Universidad de la República Facultad de Ingeniería - IMERL

Cálculo Diferencial e Integral en Varias Variables Noviembre 2019

Segundo Parcial – Viernes 22 de noviembre de 2019

Nro de Parcial	Cédula	Apellido y nombre

Escribir nombre y cédula en todas las hojas que se entrequen.

Ejercicio 1.(5 pts.) Sea $f: \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\} \to \mathbb{R}$ tal que:

$$f(x,y) = \begin{cases} \frac{\pi x^2 y - e^x}{(\log(x/y))^2 + 1} & \text{si } (x,y) \neq (1,1) \\ a & \text{en otro caso} \end{cases}$$

Si f es continua, entonces:

$$a =$$

Ejercicio 2. Versión 1.(10 pts.) Se considera $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \frac{1}{3}\sin(x) + \frac{2}{3}\sin(y)$. La ecuación del plano tangente al gráfico de f en el punto $(\pi/2, \pi/2, 1)$ es:

$$z = 1$$

Ejercicio 3.(5 pts.) Sea $f: \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\} \to \mathbb{R}$ tal que $f(x,y) = \frac{1}{xy}$. El polinomio de Taylor de grado 3 de la función f en el punto (1,1) es:

$$P(x,y) =$$

Ejercicio 4.(10 pts.) Sea $D=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq \frac{7}{8}\}$. El valor de $\iint_D\sqrt{7/8-x^2-y^2}dxdy$ es:

Ejercicios de desarrollo

Ejercicio 1.(10 pts.) Consideremos $f: \mathbb{R}^2 \to \mathbb{R}$ tal que:

$$f(x,y) = \begin{cases} 1 & \text{si } 0 < y < x^2 \\ 0 & \text{en otro caso} \end{cases}$$

Probar que existen todas las derivadas direccionales de f en (0,0), pero sin embargo f no es continua en (0,0).

Ejercicio 2.(10 pts.)

- (1) Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función, $a \in \mathbb{R}^n$ y $v \in \mathbb{R}^n$.
 - (a) Definir diferenciabilidad de f en el punto a.
 - (b) Definir $\frac{\partial f}{\partial v}(a)$.
 - (c) Demostrar que si f es diferenciable en el punto a, entonces para todo $v \in \mathbb{R}^n$ existe $\frac{\partial f}{\partial v}(a)$ y además $\frac{\partial f}{\partial v}(a) = D_a f(v)$ (Aquí $D_a f : \mathbb{R}^n \to \mathbb{R}$ denota el diferencial de f en el punto a).
- (2) Se considera ahora $f: \mathbb{R}^3 \to \mathbb{R}^2$ diferenciable en el punto (1,1,1). Se sabe que $\frac{\partial f}{\partial x}(1,1,1) = (3,0), \frac{\partial f}{\partial y}(1,1,1) = (\pi,5), \frac{\partial f}{\partial z}(1,1,1) = (2,1),$ y que $f(1,1,1) = (\sqrt{5},2)$. Calcular:

$$L = \lim_{h \to 0} \frac{f(1 + h\pi, 1 + eh, 1 - \pi h) - (\sqrt{5}, 2)}{h}$$

Ejercicio 3.(10 pts.) Sea $D = \{(x, y, z) : -1 \le z \le x^2 + y^2; \ x^2 + y^2 \le 4\}$. Calcular el volumen de D.