needed to increase the machinery and to recovery it from losses
[13]. Other potential benefits are: increase in the number of
customers using the company’s software/services [48]; improve
operational efficacy and efficiency of the organization as changes
are based on operations and users feedback [49] [30] [22];
development and operations answering to business needs instead
of their own interests, possibly reducing business risks [37] [29]
[2]; and the focus on new features, due to automation [48].
Development and operations processes benefit from the constant
integration and testing, along with automated infrastructure
provisioning, are practices that enable to track and solve problems
in processes and/or activities [43] [45]. In general, many
principles and practices are reported as a cost saving alternative
[47] [37] [41] [45], since they enable a more efficient use of
resources (human and infrastructure), reducing waste in the
delivery process [10] [43] [31]. Besides, we observed the sources
claiming these practices reduce cycle and lead time of
development and operation activities in an end-to-end perspective
[37] [39] [11] [2] and, consequently, improve time-to-market [35]
[41] [46] [48] [2] [14]. Moreover, such practices and principles
are claimed to: improve process and product visibility [2] [38];
support the identification and reduction of processes variability to
improve predictability [41]; make possible the deployment of
applications with no outage through automated mechanisms [28]
[37] [17] [2]; and provide a flexible process to accommodate
change requests at any time in the lifecycle [34].

Regarding benefits associated with the software product, the
combination of DevOps practices such as code sharing,
continuous integration, test-driven techniques and automated
deploys would expose problems earlier in the lifecycle [23],
enabling anticipation or prevention of defects [32] [30] [43]. In
this scenario, problems associated with merging and integrating
would be reduced, since changes are smaller and rapidly
integrated [41]. Such practices aim at achieving working software
constantly by adopting incremental development [43] [37]. We
also identified benefits as supporting the improvement of system
reliability, outstanding collaboration efforts from development
and operations [28] [12], scalability and durability for software
systems [28]. DevOps practices aim to meet the expectations of
users, delivering software with high quality [34].
People-related benefits refer to the achievements of members of
the development and operation teams, as well as to customers.
One claimed benefit is the communication and collaboration
between the software development and operations teams [38] [29]
[14], promoted by their practices and principles that aim to break
down functional and physical separation among such teams. Thus,
in this collaborative atmosphere, teams are encouraged and feel
technically qualified to work in different areas as a single unit
[18]. We found sources indicating that development teams
improve their productivity over time when practices such as
continuous integration and constant feedback are adopted [45].
DevOps practices are also claimed to improve the understanding
of a system under development [41], since small teams are joined
by larger ones in a cross-functional structure. Moreover, we
identified that DevOps aims to increase the satisfaction of
organization’s employees [18], and customers [16].
Beyond the benefits, there are also challenges associated with the
culture, management, technical aspects and IT infrastructure.
Culture: organizations usually resist to do any changes on the way
things work [38], particularly when its culture is involved [36]. It
may also be the case of partner and customer organizations [39].
This way, extra effort is always required to overcome it and
convincing through metrics and achievements that such change is
a benefit. This challenge becomes even harder when the teams
lack integration and organizational incentive [15]. In
organizations where top management does not work
collaboratively with operational staff, software development and
operations teams have difficulties in self-organizing and making
decisions. Besides, it may be associated with the lack of a clear
understanding of what DevOps means [21] [2], which hampers
people to focus on specific aspects such as processes and tools.
Management: the implementation of DevOps requires considering
all the impacted teams [36], understanding development and
operations roles and responsibilities [48]. Therefore, the
alignment of strategies and processes for software development
and operations teams aimed at achieving a common goal is a
challenge [29]. In this sense, the involvement of top management
seems to be essential to drive and support the DevOps initiatives
[48] [2], as in initiatives consisting of considerable organizational
change. Automation supports many of the practices recommended
in the context of DevOps. However, the use of automation tools
requires proper management and high investment [39] [49].
Moreover, the adoption of DevOps is hampered when processes
are managed in a rigid form within the organization, allowing low
or no level of flexibility [36] [31].
Infrastructure: DevOps aims at constantly and rapidly delivering
valuable software, requiring automation to support activities such
as build, deploy to production-like environments, testing at

59

different levels and so on. However, one of the challenges for the
implementation of DevOps is the lack of adequate infrastructure
to support the automation of these tasks [2]. Moreover, not having
infrastructure provisioning in an automated procedure represents
an obstacle. The ability to keep operations stable is also identified
as a challenge hindering the adoption of DevOps [31] [45].
Technical: A DevOps core characteristic is the flexible working
processes. Therefore, it is challenging to introduce principles
when the working processes need to comply with strict industry
standards and regulations [37] [48] [39]. As DevOps aims to
automate every repetitive activity, including those related to
operations [49], the need for coding skills by the system
administrators to develop and maintain the infrastructure
provisioning scripts represents a challenge. Also, systems with
tightly coupled architectures also represent a technical issue [41].
Systems with this characteristic are harder to maintain, demanding
additional effort from development and operation teams.

4. DISCUSSION
4.1 Related Work
Erich et al. [3] performed a systematic mapping study aiming at
understanding the influence of the relation between development
and operations on Information System development. Based on
that, they define DevOps as a conceptual framework for
reintegrating development and operations based on the so-called
“main concepts” related to DevOps, identifying then culture,
automation, measurement, sharing, services, quality assurance,
structures, and standards. Additionally, they also identified issues
associated with the relationship between software development
and operations teams, also how DevOps can alleviate such issues.
Similarly, Lwakatare et al. [5] also performed a literature review
supplemented by interviews with practitioners. From that, they
identified four general dimensions of DevOps: collaboration,
automation, measurement, and monitoring. Moreover, they
identified issues addressed by DevOps, such as poor
communication and manual tasks for operation processes, as well
as expected outcomes from its adoption.
Both works highlight the need for more research on DevOps,
which is a contribution of our review. The captured concepts and
dimensions are strongly related to the principles we categorized in
section 3.4.1, which presents a greater and more structured set of
concepts obtained through conceptualization and categorization.

4.2 Relevance of Findings
In general, our findings are based on the qualitative analysis of
several data sources having different levels of rigor, including
gray literature that is mostly opinion and experience based
(anecdotal evidence). It means that we have almost no scientific
evidence on it. However, we argue the need for such variety by
considering the characterization goal, the research questions, the
origin of the DevOps movement on practitioners’ conferences,
and the amount of available knowledge that practitioners provide
on this topic. Besides, among the sources, we have blogs [4] [19]
and white papers [37] from the movement pioneers that created
the term DevOps and should be considered. Then, considering the
amount of 69% of the data as gray literature, we adopted GT as a
systematic and rigorous methodology to acquire a deep
understanding of what they mean by DevOps and to synthesize
the different perspectives on a critical view.
Regarding the actual findings, we do not advocate the identified
principles and practices compose the definitive set suggested in
the DevOps movement. It may be incomplete or even includes

other principles and practices. As DevOps has no clear scope
regarding the set of recommended practices [21], we understand
these practices are reasonable for the context of this research.
Still, many principles and practices are credited to agile and lean
software development. It applies in particular to development
practices (Section 3.4.2). Operations practices seem to compose
the state-of-the-practice of systems administrators. Besides, the
common practices, in which development and operations teams
work collaboratively, appears to be mostly speculative w.r.t. their
effectiveness and potential benefits. It is also important to
comment that no evidence was found regarding the achievement
of potential benefits, including the scientific papers we analyzed.
Although the lack of scientific evidence, we understand that our
findings compose an important starting point for further scientific
investigation on these practices in the context of such
collaboration between software development and operations teams
in software intensive organizations. Furthermore, we highlight
that both technical and social aspects are concerns of these
organizations, and the motivating issues are still challenging them
on how to succeed in their current development scenario.
As mentioned in comments by [18] and [46], the practices in the
context of DevOps are not new when taken in isolation, and there
are few organizations adopting subsets of these practices for
years. Some ones have more success than others. The claim is that
such discussion helps to disseminate both development and
operations practices that practitioners believe to be effective [49]
and the need for a culture of collaboration between these
functional areas. We believe that one possible novelty may be, as
it is in agile software development, the specific blend of principles
and practices to foster collaboration between development and
operations, rather than a new methodology or set of tools.
However, the original blend depends on each organizational
environment, culture, domains, and other factors.
Finally, despite the technical issues, the social challenges are
mostly concerned with the cultural change of an organization,
which is already identified as a critical factor in many other
research areas like software process improvement and information
management systems. Thus, any movement towards introducing
DevOps recommended practices should consider it.

4.3 Threats to validity
The threats to validity are discussed according to [6] and [51].
The theoretical validity concerned with searching and selection
bias was handled by possibly capturing multiple sources and
applying the inclusion criteria (Section 2.1), which were
previously established. Even not performing a comprehensive
search, we searched in open search engines and snowballed
backward to reach relevant data sources. One limitation relies on
not considering videos as information sources in the protocol.
Publication bias is also a concern in multivocal literature reviews,
where collected data is not exclusively peer reviewed and
accepted/published materials. That is true, even apart from the
peer-reviewed works, as tool vendors and posts from blogs of the
DevOps pioneers and enthusiasts have biased opinions regarding
potential benefits of the adoption of recommended practices. We
mitigated it by critically analyzing each term from the referred
concepts and terms, comparing against all collected information
through the constant comparison method and recurring to
dictionaries when no conceptual reference could be obtained.
Regarding descriptive validity, our extraction form and process
were unbiasedly defined before the execution to answer the RQs
strictly. Also, at least one researcher reviewed all information.

60

The results are internally generalizable as we achieve theoretical
saturation on the identification or appearance of new codes and
categories. However, from the external perspective, we cannot
argue that as our review aimed an initial characterization.
Finally, interpretive validity is achieved when the conclusions are
drawn reasonable given the data. A threat in interpreting the data
is researcher bias. For the analysis, we adopted rigorous GT
procedures in executed parallel by two researchers to avoid bias
and solve inconsistencies. Then, the codebooks from each
researcher were compared iteratively against each other,
remaining only consensual information on the resulting codebook.

5. CONCLUSIONS
The SE community should react to movements stemmed from
Industry by systematically understanding them to ground the
R&D on the topic. In this sense, we provide a characterization of
what practitioners and academics discuss as DevOps. The analysis
of the different sources of information allowed us to answer
reasonably the RQs, which we discuss in the following.

RQ1: What is the actual meaning of the term “DevOps”? We
have indications that we reach a sound definition of DevOps.
First, we acknowledged that some research has been conducted on
this topic, but without a clear definition of what DevOps mean [3]
[5]. That is one contribution that regards to the stated definition,
reached through the solid methodology for qualitative synthesis,
namely GT. Second, we included in the study sources naturally
concerned with DevOps and originated from the same context it
was created, i.e., the industry, with a strong focus on systems
administration and development consultancy.
RQ2: What are the issues motivating the adoption of DevOps? As
far as we observed, DevOps is associated with a myriad of
problems that foster its adoption in software organizations.
Initially, the market and stakeholders exert an external pressure
for continuously changing software systems and increasing the
number of quality demands. From an internal perspective, the
organizational structures and policies, as well as their manual and
bureaucratic release processes hamper the timely answer to these
constant demands. Besides, sociotechnical aspects influence
initiatives to overcome the issues, aggravating the situation.
RQ3: What are the main characteristics associated with DevOps?
From an abstract perspective, we analyzed DevOps characteristics
regarding principles, practices, and required skills (Section 3.4). It
is important to remind that these categories emerged from the
data, i.e., they were not established before the analysis. Principles
address concerns with social aspects like culture, automation,
measurement, sharing, quality assurance, and leanness. Besides,
practices are the way one can observe how DevOps manifests into
an organization. Several practices were identified, but we
concentrate on the common practices for development and
operations, which may regard collaboration, procedural, and
services issues. Finally, we identified the claim for an extended
skill set required to perform DevOps practices.
RQ4: What are the main expected benefits and challenges of
adopting DevOps? We could not observe evidence on the actual
measurement or perception of expected benefits and challenges.
However, we do identify claimed benefits addressing
organizational, process, people, and product perspectives by
adopting DevOps principles and practices. Also, challenges arise
along the way, as expected in any organizational change.

From this study, we can assert that DevOps is a movement of IT
practitioners, which has identified a set of important issues on the

field and that the research community should investigate
approaches to handling them. Most of the suggested principles
and practices need further investigation w.r.t. their effectiveness
against the motivating issues. Moreover, we understand that
additional investigation on characterizing DevOps may not bring
value to the study of the practices, tools, and methodologies to put
these things together in different organizational contexts.

6. ACKNOWLEDGMENTS
We acknowledge the support of Daniel Karam Venceslau during
data collection, CNPq and CAPES for the research grants.

7. REFERENCES
[1] Boehm, Barry. Making a Difference in the Software Century.

Computer, 41, 3 (March 2008), 32-38.

[2] PUPPET LABS & IT REVOLUTIONS PRESS. State of
DevOps Report. Puppet Labs, 2013.

[3] Erich, Floris, Chintan, Amrit, and Maya, Daneva. A Mapping
Study on Cooperation between Information System
Development and Operations. In Proceedings of the 15th
PROFES (Helsinki, Finland December, 2014), 277-280.

[4] Mueller, Ernest. What Is DevOps? The Agile Admin. 2010.
Retrieved from: http://goo.gl/mD3LU1.

[5] Lwakatare, Lucy Ellen, Kuvaja, Pasi, and Oivo, Markku.
Dimensions of DevOps. (Finland 2015), Springer.

[6] Biochini, Jorge, Mian, Paula Gomes, Natali, Ana Candida
Cruz , and Travassos, Guilherme Horta. Systematic Review in
Software Engineering. COPPE/UFRJ, Rio de Janeiro, 2005.

[7] Kitchenham, Barbara A. and Charters, S. Guidelines for
Performing Systematic Literature Reviews in Software
Engineering. Keele University, 2007.

[8] Ogawa, Rodney T and Malen, Betty. Towards Rigor in
Reviews of Multivocal Literatures: Applying the Exploratory
Case Study Method. Review of Educational Research, 61, 3
(1991), 265-286.

[9] Strauss, Anselm and Corbin , Juliet. Basics of qualitative
research: Procedures and techniques for developing
grounded theory. SAGE, Newbury Park, 1990.

[10] Roche, J. Adopting DevOps Practices in Quality Assurance.
Communications of the ACM, 56, 11 (2013), 38-43.

[11] Liu, Yuhong, Li, Chengbo, and Liu, Wei. Integrated Solution
for Timely Delivery of Customer Change Requests: A Case
Study of Using DevOps Approach. International Journal of
U-& E-Service, Science & Technology, 7, 2 (2014), 41-50.

[12] Mohamed, Samer I. DevOps shifting software engineering
strategy Value based perspective. IOSR Journal of Computer
Engineering (IOSR-JCE), 17, 2 (April 2015), 51-57.

[13] Economou, Frossie, Hoblitt, Joshua C., and Norris, Pat. Your
data is your dogfood DevOps in the astronomical
observatory. 2014.

[14] Erich, Floris, Amrit, Chintan, and Daneva, Maya. Report:
DevOps Literature Review. University of Twente, 2014.

[15] Walls, Mandi. Building a DevOps Culture (2013).

61

[16] Berczuk, Steve. Agile Teams Care About DevOps. 2011.
Retrieved from: http://goo.gl/Rw2pWZ.

[17] Hedemark, Magnus. DevOps in Straight English – Enter the
Buzzword. RedHat Developers. 2014. Retrieved from:
http://goo.gl/W5LMws.

[18] Nelson-Smith, Stephen. What Is This Devops Thing,
Anyway? Jedi (Patrick Debois' Blog). 2010. Retrieved from:
http://goo.gl/qsmNqO.

[19] Debois, Patrick. Devops Areas - Codifying devops practices.
Jedi (Patrick Debois' Blog). 2014. Retrieved from:
http://goo.gl/25sCB3.

[20] Humble, Jez. There's No Such Thing as a “Devops Team”.
Continuous Delivery. 2012. Retrieved from:
http://goo.gl/9bTKhb.

[21] Tesar, David. DevOps Practices. ITPROGUY.com. 2015.
Retrieved from: http://goo.gl/iKPgTJ.

[22] Geer, David. Internap's DevOps Culture: PrivateStack + CD
= ? [Read On & Draw Your Own Conclusions].
DevOps.com. 2015. Retrieved from: http://goo.gl/vVAqqZ.

[23] NEW RELIC. DevOps. New Relic. 2015. Retrieved from:
http://goo.gl/IDfddk.

[24] Garnichaud, Neil. What Exactly is DevOps. DrDroobs. 2012.
Retrieved from: http://goo.gl/V2ev4J.

[25] Willis, John. What DevOps Means to Me. Chef.io. 2010.
Retrieved from: https://goo.gl/stl6Go.

[26] Corriere, Chris. The devOpsSec Dilemma: Effective
Strategies for Social Networking. DevOps.com. 2015.
Retrieved from: http://goo.gl/fIp7wL.

[27] Bang, Soon K, Chung, Sam, Choh, Young, and Dupuis,
Marc. A Grounded Theory Analysis of Modern Web
Applications - Knowledge, Skills, and Abilities for DevOps.
In RIIT'13 (2013), ACM.

[28] Cukier, Daniel. DevOps patterns to scale web applications
using cloud services. In Proceedings of the 2013 conference
on Systems, programming, & applications: software for
humanity (2013), ACM, 143-152.

[29] Hussaini, Syed W. Strengthening harmonization of
Development (Dev) and Operations (Ops) silos in IT
environment through Systems approach. In IEEE 17th Int.
Conf. Intelligent Transportation Systems (2014), 178-183.

[30] Erich, Floris, Amrit, Chintan, and Daneva, Maya.
Cooperation between information system development and
operations: a literature review. In Proceedings of the 8th
ACM/IEEE ESEM (Torino, Italy September 18-19, 2014).

[31] Kim, J., Meirosu, C., Papafili, I., Steinert, R., Sharma, S.,
Westphal, F. J., and Manzalini, A. Service provider DevOps
for large scale modern network services. In Int. Symp. on
Integrated Network Management, IFIP/IEEE (2015).

[32] Waller, Jan, Ehmke, Nils C., and Hasselbring, Wilhelm.
Including Performance Benchmarks into Continuous
Integration to Enable DevOps. (2015), ACM SIGSOFT
Software Engineering Notes, 1-4.

[33] Pengxiang, Ji and Leong, Peter. Teaching Work-ready Cloud
Computing Using the DevOps Approach. In Int. Symp. on
Advances in Technology Education (Singapore 2014),
Nanyang Polytechnic.

[34] Sussna, Jeff. Cloud and DevOps: A Marriage Made in
Heaven. Introducing DevOps to the Traditional Enterprise /
eMag, 14 (June 2014).

[35] Phillips, Andrew. Preparing for Continuous Delivery in the
Enterprise. Introducing DevOps to the Traditional Enterprise
/ eMag, 14 (June 2014).

[36] Manglani, Kamal and Bothello, Gerald. DevOps - Pivoting
Beyond Pockets. Introducing DevOps to the Traditional
Enterprise / eMag, 14 (2014).

[37] Humble, Jez and Molesky, Joanne. Why Enterprises Must
Adopt Devops to Enable Continuous Delivery. The Journal
of Information Technology Management, 24, 8 (2011).

[38] Shamow, Eric. Devops at Advance Internet: How We Got in
the Door. The Journal of Information Technology
Management, 24, 8 (August 2011).

[39] Fitzpatrick, Lawrence and Dillon, Michael. The Business
Case for Devops: A Five-Year Retrospective. The Journal of
Information Technology Management, 24 (August 2011).

[40] Phifer, Bill. Next-Generation Process Integration: CMMI and
ITIL Do Devops. Cutter IT Journal, 24, 8 (2011).

[41] DeGrandis, Dominica. Devops: So You Say You Want a
Revolution? The Journal of Information Technology
Management, 24, 8 (August 2011).

[42] Smith, David M. Hype Cycle for Cloud Computing. Gartner
Research, Inc, 2011.

[43] Duvall, Paul. Breaking down barriers and reducing cycle
times with DevOps and continuous delivery. New Relic.
2012. Retrieved from: http://goo.gl/dqhwod.

[44] Azoff, Michael. DevOps Advances in release Management
and Automation. Ovum, 2011.

[45] PUPPET LABS & IT REVOLUTIONS PRESS. State of
DevOps Report. Puppet Labs, 2014.

[46] Michelsen, John. Dysfunction Junction: A Pragmatic Guide
to Getting Started with DevOps. CA Technologies. 2013.
Retrieved from: http://goo.gl/A1ZAYM.

[47] APPDYNAMICS, INC. From Dev to Ops: An Introduction.
2014. Retrieved from: https://goo.gl/qn1xUi.

[48] CA TECHNOLOGIES. TechInsights Report: What Smart
Businesses Know About DevOps. CA Technologies, 2013.

[49] Limoncelli, Thomas A. and Hughes, Doug. DevOps: New
Challenges, Proven Values. ;login:, 36, 4 (2011), 46-48.

[50] Womack, James P and Jones, Daniel T. Lean thinking:
banish waste and create wealth in your corporation. Simon
and Schuster, 2010.

[51] Petersen, Kai, Vakkalanka, Sairam, and Kuzniarz, Ludwik.
Guidelines for conducting systematic mapping studies in
software engineering: An update. IST, 64 (2015), 1-18.

62

