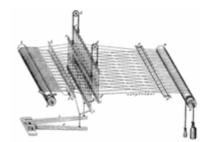
Computación 1 - 2020 Sistemas de Información

Contenido

- Perspectiva Histórica
- Redes
- Roles en la Interconexión
- Arquitectura Cliente-Servidor

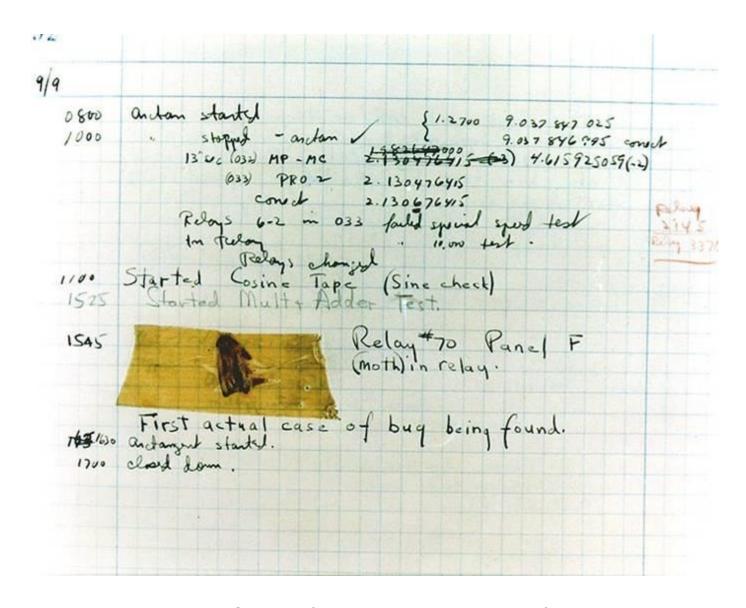
Perspectiva Histórica


Bases

- Ábaco
- 1642 Blaise Pascal y su Pascalina
 - Sumas y restas
- 1670 Leibniz wheel
 - Multiplicar, dividir y raíces cuadradas en binario
- 1800 Joseph Jacquard
 - Telar automatizado utilizando tarjetas perforadas
- 1847 George Boole
 - Lógica booleana

1830 - 1944

- 1833: Babbage y su máquina analítica
 - □ Ada Augusta Byron
- 1936: Turing y su "máquina de resolver algoritmos"
- 1937: Aiken + IBM (+Babbage) desarrollan
 "Mark-1" (electromecánica). Terminan 1944.
 - □ Operaciones aritméticas, logaritmos, trigonometría
- 1940: Mauchly + Eckert (+Von Neumann) desarrollan ENIAC. (electrónica). Terminan en 1945.
- 1944: Von Neumann: propone programa y datos en la misma memoria del equipo.



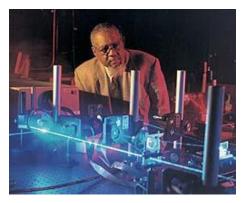
Primer "bug", descubierto por Grace Hopper - 1947

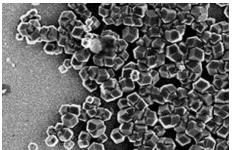
1950 - 1970

- 1950: Primeras computadoras de fabricación en serie (Univac)
 - Mainframes, para grandes proyectos militares y científicos
 - □ Pocos lenguajes y herramientas
- 1960: Primeras aplicaciones comerciales
 - Más potencia de cómputo
 - Grandes aplicaciones comerciales
- 1970: Surgen los mini computadores
 - Se extiende el uso científico y comercial
 - Se desarrollan nuevos lenguajes y herramientas

1980 - 2000

- 1980: Primer Personal Computer: PC
 - Diversificación de software
- 1990: Integración de sistemas e internet
 - Acceso de mucha más gente a las PC
 - Gran potencia de cálculo, visualización en 2D y 3D
 - □ World Wide Web
- 2000: Expansión de internet
 - Gran disponibilidad de equipos
 - Multi-core
 - Aumento de ancho de banda
 - Mbps, Gbps
 - □ Interconexión con celulares, televisores, etc
 - □ Web 2.0 Web social y colaborativa





Lo que se viene

- Computadora óptica
 - □ 60 años de estudios en el área
 - □ No ha logrado reemplazar las computadoras digitales
- Computación basada en ADN
 - □ EEUU 1994: Inicio de estudios en este campo.
 - Utilizando cadenas de ADN y enzimas.
 - Israel 2003: Guinness: "smallest biological computing device"
 - ☐ Es "programable" pero no "universal"
- Computación cuántica
 - Paul Benioff 1982: Sugiere la teoría para aprovechar las leyes cuánticas en la computación.
 - □ 1998: primeras computadoras cuánticas de 2 y 3 qbits
 - □ 2012: computadora cuántica de 84 qbits (?)

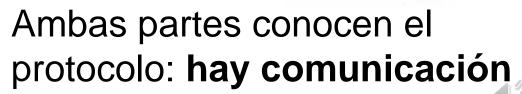
Definiciones

- Una red es conjunto de emisores y receptores conectados a un medio de transmisión
 - □ No solo aplicable a redes de computadoras
- Llamamos <u>nodos</u> a las computadoras, que están conectadas mediante <u>enlaces</u> (cables, medios inalámbricos, etc)

Definiciones

- Para que dos elementos se comuniquen deben cumplir ciertas reglas en común
- Ese conjunto de reglas se denomina <u>protocolo de</u> <u>comunicación</u>
- Cada nodo ejecuta un programa que sabe interpretar el protocolo (cumple sus reglas)

Definiciones


- Un protocolo de comunicación es un acuerdo entre el emisor y el receptor
 - □ No solo aplicable a redes de computadoras
- Definen los tipos de mensajes y cómo debe reaccionar cada uno ante ellos
- Gran variedad de protocolos según
 - □ medio de transmisión
 - funcionalidad provista

Protocolos

Un protocolo es algo natural ¡Los utilizamos todos los días!

- Hola
- Hola
- ¿Qué hora es?
 - Tres y cinco
- ¡Gracias!

Protocolos

Un protocolo es algo natural ¡Los utilizamos todos los días!

- Hola
 - I don't speakSpanish
- ¿¿Lo qué??

No utilizan el mismo protocolo: falla la comunicación

Dos computadoras conectadas por un cable

Escribe "Hola" en el teclado

```
repetir

msj = leer_teclado()

enviar(msj)

El mensaje viaja por
el cable
```

```
repetir
    msj = recibir()
    mostrar_pantalla(msj)
fin
```


Despliega: "Hola"

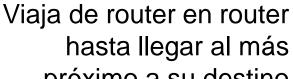
¿Y si están en distintos países?

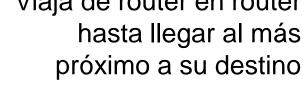
Envía "Hola" a un nodo en España

Uruguay

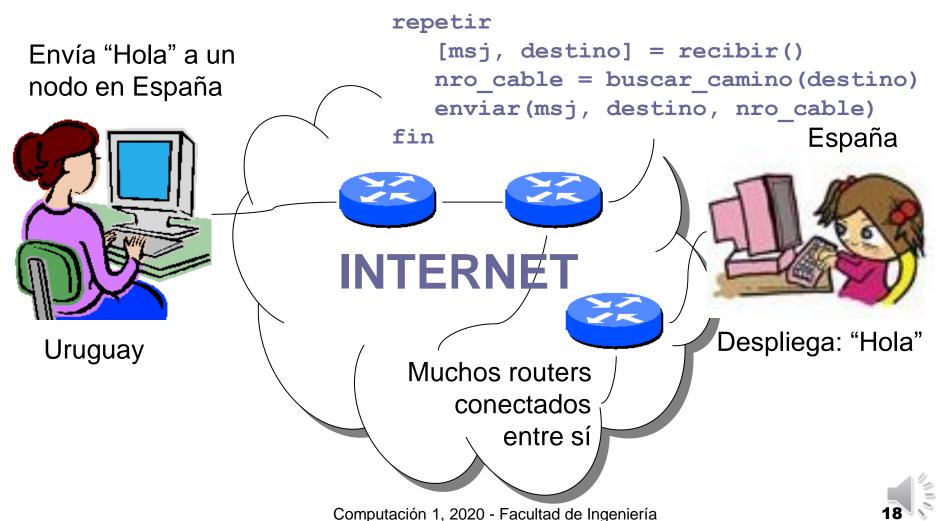
El mensaje viaja por el cable

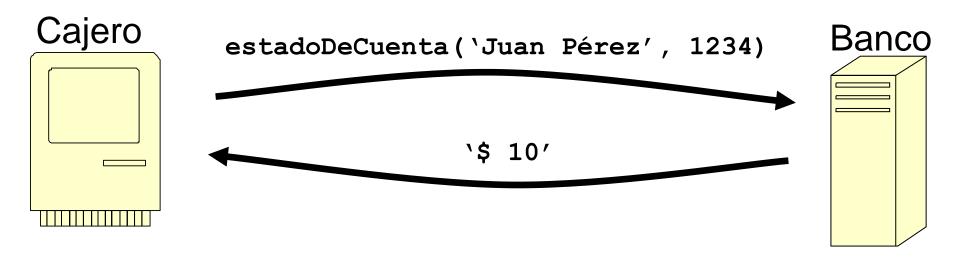
Cada router decide qué camino seguir

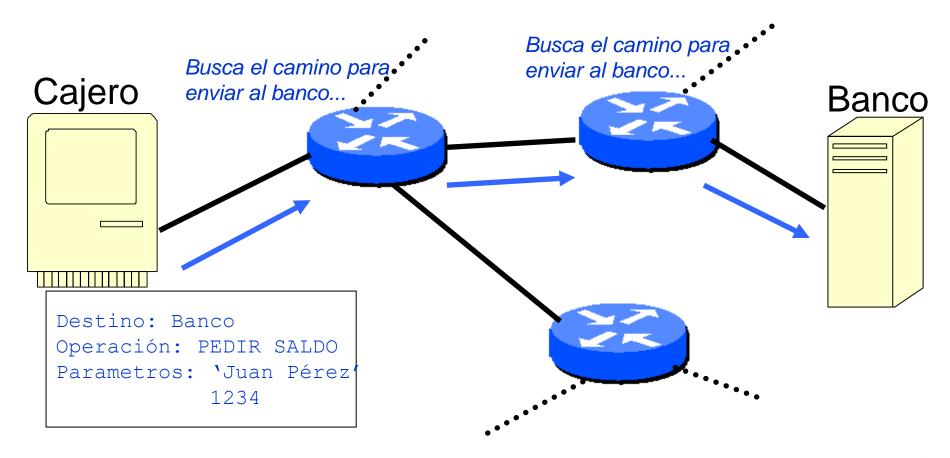


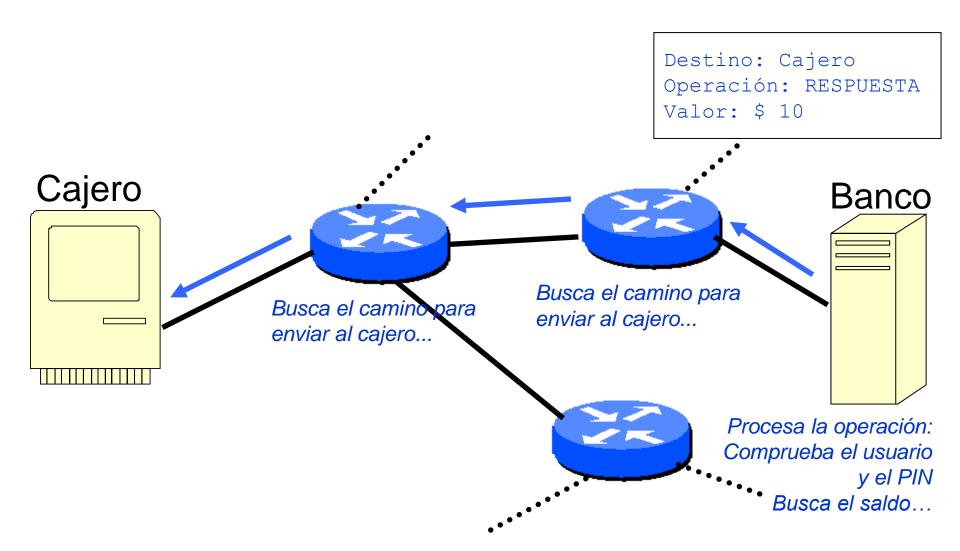

España

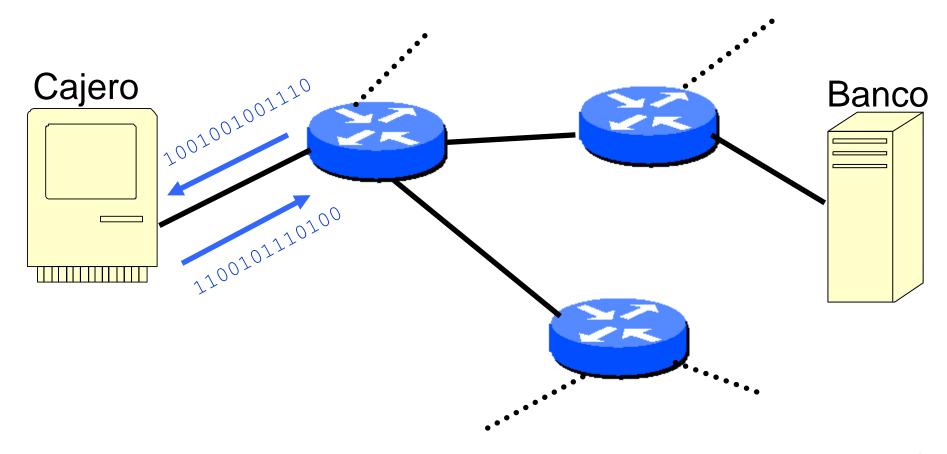
Despliega: "Hola"


Un nodo llamado router lo reenvía según el destino








¿Y si están en distintos países?

- Cajero, banco, routers, todos son <u>nodos</u> de la red
- Pedido de saldo, envío de paquetes, señalización en el cable, todos son <u>protocolos</u> de la red
 - Cada protocolo tiene sus propias reglas
 - Hay protocolos de más alto o más bajo nivel
 - Para un mejor entendimiento se clasifican los protocolos según capas

Ejemplo: flujo del correo tradicional.

Modelos de capas

- Estándar ISO-OSI define siete capas, no todas se utilizan en la práctica
- Estándar IEEE 802.X define tres capas como agrupaciones de las de ISO
- ¿En qué capa se ubicarían los protocolos de ejemplo mostrados?

Nivel de aplicación y presentación

Comunicación de aplicaciones

Nivel de enlace de datos

Armar / desarmar paquetes

Nivel físico

Medio, emisores y sensores

Modelos de capas

- Internet utiliza un modelo denominado TCP/IP
- TCP e IP son dos protocolos de las capas centrales, utilizados en toda la red
- En capa física y de presentación existe mucha diversidad de protocolos

Nivel de aplicación y presentación

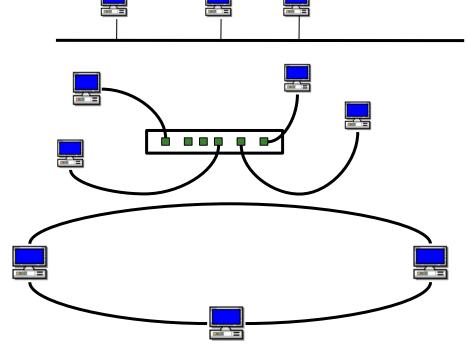
(HTTP, SMTP, ...)

Capa de transporte (TCP)

Capa de red

Nivel físico

(Ethernet, wireless,...)



Según estructura física

Bus

Estrella

Anillo

La estructura física es denominada topología de la red

Según tipo de conexión

Orientada a conexión

Como la red telefónica, se definen canales fijos desde el emisor hasta el receptor en los cuales se garantiza cierto nivel de servicio

Orientada a paquetes

Como el servicio de correo, cada carta indica su destino y se define sobre la marcha la ruta que seguirán

Según área de cobertura

- PAN -Personal Area Network-
- Dispositivos móbiles, de audio, bluetooth
- LAN -Local Area Network-

Apropiadas para una oficina, un edificio.

- WAN -Wide Area Network-
- Apropiadas para interconectar edificios en áreas más o menos extensas
- CAN -Campus Area Network-
- Edificios en un área más o menos reducida
- MAN -Metropolitan Area Network-
- Red que se extiende a lo largo de una ciudad (por ejemplo: Internet por cable)

Según roles de los equipos

Servidores - Estaciones de trabajo

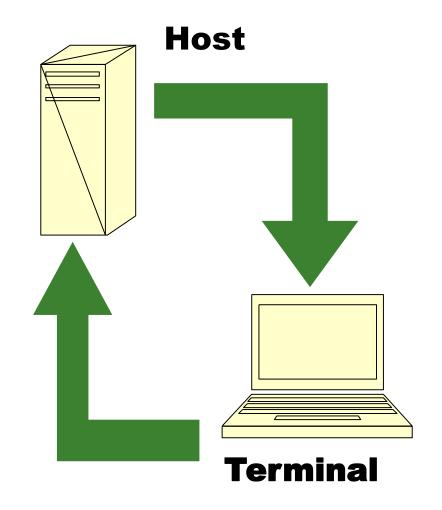
Servidores gestionan los recursos compartidos y verifican permisos de acceso, disponibilidad, etc.

Redes par – par (peer to peer):

Todos los equipos pueden gestionar el acceso a sus recursos propios negociándolos uno a uno

Híbridas: Combinación de las anteriores

Roles en la interconexión



Host

- Es un equipo que hospeda datos y/o aplicaciones y/o servicios
- Son equipos de gran capacidad (generalmente caros) y alto rendimiento debido a que deben procesar los pedidos de todos los usuarios
- Originalmente era el equipo que tenía los datos, la aplicación y ejecutaba la lógica de la aplicación
- Era el modelo común en los inicios de la computación, cuando el hardware era demasiado caro y había que aprovecharlo bien

Terminales de datos

- Sólo tienen capacidad para conectarse con un host, enviar información al host que recibe en el teclado y desplegar en el monitor lo que recibe del host
- No ejecutan lógica de aplicaciones
- También se les conoce como terminales "tontas"

Terminales de datos

- Actualmente existen (y cada vez más) terminales de datos emuladas por software
- Por ejemplo: en un PC además de todo el software que ejecuta el usuario puede haber un emulador de terminal
- En vez de establecer una conexión electrónica lo hacen por software (utilizando la infraestructura de red instalada)
- Ese emulador sigue siendo tan "tonto" como sus antecesores

Servidores

- Equipos que brindan algún servicio de acceso a:
 - Dispositivos
 - Discos, impresoras, cámara web, etc.
 - Datos
 - Saldos de cuentas, reserva de pasajes, etc.
 - □ Ejecución de lógica de aplicaciones
 - Aplicaciones que trabajan para otras aplicaciones
 - □ CPU
 - Procesadores de cálculo intensivo, paralelos etc.

Clientes

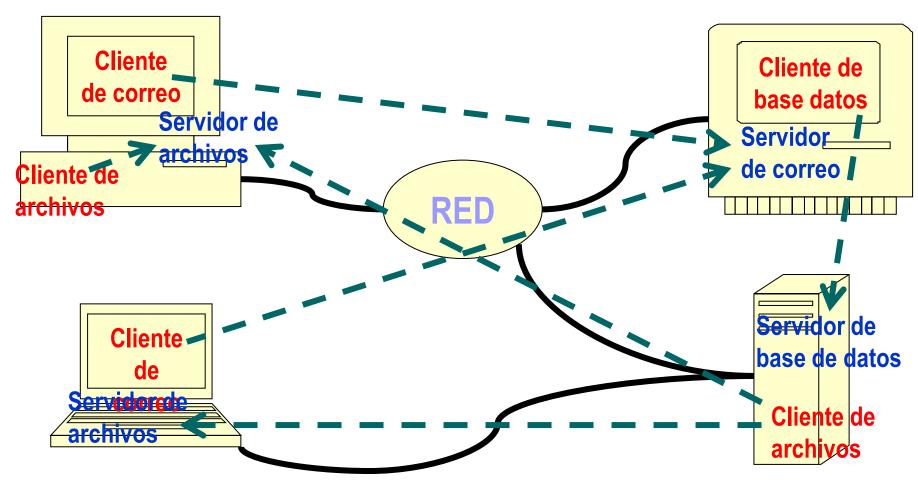
- Equipos que ejecutan parte de la lógica de la aplicación pero que necesitan solicitar algún recurso a otro equipo que lo esté ofreciendo en la red
- Ese recurso puede ser alguno de los ya descriptos para los servidores:
 - Dispositivos
 - Datos
 - Ejecución de lógica de aplicaciones

Hosts – TerminalesVs Clientes – Servidores

Hosts y terminales

- El Host ejecuta TODA la lógica
- La Terminal sólo sabe transferir datos desde/hacia el host, NO ejecuta otra lógica más que el protocolo de comunicación con el host
- Seguridad: Control centralizado

Clientes y Servidores


- El Servidor brinda algún servicio a pedido del Cliente
- El Cliente ejecuta alguna lógica y para resolver algunas cosas se comunica con el servidor
- Seguridad: control descentralizado

- Objetivo: sacar el mayor provecho de equipos interconectados
- Un programa "servidor" estará esperando mensajes (órdenes) de otros programas "clientes"
- Tanto el programa servidor como el cliente pueden estar en la misma máquina o en máquinas diferentes

- Hablamos de <u>programas</u> y no de <u>nodos</u>, no hay restricciones de:
 - □ hardware o sistema operativo de los equipos
 - medio de comunicación en la red
 - □ lenguaje de programación en que están escritos
- La clave está en la especificación del <u>protocolo del servicio</u>
 - □ Análogo al protocolo de comunicación en el caso de las redes
 - Los clientes deben saber en qué máquina está el servidor y cómo dialogar con él

- Para un servicio pueden haber diferentes programas que implementen la parte servidor y la parte cliente.
 - □ todos ellos pueden intercomunicarse
- Una computadora que ejecuta varios programas simultáneamente puede ejecutar varios "cliente" y varios "servidor"

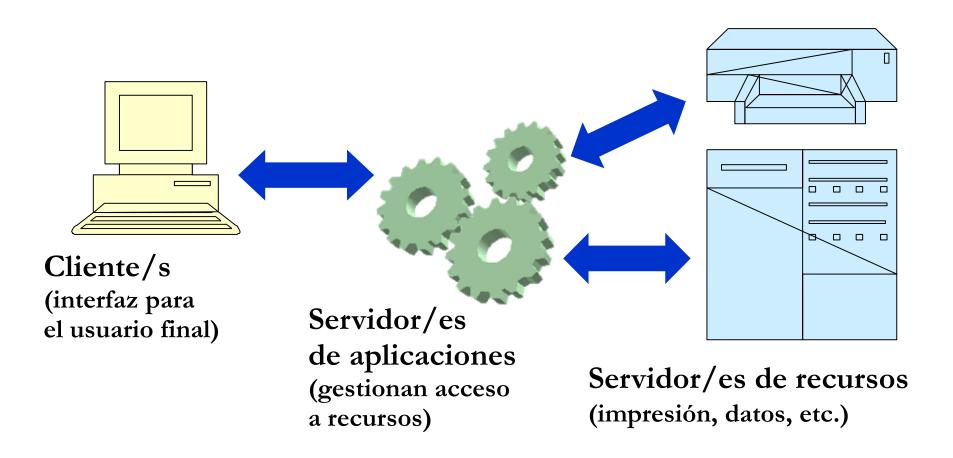
٠

- Correo electrónico
 - □ Clientes (equipos con los programas cliente corresp.):
 - PCs
 - Equipos móviles
 - Teléfonos celulares
- Páginas web de Internet
- Servicios de impresión
- Servicios de uso de discos
- Servicios de control de acceso a equipos

Arquitectura Cliente - Servidor Ejemplos

Bases de datos

¡Atención! pueden ser:


- □ Cliente Servidor
- Terminal Host

¿Cómo distinguir entre un caso y otro?

М

Arquitectura Cliente - Servidor

Modelo en tres capas

