
A Three-Year Participant Observation of Software Startup Software Evolution

The Information School, DUB Group
University of Washington, Seattle

AnswerDash, Inc.
ajko@uw.edu

Abstract—This paper presents a three-year participant
observation in which the author acted as CTO of a software
startup, spanning more than 9,000 hours of direct experience.
The author’s emails and diary reflections were analyzed and
synthesized into a set of nine claims about software engineering
work. These claims help shape software engineering research,
practice, and education by provoking new questions about what
makes software engineering difficult.

Keywords- management, human factors, project management.

I. INTRODUCTION
In past decades, there has been much progress in studying

how developers work. We understand many of the questions
they ask [34], the information they need [19], and many other
factors that affect their productivity [7,23,24]. These
discoveries have informed the design of many tools and
processes that may positively affect practice [13,27].

These discoveries, however, are heavily biased toward the
observable activities that developers perform, overlooking
developers’ internal, emotional, and cognitive experiences at
work. For example, what does it feel like to be an engineer
day to day? Which parts of the job are exhilarating and which
parts are dull? What role do developers’ social experiences
with their teammates and managers have on their work? How
do these experiences change and evolve over time, especially
as developers learn and an organization evolves?

These aspects of developer experience are important for
many reasons. Emotion, for example, is a dominant factor in
decision making [26], and by not studying its role, researchers
may overlook large factors that shape software development.
Longitudinal studies of experience are also important as many
challenges in software engineering occur over years.
Investigating experience may also reveal new opportunities to
innovate in tools, process, and education.

Unfortunately, experience over time is difficult to observe.
Surveys and experience sampling can get at some aspects of
experience, but often lack depth. Interviews offer depth, but
require developers to recall their experiences, leaving data
subject to memory bias. Diary studies can capture depth over
time [12], but most developers are unlikely to spend
significant time writing about their experiences over the
months or years. Moreover, in all of these methods,
developers are unlikely to share the more emotionally
challenging aspects of their work, masking potentially
powerful factors that shape their daily work.

One way to observe developer experience longitudinally
is for researchers to engage in engineering themselves,

reflecting on their own experiences. For example, in 1975,
Brooks reflected on his industry experiences in The Mythical
Man Month, presenting over 200 testable propositions about
software engineering [7]. Similarly, in 1989, Knuth published
the Errors of TeX [18], a diary study documenting and
reflecting on the 850 errors that he made over a decade of
work. Each of these works provided rare glimpses into
programming, project management and software
maintenance, informing research on software engineering.

In this paper, I report on a similar self-examination,
describing my three-years as CTO and co-founder of a
venture-backed software startup in Seattle. To study my
experiences, I wrote daily in a personal diary and archived
over 15,000 emails exchanged with my co-founders and
employees. Both data sources focused on my experiences as a
founder, executive, manager, and developer as our company
and software evolved. I then analyzed my diary and emails,
deriving nine novel claims about software engineering to be
tested in further research. In the rest of this paper, I describe
my method in detail and then present my claims.

II. METHOD
Knuth’s study and my study are both examples of

participant observation. This is a method long used in cultural
anthropology in which the researcher is both an observer and
a participant in some activity over time [16]. Participant
observations have the unique strength of describing complex
aspects of cognition, social interaction, and culture over time,
and can be used to improve business from within [37]. But
they also have limitations: they require introspection, which is
subjective [30]; they represent a single perspective; and they
can suffer from the observer-expectancy effect, in which the
presence of an observer influences other participants’
behavior [33]. These limitations are usually mitigated through
1) triangulation of other data sources, and 2) transparency
about the observers’ biases and beliefs, allowing the reader to
better interpret the subjective observations [2].

I used two sources of data: my personal diary and emails
exchanged with my coworkers. I then also asked my co-
founder and my VP of Engineering to read this paper to
corroborate my perspectives, noting when their experiences
differed. These two sources of data aimed to go beyond my
individual perspectives to better reflect the perspectives of
three key executives. This ensured that I used more than my
diary, emails, and memory to reconstruct events.

To increase transparency, here I describe the many biases
that influenced my data and analysis. I am a researcher, versed
in studies of human aspects of software engineering, and so I

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.29

1

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.29

3

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.29

3

 Amy J. Ko

brought to my observations a broad knowledge of human
factors in software engineering research. I have done several
studies of software companies that have shaped my
perceptions of how software compares work. My identity as a
researcher shaped the decisions I made as a CTO, biasing
them toward evidence over intuition. I have a background in
Human-Computer Interaction research, which predisposes me
to sociotechnical explanations of phenomena. I had no prior
experience in professional software engineering and so many
of my observations may have emerged from my learning.
Finally, because I live in Seattle, I have many peers who work
in the software industry. My incentives in participating in the
company were also mixed: I wanted to build a successful
business, but as a researcher, I also wanted to understand how
our business evolved.

My data collection across the three years was frequent and
in situ, as is best practice [2, 12]. I wrote daily on everything
I observed, including decision-making by myself and others,
management choices, the evolution of our product and
engineering management, our technology stack, our product’s
architecture, the role of tools, and the role of research. My
focus was biased toward events that caused me negative
emotions such as stress, anxiety, frustration, boredom, and
confusion, and toward phenomena I was curious about, such
as software process, design, product management, and
engineering management. I amassed over 15,000 emails
between me, my co-founders, my employees, and our
customers, many of which included tense exchanges about
challenging engineering, management, and business problems
about which my co-workers and I had differing views. My
diary and emails ultimately spanned 9,000 hours of work from
December 2012 to December 2015.

III. THE ORIGINS OF THE BUSINESS
The kernel of the business was my National Science

Foundation CAREER grant, awarded in 2009. In the grant, I
observed that software help requests by end users are
fragmented, duplicated, and disjoint online because they are
inconsistently expressed. If we could structure help requests
so that users expressed similar problems in similar ways, we
could both retrieve help more reliably, but also provide
aggregate data about bugs, usability issues, and feature
requests. My Ph.D. co-advisee Parmit Chilana led this work,
inventing a Q&A retrieval technique called LemonAid, with
some help from me and her other co-advisor Jacob O.
Wobbrock (hereafter “Jake”). The technique allowed end-
users to select user interface elements in the website they
wanted help with (e.g., text, images, buttons). Our system then
retrieved Q&A that were most relevant to their selection [8].
Across four deployments to public web sites owned by the
University of Washington (UW), we saw significant rates of
usage and successful answer discovery and many users said
they preferred it over all other forms of help [9].

Parmit presented her research while interning at Facebook
in October 2010. During her visit, the company asked how the
retrieval worked. Parmit declined to answer and returned to
UW to discuss the intellectual property implications with our
technology transfer office. Intrigued by the prototype, the tech
transfer staff connected us with an “entrepreneur-in-

residence” to discuss opportunities. He encouraged us to
consider commercializing. After almost a year of deliberation
(including whether Parmit would finish her Ph.D., whether
Jake would spend his sabbatical raising financing for the
company, and whether I would moonlight the year before
going up for tenure), Jake and I decided to spin out a business
and temporarily leave the university, while Parmit decided to
focus on her academic job search. I became CTO because of
my substantial experience with web development and Jake
took the CEO role to focus on strategy, customers, and
financing. We founded the company on September 24th, 2012.

To begin, Jake and I started talking to customers with the
help of the entrepreneur-in-residence, who we hired as a
business development consultant. Our first sales pitch was
with a small startup looking for a contextual help solution. We
had no product, and so our pitch relied on a video of the
LemonAid prototype. The startup loved it and wanted to
launch in January 2013. It was December 14th, 2012.

I only had two weeks to build a production-ready alpha. I
did not have time to learn the modern web technologies at the
time (Backbone, AWS, node.js, Ruby, Postgres, etc.), and so I
started with the technology stack I knew: Linux, Apache,
MySQL, PHP, and jQuery. By January 4th, 2013, I had a
deployable alpha and we launched on that customer’s site. We
gained several additional customers in subsequent months.

Feature requests swamped the 15 hours per week that I had
dedicated on top of my full-time faculty work. I quickly saw
the consequences of my dated technology stack, with poorly
logged error messages in PHP, callback spaghetti in jQuery,
and the burden of server administration. Responding to feature
requests meant taking on more technical debt in service of
more sales pitches, more fundraising pitches, and better
product customer fit. In my mind, all of this debt would be
worth accruing if we could close funding, so we could hire a
larger engineering team to build a better infrastructure.

These investments eventually paid off. We closed $2.54
million in venture capital on December 2, 2013 and began
hiring. Despite my fears of my rushed implementation
deterring new hires, many candidates viewed it as an
opportunity to build a modular, scalable 1.0 product. And with
our team, that’s exactly what we did, releasing on modern
infrastructure with a better architecture. As our team grew and
Jake’s responsibilities as CEO expanded, I took on the role of
product manager, engineering manager, and architect for the
next two years. In my last year, I handed the role of
engineering manager to a new VP of Engineering.

After about three years as the company’s CEO and CTO,
Jake and I left the company, hiring new leadership to scale the
business. At the time of my departure, the company had seven
developers, a VP of engineering, a designer, three sales and
marketing staff, a customer success manager, an admin, and a
CEO. Our implementation at the time ran dozens of services
hosted on Amazon Web Services spanning hundreds of
thousands of lines of code written in PHP, Python, JavaScript,
HTML, CSS, LESS, Java, and Common Lisp. The team ran
continuous integration, released daily, had an extensive test
automation infrastructure, performed code and design
reviews, and followed many other modern practices for
building secure, scalable web-services.

244

IV. CLAIMS
My three years of experience amounted to over 100,000

words in my diary and emails. To analyze this data, I first
chronologically read every word of my diary and emails,
identifying trends in my experiences and reflections. I noted
each trend in the form of a claim that I believed applied to all
of my experiences (e.g., “Decisions lack sufficient evidence.”
or “Debugging was straightforward.”). From this first read I
derived 80 claims. I then consolidated, reconciled and
synthesized the claims into a final set of 9 claims. I then re-
read the diary and emails, tagging each one with one or more
of the claims. I then drafted a description and illustration for
each claim, using stories from my data as supporting evidence.
Finally, I sent drafts of each claim to Jake and my VP of
Engineering to look for experiences or interpretations they did
not agree with. This resulted in several small revisions to
details in the reporting, but no changes in the claims
themselves, as both found the claims described their
experiences. The text in the rest of this section represents the
final synthesis and triangulation of these nine claims.

A. Claim 1: Software engineering is structured by
individual and social decision-making under uncertainty
Many studies, including some of my own, frame software

development as an activity of information seeking, arguing
that developers have questions about code [22,34], their
coworkers’ activities [23,19], and the rationale for a product’s
functionality [19], and their ability to answer these questions
affects their productivity [19].

While information seeking was a fundamental part of my
experience, it was by no means the most salient aspect of my
time. Both early in the company and three years in, it was the
decisions I made (alone and with others) that structured my
work and the work of my engineers. Including the hundreds
of thousands of lines of code that I wrote, the hundreds of
mockups I designed, the processes I devised and the systems
I structured for managing information, I estimate there were
nearly a quarter million decisions—about 25 per hour, 3,000
hours of work a year.

These decisions varied widely in their scope and
significance. They included choices such as: What’s an
extensible way to structure this data? How can I automate this
test? Is this bug important enough to fix right now? How do I
convince this customer that their feature request is a bad
idea? How do I convince my CEO that this feature is critical
to growth? How do I get my engineers to make this deadline?
Do these stand-up meetings have sufficient return on
investment? Where does this product need to be before the end
of this financial quarter? Should I go home to my family or
finish these board deck slides for tomorrow? Each decision
led to information needs, but the information was only in
service of informing decisions.

Decisions are among the more difficult things that human
beings do, and so we satisfice [35]. This was necessary not
only because I rarely had all of the information necessary to
enumerate or weigh alternatives, but I also rarely had an
accepted utility function with which to evaluate alternatives.
Take, for example, the decision of whether to fix a bug. My

team once found a particularly nasty data loss defect that, to
fix, required significant re-architecting, while delaying
progress on other important feature work. Some engineers
preferred to decide on principle, viewing data loss as
inherently unacceptable. Others were pragmatists, focusing on
how frequently the bug was encountered and how severe the
loss of data would be to customers. Others focused on return
on investment, asking what the company would gain and what
it would lose if we delayed the fix. All of these were legitimate
decision frames, so the only way to resolve the conflict was
for me to decide using my authority. This is similar to the
decision making observed in open source projects, in which
speculation, anecdote, and overgeneralization are common as
rhetorical devices, but authority ultimately wins [20].

When we sought information to inform decisions, there
were rarely clear answers. We could not know how frequently
the data loss was occurring because we had no logs of that
feature’s use. We did not know how customers would react
and did not want to risk the loss of trust that would come in
asking them. And trying to compute the return on investment
of the fix was near impossible: if the loss turned out to matter
greatly to a customer, would we lose just them, or would we
lose other customers too? Because of the degree of
uncertainty, I began to view my role as shielding engineers
from uncertainty, so they could focus on code-level decisions.

Uncertainty had several implications. For example,
although we logged usage, carefully archived customer
requests and feedback, and leveraged the state of the art in web
site analytics, this data was of limited use because of the
uncertainty of other factors for which we had no evidence. For
example, logging suggested that customers were rarely going
to our analytics dashboard. Whether this mattered depended
on how much value customers were getting from their
infrequent visits. We could not easily know this and so we
relied on our expertise to guess. It was hard to say whether this
reliance on expertise was negative: by the time we found out
whether our facts or expertise were right, it was too difficult
to trace the origins of our decisions.

Trust was another significant factor in decisions. When I
solicited opinions, I needed to factor in how much I believed
them. Were the CEO’s beliefs about our product’s traction
well informed? Did my junior engineer correctly parse our
Apache logs for traffic to that page? How much faith do I put
in my head of sale’s interpretation of that customer phone
call? And of course, the other executives asked the same
questions about me, learning that I was prone to weighing data
over expertise, bottom line over technical and design factors,
and being better at strategic matters than tactical matters. The
constant need to trust and be trusted was an extra layer of
relationship management that I did not expect.

B. Claim 2: Product design is a power struggle between
diffuse sources of domain insights
Modern perspectives on software design put end users and

customers at the center. For example, user-centered design
focuses on users’ goals and tasks, and then iteratively designs
and evaluates experiences to support those tasks (e.g., [6]).
Agile and XP begin from the premise that requirements cannot
be determined at the beginning of a project, and so continuous

355

customer and stakeholder involvement is critical to designing
an acceptable product [14]. The Lean Startup [32] espouses
similar ideas, encouraging the release of “minimum viable
products” that provide value, but also opportunities to learn
more about customer needs.

While I found these perspectives helpful, they mostly
described how and why to gather insight, saying little about
the process of synthesizing it into action. Synthesis was made
difficult because insights were usually diffuse, conflicting,
and sparse, requiring me to assemble a complete product
vision from only fragments. Current customers expressed
feedback through bug reports, feature requests, and technical
support. Prospective customers expressed feedback through
sales objections and competitor comparisons. Domain experts
(primarily Jake and myself) had opinions about product value.
Our board provided tactical and strategic recommendations
about requirements prioritization. The market constrained and
shaped which requirements were important, viable, and
differentiating. And of course, engineers had strong opinions
about what they did and did not want to build. As our product
manager, synthesizing these disparate perspectives forced me
to decide which sources to value and when.

This synthesis was further complicated by the varying
power that these different sources held. Because Jake and I
had studied contextual help so extensively, we viewed
ourselves as the experts and therefore held considerable power
within the company. Customers, however, had vastly more
power than even us, as they were the ones making the buying
decisions. Moreover, while we viewed customer support as an
opportunity for insight and competitive advantage, they
viewed it as a cost-center [8]. This misalignment between our
expertise and our power meant that many decisions were a
battle between the end users who needed answers (who we
represented) and the champion inside our customer’s
company. We almost always needed to let customers win.

To regain power, we used two strategies. When we gave a
customer control over how a feature worked, we would only
give them as much as they demanded, and fought tirelessly to
get them to see their product from their customers’
perspectives. We knew that every bit of design control we lost
meant a poorer experience for end users, which ultimately
meant our product would produce less value for our
customers. Our second strategy was longer term customer
education, in which we used our sales and marketing efforts
to change how customers viewed customer service, educating
them about best practices and building our “thought
leadership” in industry. This was slow and costly work, but
necessary to eventually sell what we viewed as the best
possible user experience in our customers’ products.

C. Claim 3: Translating a value proposition into code
requires both planning and persuasion
Product management typically comprises three activities.

First, it involves managing the flow of engineering work by
triaging incoming requests and assigning work to engineers
[14]. Second, it involves maintaining a product roadmap to
organize which work will happen in the future and when [14].
Third, and most importantly, it involves establishing
“product-market fit” by defining and refining a value

proposition that expresses why a product would be valuable
to customers [28] and then ensuring that the product roadmap
always arranged to test and refine this value proposition [32].

In my experience, refining our value proposition was the
most important but invisible work that I did in validating our
business. It was behind every feature or fix I prioritized; it
shaped our marketing materials sales rhetoric; it was deeply
embedded in our product’s code; and it was behind every
work item I assigned to an engineer. This refinement,
however, was also a surprisingly complex social process,
especially as it related to engineers. This was for many
reasons. The first was that keeping my engineers’
understanding of our value proposition consistent and up-to-
date—achieving what Brooks might call “conceptual
integrity” [7]—required constant communication of design
rationale at low levels of granularity. It was not enough for
engineers to know that we reduced support tickets and
increased sales conversions, for example; they needed to
know how the “hidden” Q&A state they were adding affected
our value proposition so they could fully express that value
through their code-level design decisions and keep new
decisions consistent with existing ones. I therefore spent much
of my time explaining and justifying design decisions to
engineers. This forced me to have a well-reasoned, coherent
idea of the value of each particular feature or change, and
ensure that these smaller rationales were well aligned with the
overarching and evolving value proposition.

Occasionally, engineers added friction improving our
product’s value proposition by weighing some software
qualities higher than customer value. When we deferred fixing
low-risk security vulnerabilities in order to accelerate a
feature’s release, for example, many of the engineers found
this borderline unethical, arguing that it would be better to
delay release and risk losing customers than to release
something others would view as insecure. When we released
user interfaces with subpar usability, our front-end engineers
and designers felt similarly, struggling to accept a tradeoff
between the company’s bottom line and their design
principles. Therefore, product management was as much
about leadership and persuasion as it was about optimizing
product-market fit.

Another challenge was balancing the kind of work that I
assigned engineers. They wanted work that was technically
interesting and would develop their skills, but the business
needed them to focus on increasing product value, and these
tasks were often straightforward and boring. For example, we
once wrote a “whitelabeling” feature that amounted two lines
of code, but made us tens of thousands of dollars per year per
customer (as it allowed customers to hide our logo and
preserve their brand). This was neither interesting or
challenging to implement, but it was highly valuable to the
business. In contrast, I once assigned a refactoring of a key
data structure that took two weeks. It provided no product
value, other than removing a barrier to a valuable feature, but
it raised many fascinating architectural issues. The lack of
correlation between interesting and important work meant
that our roadmap was rarely a pure effort to increase product
value, but a delicate balance of product work and developer
nurturing.

466

D. Claim 4: Debt is both technical and cognitive
Ward Cunningham’s metaphor of technical debt—the

degree to which an software implementation fails to reflect a
team’s best understanding of the problem they are solving [11]
—has become a powerful tool for thinking about software
evolution [3, 25]. It was a powerful tool for me as well—so
powerful, in fact, that I began to see many other kinds of debt.

For example, I regularly encountered comprehension debt,
which reflected the extent to which engineers’ mental models
of our implementation’s behavior was out of sync with its
actual behavior. Our comprehension debt was low enough that
there was usually at least one person who understood a
component, ensuring that they could efficiently repair and
enhance it. There were many cases however where there was
only one person. When they were on vacation and we
encountered a defect in the component, the team scrambled to
decide who had enough familiarity to diagnose and fix it. Our
strategy for preventing comprehension debt was to cross-train
engineers on components, ensuring that there were always
multiple people who could work on every part of our
implementation. Some of this cross-training occurred during
onboarding, where I would teach new hires the architecture of
our product. Code reviews also cross-trained, ensuring every
change made it into at least two heads.

There were cases where no one understood a component.
Some of the code I wrote in the early days of the company had
not been read by anyone, even me, for years. One day, an
important customer reached out about an Internet Explorer
issue with our user interface selection functionality. When I
went back to debug it, I had to re-comprehend thousands of
lines of JavaScript I had not seen in two years, and so it took
me a day instead of an hour to diagnose and repair the issue.
In other cases, components were so highly coupled, no
engineer felt they owned it, creating a tragedy of the commons
[17]. For example, at one point there was a server-side PHP
script that had been appropriated for so many diverse uses, no
one felt like the mess was theirs to clean up. Consequently, no
one spent the time to understand the mess, resulting in
comprehension debt that posed future maintenance risks.

I also observed design rationale debt, where no one
remembered why a component behaved as it did. For example,
early in the 1.0 of our database schema, we decided to allow
questions to optionally be retrieved only through selection and
not via text search. Two years later when we were refactoring
the schema, the engineer performing the refactoring
understood the column functionally, but he did not know why
it was there, how important it was to customers, or which
customers were dependent on it. Even though I was the one
who added the feature, I could only vaguely remember why
we thought it was so critical at the time. Because I could not
recall this rationale, removing the feature risked breaking an
undocumented customer requirement. Paying off this debt
required reconstructing the rationale for a decision,
documenting customer dependencies that were not visible in
code or data, and reevaluating the rationale.

The only way to prevent design rationale debt was to
document rationale upfront. This preemptive investment
posed all kinds of questions: where to store it, how to make it

easy to find, and how much time to invest in writing it. We
settled on a practice of writing rationale comments tagged
with unique identifiers so that crosscutting decisions could be
easily searched.

I also observed planning debt, which occurred when
developers privately maintained plans for improving software
architecture. For instance, in my diary, I frequently reflected
on ways of improving my code, and then realized that the only
place these plans were documented was in my research diary.
I asked my engineers where they kept their plans, and most
said three things: 1) their memories, 2) handwritten notes on
their desk, or 3) as partially implemented (and therefore
opaque) changes in code. The cost of this debt was that when
a component changed owners, there was no easy way for the
new owner to learn about those plans and complete them.

These three types of debt—comprehension, rationale, and
planning—concerned the cognitive gaps between developers’
mental models of what code does, why it does it, and how it
should do it differently. This suggests that there are actually
many pairwise gaps between product, code, and developers:
product and code (technical debt); code and mind
(comprehension debt); mind and product (rationale debt); and
architecture and code (planning debt). I saw all of these types
of debt lead to costly miscommunication and defects.

E. Claim 5: Effective developers are patient teachers, rapid
learners, and prosocial communicators
Although prior work makes it clear that engineers need to

be effective communicators [5, 24, 31], my time managing a
team of up to seven engineers made it clear precisely what
“effective” means in practice. Nowhere was this more salient
than in the onboarding of new engineers, which required
existing engineers to teach, new engineers to learn, and all
engineers to productivity communicate.

First, existing engineers had to be effective teachers in
order to rapidly transmit all of the knowledge new engineers
needed to be productive. They had to teach the architecture of
our implementation, the reasons for our technology stack, the
languages that the new engineer might not be familiar with,
the toolchain we used to build, test, and debug, the
deployment practices we followed, the issue tracker
workflows we used, the processes we used to interface with
product, design, sales, marketing, and support expertise in our
company. And after they had on-boarded, new engineers
needed to become teachers themselves as they took ownership
of some component from someone else and had to teach others
about it. On some days, I found myself teaching the whole
day, more than I had ever taught on a normal day in faculty
life. My engineers regularly spent an hour or two each day
teaching each other, whether informally as part of adopting a
new library, or formally in code reviews or on-boarding.

Of course, engineers had to be great independent learners
as well, spending time in discussion forums, documentation,
blogs, and Q&A sites. To learn from other engineers, they also
had to be good at listening, asking good questions, knowing
when to ask for help, and being self-aware enough to know
when they were stuck because of a problem or stuck because
of a knowledge gap. This was made easier by our collocation;
when I heard a developer let out a big sigh, I could just turn

577

around from my desk and prompt an engineer about how their
work was going. This was a good opportunity for engineers to
raise questions they were stuck on or surface some confusion
about our architecture. At some point, I became explicit about
maintaining a culture of learning, because it became clear that
one of our engineers was subscribed to the “geek gene”
hypothesis [1], pigeonholing some engineers as just “not
getting it.” Our culture was a buffer against his bias.

Because learning and teaching were so critical to
engineering progress, the ability to communicate in
encouraging, constructive ways was also paramount. This
prosocial behavior [15] was difficult for some of our
engineers. For some, it was a language barrier, where English
was their second or third language: there were idioms,
metaphors, and even pop culture references that they did not
understand, which isolated them from the rest of the team in
both work and non-work related conversations. For others, it
was the lack of listening skills: some were so resistant to
feedback and instruction, other engineers became hesitant to
even try to teach them, which isolated them from important
knowledge they needed to progress on their work. For others
still, personality was the problem: if they were quiet or
reserved, they were less likely to ask for help from anyone,
which limited their productivity. In other cases, gender and
seniority warped communication channels, with some female
engineers going to trusted coworkers, rather than expert
coworkers, and some engineers more willing to listen to male
engineers than female engineers.

As an engineering manager, I spent much of my time
establishing, streamlining, or repairing these lines of
communication, working around personality or interpersonal
biases so that each engineer had all of the information and
knowledge they needed from other engineers to make
progress. Doing this well meant knowing my engineers well:
their personalities, their biases, who they did not like, their
career goals, and the dynamics of their life at home. I needed
to maintain a mental model of the social network of my team
and the lines of communication that did and did not exist, so I
could ensure that all of the information necessary for moving
some issue forward would make it to the proper subset of the
team, intact, and consistent across each individual’s mind.

F. Claim 6: Quality-driven management requires trust
As an engineering manager, I adopted a team-level view

of productivity from Agile, tracking velocity (the number of
work units completed per unit time [4]). This helped me
estimate the capacity of my team to do work in the future and
identify bottlenecks. I discovered, however, that my velocity-
centric view of productivity was very different from those of
my company’s other executives. This was particularly true for
Jake, my co-founder and CEO, whose preference was to
manage the outputs of the team, giving engineers deadlines
and expecting them to meet them, even if it meant working
12+ hour days. This was the culture he came from in 1990’s
Silicon Valley and it was consistent with many of the
corporate cultures in Seattle. From his view, if it was good
enough for Amazon, Facebook, and Google, it was good
enough for us.

I understood the pressure he was under: deadlines helped
him forecast and allowed him to communicate confident plans
to our board. So, we tried his way first. Unfortunately, when
we were deadline focused, we missed deadlines and shipped
defective code. This frustrated my engineers, who felt like
they had to achieve both speed and accuracy. It also led to
tense exchanges between me and Jake, as in this email snippet
from Jake to me:

“I need you to appreciate that, yes, due to many many factors, some of
which were outside your control (heartbleed, server port, additional
hire), we have now fully slipped. Repeat after me: ‘I, Andy Ko, have
slipped my V1 ship date. I, Andy Ko, am not being hard enough on my
team. And I, Jake am not being hard enough on you, Andy, either.’”

I discussed this tension with my engineers. They valued
the pressure to ship as a motivator, but also felt demoralized
by having to compromise on quality. I returned to Jake and
conveyed to him that my engineers were fully committed, on
task, and doing good work, but that there was just too much
work to make the deadlines we had self-imposed.

I countered with a management model focused on inputs
and quality rather than outputs and deadlines. As usual, we
would select high-value issues for our roadmap, but rather
then setting hard deadlines, I would ask for a fixed amount of
engineers’ time each week and regularly provide estimated
ship dates. This allowed engineers to balance work and life,
while giving everyone else in the company a tentative date to
work against. It also allowed the engineers to focus on writing
correct, maintainable code. Most of the engineers were
satisfied with this model (except for the few that wanted
deadlines as extrinsic motivation; for them, I imposed internal
deadlines to keep them moving).

While this model significantly improved quality, it caused
other problems. Jake and the rest of the company felt even
more powerless to plan. My shifting release dates led to
distrust in my estimates. Many in the company perceived the
engineers’ fixed-length work week as a lack of commitment
to the business, since they were used to engineers staying late.
Worse yet, Jake could not understand how we were still
shipping bugs:

“If we’re focused on quality, then why are we seeing bugs like this? How
can a 10-day search bug go uncaught, when the very last project, if I
understand, was to write tests to ensure the proper functioning of search
itself? On the face of it, you have to see that from my view, this seems
ridiculous. It makes me question everything about this ‘release when
we’re ready’ approach.”

This misconception of test coverage led other executives
in the company to make poor diagnoses: Are the engineers not
putting in the time? Are they lazy? Are they just bad
engineers? My engineers felt bad enough about shipping
defects. This mistrust compounded their guilt, only making
them more careful, which pushed release dates further out.

I tried to improve it by making engineering work more
visible: I invited everyone to our product roadmap so they
could get update notifications. Our new VP of Engineering
adopted Slack, making commits, builds, and collaboration
more visible. These strategies helped in small ways, but I still
had to regularly reassure my executives that engineers were
on task, moving fast, and quality-focused.

688

G. Claim 7: Schemas structure work
The role of data and its relationship to decomposition has

a long history in software engineering research. Most notably
is Parnas’ principle of information hiding [29], isolating
decisions that are likely to change from each other to minimize
the cost and consequences of changes. Such ideas have since
matured greatly into the area of software architecture [36],
providing a robust vocabulary of patterns, styles, components,
and connectors, helping to describe the flow of information
through code.

These architectural ideas were highly relevant in the
decisions I made during my three years, particularly at the
database schema level. I observed that while the
representation of our data was highly decoupled from the
other layers in our applications, the semantics of the data was
not and therefore had to be maintained separately at every
layer. This meant that adding or removing database columns
was trivial (only requiring the addition or removal of related
functionality), but that changing a data type was costly and
error prone. For example, to support a popular customer
request, we once changed a Boolean column to a three-state
enumerated type. This required us to find every downstream
reference to that type, including not only manipulations and
computations of these Booleans, but also complete redesigns
of user interfaces to reflect the new semantics.

While the technical work from these semantic changes
required careful work, the internal and external business
implications were even more complex. Data migrations that
changed the semantics of our customers’ data were halting,
monumental changes that required careful planning by our
customer success team, our account managers, and our
support team to communicate the changes, anticipate
concerns, update help content, and retrain every non-engineer
in the company about the new semantics of the data. We rarely
executed these semantic schema changes without crisis,
because we had to uncover the dependencies in our business
processes, our customers’ processes, and our own employees’
processes manually. As we matured our planning and release
processes, it became smarter to assume that every employee
and every customer needed some kind of retraining before a
change began.

Changes in data semantics also had implications for our
employee’s work. For example, one of the features that I had
designed early on was a component that would use basic part-
of-speech tagging to automatically tag incoming questions
with key noun and verb phrases. These tags, which we
represented as a table in our database, were then used to
optimize retrieval, while giving customers direct control over
where questions would and would not be retrieved. I had also
built into the schema the ability to group synonymous tags, in
case we decided that higher recall was important in our
retrieval algorithms. What I originally viewed as a clever
product design decision translated into hundreds of hours of
engineering and non-engineering work time. Back-end
engineers had to constantly work around the tag grouping
schema that was hardly used; front end engineers had to
design user interfaces that hid the grouping indirection in the
schema. And removing the grouping table, because of the

sheer volume of code that depended on it, would have required
massive re-architecting, eliminating all of the logic to operate
on tag groups that was necessary to operate on tags. Our sales
and success teams, fearing customers seeing the false
positives in our part of speech tagger, spent hours cleaning up
every tag to minimize the chances of bad experiences before
account launch. This one schema choice and its downstream
costs the company hundreds of person hours over my three
years in charge, but ultimately provided limited product value.

This surfaced a frustrating paradox: early data schema
decisions were highly consequential to the implementation of
every layer in our architecture and were the most difficult
decisions to change because of the massive set of downstream
code, company, and customer dependencies. And yet schema
decisions often had to be made well before we had any
significant requirements certainty.

H. Claim 8: Coding is easy (when dependencies are known)
Most of the software development work we did was

straightforward. There were engineering activities, however,
that became complex or impossible. In nearly every case, this
was due to unknown or unknowable dependencies on code
that required time-consuming and error-prone manual efforts
to fully uncover and understand. In this section, I discuss
common developer activities and which types of hidden
dependencies turned them from easy to intractable.

Coding was the least difficult developer activity. We hired
engineers that were capable, quick programmers. Even our
most junior engineers learned new languages and tools
quickly. Because our engineers were aware of the error-prone
aspects of languages—especially with the constant feedback
of the linters we incorporated into our builds—they learned to
avoid risky aspects of languages in favor of their safer, less
error-prone semantics. When these semantics were not
known, however, defects became almost intractable to
localize, because developers did not know to look for these
unexpected, error-prone semantics. These semantics were, in
effect, hidden dependencies on execution.

Our own specifications were incredibly valuable, but hard
to find, making the design dependencies they contained
difficult to account for. This caused developers to overlook
requirements and constraints, leading them to break functional
requirements or other dependencies that were poorly
documented. We mitigated some discoverability problems by
writing most of our specifications as source-level
documentation (formal when possible). For example, we
chose a declarative REST API framework that was self-
documenting, we described data schema semantics and
rationale in table and column comments, and we wrote pre-
and post-conditions for functions. When developers saw these
specifications, or better yet, when tools enforced them, they
were invaluable. When they were hidden from developers’
work, they were useless.

We never had enough test coverage, but this did not cause
many failures. When it did, these were failures we not likely
to have anticipated, because they arose not from unexpected
input, but from assumptions or defects in code that were not
visible. We mitigated these severe failures by investing
heavily in server-side and client-side monitoring, which

799

meant we usually deployed a fix within an hour of an alert.
That is not to say that testing did not matter—we wrote many
tests for critical features, as well as did significant manual
testing—but the hard parts of testing concerned the inputs and
states we had not anticipated, not the ones we had.

Debugging was routine and time-consuming, but only
occasionally difficult. When it was difficult, it was almost
always the lack of reproduction steps that posed the challenge,
not fault localization or repair. This usually manifested as a
vague report from an important customer, which forced us to
imagine the space of possible inputs that might cause the
failure. In some cases, we did not even have a clear description
of the failure. As in other activities, it was our team’s inability
to see the inputs and state on a customer’s machine that made
the work difficult.

The team frequently refactored to pay down technical
debt, keeping our implementation aligned with our product’s
value proposition. Because we used primarily dynamic
scripting languages, it was error-prone, conflict-prone, and
time-consuming, especially in components with numerous
dependencies, none of which were visible statically. Because
refactoring dynamic code was so difficult, it was something
we avoided doing until necessary, which often artificially
delayed important changes.

Documentation was another source of hidden
dependencies. Prior work has found that documentation is
often incomplete, ambiguous, and unexplained [38]; I found
that it was specifically missing two types of details. First,
APIs, frameworks, and libraries would often have overarching
design patterns in their use, but documentation rarely
explained them. We adopted Facebook’s React, for example,
and spent hours with its documentation, but most of our
engineers only really understood its core design patterns after
attending a local React class sponsored by Facebook in their
Seattle office. The second type of missing detail were runtime
semantics, such as usage rules and runtime properties such as
performance, testability, and debugger support. Design
patterns and runtime semantics were occasionally available in
a blog post or StackOverflow answer, but rarely in official
documentation.

Infrastructure posed one of the greatest hidden
dependencies: the future demand on a web service. This
required significant “DevOps”—the set of activities involved
in building and maintaining 24/7 web services—to help
prepare for unanticipated service volume. We used third-
party, cloud-based solutions for everything that we could,
both to save money, to focus our time on our own product, and
to simplify scaling, but this required substantial system
administration expertise to build, maintain, and scale.

Security also posed many hidden dependencies. Secure
coding itself posed unanticipated inputs, requiring engineers
to use tools to anticipate these inputs. But security was even
more challenging when it involved responding to other’s
efforts to explore our vulnerabilities. Enterprise customers, for
example, often ran much more extensive automated security
audits, which would send us long lists of false positives for us
to review, and this would occur every time we encountered a
new customer with the same tool. Freelance security
consultants would also regularly do penetration testing on our

infrastructure in order to extract some form of compensation.
This created unexpected and usually unhelpful work.

Among all of these activities above, the most difficult,
error prone tasks had one common feature: they had
dependencies that could not be easily discovered because
there were not observable, recorded, or planned. Whether it
was missing reproduction steps, undocumented API usage
rules, unexpected traffic, or dynamic dependencies that were
statically hidden, when a developer could not see it, they could
not easily plan for it, act on it, or resolve it.

I. Claim 9: Research impact requires perfect timing and
minimal risk
One of my motivations for commercializing our research

was to understand why technology transfer is so rare. Some
researchers have begun to investigate the barriers. For
example, engineers view most software engineering research
innovations as worthwhile [27], but there is still a wide gap
between research prototypes and whole products [10].
Moreover, many engineers have strong beliefs based from
personal experience that cause them to discount research
findings [13]. As CTO, I was responsible for adopting new
technologies and leveraging empirical evidence. What other
barriers to technology transfer did I observe?

After three years, the barriers were so numerous, I began
to wonder how innovations ever become part of practice. First,
public research innovations had a very limited value to our
business. Because we had published our work and described
how to replicate it, we had actually rendered our intellectual
property useless, and so our board encouraged us to generate
new private IP as soon as possible. And yet, investing in
innovations as a startup was risky and hard to justify. I never
found enough time to do the work we knew we had to do, let
alone work that might hypothetically valuable. The company
essentially had room for only one risk, which was the original
risk it took when we founded it: testing its value proposition.

Our company’s own innovative features were also harder
to sell because they required customers to learn new ideas,
develop new processes, and take the potential value of the
innovation on faith. For example, our “object search”
technology, which was the key innovation in the original
research [8], was rarely the reason that customers bought our
product. In fact, it was often a liability. The sales team had to
understand it (which they often did not), they had to teach it
to prospective customers (in about 1 minute as part of a larger
30- to 60-minute product pitch), and customers had to believe
that it would provide value that outweighed the risks and
costs. Their perceived risks and costs were always
exaggerated—we had plenty of evidence that companies
could easily adopt the service, including research evidence
[9]—but this data did not matter to customers. They asked,
“It’s great that it worked for that other company’s customers,
but what about mine?”

When I evaluated new developer tools for adoption
internally, I behaved just as our customers did. In fact, there
was a day when I needed a way to extract trending
descriptions of problems out of technical support requests in
order help our customers find “gaps” in their Q&A content.
As it turned out, I had earlier invented an algorithm that solved

81010

this exact problem [21]. I re-read my publication and began
analyzing the gaps between the research paper and our product
need. Would it support multiple languages? How does it
scale? What kinds of false positives occur? Was the content in
the support tickets we were mining similar enough to the
discussion forums the technique was tested on? How would it
handle noise? After an hour, I gave up: without a plug-and-
play solution, there was too much work and risk in converting
my own invention into product, no matter how perfectly the
research fit the situation. I had a long list of more valuable
ways to invest my time.

These constraints also applied to non-technical research
discoveries. I frequently cited evidence from empirical studies
of software engineering, summarizing findings and
recommending policies based on the evidence. But each time
I shared these discoveries, I received the same (reasonable)
response: Would that happen in our case? Why should I
believe that when it was only based on 20 engineers? In the
end, our executives’ prior beliefs usually heavily outweighed
the small bits of evidence from studies.

Despite these barriers to innovation, many of the beliefs
that our engineers and executives held ultimately did come
from research. They were beliefs embedded in tools and
processes engineers had learned in school. They were beliefs
from business and management books that were informed by
long bibliographies of academic research. The difference was
the context in which our employees had learned them: as a
CTO, I was offering recommendations as an executive and a
manager, which is a context that affords debate, disagreement,
and dissent. Had I been communicating in a classroom as a
teacher, at a conference as a speaker, or through a textbook as
an author, I suspect there would have been a higher level of
deference to authority. (This is not to say that innovations and
evidence in software engineering research are always valid. In
many cases, our evidence base and technologies are immature
and not yet ready for adoption).

V. THREATS TO VALIDITY AND DISCUSSION
In this paper, I have presented nine claims that attempt to

capture my experience as CTO of a software startup:

• Software engineering is structured by individual and
social decision-making under uncertainty

• Design is a power struggle between diffuse sources
of domain insights

• Translating a value proposition into code requires
both planning and persuasion

• Debt is both technical and cognitive
• Effective developers are patient teachers, rapid

learners, and prosocial communicators
• Quality-driven management requires trust
• Schemas structure work
• Coding is easy (when dependencies are known)
• Research impact requires timing and minimal risk

These claims portray software engineering as a technical
activity besieged by uncertainty, speculation, power
imbalance, code and cognition misalignments, and
information exchange and decision making warped by social

factors. This view suggests that software engineering is far
more complex than we often admit when we practice it, teach
it, or attempt to disrupt it through new software engineering
tools. It demands that we increase efforts in both academia and
industry to move beyond purely technical conceptions of how
we create software, more deeply studying the intricate social,
cognitive, and emotional dynamics of this inherently
sociotechnical work.

As with any empirical study (including the self-reflections
by Knuth [18] and Brooks [7]), I cannot say with certainty that
the nine claims are internally valid. I do not know that they
faithfully represent the cause and effect in my company or
even in my own behavior. As I stated earlier, everything I have
reported is filtered through my subjective biases as a
practitioner and a researcher. My reactions to software
engineering work were a product of what I observed and what
I found salient about these observations. My data was biased
by what I felt compelled to write about in my diary on a daily
basis. This was partly a product of my interests in social
interactions in terms and also the emotional experiences I had
during a very intense three years of work. My biases and
experience also meant that I did not deeply reflect on my
experience writing hundreds of thousands of lines of code,
because I found most of that work routine and uninteresting.

As with any diary study, this one is also limited by the
observer-expectancy effect: my process of reflection likely
changed how I worked and how I structured our business. This
is both a strength and a weakness: my involvement may limit
the generalizability of the nine claims, since my decisions
were guided by my reflective practice, but it was also a unique
opportunity for me to test the validity of the theories I was
developing through process, policy, and interactions, and then
observe the efficacy of these embodiments in practice. This
may limit the generalizability of the data to organizations that
have some number of strongly reflective people in positions
of leadership, and may not generalize to organizations who
lack reflective practitioners (or have them, but in positions
with little influence).

Although my CEO and VP of Engineering read this paper
and agreed with my interpretations with respect to their own
experiences, had they kept their own diaries, they might have
arrived at different claims because of their unique
perspectives. Therefore, the claims I present are not the only
claims to be made, but a small sample of other potential truths
that may have only been visible to other employees in my
company. Therefore, the claims should be viewed with a
healthy skepticism, as ideas to investigate in future work, and
not verified truths (much like the many testable but unverified
claims in Brooks [7] and Knuth’s [18] works).

In addition to not knowing the internal validity of the
claims, I also do not know their external validity, as our
Seattle-based, venture-backed, software-as-a-service web
startup is unlike many other types of software organizations.
For instance, because our company was a startup, we were
more focused on validating our product’s value proposition
than maintaining an already successful product. More mature
software projects may spend far less time worrying about
product value propositions, as they have already proven value.
Unlike many software products, ours involved user interfaces,

91111

information retrieval and extraction, and analytics; companies
that build other types of software likely experience different
challenges. Our company was also in Seattle, Washington,
USA, which likely has a different work culture from that of
other regions in the world. It is therefore possible that many
of the nine claims are only true to my company. Further
research will be necessary to understand how well they
generalize to other settings.

Given these threats to validity, developers reading this
should decide whether it is true to their experience, and
continue to discuss these claims further in public forums. I
hope researchers will test these claims, attempting to refute
them through harder evidence, and seeking to understand
when they are true—and more importantly, why. Educators
should take these claims, and perhaps even this paper, and
share it with their students, giving them a glimpse of the types
of experiences that their students might have in the software
industry. These may shape how they see their work, and more
importantly, how they structure others work, as they get
promoted and begin managing their own teams.

Only with continued reflective practice in academia and
industry will we hope to eventually transform the art of
software engineering into a science. I hope this paper
encourages more of this reflective practice, and more sharing
of it in public ways.

ACKNOWLEDGMENT
Thank you to my colleagues Jacob O. Wobbrock, Thomas

LaToza, Parmit Chilana, and Kevin Knoepp for their
extensive feedback on early drafts of this paper. This work
was supported in part by the National Science Foundation
(NSF) under Grants 1314399, 1240786, and 1153625. Any
opinions, findings, conclusions or recommendations are those
of the authors and do not necessarily reflect the views of NSF.

REFERENCES
[1] A. Ahadi & R. Lister (2013). Geek genes, prior knowledge, stumbling

points and learning edge momentum: parts of the one elephant? ACM
ICER, 123-128.

[2] P. Atkinson & M. Hammersley (1994). Ethnography and participant
observation. Handbook of Qualitative Research, 248–161.

[3] R. Bavani (2012). Distributed agile, agile testing, and technical debt.
IEEE Software, 29(6), 28-33.

[4] K. Beck (2001). Manifesto for Agile Software Development. Agile
Alliance. http://www.agilemanifesto.org/, retrieved Dec. 3rd, 2015.

[5] A. Begel, & B. Simon (2008). Novice software developers, all over
again. ACM ICER, 3-14.

[6] H. Beyer & K. Holtzblatt (1997). Contextual design: defining
customer-centered systems. Elsevier.

[7] F. Brooks, Jr. (1995). The mythical man month. Addison-Wesley.
[8] P.K. Chilana, A.J. Ko, & J.O. Wobbrock (2012). LemonAid: selection-

based crowdsourced contextual help for web applications. ACM CHI,
1549-1558.

[9] P.K. Chilana, A.J. Ko, J.O. Wobbrock, & T. Grossman (2013). A
multi-site field study of crowdsourced contextual help: usage and
perspectives of end users and software teams. ACM CHI, 217-226.

[10] P.K. Chilana, A.J. Ko, & J.O. Wobbrock (2015). From user-centered
to adoption-centered design: A case study of an HCI research innova-
tion becoming a product. ACM CHI, 1749-1758.

[11] W. Cunningham (2009). Ward explains the debt metaphor.
c2.com/cgi/wiki?WardExplainsDebtMetaphor, retrieved Aug 5, 2016.

[12] M. Czerwinski, E. Horvitz, & S. Wilhite (2004). A diary study of task
switching and interruptions. ACM CHI, 175-182.

[13] P. Devanbu, T. Zimmermann, & C. Bird (2016). Belief & evidence in
empirical software engineering. ICSE, 108-119.

[14] T. Dingsøyr, T. Dybå, & N.B. Moe (2010). Agile software
development: current research and future directions. Springer Science
& Business Media.

[15] N. Eisenberg, R.A. Fabes, & T.L. Spinrad (2007). Prosocial
development. Handbook of Child Psychology.

[16] R.M. Emerson, R.I. Fretz, & L.L. Shaw, (2001). Participant observa-
tion and fieldnotes. In P. Atkinson, A. Coffey, S. Delamont, J. Lofland,
& L. Lofland (Eds.), Handbook of Ethnography, 356-357.

[17] G. Hardin (1968). The Tragedy of the Commons. Science, 162 (3859):
1243–1248.

[18] D.E. Knuth (1989). The errors of TEX. Software: Practice and Expe-
rience, 19(7), 607-685.

[19] A.J. Ko, R. DeLine & G. Venolia, G. (2007). Information needs in
collocated software development teams. ICSE, 344-353.

[20] A.J. Ko & P.K. Chilana (2011). Design, discussion, and dissent in open
bug reports. iConference, 106-113.

[21] A.J. Ko (2012). Mining whining in support forums with Frictionary.
ACM CHI, Extended Abstracts, 191-200.

[22] T.D. LaToza & B.A. Myers (2010). Developers ask reachability
questions. ICSE, 185-194.

[23] T.D. LaToza, G. Venolia, & R. DeLine (2006). Maintaining mental
models: a study of developer work habits. ICSE, 492-501.

[24] P.L. Li, A.J. Ko, & J. Zhu (2015). What makes a great software
engineer? ICSE, 700-710.

[25] E. Lim, N. Taksande, & C. Seaman (2012). A balancing act: what
software practitioners have to say about technical debt. IEEE Software,
29(6), 22-27.

[26] Lowenstein, G., & Lerner, J.S. (2003). The role of affect in decision
making. In R. Davidson, K. Scherer, & H. Goldsmith (Eds.), Handbook
of Affective Science, 619-642.

[27] D. Lo, N. Nagappan, & T. Zimmermann (2015). How practitioners
perceive the relevance of software engineering research. ACM FSE,
415-425.

[28] A. Osterwalder, Y. Pigneur, G. Bernarda, & A. Smith (2015). Value
proposition design: how to create products and services customers
want. John Wiley & Sons.

[29] D.L. Parnas (1972). On the criteria to be used in decomposing systems
into modules. CACM, 15(12), 1053–58.

[30] E. Pronin (2007). Perception and misperception of bias in human
judgment. Trends in Cognitive Sciences, 11(1), 37–43.

[31] A. Radermacher, & G. Walia (2013). Gaps between industry
expectations and the abilities of graduates. ACM SIGCSE, 525-530.

[32] E. Ries (2011). The Lean Startup. Crown Books.
[33] M.S. Schwartz & G.C. Schwartz (1955). Problems in participant

observation. American Journal of Sociology, 60(4).
[34] J. Sillito, G.C. Murphy & K. De Volder (2006). Questions

programmers ask during software evolution tasks. ACM FSE, 23-34.
[35] H.A. Simon (1956). Rational choice and the structure of the

environment. Psychological Review 63(2), 129–138.
[36] R.N. Taylor, N. Medvidovic, N., & E.M. Dashofy (2009). Software

architecture: foundations, theory, and practice. Wiley Publishing.
[37] I. Treitlier (2014). Backyard ethnography: Defamiliarize the familiar

to transform business. International Journal of Business
Anthropology, 5(1), 93-105.

[38] G. Uddin & M.P. Robillard (2015). How API documentation fails.
IEEE Software, 32(4):68-75.

101212

