onsideraciones generales sobre el obligatorio de este Objetivo de la Sincronización temporal Esquema general del Sincronizador Temporal Estimación del Error Interpolador Control del Interpolador

Sincronización temporal

Pablo Belzarena

Comunicaciones inalámbricas

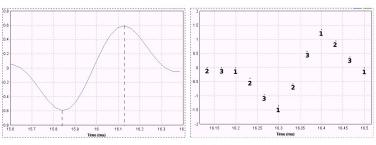
2020

Esquema de la presentación

- 1 Consideraciones generales sobre el obligatorio de este tema
- Objetivo de la Sincronización temporal
- 8 Esquema general del Sincronizador Temporal
- 4 Estimación del Error
- 5 Interpolador
- 6 Control del Interpolador

Notas y ejercicios a entregar

- O Presentación : Descripción general del tema
- 2 Estudio de las notas y realización de ejercicios
- 3 Discusión de dudas teóricas y prácticas en clase.



(a) Señal de tiempo continuo

(b) Señal en tiempo discreto

FIGURE – Señal en tiempo continuo y tiempo discreto

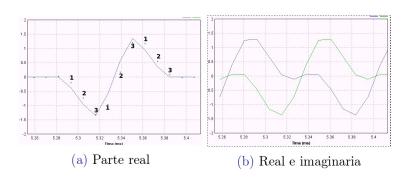
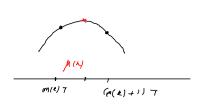
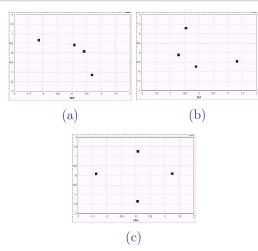


Figure – Señal discreta muestreada en el receptor





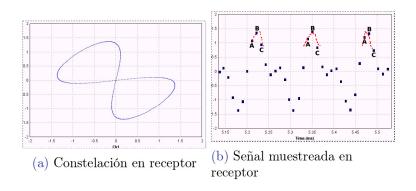


FIGURE – Bases de tiempo diferentes entre transmisor y receptor. Se envía secuencia repetitiva de símbolos.

Esquema general del Sincronizador Temporal

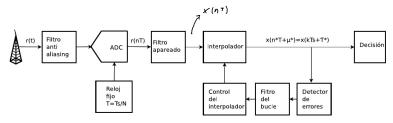


Figure – Diagrama de bloques sincronizador temporal

¿Cómo estimar el error? Modelo

$$r(t) = G_a \sum_{m} a[m]p(t - mT_s - \tau) + w(t)$$
 (1)

Se asumirá también que los símbolos no están correlacionados en el siguiente sentido :

$$\mathbf{E}[a[k]a[m]] = E_{prom}\delta(m-k) \tag{2}$$

donde E_{prom} es la energía promedio de los símbolos.

$$x(t) = G_a \sum_{m} a[m] r_p(t - mT_s - \tau) + \nu(t)$$
 (3)

$$x(kT_s + \hat{\tau}) = G_a \sum_{m} a[m] r_p((k-m)T_s + \hat{\tau} - \tau) + \nu(kT_s + \hat{\tau})$$
 (4)

¿Cómo estimar el error? Máxima Verosimilitud

$$e[k] = a[k]\dot{x}(kT_s + \hat{\tau}[k])$$

$$e[k] = \hat{a}[k]\dot{x}(kT_s + \hat{\tau}[k])$$

Para el caso de PAM binario;

$$e[k] = signo(x(kT_s + \hat{\tau}[k])\dot{x}(kT_s + \hat{\tau}[k])$$

X(NT)

¿Cómo estimar el error? Máxima Verosimilitud

La curva-S

$$g(\tau_e) = \mathbf{E}[e[k]]$$

$$= \mathbf{E}[a[k]\dot{x}(kT_s + \hat{\tau})]$$

$$= \mathbf{E}[a[k]G_a \sum_m a[m]\dot{r}_p((k-m)T_s - \tau_e))]$$

$$g(\tau_e) = \mathbf{E} \big[G_a E_{prom} \dot{r}_p(-\tau_e) \big) \big]$$

¿Cómo estimar el error? Máxima Verosimilitud

En las notas se prueba que el anterior es el estimador de máxima verosimilitud

$$e_{\tau}[k] = Re [a[k]^* \dot{x}((kT) + \tau[k])]$$

= $Re[a[k]]Re [\dot{x}((kT) + \tau[k])] + Im[a[k]]Im [\dot{x}((kT) + \tau[k])]$

Para el caso QPSK se obtiene :

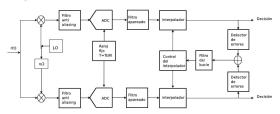


Figure – Esquema sincronizador QPSK

onsideraciones generales sobre el obligatorio de este Objetivo de la Sincronización temporal Esquema general del Sincronizador Temporal **Estimación del Error** Interpolador Control del Interpolador

¿Cómo estimar el error? Otros estimadores

Dos de ellos, early-late y Mueller and Muller están como ejercicios para entregar en las notas.

Interpolador Polinómico

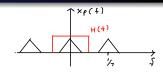
Primer orden:

$$x((m(k) + \mu(k))T) = x((m(k) + 1)T)\mu(k) + x(m(k)T)(1 - \mu(k))$$

Interpolador Polifásico

$$x_{p}(t) = \sum x(hT) \delta_{t-kT}$$

$$x(t) = \sum x(hT) h(t-kT)$$



$$x(nT + \tau) = \sum_{k} x(kT) h((n - k)T + \tau)$$
$$= \sum_{i} x((n - i)T) h(iT + \tau)$$

$$X(nT+\delta) = X(nT) * h(nT+\delta)$$

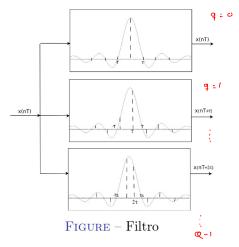
 $Sitio | Yeal : Amc(t/t)$

$$S: \exists \neq 0 \quad \times (\mathsf{NT} + \mathcal{E}) = \sum_{k} (\mathsf{N} - \mathsf{k}) = \begin{cases} 1 & s : \mathsf{k} = \mathsf{N} \\ 0 & s : \mathsf{k} \neq \mathsf{N} \end{cases}$$

$$S: \exists \neq 0 \quad \times (\mathsf{NT} + \mathcal{E}) = \sum_{k} (\mathsf{k} - \mathsf{k}) + \mathsf{N}(\mathsf{N} -$$

5: 6=0 x(nT) = \(x(kT) \ \(\hat{n}^7 - kT \)

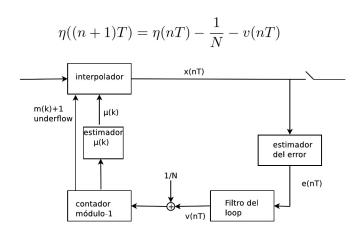
Interpolador Polifásico

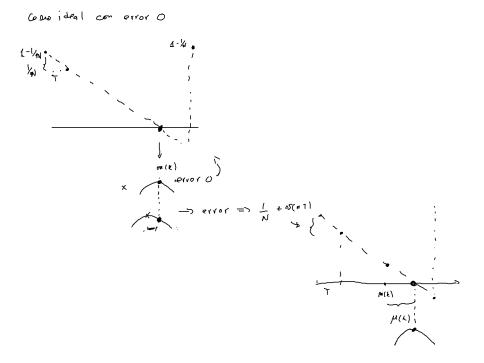


Control del interpolador

- Objetivo : m^* y μ^*
- Contador módulo-1
- Control recursivo

Contador Módulo-1





Contador Módulo-1

