Primer parcial.

Duración: 3 horas.

Nº. Parcial	Apellido y nombre	Firma	Cédula	Asiste a teórico

Indique sus respuestas en los casilleros correspondientes, con letras mayúsculas imprenta: A, B, C o D.

MO 1	MO 2	MO 3	MO 4

Ejercicios de Múltiple Opción.

Total: 20 puntos. 5 puntos si la respuesta es correcta, 0 punto por no contestar y -1.25 si la respuesta es incorrecta.

- 1. Sean z_1 , z_2 y z_3 las tres raíces de la ecuación $z^3=1$. Indicar la opción correcta:
- (A) $z_1 z_2 z_3 = 1$.
- (B) $z_1 z_2 z_3 = i$.
- (C) $z_1 z_2 z_3 = -1$.
- (D) $z_1 z_2 z_3 = -i$.
- **2.** Sea x(t) la solución a la ecuación diferencial $x'' + 2x' + x = e^t$ que cumple $x(1) = \frac{e}{4} + \frac{1}{e}$; $x'(1) = \frac{e}{4} \frac{1}{e}$. Indicar la opción correcta:
- (A) $x(0) = \frac{5}{4}$.
- (B) $x(0) = \frac{3}{4}$.
- (C) $x(0) = \frac{e}{2}$.
- (D) $x(0) = \frac{2}{e}$.

- 3. Considere la serie $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n \log(n)}$. Indicar la opción correcta:
 - (A) La serie converge pero no converge absolutamente.
 - (B) La serie diverge.
 - (C) La serie oscila.
 - (D) La serie converge absolutamente.
- 4. Considerar la integral impropia $\int\limits_0^{+\infty} \frac{1}{(x^2+1)^s} dx$ donde s es un número real. Indicar la opción correcta:
 - (A) La integral converge solamente si s < 1/2.
 - (B) La integral converge solamente si s > 1/2.
 - (C) La integral converge para todo valor de s.
 - (D) La integral no converge para todo valor de s.

Ejercicios de Desarrollo

Total: 20 puntos.

- **5. Problema 1** (10 puntos) Sea $a_n : \mathbb{N} \to \mathbb{R}$ una sucesión de números
 - (a) Definir sucesión acotada y sucesión convergente.
 - (b) Demostrar que toda sucesión a_n convergente es una sucesión acotada.
 - (c) ¿Vale el recíproco de la afirmación anterior? Probar o dar un contraejemplo.
- **6. Problema 2** (10 puntos) Sea A un conjunto de \mathbb{R}^n
 - (a) Definir el interior de un conjunto $A \subseteq \mathbb{R}^n$.
 - (b) Definir punto de acumulación de un conjunto $A \subseteq \mathbb{R}^n$.
 - (c) Considerar el conjunto A del plano definido por:

$$A = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{9} < 1 \right\} \bigcap (\mathbb{N} \times \mathbb{N})^c.$$

Representar gráficamente los puntos de acumulación de A que no son interiores. Justificar.