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Abstract. In practice the relevant details of images exist 
only over a restricted range of scale. Hence it is 
important to study the dependence of image structure 
on the level of resolution. It seems clear enough that 
visual perception treats images on several levels of 
resolution simultaneously and that this fact must be 
important for the study of perception. However, no 
applicable mathematically formulated theory to deal 
with such problems appears to exist. In this paper it is 
shown that any image can be embedded in a one- 
parameter family of derived images (with resolution as 
the parameter) in essentially only one unique way if the 
constraint that no spurious detail should be generated 
when the resolution is diminished, is applied. The 
structure of this family is governed by the well known 
diffusion equation (a parabolic, linear, partial different- 
ial equation of the second order). As such the structure 
fits into existing theories that treat the front end of the 
visual system as a continuous stack of homogeneous 
layers, characterized by iterated local processing 
schemes. When resolution is decreased the images 
becomes less articulated because the extrem ("light 
and dark blobs") disappear one after the other. This 
erosion of structure is a simple process that is similar in 
every case. As a result any image can be described as a 
juxtaposed and nested set of light and dark blobs, 
wherein each blob has a limited range of resolution in 
which it manifests itself. The structure of the family of 
derived images permits a derivation of the sampling 
density required to sample the image at multiple scales 
of resolution. The natural scale along the resolution 
axis (leading to an informationally uniform sampling 
density) is logarithmic, thus the structure is apt for the 
description of size invariances. 

1 The Problem of Scale and Resolution 
In every imaging situation you have to face the 
problem of scale: a given image has a limited extent or 

window (the "outer scale") as well as a limited 
resolution (the "inner scale"). These limits are set by the 
"format" of the image, e.g. by the size of the 
photographic plate and the graininess of the emulsion, 
the number and spacing of photosensitive elements of 
a CCD array, or, in the case of the visual system, the 
discrete structure of the retinal receptive fields and the 
extent of the retina. In a number of situations the 
inner scale is determined by the structure of the 
radiation itself, e.g. in low-luminance situations (night 
vision, image intensifiers) or scintigraphy (where the 
number of gamma - quanta available is limited by 
dosimetry). In a great many applications the inner 
and outer scales are set by the subject matter rather 
than the image format, e.g. a treetop does not exist on 
the scale of the leaves nor on that of the forest. (You 
typically define treetops as features in volumes with 
an outer scale of 10 m and an inner scale of 10 cm say.) 

In all of the latter cases the problem of setting outer 
scale (that is finding the subject matter, "identification") 
and inner scale (morphometric characterization or 
"localization") can be acute. This is especially true in 
automatic image processing, much less so in vision: the 
human eye seems to possess an uncanny aptitude to 
"zoom in" on the right range of scale. Thus, for 
instance, to locate the heart on a cardioscintigram you 
blur the image, then to study the shape of the left 
ventricle you increase resolution until the photon noise 
becomes really objectionable (Hay and Chesters, 
1977). Thus you probe what may be called the "deep 
structure" before dealing with the "superficial" 
structure (at one level of resolution). Similar problems 
are well known in other fields, e.g. biology, astronomy. 

If you have no a priori reasons to look for certain 
features, then you cannot decide on the "right scale". 
(Except in certain trivial cases, e.g. once you resolve 
individual quantum events it is useless to increase 
resolution any further - regardless of subject matter.) 
Thus if you aim to retain all available structure, and yet 
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want to vary the resolution (e.g. in order to be able to 
identify global objects through blurring), then you 
must treat the image on all levels of resolution 
simultaneously. Several attempts to do so have been 
published (Hay and Chesters, 1977; Burt et al., 1981; 
Witkin, 1983). The challenge is to understand the 
image really on all these levels simultaneously, and not 
as an unrelated set of derived images at different levels 
of blurring: this presupposes the existence of links, or 
"projections" between the different levels of resolution. 
The obvious way to proceed appears to be: 
1. Embed the original (or "primal") image in an one- 
parameter family of "derived" images. The parameter 
measures resolution, or inner scale. The outer scale 
determines how far to proceed. (For inner scale can 
never exceed outer scale, the simplest derived image 
contains just one logon or structural degree of 
freedom.) 
2. Study the family as a family, i.e. define deep 
structure, the relations between structural features of 
different derived images. 
3. In a latter phase of this program (not covered in the 
present paper) these mathematical structures may be 
incorporated in more detailed mechanistic models of 
the visual system composed of homogeneous 
processing layers with a specific across-layer structure. 

In the sequel I show that under a few rather general 
constraints there exists really only one reasonable way 
to generate the one-parameter family and that the 
induced deep structure can be used to define the 
"projections" unequivocally. 

2 The Unique One-Parameter Family Generated 
by an Image 

For the present discussion an "image" is just a real 
function of two real variables: 

L:R2-~R 

L ( r ) = L ( x , y ) = 2  r~R 2, ,~ER. 

The coordinates (x, y) are understood as the Cartesian 
coordinates in the image plane, the value 2 will be 
called the "luminance" here -  for ease of reference but 
may be interpreted in many different ways. I shall not 
require 2 be positive, e.g. a "reference luminance" may 
be subtracted. 

The aim is to define a real function K of three 
variables 

K : R 3 - . R  

K(R) = K(x ,  y, z) = A R ~ R 3, A E R 

in such a way that K(x, y, O) = L(x, y) for all x, y, and 
such that the parameter z measures inner scale. I 
require that the family depends "causally" on the 

primal image, i.e. I require the vertical derivative Kz at 
any level to be given by a functional that depends solely 
on the function (or derived image) K(x, y, z = const). 
The problem then is how to express K~ in terms of the 
derived image at a given level. It will be shown that this 
can only be done in essentially a single sensible way. 

Most persons experience no difficulties when asked 
to point out "the same" features in two photographs 
that differ with respect to the amount of blurring if 
these features are sufficiently coarse. It seems natural 
to identify light spots when they occur at similar 
locations as really the same spot, and our confidence is 
increased when we identify configurations of light and 
dark spots that show similar spatial relations. Let us 
then start by identifying a pixel (x', y') at resolution z' 
with a pixel (x, y) 

K(x', y', z') = K(x, y, z) (metrical identity) 

[ ( x ' -  x)2 + ( y ' -  y) 2] 

is a local minimum (structural proximity). 

Note that it is not at all guaranteed that such a 
mapping always exists, in fact a given luminance at 
some level of resolution need not at all survive if you 
blur that image. Here I introduce the first hypothesis, 
that of causality: any feature at a coarse level of 
resolution is required to possess a (not necessarily 
unique) "cause" at a finer level of resolution although 
the reverse need not be true. This asymmetry leads to a 
rather strong constraint. The hypothesis in effect 
forbids the generation of "spurious resolution". Let me 
formalize the constraint first: Consider a surface 
K(x,  y, z) = Ao (a constant) in (x, y, z)-space [or "scale 
space" (Witkin, 1983)]. Then you can formulate the 
constraint for the stationary points of the derived 
images (the points K x = Kr = 0). Note that you have 
extrema if the Hessian Kx~Kry-K~r is positive (a 
minimum or dark blob if K ~  + Krr is positive, a light 
Nob if it is negative) and a saddle if the Hessian is 
negative. If the primal image is generic (an assumption 
that is easily eliminated later on), then the Hessian 
never vanishes at the stationary points for z = 0. It may 
vanish at stationary points for certain finite values of z, 
however. Now the assumption of causality implies that 
the surface K = A  o should point its convex side 
towards the direction of decreasing resolution at the 
extrema. For otherwise the more blurred image would 
possess luminance values that could not be traced to 
the less blurred images, contrary to the hypothesis. 

The curvature of the surface K(x,  y, z) = A o is easily 
obtained with standard methods (Spivak, 1975). First 
note that the unit surface normal n may be defined as: 

n = p/p with p = (K~, K,,  K~). 

The signs of the principal curvatures are defined 
with respect to this choice of orientation of the surface. 
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The principal curvatures are 

2i i=1 ,2 ,  

where the 2~ are the roots of the (quadratic !) equation 

I Kxx-2  K~y K~ K~ 

Ky x Kyy--2 Ky z Ky 
det =0  

] Kzx K~ K~z- 2 K~ 
I 

/ K~ Ky K s 0 

or (because we consider the case Kx=O, Ky=0, 
Kz=0):  

,~2_ ~(Gx + K. )  + ( K ~ G , -  K~,) = 0. 

By hypothesis KxxKyy-K2xy is positive (I consider 
extrema, not saddle points), thus both roots have equal 
sign. This sign is given by the sign of K~x + Kyy = AK, 
whereas convexity (concavity) is defined relative to the 
sign of the third component of the surface normal. 
(That is the sign of K~.) Thus the constraint can finally 
be written 

AK = 0~2(X, y, z)K~, 

where ~ denotes an arbitrary but nowhere vanishing 
real function. [-Note that this equation has really been 
derived at the location of the extrema solely. But then, 
for images that are not a priori known, these extrerna 
might be anywhere ! Thus the equation must hold at all 
points of the image, which is why I introduced the 
function e(x, y, z).] Consequently I have arrived at a 
partial differential equation that has to be satisfied by 
the family of derived images. 

In order to proceed I introduce a second 
hypothesis at this point: homogeneity and isotropy. 
The inner scale depends only on the parameter z, and 
in no way on x or y. Thus I do not permit space variant 
blurring. Clearly this is not essential to the issue, but it 
simplifies the analysis greatly. The hypothesis means 
that c~(x, y, z) depends only on z. Then I can introduce a 
new scale parameter t (say) in such a way that t = ~o(z) 
where q~ is a monotonically increasing function, and 
AK =K~. 

This is the well known heat conduction or diffusion 
equation. This equation governs the deep structure of 
the image. 

Consequently, I define the family of derived images 
K(x,y,t) as the solution of the heat conduction 
equation with the boundary condition K(x,y,O) 
= L(x, y). This works fine if the image extends over the 
whole of R 2. If the primal image is only defined over a 
finite region S, say a square or disc, etc. (the usual case), 
I proceed a little different. First I define L*(x, y) as the 
solution of AE* =0 with as boundary condition that 
L*(x, y) = L(x, y) restricted to 8S (the boundary of the 

image). Then I define K(x, y, t) as the solution of the 
heat conduction equation with as boundary condition 
K(x,y,O)=L(x,y)-L*(x,y) and K(OS, t)=O. [Note 
that L* would lead to Kt(x,y,O)=O anyway: it is an 
invariant component of the primal image.] 

In retrospect you can obtain any derived image 
directly from the primal image through convolution 
with the gaussian kernel 

K(r, r3 = exp ( - Ir - r'l 2/4t)/4zct. 

In fact any derived image at level t can be derived from 
any other derived image at level t '<t through 
convolution with a suitable gaussian kernel (or point 
spread function). Thus if spurious resolution is 
prohibited (the first hypothesis), then the family of 
gaussians is unique (Note 1). Gaussian blurring is the 
only sensible way to embed a primal image into a one- 
parameter family. 

Interestingly enough the structure proposed here 
has several features that can be traced to well known 
models of the visual system. For instance, the study of 
zero crossings for images subjected to different degrees 
of blurring (Marr et al., 1977) and the studies on 
processing in layered media (Marko, 1969; Roehler, 
1976). The latter study even explicitely incorporates 
the diffusion equation. 

3 Image Structure - The Superficial Structure 

In the preceding paragraphs I have glibly spoken of 
light and dark spots in the image. Obviously such 
image features are of importance, but how do you 
delimit a light blob (say) in a blurred image? In one- 
dimensional images, such as time signals, one defines 
peaks and troughs either by way of extrema (Ehrich 
and Foith, 1976; e.g. a "peak" is a region between two 
successive minima) or through points of inflexion 
(Witkin, 1983). Both methods are not easily transposed 
to two dimensions. The two-dimensional equivalent of 
a point of inflexion would be a parabolic curve 

2 (KxxKyy-Kxy=O), but parabolic curves sometimes 
fail to enclose single extrema. People have attempted 
to use "zero-crossings (AL=0)" (Mart et al., 1977) for 
the purpose, but these curves suffer from the same 
drawback. One nice method is the one commonly used 
in geography, and introduced in mathematics by 
Cayley (1859) and Maxwell (1870) ("Hills" and 
"Dales", separated by "watercourses" and 
"watersheds"). A quite similar method - that seems 
more natural for the present purpose - is to employ the 
foliation of the image induce~l by the family of 
equiluminance curves (Koende'rink and van Doorn, 
1979). 

From differential topology it is known (Guillemin 
and Pollack, 1974) that almost all (in a precise sense) 
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Fig. 1. The surface K = Ao. The point P is (x o, Yo, to). In the 
regions alfa and beta the lines of steepest descent have the 
singular paths through P as asymptotes. In the region gamma 
these lines issue from P. Surfaces K=A1 with AI>Ao have 
extrema nor saddle points, whereas surfaces K = A 2 with A2 < Ao 
have one extremum and one saddle point: at point P you have a 
"collision" of a saddle and an extremum 

images are generic, that is: 
- stationary points (K~ = Ky = 0) are isolated, 

2 - K~Krr -K~y  = 0 at stationary points, 
- stationary values are distinct. 
Then singular equiluminance curves are points (at the 
extrema) and curves with self-intersections (at the 
saddle-points, Maxwell's "false extrema"). The 
extrema and false extrema can be put into a natural 
partial order (of inclusion) as follows: Each saddle 
point defines a closed equiluminance curve with a 
single self-intersection, the two loops define two 
disjunct families of closed equi!uminance curves that 
contain either extrema or false extrema (containing 
other - possibly false - extrema, etc.). In this manner 
you obtain a nested family of (false) extrema and the 
inclusion defines a partial order. The boundary of the 
image does not lead to complications if you first 
subtract the invariant image (as noted earlier): then the 
boundary itself is a closed equiluminance curve. From 
the vantage point of visual perception this method of 
treating an image in terms of a hierarchy of nested and 
juxtaposed light and dark blotches appears as a very 
natural one. 

4 The Deep  Structure 

When you blur an image, you loose structure: the total 
number of extrema cannot increase, and generally 
decreases if the blurring is sufficiently strong. A single 
process accounts for this (an immediate consequence of 
Thorn's theorem (Thorn, 1972): when t is increased it 
may happen that an extremum merges with a 
saddle-point, whereon both are annihilated. An 
example is (this is at the same time the general affine 

model of this singularity, see Fig. 1): 

K(x o + 6x, Yo + 3y, t o + &) 
6x 3 3y z 

= A ~  --6-- + 2 +&(6x+ 1). 

(Note that K satisfies the diffusion equation.) 

For  6t < 0 the extremum is at @ = 0, 6x = ~ ,  

the saddle at @ = 0 ,  6 x = - ~ .  For  t > 0  both 
have vanished. Note that K(x, y, to) is not a generic 
image. In all practical cases the family of derived 
images is versal; that is all but a finite number of 
isolated derived images are generic. 

The non-generic images occur as images in which 
an extremum merges with a saddle-point. Thus you 
can unequivocally assign extrema to saddle-points. 
The isoluminance curve through the saddle-point must 
encircle that extremum, and thus serves to define the 
boundary of the light or dark blob. There exists an even 
more natural method to do this, however. 

The requirement that in two "successive" derived 
images, say K(x,y , t )  and K ( x , y , t + & )  (with x,y  
variable), corresponding points have equal luminance 
and are as close as possible, yields a simple rule of 
projection between images: the orbits of the projection 
are the integral curves of the vector field 

s = (-- KtK~, - KtK,, K~ + K~). 

This is easily proved as follows: The point r + dr at 
the image t + dt that is connected to the point r at the 
image t, must satisfy d L = V K . d r + K i l t = O .  
Moreover, the steepest descent is in the direction of the 
gradient (VK). Thus 

dr~dr = - (KdVK.  VK). VK. 

vector (VK. vK)dd~ has everywhere the same The 

direction as dr~dr, and its singularities coincide with 
those of dr/dt: thus the integral curves of these vector 
fields are the same. 

The stationary points of the images are just the 
singularities of the vector field s (because K~ + K~ = 0). 
When you project some region of a derivative image 
towards the primal image plane, it is apparent that not 
all points in the latter plane can be reached by the 
integral curves of s: each extremum-saddle-point pair 
defines a region that remains blank. These regions are 
described through the integral curves that pass 
through the extremum and those through the saddle 
that do reach the plane t = 0 (Fig. 2). These regions are 
topologically equivalent to discs, in the primal image 
plane the saddle-point lies on the border, the 
extremum inside it. 

I propose to call these regions the "ranges" of the 
extrema, they can be taken to define the light and dark 
blobs defined by the extremum-saddle-point pairs. 
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Fig. 2. If the derived image at t = t2 is down-projected to the plane 
t = tl, the dotted region is left open : i t  contains detail that  is not  
present in the blurred image 

r i t 

Fig. 3. A tube A defined by the saddle point Q, extremum R 
pair in the primal image Z. The top of the tube is the singular 
point P where saddle point and extremum meet. (It has a 
horizontal tangent plane.) The surface E contains orbits that  end 
on saddle points on the a rcPQ and from there split into two 
branches on A. Any orbit inside the tube ends on an extremum on 
the arcPR.  No orbit from outside A can enter its inside. Thus 
downprojection from a level above P leaves the realm on the 
primal image ~ uncovered 

If you don't project down to the primal image 
plane, but to some intermediary image plane, you 
obtain the range at that level of resolut ion- at least if it 
exists there. These ranges sweep out tube-like volumes 
(with t as parameter, Fig. 3) in scale space. The tubes 
are closed on one side. (This highest point being the 
merge of the extremum-saddle-point pair.) These tubes 
define the volumes in scale space at which the blobs 
manifest themselves, I propose to call them the 
"realms" of the extrema. In complicated images many 
different realms coexist, both juxtaposed and nested to 
arbitrary depth. (Because of the structure of the s field 
the boundaries of different realms can never meet.) 
Thus you may really speak of light blobs containing 
other light or dark blobs, containing.., etc. 

For a certain finite range of resolution the blobs 
can be identified (that is if t is less than the value at 
which the extremum meets its saddle-point), and in a 
still more limited range the blob exists in its pure form, 
unarticulated. For too high a resolution the blob may 
be difficult to detect because it is articulated with 
irrelevant smaller detail (e.g. blurring really helps to 
find objects in scintigrams), whereas for too low a 
resolution the blobs loose identity (e.g. in a 
cardioscintigram the left and right ventricles may 
merge). Details thus have a limited range of resolution 
in which they can be said to exist. We can define this 
range from the top of the realm to the next lower top of 
any included subrealm. 

Some details exist over a long range of resolution, 
others are more ephemeral and at once desintegrate 
once you identify them. There is some evidence that 
"stable features" (those that exist over long ranges) are 
the visually most conspicuous ones (Witkin, 1983). 

Note that you cannot "reconstruct" the primal 
image from a highly blurred image through the device 
of downprojection: surely this sharpens or "deblurs" 
the image, but at the cost of the introduction of blank 
spaces (the ranges of extrema on the primal image). 
Thus you have to bring in extra information at the 
levels of resolution where - by downprojection - new 
realms appear. A complete description of the image 
on the coarsest possible scale entails: 

1) the image at some (coarse) level of resolution, 
2) the luminance values on the loci of extrema (a 

set of curves in (x, y, t) space). Downprojection from 
these entities completely fills the primal image plane, 
thus if you add, 

3) the geometrical structure of the family of 
downprojecting paths, you have completely 
characterized the image. 

Concerning the geometrical structure of the 
downprojecting paths, they alone are sufficient 
description ! For the structure of the s-field determines 
the surfaces K=cons t :  sA(s - ( s .e t )e t )y ie lds  the 
direction of the normal to these surfaces. (et 
a unit vector in the t-direction.) Consequently, the 
image is determined except for a transformation of 
the type K'(x, y, t) = ~(K(x,  y, t)). Obviously this 
transformation must conserve the property that 
A K = K t ,  thus AK'=K~. This latter equation can be 
shown to be equivalent to: 

02~1 ) ]17K]2 q_ ~49 A K  
0K 2 ~ (  - K t ) = 0 .  

T h u s ~  = 0, or K '  = ~K + fl (:r and fl const). 

But then the image is determined up to a 
multiplicative and an additive constant through the 
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projection orbits in scale space alone! In fact you 
obtain V ln[VK] through the s-field, and thus by 
integration K except for scale and offset. 

One nice feature of this description is that it permits 
a logical filtering in the scale domain. For every range 
in the primal image plane you may solve AE = 0 within 
the range with the boundary value E = L  on the 
boundary of the range. Then you may "lift off" the 
detail by defining it as L -  E within the range and zero 
outside. In this way the whole primal image can be 
written as a superposition of the light and dark blobs. 
A subfamily may be defined for each subimage, and 
because the diffusion equation is linear the original 
family is just the superposition of the subfamilies. Now 
you may choose, for instance, to use only summands 
belonging to features existing in a certain range of 
scales. This is in effect a logical filtering in the scale 
domain. You may even compose images in which 
details in different scale ranges have been blurred 
differentially, etc. 

Finally, note that the diffusion equation may also 
be used backwards to enhance the image. This process 
may end, however. E.g. the primal image 
exp(--(x2+y2)/4#) / (4rt#)  can only be sharpened to 
t = - # ,  then it has been shrunk to an impulse. 

5 The Sampling of Images in Scale Space 

Two basic solutions of the heat equation are 

cp(r, t) = exp(-[r]2/4t)/4nt (S cpdr = 1, ~p(r, 0) = a(r)) 

~v(r, t) = Re e x p ( -  ik. r -  k2t). 

Both are convenient when you want to construct 
solutions of the heat conduction equation through the 
principle of superposition. I use these simple solutions 
here to demonstrate some principles that pertain to the 
sampling of the image in scale space. This is of obvious 
importance to practical (i.e. numerical) applications. 

Let the metrical resolution be given, e.g. the 
luminance (or rather the flux in a resolution cell) is 
measured with a relative accuracy of e x p ( - R )  (R > 1, 
thus the accuracy is R/ln2 "bits"). Take ~o(r, t) as a basic 
solution, then if you require that at any level of 
resolution a cell centered at the origin samples at least 
(1 - exp  ( -R) ) th  part of the total flux, such a cell must 
have a radius of 2]/tR. At a center spacing o f [ / ~  such 
cells sample uncorrelated fluxes if the points in the 
ground plane were uncorrelated. You may also inquire 
after the required Nyquist sample frequency. Consider 
the basic solution ~v(r,t): a spatial frequency 
component with wavelength 2 = 2n/k damps 
exponentially with characteristic decay length 

Atl/e= 1/k 2 = )~2 /4 : r r  

If you start with a Gaussian spectrum 
7'(k, to) = 7'0 exp ( - k2 /2k2 ) ,  you have that 

7"(k, t) = 7"0 exp [ ( -  kZ/2) �9 (2 ( t -  to) + 1/k2)] �9 

Thus the spectrum remains Gaussian but the width 
decreases as 

(1/k 2 + 2 ( t -  to) ) 1/2 

If you start out with a white spectrum (ko-+ o0), the 

width just goes as 1/1/27. (I will set t o = 0 in the sequel.) 
The highest significant frequency is obviously 
kmax(t), for which 7"(kmax, t) = exp( -  R)V2(0, t). Thus 
kma x = ] / ~ ,  or in other words the Nyquist sample 
density must use a spacing d = n/kma x = n] / t /R .  

Another problem concerns the spacing that is 
required along the t-axis. The characteristic decay 
length for the highest frequency component is d2/n 2 
with d as defined above. Thus this wave damps with a 
factor 

( 1 - n 2 O t / d  2) over a distance at((~t~d2/~2). 

Now there are two problems to consider: that of the 
accuracy of the representation and that of the stability 
(in the numerical sense) of the representation. Let us 
consider accuracy first. The approximation 
I ( r ,&)~I ( r ,  0 )+&.AI(r ,0)  can easily be shown to 
have a relative error bounded by 

d4at 2 

- -  27C4 " 

The requirement that e < e x p ( - R )  then yields the 
condition 

a t <  ]//2e-R/2 d 2 . 

7~ 2 

Next consider stability. For a spatial frequency ~o the 
transfer function from layer t = 0  to layer t = a t  is 
(1 -coZat). Stability requires that the absolute value of 
the transfer function remains less than unity: otherwise 
arbitrarily small errors will soon grow without bounds. 

, %  

This leads to the requirement a t <  ~ d  2. For any 

reasonable value of R stability is guaranteed when 

at = (]//~/n2) exp(-- R/2) . d 2 . 

This can also be written (making use of the relation 

d = n t ~ )  as 

&/t  = ]/~ exp( - R/Z) /R  = const. 

Thus you need a logarithmic spacing of sample 
planes along the t-axis. This is in accord with the 
intuitive notion that there can be no preferred scale, 
thus a uniform sampling density on a logarithmically 
scaled axis is indicated. 
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From these basic results it appears that the 
reciprocal of t (say q = t-1) is an even more natural 
measure of resolution from the standpoint of structural 
information theory: in (r, q)-space the resolution cells 
have constant volume. This volume is 

~ = A q A r = A t . d 2 / t  z 

= 1/2re2 e x p ( "  R/2 ) /R  2 ; 

it depends on the metrical resolution alone. This is a 
basic "uncertainty relation" for scale space: a "blob" of 
area A A  exists only over a resolution interval 
A q = ~ / A A .  

The so-called hierarchical "pyramid" structures 
that are in widespread use today for multiresolution 
image analysis are all much coarser than this (Burt et 
al., 1981). Consequently the family of derived images 
cannot be derived simply from these structures, except 
by the trivial measure of starting all over from the 
primal image. Thus quantization effects must be rather 
severe. Yet algorithms based on these structures are 
admittedly powerful and these structures behave at 
least qualitatively very much like the system discussed 
in this paper. Note that the correctly sampled image is 
also a "pyramid", but one that tapers much less swiftly. 
The total number of samples needed to represent the 
structure can be easily obtained as follows: For a 
square image with sides L and resolution 6 the total 
resolution space has a volume LZqmax=7~2L2/R2(~ 2 
= ~2N/R2,  where N is the total number of independent 
image elements in the original images. Dividing the 
volume by the volume of a resolution cell, we find the 

number of samples (M) needed: M = N exp(R/2) / ] /2 .  
This number is seen to grow exponentially with the 
required metrical accuracy (R). For small values of R, 
however, M is of the order of N, e.g. for an accuracy of 
1% you have M ~ 7N. Thus the human visual system 
contains certainly sufficient hardware as far as mere 
numbers are concerned to accommodate the retinal 
image in this manner! 

6 Conclusions 

One main result is that there appears to be essentially a 
single sensible way to embed an image into a one- 
parameter family of derived images, with resolution as 
a parameter: namely by a diffusion process, or 
convolution with a family of Gaussian point spread 
functions. This result must have seemed obvious to 
some previous investigators in this field who started 
out from the family of Gaussians (or rather "DOG's":  
"difference of Gaussians") or from iterated blurrings 
(which asymptotically leads to diffusion) in an 
apparently ad hoc fashion (Marr and Hildreth, 1980). 

The relation to the diffusion equation appears to have 
been overlooked previously, although it is this 
equation that explicitely defines the deep structure of 
the image. 

Another main result is that if the mutual 
immutability of details with respect to blurring is taken 
into consideration, then you are able to define a true 
(or "linear") order of extrema: the image can be 
described unambiguously as a set of nested and 
juxtaposed light and dark blobs that vanish in a well 
defined sequence on progressive blurring. Note that 
such a linear order cannot be established at just one 
single level of resolution: e.g. for a pseudo-maximum 
consisting of two maxima (that is a light blob 
containing two smaller light blobs) it cannot be 
decided which of the sub-maxima is actually 
subordinate to the other, whereas on blurring this 
becomes clear: at some degree of blurring one of the 
two must vanish and yield to the other. Thus the image 
can be truely segmented into nested and juxtaposed 
light and dark blobs. Moreover, to each blob can be 
assigned three characteristic ranges of resolution: in 
one of them the blob is non-existent (or unresolved), in 
another it manifests itself purely as a simple blob, and 
in a final one finer detail intrudes on its territory. Thus 
the effects of progressive erosion clarify the deep 
structure of the image. In typical image processing 
applications this structure can be used for "logical 
filtering with respect to scale". Such a filtering can for 
instance be based on the relative stability of the blobs 
with respect to erosion. 

In the family of derived images as described in this 
paper the structural information is not coded very 
efficiently: the primal image - thus the values of the 
luminances in just one plane of scale space - contains 
already all information! This may be remedied by 
considering K~, the derivative with respect to scale, 
instead of K. This function is equivalent to A K,  the 
Laplacian of the derived images, and thus it is just 
Marr and Hildreth's (1980) scheme (although these 
authors arrived at their method in a different, rather 
ad hoc, manner). Obviously, K~ contains the same 
information as K, except for a possible difference that 
is invariant against blurring. If you consider a primal 
image with detail in a very limited range of scale, e.g. 
the function ~p(r, t), you find that 

Kt = - k z e x p ( - k  2t) COS k. r. 

Thus at a given level (fixed t) you find the spatial 
spectrum of the primal image filtered with a bandpass 
filter with a relative (half-height) bandwidth of 0.5. The 
curves K~= 0 are the "zero-crossings" of Marr and 
Hildreth (1980). In our scheme they are singled out 
through the property that they are (locally) stable with 
respect to erosion. 
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As I have shown before (Koenderink et al., 1978, 
1982) the visual system is extensive enough to be able 
to represent the retinal image at all levels of resolution 
simultaneously. The initialization of this data structure 
is simple diffusion which can be effected in an 
extremely simple manner  by layered neural structures 
(Roehler, 1976; Marko,  1969). In this paper  I have 
shown how to use such a structure, that is how to "read 
it out". This requires projections between different 
layers of the structure, guided by the activity in the 
network itself. 

Note 

The theorem that Gaussian blurring uniquely avoids 
spurious resolution, but only for the case of one- 
dimensional images, was brought  to my attention by 
Andrew Witkin at the Marr  Conference held at Cold 
Spring Harbor ,  1983. Apparently the proof  was 
complicated and yielded no intuitive insight. I 
immediately realized that an existing proof  by myse l f -  
that diffusion only destroys structure but cannot 
generate it - could easily be adjusted to proof  the 
theorem in a very simple manner  in the more general 2- 
dimensional case. (The one-dimensional case follows 
directly from the 2-dimensional case.) 
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