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Abstract—This paper presents a three-year participant 
observation in which the author acted as CTO of a software 
startup, spanning more than 9,000 hours of direct experience. 
The author’s emails and diary reflections were analyzed and 
synthesized into a set of nine claims about software engineering 
work. These claims help shape software engineering research, 
practice, and education by provoking new questions about what 
makes software engineering difficult. 
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I.  INTRODUCTION 
In past decades, there has been much progress in studying 

how developers work. We understand many of the questions 
they ask [34], the information they need [19], and many other 
factors that affect their productivity [7,23,24]. These 
discoveries have informed the design of many tools and 
processes that may positively affect practice [13,27]. 

These discoveries, however, are heavily biased toward the 
observable activities that developers perform, overlooking 
developers’ internal, emotional, and cognitive experiences at 
work. For example, what does it feel like to be an engineer 
day to day? Which parts of the job are exhilarating and which 
parts are dull? What role do developers’ social experiences 
with their teammates and managers have on their work? How 
do these experiences change and evolve over time, especially 
as developers learn and an organization evolves? 

These aspects of developer experience are important for 
many reasons. Emotion, for example, is a dominant factor in 
decision making [26], and by not studying its role, researchers 
may overlook large factors that shape software development. 
Longitudinal studies of experience are also important as many 
challenges in software engineering occur over years. 
Investigating experience may also reveal new opportunities to 
innovate in tools, process, and education. 

Unfortunately, experience over time is difficult to observe. 
Surveys and experience sampling can get at some aspects of 
experience, but often lack depth. Interviews offer depth, but 
require developers to recall their experiences, leaving data 
subject to memory bias. Diary studies can capture depth over 
time [12], but most developers are unlikely to spend 
significant time writing about their experiences over the 
months or years. Moreover, in all of these methods, 
developers are unlikely to share the more emotionally 
challenging aspects of their work, masking potentially 
powerful factors that shape their daily work. 

One way to observe developer experience longitudinally 
is for researchers to engage in engineering themselves, 

reflecting on their own experiences. For example, in 1975, 
Brooks reflected on his industry experiences in The Mythical 
Man Month, presenting over 200 testable propositions about 
software engineering [7]. Similarly, in 1989, Knuth published 
the Errors of TeX [18], a diary study documenting and 
reflecting on the 850 errors that he made over a decade of 
work. Each of these works provided rare glimpses into 
programming, project management and software 
maintenance, informing research on software engineering.  

In this paper, I report on a similar self-examination, 
describing my three-years as CTO and co-founder of a 
venture-backed software startup in Seattle. To study my 
experiences, I wrote daily in a personal diary and archived 
over 15,000 emails exchanged with my co-founders and 
employees. Both data sources focused on my experiences as a 
founder, executive, manager, and developer as our company 
and software evolved. I then analyzed my diary and emails, 
deriving nine novel claims about software engineering to be 
tested in further research. In the rest of this paper, I describe 
my method in detail and then present my claims. 

II. METHOD 
Knuth’s study and my study are both examples of 

participant observation. This is a method long used in cultural 
anthropology in which the researcher is both an observer and 
a participant in some activity over time [16]. Participant 
observations have the unique strength of describing complex 
aspects of cognition, social interaction, and culture over time, 
and can be used to improve business from within [37]. But 
they also have limitations: they require introspection, which is 
subjective [30]; they represent a single perspective; and they 
can suffer from the observer-expectancy effect, in which the 
presence of an observer influences other participants’ 
behavior [33]. These limitations are usually mitigated through 
1) triangulation of other data sources, and 2) transparency 
about the observers’ biases and beliefs, allowing the reader to 
better interpret the subjective observations [2]. 

I used two sources of data: my personal diary and emails 
exchanged with my coworkers. I then also asked my co-
founder and my VP of Engineering to read this paper to 
corroborate my perspectives, noting when their experiences 
differed. These two sources of data aimed to go beyond my 
individual perspectives to better reflect the perspectives of 
three key executives. This ensured that I used more than my 
diary, emails, and memory to reconstruct events. 

To increase transparency, here I describe the many biases 
that influenced my data and analysis. I am a researcher, versed 
in studies of human aspects of software engineering, and so I 
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brought to my observations a broad knowledge of human 
factors in software engineering research. I have done several 
studies of software companies that have shaped my 
perceptions of how software compares work. My identity as a 
researcher shaped the decisions I made as a CTO, biasing 
them toward evidence over intuition. I have a background in 
Human-Computer Interaction research, which predisposes me 
to sociotechnical explanations of phenomena. I had no prior 
experience in professional software engineering and so many 
of my observations may have emerged from my learning. 
Finally, because I live in Seattle, I have many peers who work 
in the software industry. My incentives in participating in the 
company were also mixed: I wanted to build a successful 
business, but as a researcher, I also wanted to understand how 
our business evolved. 

My data collection across the three years was frequent and 
in situ, as is best practice [2, 12]. I wrote daily on everything 
I observed, including decision-making by myself and others, 
management choices, the evolution of our product and 
engineering management, our technology stack, our product’s 
architecture, the role of tools, and the role of research. My 
focus was biased toward events that caused me negative 
emotions such as stress, anxiety, frustration, boredom, and 
confusion, and toward phenomena I was curious about, such 
as software process, design, product management, and 
engineering management. I amassed over 15,000 emails 
between me, my co-founders, my employees, and our 
customers, many of which included tense exchanges about 
challenging engineering, management, and business problems 
about which my co-workers and I had differing views. My 
diary and emails ultimately spanned 9,000 hours of work from 
December 2012 to December 2015. 

III. THE ORIGINS OF THE BUSINESS 
The kernel of the business was my National Science 

Foundation CAREER grant, awarded in 2009. In the grant, I 
observed that software help requests by end users are 
fragmented, duplicated, and disjoint online because they are 
inconsistently expressed. If we could structure help requests 
so that users expressed similar problems in similar ways, we 
could both retrieve help more reliably, but also provide 
aggregate data about bugs, usability issues, and feature 
requests. My Ph.D. co-advisee Parmit Chilana led this work, 
inventing a Q&A retrieval technique called LemonAid, with 
some help from me and her other co-advisor Jacob O. 
Wobbrock (hereafter “Jake”). The technique allowed end-
users to select user interface elements in the website they 
wanted help with (e.g., text, images, buttons). Our system then 
retrieved Q&A that were most relevant to their selection [8]. 
Across four deployments to public web sites owned by the 
University of Washington (UW), we saw significant rates of 
usage and successful answer discovery and many users said 
they preferred it over all other forms of help [9]. 

Parmit presented her research while interning at Facebook 
in October 2010. During her visit, the company asked how the 
retrieval worked. Parmit declined to answer and returned to 
UW to discuss the intellectual property implications with our 
technology transfer office. Intrigued by the prototype, the tech 
transfer staff connected us with an “entrepreneur-in-

residence” to discuss opportunities. He encouraged us to 
consider commercializing. After almost a year of deliberation 
(including whether Parmit would finish her Ph.D., whether 
Jake would spend his sabbatical raising financing for the 
company, and whether I would moonlight the year before 
going up for tenure), Jake and I decided to spin out a business 
and temporarily leave the university, while Parmit decided to 
focus on her academic job search. I became CTO because of 
my substantial experience with web development and Jake 
took the CEO role to focus on strategy, customers, and 
financing. We founded the company on September 24th, 2012. 

To begin, Jake and I started talking to customers with the 
help of the entrepreneur-in-residence, who we hired as a 
business development consultant. Our first sales pitch was 
with a small startup looking for a contextual help solution. We 
had no product, and so our pitch relied on a video of the 
LemonAid prototype. The startup loved it and wanted to 
launch in January 2013. It was December 14th, 2012. 

I only had two weeks to build a production-ready alpha. I 
did not have time to learn the modern web technologies at the 
time (Backbone, AWS, node.js, Ruby, Postgres, etc.), and so I 
started with the technology stack I knew: Linux, Apache, 
MySQL, PHP, and jQuery. By January 4th, 2013, I had a 
deployable alpha and we launched on that customer’s site. We 
gained several additional customers in subsequent months. 

Feature requests swamped the 15 hours per week that I had 
dedicated on top of my full-time faculty work. I quickly saw 
the consequences of my dated technology stack, with poorly 
logged error messages in PHP, callback spaghetti in jQuery, 
and the burden of server administration. Responding to feature 
requests meant taking on more technical debt in service of 
more sales pitches, more fundraising pitches, and better 
product customer fit. In my mind, all of this debt would be 
worth accruing if we could close funding, so we could hire a 
larger engineering team to build a better infrastructure. 

These investments eventually paid off. We closed $2.54 
million in venture capital on December 2, 2013 and began 
hiring. Despite my fears of my rushed implementation 
deterring new hires, many candidates viewed it as an 
opportunity to build a modular, scalable 1.0 product. And with 
our team, that’s exactly what we did, releasing on modern 
infrastructure with a better architecture. As our team grew and 
Jake’s responsibilities as CEO expanded, I took on the role of 
product manager, engineering manager, and architect for the 
next two years. In my last year, I handed the role of 
engineering manager to a new VP of Engineering. 

After about three years as the company’s CEO and CTO, 
Jake and I left the company, hiring new leadership to scale the 
business. At the time of my departure, the company had seven 
developers, a VP of engineering, a designer, three sales and 
marketing staff, a customer success manager, an admin, and a 
CEO. Our implementation at the time ran dozens of services 
hosted on Amazon Web Services spanning hundreds of 
thousands of lines of code written in PHP, Python, JavaScript, 
HTML, CSS, LESS, Java, and Common Lisp. The team ran 
continuous integration, released daily, had an extensive test 
automation infrastructure, performed code and design 
reviews, and followed many other modern practices for 
building secure, scalable web-services. 
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IV. CLAIMS 
My three years of experience amounted to over 100,000 

words in my diary and emails. To analyze this data, I first 
chronologically read every word of my diary and emails, 
identifying trends in my experiences and reflections. I noted 
each trend in the form of a claim that I believed applied to all 
of my experiences (e.g., “Decisions lack sufficient evidence.” 
or “Debugging was straightforward.”). From this first read I 
derived 80 claims. I then consolidated, reconciled and 
synthesized the claims into a final set of 9 claims. I then re-
read the diary and emails, tagging each one with one or more 
of the claims. I then drafted a description and illustration for 
each claim, using stories from my data as supporting evidence. 
Finally, I sent drafts of each claim to Jake and my VP of 
Engineering to look for experiences or interpretations they did 
not agree with. This resulted in several small revisions to 
details in the reporting, but no changes in the claims 
themselves, as both found the claims described their 
experiences. The text in the rest of this section represents the 
final synthesis and triangulation of these nine claims. 

A. Claim 1: Software engineering is structured by 
individual and social decision-making under uncertainty 
Many studies, including some of my own, frame software 

development as an activity of information seeking, arguing 
that developers have questions about code [22,34], their 
coworkers’ activities [23,19], and the rationale for a product’s 
functionality [19], and their ability to answer these questions 
affects their productivity [19]. 

While information seeking was a fundamental part of my 
experience, it was by no means the most salient aspect of my 
time. Both early in the company and three years in, it was the 
decisions I made (alone and with others) that structured my 
work and the work of my engineers. Including the hundreds 
of thousands of lines of code that I wrote, the hundreds of 
mockups I designed, the processes I devised and the systems 
I structured for managing information, I estimate there were 
nearly a quarter million decisions—about 25 per hour, 3,000 
hours of work a year. 

These decisions varied widely in their scope and 
significance. They included choices such as: What’s an 
extensible way to structure this data? How can I automate this 
test? Is this bug important enough to fix right now? How do I 
convince this customer that their feature request is a bad 
idea? How do I convince my CEO that this feature is critical 
to growth? How do I get my engineers to make this deadline? 
Do these stand-up meetings have sufficient return on 
investment? Where does this product need to be before the end 
of this financial quarter? Should I go home to my family or 
finish these board deck slides for tomorrow? Each decision 
led to information needs, but the information was only in 
service of informing decisions. 

Decisions are among the more difficult things that human 
beings do, and so we satisfice [35]. This was necessary not 
only because I rarely had all of the information necessary to 
enumerate or weigh alternatives, but I also rarely had an 
accepted utility function with which to evaluate alternatives. 
Take, for example, the decision of whether to fix a bug. My 

team once found a particularly nasty data loss defect that, to 
fix, required significant re-architecting, while delaying 
progress on other important feature work. Some engineers 
preferred to decide on principle, viewing data loss as 
inherently unacceptable. Others were pragmatists, focusing on 
how frequently the bug was encountered and how severe the 
loss of data would be to customers. Others focused on return 
on investment, asking what the company would gain and what 
it would lose if we delayed the fix. All of these were legitimate 
decision frames, so the only way to resolve the conflict was 
for me to decide using my authority. This is similar to the 
decision making observed in open source projects, in which 
speculation, anecdote, and overgeneralization are common as 
rhetorical devices, but authority ultimately wins [20]. 

When we sought information to inform decisions, there 
were rarely clear answers. We could not know how frequently 
the data loss was occurring because we had no logs of that 
feature’s use. We did not know how customers would react 
and did not want to risk the loss of trust that would come in 
asking them. And trying to compute the return on investment 
of the fix was near impossible: if the loss turned out to matter 
greatly to a customer, would we lose just them, or would we 
lose other customers too? Because of the degree of 
uncertainty, I began to view my role as shielding engineers 
from uncertainty, so they could focus on code-level decisions. 

Uncertainty had several implications. For example, 
although we logged usage, carefully archived customer 
requests and feedback, and leveraged the state of the art in web 
site analytics, this data was of limited use because of the 
uncertainty of other factors for which we had no evidence. For 
example, logging suggested that customers were rarely going 
to our analytics dashboard. Whether this mattered depended 
on how much value customers were getting from their 
infrequent visits. We could not easily know this and so we 
relied on our expertise to guess. It was hard to say whether this 
reliance on expertise was negative: by the time we found out 
whether our facts or expertise were right, it was too difficult 
to trace the origins of our decisions. 

Trust was another significant factor in decisions. When I 
solicited opinions, I needed to factor in how much I believed 
them. Were the CEO’s beliefs about our product’s traction 
well informed? Did my junior engineer correctly parse our 
Apache logs for traffic to that page? How much faith do I put 
in my head of sale’s interpretation of that customer phone 
call? And of course, the other executives asked the same 
questions about me, learning that I was prone to weighing data 
over expertise, bottom line over technical and design factors, 
and being better at strategic matters than tactical matters. The 
constant need to trust and be trusted was an extra layer of 
relationship management that I did not expect. 

B. Claim 2: Product design is a power struggle between 
diffuse sources of domain insights 
Modern perspectives on software design put end users and 

customers at the center. For example, user-centered design 
focuses on users’ goals and tasks, and then iteratively designs 
and evaluates experiences to support those tasks (e.g., [6]). 
Agile and XP begin from the premise that requirements cannot 
be determined at the beginning of a project, and so continuous 
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customer and stakeholder involvement is critical to designing 
an acceptable product [14]. The Lean Startup [32] espouses 
similar ideas, encouraging the release of “minimum viable 
products” that provide value, but also opportunities to learn 
more about customer needs. 

While I found these perspectives helpful, they mostly 
described how and why to gather insight, saying little about 
the process of synthesizing it into action. Synthesis was made 
difficult because insights were usually diffuse, conflicting, 
and sparse, requiring me to assemble a complete product 
vision from only fragments. Current customers expressed 
feedback through bug reports, feature requests, and technical 
support. Prospective customers expressed feedback through 
sales objections and competitor comparisons. Domain experts 
(primarily Jake and myself) had opinions about product value. 
Our board provided tactical and strategic recommendations 
about requirements prioritization. The market constrained and 
shaped which requirements were important, viable, and 
differentiating. And of course, engineers had strong opinions 
about what they did and did not want to build. As our product 
manager, synthesizing these disparate perspectives forced me 
to decide which sources to value and when. 

This synthesis was further complicated by the varying 
power that these different sources held. Because Jake and I 
had studied contextual help so extensively, we viewed 
ourselves as the experts and therefore held considerable power 
within the company. Customers, however, had vastly more 
power than even us, as they were the ones making the buying 
decisions. Moreover, while we viewed customer support as an 
opportunity for insight and competitive advantage, they 
viewed it as a cost-center [8]. This misalignment between our 
expertise and our power meant that many decisions were a 
battle between the end users who needed answers (who we 
represented) and the champion inside our customer’s 
company. We almost always needed to let customers win. 

To regain power, we used two strategies. When we gave a 
customer control over how a feature worked, we would only 
give them as much as they demanded, and fought tirelessly to 
get them to see their product from their customers’ 
perspectives. We knew that every bit of design control we lost 
meant a poorer experience for end users, which ultimately 
meant our product would produce less value for our 
customers. Our second strategy was longer term customer 
education, in which we used our sales and marketing efforts 
to change how customers viewed customer service, educating 
them about best practices and building our “thought 
leadership” in industry. This was slow and costly work, but 
necessary to eventually sell what we viewed as the best 
possible user experience in our customers’ products. 

C. Claim 3: Translating a value proposition into code 
requires both planning and persuasion 
Product management typically comprises three activities. 

First, it involves managing the flow of engineering work by 
triaging incoming requests and assigning work to engineers 
[14]. Second, it involves maintaining a product roadmap to 
organize which work will happen in the future and when [14]. 
Third, and most importantly, it involves establishing 
“product-market fit” by defining and refining a value 

proposition that expresses why a product would be valuable 
to customers [28] and then ensuring that the product roadmap 
always arranged to test and refine this value proposition [32]. 

In my experience, refining our value proposition was the 
most important but invisible work that I did in validating our 
business. It was behind every feature or fix I prioritized; it 
shaped our marketing materials sales rhetoric; it was deeply 
embedded in our product’s code; and it was behind every 
work item I assigned to an engineer. This refinement, 
however, was also a surprisingly complex social process, 
especially as it related to engineers. This was for many 
reasons. The first was that keeping my engineers’ 
understanding of our value proposition consistent and up-to-
date—achieving what Brooks might call “conceptual 
integrity” [7]—required constant communication of design 
rationale at low levels of granularity. It was not enough for 
engineers to know that we reduced support tickets and 
increased sales conversions, for example; they needed to 
know how the “hidden” Q&A state they were adding affected 
our value proposition so they could fully express that value 
through their code-level design decisions and keep new 
decisions consistent with existing ones. I therefore spent much 
of my time explaining and justifying design decisions to 
engineers. This forced me to have a well-reasoned, coherent 
idea of the value of each particular feature or change, and 
ensure that these smaller rationales were well aligned with the 
overarching and evolving value proposition. 

Occasionally, engineers added friction improving our 
product’s value proposition by weighing some software 
qualities higher than customer value. When we deferred fixing 
low-risk security vulnerabilities in order to accelerate a 
feature’s release, for example, many of the engineers found 
this borderline unethical, arguing that it would be better to 
delay release and risk losing customers than to release 
something others would view as insecure. When we released 
user interfaces with subpar usability, our front-end engineers 
and designers felt similarly, struggling to accept a tradeoff 
between the company’s bottom line and their design 
principles. Therefore, product management was as much 
about leadership and persuasion as it was about optimizing 
product-market fit. 

Another challenge was balancing the kind of work that I 
assigned engineers. They wanted work that was technically 
interesting and would develop their skills, but the business 
needed them to focus on increasing product value, and these 
tasks were often straightforward and boring. For example, we 
once wrote a “whitelabeling” feature that amounted two lines 
of code, but made us tens of thousands of dollars per year per 
customer (as it allowed customers to hide our logo and 
preserve their brand). This was neither interesting or 
challenging to implement, but it was highly valuable to the 
business. In contrast, I once assigned a refactoring of a key 
data structure that took two weeks. It provided no product 
value, other than removing a barrier to a valuable feature, but 
it raised many fascinating architectural issues. The lack of 
correlation between interesting and important work meant 
that our roadmap was rarely a pure effort to increase product 
value, but a delicate balance of product work and developer 
nurturing. 
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D. Claim 4: Debt is both technical and cognitive 
Ward Cunningham’s metaphor of technical debt—the 

degree to which an software implementation fails to reflect a 
team’s best understanding of the problem they are solving [11] 
—has become a powerful tool for thinking about software 
evolution [3, 25]. It was a powerful tool for me as well—so 
powerful, in fact, that I began to see many other kinds of debt. 

For example, I regularly encountered comprehension debt, 
which reflected the extent to which engineers’ mental models 
of our implementation’s behavior was out of sync with its 
actual behavior. Our comprehension debt was low enough that 
there was usually at least one person who understood a 
component, ensuring that they could efficiently repair and 
enhance it. There were many cases however where there was 
only one person. When they were on vacation and we 
encountered a defect in the component, the team scrambled to 
decide who had enough familiarity to diagnose and fix it. Our 
strategy for preventing comprehension debt was to cross-train 
engineers on components, ensuring that there were always 
multiple people who could work on every part of our 
implementation. Some of this cross-training occurred during 
onboarding, where I would teach new hires the architecture of 
our product. Code reviews also cross-trained, ensuring every 
change made it into at least two heads. 

There were cases where no one understood a component. 
Some of the code I wrote in the early days of the company had 
not been read by anyone, even me, for years. One day, an 
important customer reached out about an Internet Explorer 
issue with our user interface selection functionality. When I 
went back to debug it, I had to re-comprehend thousands of 
lines of JavaScript I had not seen in two years, and so it took 
me a day instead of an hour to diagnose and repair the issue. 
In other cases, components were so highly coupled, no 
engineer felt they owned it, creating a tragedy of the commons 
[17]. For example, at one point there was a server-side PHP 
script that had been appropriated for so many diverse uses, no 
one felt like the mess was theirs to clean up. Consequently, no 
one spent the time to understand the mess, resulting in 
comprehension debt that posed future maintenance risks. 

I also observed design rationale debt, where no one 
remembered why a component behaved as it did. For example, 
early in the 1.0 of our database schema, we decided to allow 
questions to optionally be retrieved only through selection and 
not via text search. Two years later when we were refactoring 
the schema, the engineer performing the refactoring 
understood the column functionally, but he did not know why 
it was there, how important it was to customers, or which 
customers were dependent on it. Even though I was the one 
who added the feature, I could only vaguely remember why 
we thought it was so critical at the time. Because I could not 
recall this rationale, removing the feature risked breaking an 
undocumented customer requirement. Paying off this debt 
required reconstructing the rationale for a decision, 
documenting customer dependencies that were not visible in 
code or data, and reevaluating the rationale. 

The only way to prevent design rationale debt was to 
document rationale upfront. This preemptive investment 
posed all kinds of questions: where to store it, how to make it 

easy to find, and how much time to invest in writing it. We 
settled on a practice of writing rationale comments tagged 
with unique identifiers so that crosscutting decisions could be 
easily searched. 

I also observed planning debt, which occurred when 
developers privately maintained plans for improving software 
architecture. For instance, in my diary, I frequently reflected 
on ways of improving my code, and then realized that the only 
place these plans were documented was in my research diary. 
I asked my engineers where they kept their plans, and most 
said three things: 1) their memories, 2) handwritten notes on 
their desk, or 3) as partially implemented (and therefore 
opaque) changes in code. The cost of this debt was that when 
a component changed owners, there was no easy way for the 
new owner to learn about those plans and complete them. 

These three types of debt—comprehension, rationale, and 
planning—concerned the cognitive gaps between developers’ 
mental models of what code does, why it does it, and how it 
should do it differently. This suggests that there are actually 
many pairwise gaps between product, code, and developers: 
product and code (technical debt); code and mind 
(comprehension debt); mind and product (rationale debt); and 
architecture and code (planning debt). I saw all of these types 
of debt lead to costly miscommunication and defects. 

E. Claim 5: Effective developers are patient teachers, rapid 
learners, and prosocial communicators 
Although prior work makes it clear that engineers need to 

be effective communicators [5, 24, 31], my time managing a 
team of up to seven engineers made it clear precisely what 
“effective” means in practice. Nowhere was this more salient 
than in the onboarding of new engineers, which required 
existing engineers to teach, new engineers to learn, and all 
engineers to productivity communicate. 

First, existing engineers had to be effective teachers in 
order to rapidly transmit all of the knowledge new engineers 
needed to be productive. They had to teach the architecture of 
our implementation, the reasons for our technology stack, the 
languages that the new engineer might not be familiar with, 
the toolchain we used to build, test, and debug, the 
deployment practices we followed, the issue tracker 
workflows we used, the processes we used to interface with 
product, design, sales, marketing, and support expertise in our 
company. And after they had on-boarded, new engineers 
needed to become teachers themselves as they took ownership 
of some component from someone else and had to teach others 
about it. On some days, I found myself teaching the whole 
day, more than I had ever taught on a normal day in faculty 
life. My engineers regularly spent an hour or two each day 
teaching each other, whether informally as part of adopting a 
new library, or formally in code reviews or on-boarding.  

Of course, engineers had to be great independent learners 
as well, spending time in discussion forums, documentation, 
blogs, and Q&A sites. To learn from other engineers, they also 
had to be good at listening, asking good questions, knowing 
when to ask for help, and being self-aware enough to know 
when they were stuck because of a problem or stuck because 
of a knowledge gap. This was made easier by our collocation; 
when I heard a developer let out a big sigh, I could just turn 
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around from my desk and prompt an engineer about how their 
work was going. This was a good opportunity for engineers to 
raise questions they were stuck on or surface some confusion 
about our architecture. At some point, I became explicit about 
maintaining a culture of learning, because it became clear that 
one of our engineers was subscribed to the “geek gene” 
hypothesis [1], pigeonholing some engineers as just “not 
getting it.” Our culture was a buffer against his bias. 

Because learning and teaching were so critical to 
engineering progress, the ability to communicate in 
encouraging, constructive ways was also paramount. This 
prosocial behavior [15] was difficult for some of our 
engineers. For some, it was a language barrier, where English 
was their second or third language: there were idioms, 
metaphors, and even pop culture references that they did not 
understand, which isolated them from the rest of the team in 
both work and non-work related conversations. For others, it 
was the lack of listening skills: some were so resistant to 
feedback and instruction, other engineers became hesitant to 
even try to teach them, which isolated them from important 
knowledge they needed to progress on their work. For others 
still, personality was the problem: if they were quiet or 
reserved, they were less likely to ask for help from anyone, 
which limited their productivity. In other cases, gender and 
seniority warped communication channels, with some female 
engineers going to trusted coworkers, rather than expert 
coworkers, and some engineers more willing to listen to male 
engineers than female engineers. 

As an engineering manager, I spent much of my time 
establishing, streamlining, or repairing these lines of 
communication, working around personality or interpersonal 
biases so that each engineer had all of the information and 
knowledge they needed from other engineers to make 
progress. Doing this well meant knowing my engineers well: 
their personalities, their biases, who they did not like, their 
career goals, and the dynamics of their life at home. I needed 
to maintain a mental model of the social network of my team 
and the lines of communication that did and did not exist, so I 
could ensure that all of the information necessary for moving 
some issue forward would make it to the proper subset of the 
team, intact, and consistent across each individual’s mind. 

F. Claim 6: Quality-driven management requires trust 
As an engineering manager, I adopted a team-level view 

of productivity from Agile, tracking velocity (the number of 
work units completed per unit time [4]). This helped me 
estimate the capacity of my team to do work in the future and 
identify bottlenecks. I discovered, however, that my velocity-
centric view of productivity was very different from those of 
my company’s other executives. This was particularly true for 
Jake, my co-founder and CEO, whose preference was to 
manage the outputs of the team, giving engineers deadlines 
and expecting them to meet them, even if it meant working 
12+ hour days. This was the culture he came from in 1990’s 
Silicon Valley and it was consistent with many of the 
corporate cultures in Seattle. From his view, if it was good 
enough for Amazon, Facebook, and Google, it was good 
enough for us.  

I understood the pressure he was under: deadlines helped 
him forecast and allowed him to communicate confident plans 
to our board. So, we tried his way first. Unfortunately, when 
we were deadline focused, we missed deadlines and shipped 
defective code. This frustrated my engineers, who felt like 
they had to achieve both speed and accuracy. It also led to 
tense exchanges between me and Jake, as in this email snippet 
from Jake to me: 

“I need you to appreciate that, yes, due to many many factors, some of 
which were outside your control (heartbleed, server port, additional 
hire), we have now fully slipped.  Repeat after me: ‘I, Andy Ko, have 
slipped my V1 ship date. I, Andy Ko, am not being hard enough on my 
team. And I, Jake am not being hard enough on you, Andy, either.’”  

I discussed this tension with my engineers. They valued 
the pressure to ship as a motivator, but also felt demoralized 
by having to compromise on quality. I returned to Jake and 
conveyed to him that my engineers were fully committed, on 
task, and doing good work, but that there was just too much 
work to make the deadlines we had self-imposed. 

I countered with a management model focused on inputs 
and quality rather than outputs and deadlines. As usual, we 
would select high-value issues for our roadmap, but rather 
then setting hard deadlines, I would ask for a fixed amount of 
engineers’ time each week and regularly provide estimated 
ship dates. This allowed engineers to balance work and life, 
while giving everyone else in the company a tentative date to 
work against. It also allowed the engineers to focus on writing 
correct, maintainable code. Most of the engineers were 
satisfied with this model (except for the few that wanted 
deadlines as extrinsic motivation; for them, I imposed internal 
deadlines to keep them moving). 

While this model significantly improved quality, it caused 
other problems. Jake and the rest of the company felt even 
more powerless to plan. My shifting release dates led to 
distrust in my estimates. Many in the company perceived the 
engineers’ fixed-length work week as a lack of commitment 
to the business, since they were used to engineers staying late. 
Worse yet, Jake could not understand how we were still 
shipping bugs: 

“If we’re focused on quality, then why are we seeing bugs like this? How 
can a 10-day search bug go uncaught, when the very last project, if I 
understand, was to write tests to ensure the proper functioning of search 
itself? On the face of it, you have to see that from my view, this seems 
ridiculous. It makes me question everything about this ‘release when 
we’re ready’ approach.” 

This misconception of test coverage led other executives 
in the company to make poor diagnoses: Are the engineers not 
putting in the time? Are they lazy? Are they just bad 
engineers? My engineers felt bad enough about shipping 
defects. This mistrust compounded their guilt, only making 
them more careful, which pushed release dates further out. 

I tried to improve it by making engineering work more 
visible: I invited everyone to our product roadmap so they 
could get update notifications. Our new VP of Engineering 
adopted Slack, making commits, builds, and collaboration 
more visible. These strategies helped in small ways, but I still 
had to regularly reassure my executives that engineers were 
on task, moving fast, and quality-focused. 
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G. Claim 7: Schemas structure work 
The role of data and its relationship to decomposition has 

a long history in software engineering research. Most notably 
is Parnas’ principle of information hiding [29], isolating 
decisions that are likely to change from each other to minimize 
the cost and consequences of changes. Such ideas have since 
matured greatly into the area of software architecture [36], 
providing a robust vocabulary of patterns, styles, components, 
and connectors, helping to describe the flow of information 
through code. 

These architectural ideas were highly relevant in the 
decisions I made during my three years, particularly at the 
database schema level. I observed that while the 
representation of our data was highly decoupled from the 
other layers in our applications, the semantics of the data was 
not and therefore had to be maintained separately at every 
layer. This meant that adding or removing database columns 
was trivial (only requiring the addition or removal of related 
functionality), but that changing a data type was costly and 
error prone. For example, to support a popular customer 
request, we once changed a Boolean column to a three-state 
enumerated type. This required us to find every downstream 
reference to that type, including not only manipulations and 
computations of these Booleans, but also complete redesigns 
of user interfaces to reflect the new semantics. 

While the technical work from these semantic changes 
required careful work, the internal and external business 
implications were even more complex. Data migrations that 
changed the semantics of our customers’ data were halting, 
monumental changes that required careful planning by our 
customer success team, our account managers, and our 
support team to communicate the changes, anticipate 
concerns, update help content, and retrain every non-engineer 
in the company about the new semantics of the data. We rarely 
executed these semantic schema changes without crisis, 
because we had to uncover the dependencies in our business 
processes, our customers’ processes, and our own employees’ 
processes manually. As we matured our planning and release 
processes, it became smarter to assume that every employee 
and every customer needed some kind of retraining before a 
change began. 

Changes in data semantics also had implications for our 
employee’s work. For example, one of the features that I had 
designed early on was a component that would use basic part-
of-speech tagging to automatically tag incoming questions 
with key noun and verb phrases. These tags, which we 
represented as a table in our database, were then used to 
optimize retrieval, while giving customers direct control over 
where questions would and would not be retrieved. I had also 
built into the schema the ability to group synonymous tags, in 
case we decided that higher recall was important in our 
retrieval algorithms. What I originally viewed as a clever 
product design decision translated into hundreds of hours of 
engineering and non-engineering work time. Back-end 
engineers had to constantly work around the tag grouping 
schema that was hardly used; front end engineers had to 
design user interfaces that hid the grouping indirection in the 
schema. And removing the grouping table, because of the 

sheer volume of code that depended on it, would have required 
massive re-architecting, eliminating all of the logic to operate 
on tag groups that was necessary to operate on tags. Our sales 
and success teams, fearing customers seeing the false 
positives in our part of speech tagger, spent hours cleaning up 
every tag to minimize the chances of bad experiences before 
account launch. This one schema choice and its downstream 
costs the company hundreds of person hours over my three 
years in charge, but ultimately provided limited product value. 

This surfaced a frustrating paradox: early data schema 
decisions were highly consequential to the implementation of 
every layer in our architecture and were the most difficult 
decisions to change because of the massive set of downstream 
code, company, and customer dependencies. And yet schema 
decisions often had to be made well before we had any 
significant requirements certainty. 

H. Claim 8: Coding is easy (when dependencies are known) 
Most of the software development work we did was 

straightforward. There were engineering activities, however, 
that became complex or impossible. In nearly every case, this 
was due to unknown or unknowable dependencies on code 
that required time-consuming and error-prone manual efforts 
to fully uncover and understand. In this section, I discuss 
common developer activities and which types of hidden 
dependencies turned them from easy to intractable. 

Coding was the least difficult developer activity. We hired 
engineers that were capable, quick programmers. Even our 
most junior engineers learned new languages and tools 
quickly. Because our engineers were aware of the error-prone 
aspects of languages—especially with the constant feedback 
of the linters we incorporated into our builds—they learned to 
avoid risky aspects of languages in favor of their safer, less 
error-prone semantics. When these semantics were not 
known, however, defects became almost intractable to 
localize, because developers did not know to look for these 
unexpected, error-prone semantics. These semantics were, in 
effect, hidden dependencies on execution. 

Our own specifications were incredibly valuable, but hard 
to find, making the design dependencies they contained 
difficult to account for. This caused developers to overlook 
requirements and constraints, leading them to break functional 
requirements or other dependencies that were poorly 
documented. We mitigated some discoverability problems by 
writing most of our specifications as source-level 
documentation (formal when possible). For example, we 
chose a declarative REST API framework that was self-
documenting, we described data schema semantics and 
rationale in table and column comments, and we wrote pre- 
and post-conditions for functions. When developers saw these 
specifications, or better yet, when tools enforced them, they 
were invaluable. When they were hidden from developers’ 
work, they were useless. 

We never had enough test coverage, but this did not cause 
many failures. When it did, these were failures we not likely 
to have anticipated, because they arose not from unexpected 
input, but from assumptions or defects in code that were not 
visible. We mitigated these severe failures by investing 
heavily in server-side and client-side monitoring, which 
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meant we usually deployed a fix within an hour of an alert. 
That is not to say that testing did not matter—we wrote many 
tests for critical features, as well as did significant manual 
testing—but the hard parts of testing concerned the inputs and 
states we had not anticipated, not the ones we had. 

Debugging was routine and time-consuming, but only 
occasionally difficult. When it was difficult, it was almost 
always the lack of reproduction steps that posed the challenge, 
not fault localization or repair. This usually manifested as a 
vague report from an important customer, which forced us to 
imagine the space of possible inputs that might cause the 
failure. In some cases, we did not even have a clear description 
of the failure. As in other activities, it was our team’s inability 
to see the inputs and state on a customer’s machine that made 
the work difficult. 

The team frequently refactored to pay down technical 
debt, keeping our implementation aligned with our product’s 
value proposition. Because we used primarily dynamic 
scripting languages, it was error-prone, conflict-prone, and 
time-consuming, especially in components with numerous 
dependencies, none of which were visible statically. Because 
refactoring dynamic code was so difficult, it was something 
we avoided doing until necessary, which often artificially 
delayed important changes. 

Documentation was another source of hidden 
dependencies. Prior work has found that documentation is 
often incomplete, ambiguous, and unexplained [38]; I found 
that it was specifically missing two types of details. First, 
APIs, frameworks, and libraries would often have overarching 
design patterns in their use, but documentation rarely 
explained them. We adopted Facebook’s React, for example, 
and spent hours with its documentation, but most of our 
engineers only really understood its core design patterns after 
attending a local React class sponsored by Facebook in their 
Seattle office. The second type of missing detail were runtime 
semantics, such as usage rules and runtime properties such as 
performance, testability, and debugger support. Design 
patterns and runtime semantics were occasionally available in 
a blog post or StackOverflow answer, but rarely in official 
documentation. 

Infrastructure posed one of the greatest hidden 
dependencies: the future demand on a web service. This 
required significant “DevOps”—the set of activities involved 
in building and maintaining 24/7 web services—to help 
prepare for unanticipated service volume. We used third-
party, cloud-based solutions for everything that we could, 
both to save money, to focus our time on our own product, and 
to simplify scaling, but this required substantial system 
administration expertise to build, maintain, and scale. 

Security also posed many hidden dependencies. Secure 
coding itself posed unanticipated inputs, requiring engineers 
to use tools to anticipate these inputs. But security was even 
more challenging when it involved responding to other’s 
efforts to explore our vulnerabilities. Enterprise customers, for 
example, often ran much more extensive automated security 
audits, which would send us long lists of false positives for us 
to review, and this would occur every time we encountered a 
new customer with the same tool. Freelance security 
consultants would also regularly do penetration testing on our 

infrastructure in order to extract some form of compensation. 
This created unexpected and usually unhelpful work.  

Among all of these activities above, the most difficult, 
error prone tasks had one common feature: they had 
dependencies that could not be easily discovered because 
there were not observable, recorded, or planned. Whether it 
was missing reproduction steps, undocumented API usage 
rules, unexpected traffic, or dynamic dependencies that were 
statically hidden, when a developer could not see it, they could 
not easily plan for it, act on it, or resolve it. 

I. Claim 9: Research impact requires perfect timing and 
minimal risk 
One of my motivations for commercializing our research 

was to understand why technology transfer is so rare. Some 
researchers have begun to investigate the barriers. For 
example, engineers view most software engineering research 
innovations as worthwhile [27], but there is still a wide gap 
between research prototypes and whole products [10]. 
Moreover, many engineers have strong beliefs based from 
personal experience that cause them to discount research 
findings [13]. As CTO, I was responsible for adopting new 
technologies and leveraging empirical evidence. What other 
barriers to technology transfer did I observe? 

After three years, the barriers were so numerous, I began 
to wonder how innovations ever become part of practice. First, 
public research innovations had a very limited value to our 
business. Because we had published our work and described 
how to replicate it, we had actually rendered our intellectual 
property useless, and so our board encouraged us to generate 
new private IP as soon as possible. And yet, investing in 
innovations as a startup was risky and hard to justify. I never 
found enough time to do the work we knew we had to do, let 
alone work that might hypothetically valuable. The company 
essentially had room for only one risk, which was the original 
risk it took when we founded it: testing its value proposition. 

Our company’s own innovative features were also harder 
to sell because they required customers to learn new ideas, 
develop new processes, and take the potential value of the 
innovation on faith. For example, our “object search” 
technology, which was the key innovation in the original 
research [8], was rarely the reason that customers bought our 
product. In fact, it was often a liability. The sales team had to 
understand it (which they often did not), they had to teach it 
to prospective customers (in about 1 minute as part of a larger 
30- to 60-minute product pitch), and customers had to believe 
that it would provide value that outweighed the risks and 
costs. Their perceived risks and costs were always 
exaggerated—we had plenty of evidence that companies 
could easily adopt the service, including research evidence 
[9]—but this data did not matter to customers. They asked, 
“It’s great that it worked for that other company’s customers, 
but what about mine?” 

When I evaluated new developer tools for adoption 
internally, I behaved just as our customers did. In fact, there 
was a day when I needed a way to extract trending 
descriptions of problems out of technical support requests in 
order help our customers find “gaps” in their Q&A content. 
As it turned out, I had earlier invented an algorithm that solved 
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this exact problem [21]. I re-read my publication and began 
analyzing the gaps between the research paper and our product 
need. Would it support multiple languages? How does it 
scale? What kinds of false positives occur? Was the content in 
the support tickets we were mining similar enough to the 
discussion forums the technique was tested on? How would it 
handle noise? After an hour, I gave up: without a plug-and-
play solution, there was too much work and risk in converting 
my own invention into product, no matter how perfectly the 
research fit the situation. I had a long list of more valuable 
ways to invest my time. 

These constraints also applied to non-technical research 
discoveries. I frequently cited evidence from empirical studies 
of software engineering, summarizing findings and 
recommending policies based on the evidence. But each time 
I shared these discoveries, I received the same (reasonable) 
response: Would that happen in our case? Why should I 
believe that when it was only based on 20 engineers? In the 
end, our executives’ prior beliefs usually heavily outweighed 
the small bits of evidence from studies. 

Despite these barriers to innovation, many of the beliefs 
that our engineers and executives held ultimately did come 
from research. They were beliefs embedded in tools and 
processes engineers had learned in school. They were beliefs 
from business and management books that were informed by 
long bibliographies of academic research. The difference was 
the context in which our employees had learned them: as a 
CTO, I was offering recommendations as an executive and a 
manager, which is a context that affords debate, disagreement, 
and dissent. Had I been communicating in a classroom as a 
teacher, at a conference as a speaker, or through a textbook as 
an author, I suspect there would have been a higher level of 
deference to authority. (This is not to say that innovations and 
evidence in software engineering research are always valid. In 
many cases, our evidence base and technologies are immature 
and not yet ready for adoption). 

V. THREATS TO VALIDITY AND DISCUSSION 
In this paper, I have presented nine claims that attempt to 

capture my experience as CTO of a software startup: 

• Software engineering is structured by individual and 
social decision-making under uncertainty 

• Design is a power struggle between diffuse sources 
of domain insights 

• Translating a value proposition into code requires 
both planning and persuasion 

• Debt is both technical and cognitive 
• Effective developers are patient teachers, rapid 

learners, and prosocial communicators 
• Quality-driven management requires trust 
• Schemas structure work 
• Coding is easy (when dependencies are known) 
• Research impact requires timing and minimal risk 

These claims portray software engineering as a technical 
activity besieged by uncertainty, speculation, power 
imbalance, code and cognition misalignments, and 
information exchange and decision making warped by social 

factors. This view suggests that software engineering is far 
more complex than we often admit when we practice it, teach 
it, or attempt to disrupt it through new software engineering 
tools. It demands that we increase efforts in both academia and 
industry to move beyond purely technical conceptions of how 
we create software, more deeply studying the intricate social, 
cognitive, and emotional dynamics of this inherently 
sociotechnical work. 

As with any empirical study (including the self-reflections 
by Knuth [18] and Brooks [7]), I cannot say with certainty that 
the nine claims are internally valid. I do not know that they 
faithfully represent the cause and effect in my company or 
even in my own behavior. As I stated earlier, everything I have 
reported is filtered through my subjective biases as a 
practitioner and a researcher. My reactions to software 
engineering work were a product of what I observed and what 
I found salient about these observations. My data was biased 
by what I felt compelled to write about in my diary on a daily 
basis. This was partly a product of my interests in social 
interactions in terms and also the emotional experiences I had 
during a very intense three years of work. My biases and 
experience also meant that I did not deeply reflect on my 
experience writing hundreds of thousands of lines of code, 
because I found most of that work routine and uninteresting. 

As with any diary study, this one is also limited by the 
observer-expectancy effect: my process of reflection likely 
changed how I worked and how I structured our business. This 
is both a strength and a weakness: my involvement may limit 
the generalizability of the nine claims, since my decisions 
were guided by my reflective practice, but it was also a unique 
opportunity for me to test the validity of the theories I was 
developing through process, policy, and interactions, and then 
observe the efficacy of these embodiments in practice. This 
may limit the generalizability of the data to organizations that 
have some number of strongly reflective people in positions 
of leadership, and may not generalize to organizations who 
lack reflective practitioners (or have them, but in positions 
with little influence). 

Although my CEO and VP of Engineering read this paper 
and agreed with my interpretations with respect to their own 
experiences, had they kept their own diaries, they might have 
arrived at different claims because of their unique 
perspectives. Therefore, the claims I present are not the only 
claims to be made, but a small sample of other potential truths 
that may have only been visible to other employees in my 
company. Therefore, the claims should be viewed with a 
healthy skepticism, as ideas to investigate in future work, and 
not verified truths (much like the many testable but unverified 
claims in Brooks [7] and Knuth’s [18] works). 

In addition to not knowing the internal validity of the 
claims, I also do not know their external validity, as our 
Seattle-based, venture-backed, software-as-a-service web 
startup is unlike many other types of software organizations. 
For instance, because our company was a startup, we were 
more focused on validating our product’s value proposition 
than maintaining an already successful product. More mature 
software projects may spend far less time worrying about 
product value propositions, as they have already proven value. 
Unlike many software products, ours involved user interfaces, 
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information retrieval and extraction, and analytics; companies 
that build other types of software likely experience different 
challenges. Our company was also in Seattle, Washington, 
USA, which likely has a different work culture from that of 
other regions in the world. It is therefore possible that many 
of the nine claims are only true to my company. Further 
research will be necessary to understand how well they 
generalize to other settings. 

Given these threats to validity, developers reading this 
should decide whether it is true to their experience, and 
continue to discuss these claims further in public forums. I 
hope researchers will test these claims, attempting to refute 
them through harder evidence, and seeking to understand 
when they are true—and more importantly, why. Educators 
should take these claims, and perhaps even this paper, and 
share it with their students, giving them a glimpse of the types 
of experiences that their students might have in the software 
industry. These may shape how they see their work, and more 
importantly, how they structure others work, as they get 
promoted and begin managing their own teams. 

Only with continued reflective practice in academia and 
industry will we hope to eventually transform the art of 
software engineering into a science. I hope this paper 
encourages more of this reflective practice, and more sharing 
of it in public ways. 
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