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Abstract. We call “natural” image any photograph of an outdoor or indoor scene taken by a standard camera.
We discuss the physical generation process of natural images as a combination of occlusions, transparencies and
contrast changes. This description fits to the phenomenological description of Gaetano Kanizsa according to which
visual perception tends to remain stable with respect to these basic operations. We define a contrast invariant
presentation of the digital image, the topographic map, where the subjacent occlusion-transparency structure is
put into evidence by the interplay of level lines. We prove that each topographic map represents a class of images
invariant with respect to local contrast changes. Several visualization strategies of the topographic map are proposed
and implemented and mathematical arguments are developed to establish stability properties of the topographic
map under digitization.
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1. Introduction knowingly or not, all edge detection methods are vari-
ational. To make short a long story, let us recall that
What are the basic, computable elements from which a digital image is modelled as a real functiofx),
the analysis of any natural image could start? The wherex represents an arbitrary point of the plane and
edges, that is, the discontinuity lines in an image have u(x) denotes the grey-level at In practice, an im-
been and still are frequently considered as the basic ob-age has discontinuities everywhere, so that some se-
jects in images, the “atoms” on which most Computer lection process of the “true” discontinuities (or edges)
Vision algorithms can be built (Marr, 1981). There is must be defined. One way to do the selection of the
no single definition for them, however. Many tech- “right” discontinuities is to smooth previously the im-
nigues from functional analysis have been proposed. age by some convolution or diffusion process, after
A review of the variational approaches can be found which edges are detected as local extrema of the gra-
in (Morel and Solimini, 1994), where it is argued that, dient magnitude in the gradient direction (Marr, 1981,
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Canny, 1986). Then these points must be connectedfrom a previous edge detection step are proposed in
to form curves. Another way to do this selection isto (Deriche and Giraudon, 1993; Lindeberg, 1994;
have an a priori model of the image, describing which Nitzberg and Mumford, 1990). These methods are all
kind of discontinuities are expected (and which kind of based on a Gaussian-like convolution followed by an
regularity). These expectations are translated into an analysis of edges and are not invariant with respect to
energy functionak (u, ug) whereug is the original dig- contrast changes. Now, as explained in (Deriche and
ital image, andi an arbitrary element of an admissible Giraudon, 1993; Alvarez and Morales, 1994), the T-
class of interpretable images (e.g. with smooth regions junctions detection methods using a previous smooth-
and smooth discontinuity lines). Such a model for im- ing of the image tend to alter the junctions and let the
ages is to impose (as proposed in (Rudin, 1987)) to edges vanish precisely where they are needed: in a
that it belongs to BV (space of functions with bounded neighborhood of the junction. So such methods ne-
variation), so that, by a classical theorem in geometric cessitate, after the edge detection, a subsequent fol-
measure theory, the discontinuity set is rectifiable, i.e., lowing up of the edges to restore the junctions. In
contained in a countable union of curves with finite the same way as we do, Romeny et al. (1991) con-
length. sider geometric properties of isophotes and in particu-
Our aim here is to propose a different definition of lar their invariance under nonlinear intensity transfor-
the basic curve structure of an image, the topographic mation. They propose to use the gradient of isophotes
map, that is, a complete description of the image by its curvature as a good candidate for a T-junction detec-
levels lines and junctions of level lines. By a complete tor. This method requires a previous smoothing of the
description of the image, we mean a description from image by heat equation and the computation of third
which the image can be fully reconstructed. Our ar- order derivatives. Brunngini et al. (1992) consid-
gumentation is as follows. First, we describe the main ered how junction detection and classification can be
physical accidents of the generation process of natural, performed in an active visual system. Beymer (1991)
“real world” images. Then we deduce from invari- analysed junctions defined as the intersection points of
ance requirements with respect to the accidents whatthree or more regions in an image, which is basically
information is left: the level lines. In two words, the what we also propose but without the need of a previ-
main reason why level lines appear central is that they ous gradient computation. Deriche and Blaszka (1993)
contain all of the image information invariant with re-  proposed efficient models associated to edges, corners
specttolocal constrastchanges. The main operationsinand junctions to extract and characterize these features
the generation process areclusion and transparency  directly from the image. In contrast, we do not push
they generate junctions of level lines and leave as only the characterization or classification of T-junctions or
invariants the pieces of level lines joining them. As a others, but argue that they might be selected among
result, we propose a computational model for singular- the more general kind of junctions yielded without any
ities of Kanizsa (1979, 1991) theories: T-junctions. preprocessing by the topographic map. In particular,
Further technological applications have been devel- we think that level lines and their junctions can be a
oped since the first version of this paper and will be better starting point than edges in the clever non lo-
discussed at the end of this paper. At the computa- cal grouping algorithms developed by Heitger and von
tional level, the algorithm computing the topographic der Heydt (1993) and Nitzberg-Mumford (1990) and
map of digital images is extremely simple, since it is in the structural analyses performed by Malik (1987)
based on the computation of level lines as the topolog- and Leclerc-Zucker (1987). In (Alvarez and Morales,
ical boundaries of level sets (which are computed by a 1994) is presented a rigorous theory for detecting cor-
simple thresholding!). ners. Now, the proposition made therein, that junctions
As a first algorithm analysing the topographic map, can be detected as the coincidence of several corners,
we propose a digital junction detector which works does not take advantage of the topological difference
without previous smoothing of the image. Among between corners and junctions. Junctions, as meeting
works which have considered algorithms for the detec- points of level lines, are in fact easier to detect than
tion of T-junctions in images, we would like to mention  corners.
(Alison Noble, 1992), which proposes arather success- Our plan is as follows. In Section 2 we shall sketch
ful mix of edge detection techniques and mathemati- the process of image formation and show how this pro-
cal morphology. Other attempts to obtain T-junctions cess leads to invariance requirements for the image
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operators. We shall be particularly interested in the sin- front of the camera, we cal\ the region of the image
gularities which are inherent to the image formation plane onto whichiitis projected by the camera. We call
process (T-junctions). In Section 3, we deduce which up the grey level image oA thus generated, which is
are the largest invariant objects in an image, containing defined in the plane regioA. Assuming now that the
the basic information and being a full representation of objectA is added in a real scerieof the world whose

it. They constitute the basic structure of the image: image was, we observe a new image which depends
the topographic map. In Section 4, we formally define upon which part ofA is in front of objects ofR, and
the topographic map and prove it to be the invariant which part in back. Assuming thadk occludes objects
structure of an image under local contrast changes andof R and is occluded by no object &, we get a new
we display some examples. In Section 5 we analyze imageugz defined by

the stability properties of the topographic map under

digitization. Section 6 is devoted to the effective com- Uguai=Ua in A
putation of level lines and junctions of the image and Usoz =v in R2\ A
to first experiments. We then discuss different visual-

isation strategies for the topographic map. We finish Of course, we do not take into account in this basic

1)

with a discussion in Section 7. model the fact that objects iR may intercept light
falling on A, and conversely. In other words, we have

2. How Natural Images are Generated: omitted the shadowing effects, which will now be con-
sidered.

Occlusion and Transparency
as Basic Operations
_ _ ~2.2. Transparency (or Shadowing)

We shall, following the psychologist and gestaltist
Gaetano Kanizsa, define two basic operations for im- | etus assume first that one of the light sources is a point
age generationocclusion and transparencyln the jn euclidean space, and that an objéds interposed
same way as in acoustics, where the basic operation,petween a scen® whose image i and this light
the superposition of transient waves, is interpreted as ggyrce. We cal the shadow spot ofA and S the

an addition of functions in a Hilbert Spa%e shall in- region it Occupies in the image plane_ The resulting
terpret occlusion and transparency as basic operations jmageu is defined by

on images considered as functionxudefined on the
plane

The description of image generation which follows
is intentionally sketchy, since our aim is to arrive at
invariance requirements from the most straightforward Here, g denotes a contrast change function due to
accidents of image generation. Our description of im- ¢, shadowing, which is assumed to be unifornin
age generation will at first neglect the digitization ef- Clearly, we must have(s) < s, because the bright-
fects (thatis, convolution and sampling). Later, in Sec- heosq decreases inside a shadow, but we do not know in
tion 5, we shall see how, assuming a simplified model general howg looks. The only assumption for intro-
for image formation with a diffraction limited optical ducingg is that points with equal grey levslbefore
system, the grey level quantization involved in the digi- shadowing get a new, but the same, grey lexs) af-
tization process comes to our help to maintain the basic g, shadowing. Of course, this model is not true on the
geometric structure of the scene which is distorted by boundary of the shadow, which can be blurry because
the convolution imposed by the finite aperture of the ¢ gjffraction effects or because the light source is not

s.=v in RZ\'S
R,S,9 \ (2)
g

u,_
Uggy =9 in S

optical system. really reducible to a point. Another problem is tiyh
fact depends upon the kind of physical surface which is
2.1. Occlusion shadowed so that it may well be different on each one

of the shadowed objects. This is no real restriction,
As common knowledge indicates, we only see parts of since this only means that the shadow spahust be
the objects in front of us because they occlude each divided into as many regions as shadowed objects in
other. Let us formalize the basic operation of adding a the scene; we only need to iterate the application of the
new object in front of the scene. Given an objédn preceding model accordingly.
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Avariant of the shadowing effect which has been dis- 4 response of captor
cussed in perception psychology by Gaetano Kanizsa
(21979) s, following Fuchs (1923fransparency Inthe
transparency phenomenon, a transparent homogeneous
objectS (in glass for instance) is interposed between
part of the scene and the observer. Sidatercepts Jight intensity
part of the light sent by the scene, we still get a rela- obscwity P——.—
tion like (2), so that transparency and shadowing are
equivalent from the image processing viewpoint. If Figure 1 Nonlinear response of sensors.
transparency (or shadowing) occurs uniformly on the
whole scene, the relations (2) reduce to

formalize this notion as local contrast change invari-
3) , : >
ance in Section 4, Definition 5.

By the contrast invariance requirement in computer
vision, we by no means suggest that human vision is
insensitive to contrast: It is plain that we do not see
the same objects when we change the contrast of an
2.3. Requirements for Image Analysis Operators image (see e.g. (lllueca, 1995)). In fact, the contrast

invariance requirement is nothing but a theory of infor-
Of course, when we look at animage, we do notknow a mation requirement in the computational use of digital
priori what are the physical objects which have leftavi- images: we assertthat even though some level lines can
sual trace in it. We know, however, that the operations be below our range of sensitivity, they contain useful
having led to the actual image may include formulas geometric information. Such information is typically
(1, 2). Thus, any processing of the image should avoid recovered by a viewer by adjusting the contrast of the
to destroy the image structure resulting from (1, e image he is looking at. In contrast, the fact that an
identity and shape of objects must be recovered from “edge” have a strength of say 10 or 30 does not change
the image by means which should be stable with respectat all its geometric contents. Wertheimer (1923) stated
to those operationsThus, our physical simple model this remark, the irrelevance of grey level, as a basic
for image generation already imposes that image anal- principle of Gestalt theory.
ysis operations should be invariant with respectto any  In the same way, rotation invariance is generally as-
contrast change, a requirement proposed by Matheronsumed in Computer Vision tasks, in contrast to our well
(1975). We shall say that an operatidron animage  known preference for vertical and horizontal lines and

ug = g(v)7

which means that the grey-level scale of the image is
altered by a nondecreasing contrast change fungtion

u is contrast invariantf tothe fact that our interpretation of objects is influenced
by our recognition and is certainly not rotationally in-
T(9(w) =g(T(u) 4) variant.

The evidence of contrast invariance in some tasks of
for any nondecreasing contrast chamgelassical ex- human shape recognition is only indirect, but strong.
amples of contrast invariant operators are erosion, di- Indeed, Julesz texton theory proposes extrema of cur-
lation, opening and closing). vature (corners, terminators in his terminology) as well

To further support the previous conclusion, we re- as their orientation as clues to texture detection. In the
mark that most light sensors have a nonlinear behavior same way, Attneave’s theory of human shape recogni-
and, even worse, have a finite range. Whenever light tion also relies on extrema of curvature and inflexion
is too strong (or too weak), saturation of the sensors points. Now, it is noticeable that both orientation and
occurs (see Fig. 1). The contrast changes are not onlycurvature are invariant with respect to global and even
caused by the sensors but also due to the changes of théocal contrast changes in the sense we have defined in
light intensity and the same objects. In other words, this paper. Indeed, the orientation is given by a vector
not only there exists a global contrast change when il- tangent to the isophote and is not altered by a contrast
lumination intensity changes but also a contrast change change. In the same way, curvature is computed as
conditioned by the objects in the scene. This is one of the curvature of the level lines and does not depend on
the informations provided by formulas (1, 2). We shall local contrast.
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3. The Basic Structure for Image Analysis setsX;u, or simply X;, are calledevel setof u. An
image can be reconstructed from its level sets by the

We callbasic objects class of mathematical objects, formula

simpler to handle than the whole image, but into which

any image can be decomposed and from which it can  u(x) = supx, u(x) > A} = supgr, x € X,u}. (5)

be reconstructed. Two classical examples of image

decompositions are The decomposition is therefore nonlinear, and reduces
the image to a family of plane seftX; }. Obviously, if

we transform an imageinto g(u(x)), wheregis anin-
creasing continuous function (understood as a contrast
change), thenitis easily seen that the set of level sets of
g(u(x)) is equal to the set of level setswf A stronger
invariance is even possible if we note that by formulas

of ;cjhesehcases the 3ecompo§|tlon IS andaddltgle OI;']e(l, 2) the contrast change can affect only the connected
and we have argued against it as not adapted to the, ¢ ot the level sets of This contrast invariance will

structure of images, except for restoration processes. precisely defined in the next section. Let us begin
Indeed, operations leading to the construction of real by defining the topographic map of an image

world images are strongly nonlinear and the simplest Let © be a domain inR2. Letu'Q — R be an
of them, the constrast change, does not preserve adimage, i.e.. a bounded measurable function.

ditive decompositions. 16 = u; + up, then it is

not true thatg(u) = g(uy) + g(uy) if the constrast
changeg is nonlinear. This objection does not ap-
ply to image compression, because in compression
tasks, the fine scale structure of the image dominates
and this structure is linear: By Shannon sampling
theory, the image must be the result of a fine con-
volution, so that, at fine scale, the image indeed is a
sum of waves.

e Next, we have the representation of the image by a
segmentationthat is, a decomposition of the image
into homogeneous regions separated by boundaries,
or “edges”. The notion of edge as a discontinuity of o ) .
the imageu(x) is not against the contrast invariant Definition 3. The upper topographic map of animage
axiom. Indeed, ifj is any continuous and increasing 1S the family of the connected components of the level
contrast change andhas a discontinuity aty, then setsofu, [u > 4], » € R.

g(u) is also discontinuous ag, and conversely. The

notion of discontinuity does not impose a minimum  Note that, by (5), the upper topographic map asso-
strength on the jump but, in practice, one cannot ciated withu uniquely determines the functian We
compute them without fixing the strength of con- could have also used the lower level setsidiu < A].
strast on the edges, tipically a uniform value for the ~ We calllevel linesof u the boundaries of the upper
whole image. This criterion is not invariant with re-  1evel sets ofu. If we assume that we can determine
spect to contrast changes. Ind&glu) = g'(u)Vu the level sets ofl from their boundary level lines, then
andg'(u) is close to zero when the image is close to We shall refer to the topographic mapuwés the fam-
obscurity or saturation. Moreover, classical edge de- ily of level lines ofu. This is the case if our image is

e Additive decompositions into simple waves: Basic
objects of Fourier analysis are cosine and sine func-
tions, basic objects of Wavelet analysis are wavelets
or wavelet packets, basic objects of Gabor analy-
sis are gaussian modulated sines and cosines. In all

Definition 1. Given an imagau, we call upper level
set ofu any set of the formJ > 1] wherei € R.

Definition 2. (Choquet, 1966) LeX be a topological
space. We say thatis connected ifit cannot be written
as the union of two nonempty closed (open) disjoint
sets. A subset of X is called a connected component
if C is a maximal connected subset ¥f i.e., C is
connected and for any connected sulizebf X such
thatC < Cq, thenC; = C.

tection basically consists of a convolutionwfvith such that, for each level sat |- 2], 4 € R the bound-
a kernelk, followed by a differential edge detector. ary d[u > 1] is made of a finite or countable union
Now, clearly, ifgis nonlineark x (g(u)) # g(kxu). of closed Jordan curves. Then the oriented level lines

perfectly define level sets, and, hence also the function

Mathematical morphology offers an alternative: to u. Recall that a continuous curve is called a Jordan
decompose an imagsnto its binary shadows (or level  curve if it has no selfintersection, except possibly at its
sets), that is, we seX;u = {x € R u(x) > A}. The endpoints (Examples: a circle, a segment, a parabola).
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This restricts our functional model for continuous im- view by the “shape from shading equation”. Contrast
ages but does not represent any restriction for discreteinvariance is nontheless a sound assumption when we
ordigitalimages. Indeed, in the discrete framework (or look at a photograph of, say, a statue. In that case, we
in any continuous interpolation framework forimages), ignore lighting and photographying conditions. Thus,
we can associate with each level set a unique finite setthe reconstruction of the 3D shape from a photograph is
of oriented Jordan curves which define its boundary intheory impossible without some further information.
and, conversely, the level set is uniquely defined from Archeologists know this well, since they are not con-
those Jordan curves. We shall call thieawvel curves of  tented with photographs of objects found, but ask for
the image In the following, we assume that these level a good conventional drawing. Lab. phenomenological
curves exist, be it because the image is discrete or, e.g.,experiments are a different story, since the subject is
in an adequate function space. placed in known lighting conditions, so that the contrast
invariance assumption is not valid anymore.
Definition 4. If u belongs to a function space, such  Another objection of a different kind is whether level
thateach connected component of alevel setis boundedines can exist for textured image and yield a useful in-
by a countable or finite number of oriented Jordan formation. The answer is definitely yes. No matter
curves, we call topographic map the family of these how complicated the patterns of the level lines may
Jordan curves. look, they reflect the structure of the texture. We have
commented right above that level lines of a digital im-
Remark. When in the following we display the topo-  age caralwaysbe computed (see e.g. Fig. 6.3 for a
graphic map, we only display the Jordan curves, with- detail of a textured image.) Texture classification by the
out specifying their leveh or orientation. Now, in  study of “granularity” is nothing but the exploration of
order to ensure reconstructionwfwe of course need  the structure of small level sets, the boundary of which
this information. are small level lines (Serra, 1982).

If we assume that the level sets are closed Cacciopoli
subsets oR?, that is, closed sets whose boundary has
finite length, then its essential boundary is a countable

or finite union of closed Jordan curves and, possibly, ) )
a set of nullH Hausdorff measure (see (Caselles and W& now prove that the topographic map is a contrast
Morel, —)). In this case, we can describe the con- invariant description of an image. We work in the con-

nected components of level sets by their boundary (seeinuous framework but all we shall say is obviously
(Caselles and Morel, —)). This is an interesting case, rue for digitalimages. Le@ be a domain of the plane
since it covers the case of functions of bounded vari- (6-9-» arectangle). Given an image2 — R, 1 € R
ation (or simply,BV functions) which have been fre-  @ndx & [u = 2], we shall denote bgc([u > 4], x) the
quently used as functional image models for purposes CONnected component ai (- A] in €2 containingx.

of denoising, edge detection, etc. (Rudin et al., 1992). o ]
If uis a function of bounded variatiom, € BV(Q), Definition 5. We say that a multivalued map 2 x

then almostall level seta[> 1] are closed Caccioppoli R — P(R) is @ monotone multifunction if
sets (Evans and Gariepy, 1992). Then, the topographic
map ofu can be described in terms of the level lines of (MM1) h(x, A) is an interval ofR for anyx € € and

4. Invariance Properties of the Upper
Topographic Map

u and Formula (5) holds as well. A eR.
Let h=(, 1) = inf{u:pn € h(x, M)}, ht(, 1) =
Two objections.Before starting with the mathemati- supu: n € h(x, )}

cal model, let us discuss two serious objections which (MM2) If A > pu, then eitherth(x, ») = h(x, u) or
were raised by auditors and readers of a preliminary h*(., n) <h=(, ).

version of the present paper. The first is concerned by (MM3) U, crh(X, 1) is an interval ofR.

“shape from shading” models. Human performance in

recovering shape from shading has been demonstratecDefinition 6. Let u:Q — [a, b] be a given image
in phenomenological rigorous experiences. Now, if and let{X;: 1 € [a, b]} be the family of its level sets.
the image is known up to a contrast change, then thereWe shall say that a multivalued mappihg®2 x R —
is no way of recovering the 3D shapes from a single P(R) is a local contrast change farif
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(H1) his a monotone multifunction such that for all X, and Y, interchanged. Then there exists a local con-

A e R, h™(,1),h"(., 1) are measurable if2. trast change ¢x, A) such thatv(x) = g™ (x, u(x)).
(H2) If u(x) < A thenh*(x,u(x)) = h™(x,1) <
ht(x,1),x € ,1 € R. In the next section, we shall study the stability of the
(H3) h*(x, A) = h*(y, ») for all X, y belonging to the topographic map during the process of image forma-
same connected componentoff A], & € R. tion. Itis a basic and stable tool which permits to ma-
(H4) Letv(x) = h*(x,ux)). If y € cc([v > ul, X) nipulate the image (Masnou and Morel, 1997, 1998a).
whereu € h(x, A) X € 2, A € R, thenh(x, 1) = In (Caselles et al., 1998), a recovery by interpolation
h(y, 1). of level lines lost in the quantization porcess is inves-
tigated. An intuitive interpretation of the topographic
Definition7. (Casellesetal.,1997)LetQ — [a, b] map is contained in the following glossary:

be an given image. We shall say thds a local repre-
sentative ofi if there exists some local contrast change e Connected components of level sets Boolean
h such that(x) = h*(x, u(x)), x € Q. union of physical objects.
e Levellines= Concatenations of pieces of boundaries
The next proposition states the fact, together with  of physical objects.
some other information, that local contrast changes pre- e Aligned junctions= Occlusion boundary.
serve the upper topographic map and, therefore, also

the topographic map. Image 2.4 displays the topographic map associated
to Image 2.2. We immediately see that it is a com-
Proposition 1. Let uQ — [a,b] and letv(x) = plicated object as far as visualization is concerned. In
h*(x,u(x)), x € Q, be a local representative of u. fact, this experiment shows that even an apparently
Then simple image contains highly structured and abundant

information. This information cannot be considered
() v(x) = suph*t(x,1):x € X;u}, x € Q. We as “noise”. In Image 2.5 we show a partial view of

have that xe X,u if and only if x € Xnx.1)v, the same topographic map by displaying only the level
XeQ, rekR lines multiples of 10. Image 2.1 is an original image
(i) vis a measurable function. and Image 2.3 is its topographic map in the same way.

(i) LetD (resp. I'") be a connected component of
[v > u] (resp. [u > A]) containing x andu =
h*(x,A). Thenl' =T".

(iv) Foreachconnected component X[of> ] there
existsyu and a connected component Y gfstich
that X =Y and conversely.

5. Stability of the Topographic Map

Given an image, i.e., a bounded measurable function
which we shall assume to be definedRiA, the digiti-
zation process transforms it into a discrete verdibn
defined on alattice, s&?. What happened to the basic

WO h h hi h structure oli? Have the level sets, level lines and junc-
0 Images have the same upper topographic map theny;, ¢ of( any connection to the corresponding facts at
they are related by a local contrast change. Images . ontinuous level?

Candb? c|0n3||deretd a‘z eﬂwvalencs cla:cssestc))f functions, - \ye shall describe the digitization process> U as
modulo local contrast changes. Proofs of Proposition e compination of the following operations:
1 and Theorem 1 are given in the Appendix.

Let us state a converse statement to Proposition 1: If

1. Convolution with a filterG representing the point

Theorem 1. Let u,v:R" — R be two bounded spread function of the optical apparatus used to ac-
measurable functiondmages whose upper level sets quire the image. We shall assume either 1Bat
have at most countably many connected components. rotation invariant or that it has a square symmetry.
Let X, respectively Y, be the families of the level sets Its size will be given in terms of the parametgr

of u, respectively. Given a level set X(or Y,) and a described below.

point x € R", suppose that for each connected compo- 2. Scanning modelled by a convolution (i.e., a moving
nent X of X there existg and a connected component average centered on the pixel) with a square pattern

Y of Y, such that X=Y and a converse statement with of the intensity over a regio (the size of the



Image 2.2

Image 2.4 Image 2.5

Figure 2 Experiments on the topographic map. Image 2.1 and Image 2.2 are the original grey-level images. Image 2.3 shows the topographic
map of Image 2.1, for levels which are multiples of 30. Image 2.4 displays the topographic map associated with Image 2.2, for all level lines
multiples of 2. In Image 2.5, we can see the topographic map of Image 2.2 but showing only the level lines for levels which are multiples of 10.



pixel). This defines an operatéo(u) = xg X U.
Sampling will be modelled as the application of a
Dirac combS.

3. A uniform quantization operator, defined by
E(x) = kA if x €](k — 1/2)A, (k+ 1/2)Al.

Hence, we may writé) = ES AyG(u).

If the optical system is linear, translation invariant,
and the light sources incoherent, then the physical im-
age (the observed image intensity) at a paiatR? is

000 = [ G- eueds ©)
whereG(x) is the incoherent point spread function and
u is the intensity distribution of the radiation field. In
the case of a circular aperture of diametém a narrow
band incoherent light having center wavelengtithe
point-spread function is ((Castleman, 1996) chap. 15,
(Hecht and Zajac, 1986), chap. 10)

J1<n:—o>)2

Gx) = (2 :
]T_
whereJ, (r) is the first order Bessel function of the first
kind, r is the radial distance in the image plane and

(7)

fo

. AZ
0= —_>
a

(8)

z being the distance from the lens to the image plane.
In case of a square apertured, a] x [—Db, b]

Sir?. ( 24) sir? (7 22)
()’ ()’

Xo02
where Xo1 = 3%, Xo2 52 ((Castleman, 1996),
chap. 15, (Hecht and Zajac, 1986), chap. 10).

In view of the previous discussion, we shall assume
that the optical system is described by a convolution
operator with a positive kern&. Moreover, we shall
assume tha6 is either rotationally invariant or has

G(Xy, X2) =

(9)
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of resolution, two point sources can be resolved if they
are separated, in the focal plane, by the distdneer;
wherer; is the first zero ofH, i.e., of the first order
Bessel function, i.ery = 1.22rq, ro = Az/awherezis

the distance from the lens to the image planeaisdhe
diameter of the circular aperturi, is called the radius

of the Airy disk. A common way to specify the resolu-
tion of an imaging system is by the Rayleigh criterion.
Notice that the diameter of the PSF is given, to a good
approximation, by the Rayleigh distance ((Castleman,
1996), chap. 15, (Hecht and Zajac, 1986), chap. 10).
The optical cutoff frequency in the image plane co-
ordinate system of a camera with circular aperture of
diametera is

a 1

f:—:
YT

assuming narrow-band incoherent light with center
wavelenghti. Let F = 1/T be the highest spatial
frequency of interest that is present in the image. Thus
T is the period of the smallest detail of interest. As a
rule of thumb, the diameté¥ of the scanning spot (the
imaging system PSF) should be no larger th&k, i.e.,

W<T/2

Thus the scanning spot would fit within one half-cycle
of the highest frequency sine wave.

But independently of the frequencies present in the
object, the imaging system constraints the maximum
frequency to be no higher than the cutoff frequerigy
of the optical transfer function of the primary imaging
lens. According to Nyquist criterion, we set the folding
frequency, which is half of the sampling frequency,
equal tof;. Thus, the Nyquist criterion gives ug2as
sampling frequency. This places the pixel spacing at

1

_)\fﬁ_ro
2f. 2

= — =0.5r
> 0

The Rayleigh criterion would give as sample spacing
one-half of the Rayleigh distance. Then pixels will fall
alternately upon and between (just resolvable) point

a separable representation like the one in (9). Let us sources separated by that distance in the image. In this
finally discuss the size of the kernel andits relation with  case, point sources can be resolved in the digital image.
resolution of the imaging system ((Castleman, 1996), The finest possible pixel spacing is thus ((Castleman,
chap. 15, (Hecht and Zajac, 1986), chap. 10). 1996), chap. 15)
By resolution we mean the ability of the imaging

system to reproduce the contrast of objects of various

size. By contrast we mean the differences in intensity

within an object or between the object and the surround- According to the Rayleigh criterion, the folding fre-
ing background. According to the Rayleigh criterion quency is at 82% of the OTF cutoff frequendy.

0.61rq.
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Aliasing is possible but it is unlikely to be significant
in practice ((Castleman, 1996), chap. 15).

5.1. Digitization of Level Sets

Let us see the effect of the operators involved in the
generation of physical images on the level setsi.of
Taking realistic assumptions on the optical digital sys-
tem, we shall give estimates in terms of pixels of the
distance by which a level line can move in the digitiza-
tion process. By:, we denote the Lebesgue measure
in R?. For eachr > 0, we shall denote b, the open
ball of radiusr centered at the origin of coordinates.
Recall the definitions of erosion and dilation of a subset
X C R? by a structuring elemenf € R?

XoY={xeR%x+YCcCX}
X®Y ={xeR%xX+Y)NX #0}.

Recall also that

R*\ (XeY)=R*\X) @Y. (10)
If Y =B, e >0,thenX @ B, = {x e RZd(x, X) <
€}.

Let G be the convolution operator whose kernel
G(x) is a positive radially symmetric function such
that

/ G(x)dx = 1. (11)
R2
Lete > 0 and letyp > 0 be such that
/ G(x)dx =n. (12)
R2\B,

Note that if G is of compact support contained B
then we may take = 0.

Lemma 1. Let B be a measurable subset Bf.
Then,

[G(xe) >n] S B® B (13)
and

BoB. S [G(xe) =1—n]. (14)

Proof: If x ¢ B & B, then using (10) we have +
B.) N B = @. Then, settingxg(x) = 1if X € B,
xe(X) = 0, otherwise,

Glxe)(X) = /R G~ )xs(dy

G(x — y)xs(y)dy

X+Be

+ / G(x — y)xa(y)dy
R2\ (x+Be)

/ G(x — y)xs(y)dy
R2\(x+B,)

< / G@dz=1
R?\ B,

Thus
R?\ (B® B.) S [G(xs) < 1]

which gives (13).
If x € Bo B, thenx + B, € B. Hence

G(xp)(X) =
X+ B

+ / G(x — y)xa(y)dy
R2\(x+B,)

G(x — y)xs(y)dy

z/ G(x — y)xs(y)dy
X+Be

=/ G(y — x)dy
X+ Be

=/ G(@dz=1—1
B.

and (14) follows.
Consequence.etu be an image andl' € R. Then

Gu > K/G(X[uzx’]) > )\/(1 - U)X[uzx’]eBe- (15)
Hence | > A'1 © B(0, ¢) C [G(u) > A] where) =
A(L—n).

To prove a similar inclusion in the other direction,
let M = sug{|u(x)|: x € R?}. Let us writet =1 —p
which is a number close to 1. Observe thvét— u >
(M — o) X[u<»5)- Applying G to both sides and using
thatG(1) = 1 and (15) we get that

GU) =M — (M — Ao)& Xu<igloB. (16)



Now assume thaG(u)(x) > A, A < M. Let g be
such that

M-
— =1, a7)
(M —20)&
thatis,;o = M — ¥ + £. Then, from (16), it follows
that
(x) -
< <=
X[u<ho]oB: (M — Ao)E

Hencexu<ges. (X) =0,i.e.,x € [u > Ag] ® B.. We
have shown that

[G) > 2] S [u=> i) ® B (18)
wherei andig are related by (17). Obviously, if =

M andG(u)(x) > M then alsay > M. Thus we have
proved the following Lemma.

Lemma 2.
() LetA e R, A=A(1—n),Ao=1"— ”M . Then
[u>211e B C[GW) > 2] (19)
and
[G) > A] < [u = Ao] ® B-. (20)
(ii) Inasimilarway if Ag < A" — ”Mn
[G() = 2] S [u = 2] @ B.. (21)

As a consequence, we obtain the following result.

Corollary 1. (Stability of step discontinuitied et u
be animage. We shallassume that- 1] is a constant
set D for allx € [a, b]. Letk> 0 and

Then

Do B S [G(u) = b1 —n)]
C[Gw >al—n + Mn+K]
C Do B..

(23)

If k > Owe may writ G(u) > a(1 — n) + Mn + K]
instead of G(u) > a(1—n) + Mn + K]. If G(x) has
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compact support in B then we may take = 0 and
if k satisfieg22), we have

Do B: C[G(u) > b] C[G(u) >a+KkK]

<
Cc D& B..

The value ok may help to maintain separated two level
sets so that the quantization step does not destroy them.

Proof: The first inclusion in (23) is a consequence
of Lemma 2. The second inclusion follows from (22).
Observe that

[G(u) >al—n + Mn+K|
C[G(u) > a(l—n) + My]

Finally, the lastinclusionin (23) follows from the above
observation and Lemma 2. Our last remark follows
from the observation that

[G) =ald—n + Mn+K]
C[G(u) > a(l—n) + My]

whenk > 0. a

Practical Consequencedf a level setX is associated
with a jump of sufficient size, then after convolution
with akernel of size, alevel set o6 (u) will be located

at a Hausdorff distanceof X. To get a clearer idea let
us illustrate it with a numerical example. We recall that
the pixel spacing is 8rg = %e. Thuse is interpreted

as a two pixel distance. Assume that we do not wantto
destroy level sets which have a superliminal contrast.
Then, assuming/! = 255, we shall takdé — a = 15,

k = 1 (All are standard values in digital processing
devices) If we computey* = 51 = 22K

Mtb—a
70 = 0.0518. Then we need to choossuch that

2

/ G(x)dx = 0.0518
R2\B.

We recall thatG(x) = (2 ’° )2 wherer = |x|.

This amounts to 5 pixels as our bestbove. Assume

b Kk 10
b—a =15k =5, thenn = 7%= = 775 = 0.037.
Inthe worst case, the level set may have displaced up to

say 6 pixels. Finally, assun®e— a = 10,k = 2, then
N = yiio-s = 365 = 0.03. This amounts to around 8

pixels in the worst case.
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Ifb—a=230,k=0,n"=nz0= % =3 = can be evaluated by Lemma 3 again, since the defocus
0.105263157 we obtain = 3, 5 pixels. Ifb—a = 50, kernel is compactly supported, in general some disk or

k=0,7" = ns00 = o5 = 5% = 0.163934426.  square.

We almost get te = 2 pixels.
Let us finally see the effect of the scanning operator.

5.2. Digitization of Junctions

Lemma 3. Letu be animage. We assume that-

3] is a constant set D for all €]a, b]. Then We must be able to define the notion of analog and

discrete Junction so thatthe digitization process applied

DO Q C [Ag(u) > b] to an ‘analog Junction’ creates a ‘discrgte Junction’.
(24) We shall assume that both the convolution kernel and
S[Acw>alcDeQ, the scanning kernel have sigzei.e., we assume that
Q C B(x, €).

i.e., the level set is displaced at most one pixel by the

scanning process. o
Definition 8. Lets, p, R > 0. Letu:Q — R be

Proof: Letd be the size of the pixel, i.e., the radius & bounded measurable function. We say that a point
of the square representing the pix&l,be such that p € Q is an analog Junction (at resolutions given by

d(x,R2\ [u > b]) > d. Then 8, R e, p>0)if
1 - oy . . . .
A _ dv>Db 25 (i) itislocally stable in the following sense: there ex-
QW) AreaQ) /HQ uyydy = (25) ist real numbers(p), S(p) with a(p) < B(p) —
_ 25 and connected componerts([u < a(p)]),
HenceD © Q € [Aq(W) = b]. Nowif d(x, D) = d, co(fa(p) +8 < u < A(p) — ), ca(B(p) =< ul)
then ofthesetsli < a(p)], [x(P)+38 < u < B(pP)—4],
1 [B(p) < u]such that
AQU)(X) = ——— f uiydy<a. (26)
Area(Q) Jx
AQ e (cc([u < a(p)]) © Bze) N B(p, R) # ¢
Conclusion. We see from the former Lemma that if N B(p,R) #¥

an imaging system only consists of a scanning process
followed by sampling, then displacement of level lines
will be of at most two pixels on both sides of physi-
cal ‘edges’. Corollary 1 predicts a larger displacement (i) the setscc([u < a(p)]) © Bs., co([a(p) +8 <

(up to 8 pixels in the worst case) for optimal imaging u < B(p) —8]) © Bae andec([B(p) < u]) © Bsc
systems like astronomic observation devices. Now, re- &' connected by arcs and have an arga

turning to images generated by CCD cameras of the

today’s technology or scanners, it is easy to check that Definition9. Letu be animage and l&t be its digital

the ratio between optimal pixel spacing (from the opti- version. We say thatthere is a discrete Junction (at level
cal viewpoint) and actual pixel spacing is more than 10 of resolutions;, p1, R > 0) atp € Z2?ifthere existreal
(thisis eventhe case for earth observation satellites, like numbersx(p), B1(p) with a1 (p) < B1(p) — 81 and
SPQOT). Thus it is expected that each ‘edge’ in the im- connected components([U < a1(p)]), cc([a1(p) <

age generates about four or five level lines ataone pixel U < B1(p)]), cc([Bi(p) < U]) of the sets <
distance from each other. In other words, the pixel dis- ¢1(p)], [e1(p) < U < Bu(p)], [B1(p) < U] with
placement predicted by Corollary 1, though existing, area> p; such that

is negligible as a displacement factor for all purposes

digital imaging systems. This is easily checked in ALL cc(U < ar(p)])) N B(p, R) # @
topographic maps displayed here. Infact, awiderwidth

of ‘edges’ in terms of number of level lines is only ob- cllea(p) =U < (P N B(p, R) # 1
served where theimage is defocussed. The defocussing cc([Bi(p) <UD NB(p, R) # 0

(cc([B(p) = u]) ©Bs) N B(p, R) #0
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Remark. The conditions defining analog and discrete we may takes; > §. From the above inequalities, we
Junctions require some comments. In the definition of deduce

analog Junction we assume that 'three objects’ arrive

at a pointp so that the point is a multiple singularity.

Moreover, in a neighborhood of the junction, the ob-
jects have some interior. This is required if we want

to find a trace of the set near the pomafter digitiza-
tion (convolution with a kernel of size or ‘aperturs.

Our assumptions are related to the notion of regular

model which in the context of mathematical morphol-

[u<a(p]o B C[GU) < a1(p)]
[a(p)+8 <u<p(p)—386B
C [a2(p) < G(U) < Ba(pP)]
[B(p) < u] © B C [B1(p) < G(u)]

ogy guarantees that the discrete version of a connected\"9uing for the first of these level sets, we have that

set belonging to the regular model will remain a digital
connected set ((Serra, 1982),Theorem VII.2, p. 216).

Lemma 4. Let p be an analog Junction on a con-
tinuous image uQ2 — [0, M] at resolutions given by
3, R, e, p > 0. Let U be a digitization of u. Assume
that Zl“f;’ < §, wheren is given by(12). Then there ex-
ists a digital junction at p, possibly at a different level

of resolution.

Proof: If x € [u < a(p)]© B¢, thenB(x, €¢) C [u <
a(p)], hence

/ G(x — y)U(y)dy=/ G(x — y)u(y)dy
R2 B(X,¢)

+/ G(x = y)u(y)dy
R2\B(X,€)
<a(p)(d—n)+ Mn,

If X € [a(p) +38 < u < B(p) — 8] © B, then
/RZG(X = yuydy = (a(p) +8)(1 —n) — Mn.
and
/1;2 G(x —yumdy < (B(p) — 8L —n) + Mn.
If x € [B(p) < u] © B then
/}RZG(X —yumdy > g(p)(L—n) — My

Sincezl'\f—;’ < 8, we have that«(p)(1 — ) + My <
(a(p)+8)(L—n)—Mnand(B(p)—8)(1-n)+Mn <
B(P)(L—n) — Mn. Letay(p) = a(p)(1—n) + Mn,
B1(p) = B(P)(L—n) — Mn, az(p) = (a(p) +8)(1—
n) — Mn, B2(p) = (B(P) — §)(1 —n) + Mn. Notice

[U<a(p]e Bx C[U <ai(p)], (27)
a priori also
[U<a(P]O©Bsx S[U <ar(p].  (28)

Now,

ce([u < a(p)]) © Bz < cc([u < a(p)] © Bae) (29)
and we conclude thatc([U < «1(p)]) has an area
> p. Similarly for the other two sets. Concerning the
connectedness assertion, ety € cc([u < a(p)]) ©
Bs.. Then there exists a cunie C cc([u < a(p)]) ©

Bs. joining x andy. Let us denote b a generic pixel,
i.e., a square ifR? which we shall consider closed in
the argument below. We shall identify, by notation,
Q with its corresponding sampling point by the Dirac
comb. Letl” = {Q: QNT # #}. Thenl is connected
(4-connected). LeQ € I'. Since the diameter of the
pixel is less thar we have that

Q CTI'+ B(0, 2¢) < ce(Ju < a(p)]) © Be
C[G() < a1(p)].

It follows that AqG(u) < ai(p) on Q. Hence
Q € [U <a1(p)]. Thereforel’ C [U <a1(p)]. We
have shown that the seU[ < «3(p)] contains an
arcwise-connected subset([u < «(p)]) © Bz of
area> p which, according to (i) intersectB(p, R).
Thuscc([U < ai(p)])) N B(p, R) # @. A similar
result holds for the other two sets. U

Remark. Inthe same line of argument as the conclu-
sions we derived for level sets, if the scanning dom-
inates the image formation process, we can expect a
displacement of about two pixels on the location of
the digital junction with respect to the position of the
analogous one.
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5.3. Phenomenological Interpretation of the
Topographic Map

Since the image formation, either continuous or digi-
tal, may include aminknown and non recoverable lo-
cal contrastchange, we have reduced the image to
its parts invariant with respect to contrast changes,
the connected components of the level sets of the im-
age. (This invariance requirement was first observed
by Wertheimer (1923) who argued that the grey lev-
els in an image are not physically observable.) For
digital images (or for continuous ones, if we assume
an adequate functional model) the level sets may be
described by their boundaries which we called level
curves. Thus, for computational purposes, the topo-
graphic map of an image may be described by the fam-
ily of its level curves. Let us discuss on an example
how the level lines structure reveals the object occlu-
sion structure.

Figures 3—7 is an elementary example of image gen-
erated by occlusion. A grey disk is partly occluded by
a darker square (a). In (b) we display a perspective

~—

i
(a) \
(b)
(c)

I

( L \

(g)

Figure3 Anelementary example ofimage generated by occlusion.

Image 4.1

Image 4.2

Figure 4. Choice of the parameters. Image 4.1 displays the result
of the Junction Detection Algorithm applied to Image 2.2 with area
thresholch = 40 and grey level thresholrl= 2 with (in white) small

“T"s indicating locations of detected junctions. Image 4.2 displays
the same experiment but using an area threshetd100. We can
compare these two results on the same image and we can see the
effects on the number of junctions found.

view of the image graph. In (c) and (d) we see two of
the four distinct level sets of the image, the other ones
being the empty set and the whole plane. It is easily
seen that none of the level sets (c) and (d) corresponds
to physical objects in the image. Indeed, one of them
results from their union and the other one from their
set difference. The same thing is true for the level lines
(e) and (f): they appear as the result of some “cut and
paste” process applied to the level lines of the original
objects. Following Kanizsa, we define significant parts



Image 5.2

Figure 5 Examples of junctions. Image 5.1 is the result of the ap-
plication of the Junction Detection Algorithm with an area threshold
n = 40 and grey level thresholl = 2. The same parameters are
used for SPOT Image 5.2.
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Invariance Argument

e Since the image formation may include an unknown
and non recoverable contrast chang#fe can re-
duce the image to its parts invariant with respect to
contrast changes, that,ishe level lines.

e Since everytime we observe two levellines (or more)
joining at a point this can be the result of an occlu-
sion or of a shadowingve must break the level lines
at this point indeed, the branches of level lines ar-
riving at a junction are likely to be parts of different
visual objectgreal objects or shadows As a conse-
quence, every junction is a possible cue to occlusion
or shadowing.

This Invariance Argument needs absolutely no as-
sumption about the physical objects, but only on the
“final” part of image generation by contrast changes,
occlusions and shadowing. The conclusion of In-
variance Argument coincides with what is stated
by phenomenology (Kanizsa, 1979, 1991). Indeed,
Gaetano Kanizsa proved the main structuring role of
junctions (T and X-junctions) in our interpretation
of images.

6. Computation and Visualization of the
Topographic Map

6.1. Computation of Level Lines and Junctions

In this section, we discuss how level lines and junctions
can be computed in digital images and we present ex-
perimental results.

In a digital image, the level sets are computed by
simple thresholding. A level s¢ti(x) > A} can be im-
mediately displayed in white on black background. In

of images as the result of a segmentation of level lines the today’s technology, =0, 1, ..., 255, so that we

by T-junctions. The levellines (e) and (f) representtwo can associate with an image 255 level sets. The Jordan
level lines at two different levels and in (g) we have su- curves limiting the level sets are easily computed by
perposed them in order to put in evidence how they are a straightforward contour following algorithm, which
organized with respect to each other and the resulting yields chains of vertical and horizontal segments lim-
T-junctions. We have displayed one of them as a thin iting the pixels. In the numerical experiments, these
line, the other one as a bold line and the common part chains are represented as chains of pixels by simply

in grey.
Remark. We shall not go into the classification of

Junctions (a3, Y, X, t, .. .-junctions). For a more de-
tailed discussion we refer to (Caselles et al., 1995).

Let us summarize the main invariance argument.

inserting “boundary pixels” between the actual image
pixels.

According to Definition 9, in the discrete framework,
we define “junctions” in general as every point of the
image plane where two level lines (with different lev-
els) meet (in a neighborhood of the point). In the ex-
periments below, we take into account junctions if and
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Image 6.1

Image 6.6

Image 6.5

Figure 6. Image 6.1 is Image 2.1 in which we have removed all connected components whose area is less than 80 pixels. Image 6.2 displays
the level lines of Image 6.1 which are multiples of 20. Image 6.3 is the original image and Image 6.4 shows the Image 6.3 after removing all
connected components of area less than 100 pixels. Image 6.5 and Image 6.6 display the level lines of Image 6.3 and Image 6.4, respectively,

which are multiples of 30.



Image 7.1 Image 7.2
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Image 7.3

Image ;7.4 Image 7.5

Figure 7. Image 7.1 is the original image and in Image 7.2 is Image 7.1 after removing all connected components whose area is less than 80
pixels. Image 7.3 shows the level lines of Image 7.2 which are multiples of 20. Image 7.4 is Image 2.2 after removing all connected components
of area less than 40 pixels. Image 7.5 displays the level lines of Image 7.4 which are multiples of 10. We note that we can compare this last
image with Image 2.5 which gives us the level lines multiples of 10 for the original image.
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only if the area of the occulting objecthe apparent ital image by simply zooming the image by a factor 2.
area of the occulted object and the area of background This method, however, yields in a good quality im-

are large enough. age a dense set of lines, so that the structure of the
topographic map is too rich to be apparent. Thus, we
Discrete Junction Detection Algorithm propose to define strategies for partial, but structured

presentation of the topographic map. In contrast with

e Fix an area threshold (in practice,n = 40 pixels edge maps, to a simplified topographic map is associ-
seems sufficient to eliminate junctions due to sam- ated a simplified image, so that we can check by visual
pling effects) and agrey level threshal¢in practice: inspection whether the simplification is not excessive.
b = 2 is sufficient to avoid grey level quantization The main objective of simplifying the topographic map
effects). These values are more optimistic than the for visual inspection is to single out basic objects, that
ones computed in a ‘worst case’ in Section 5.2. is, level lines and junctions.

e At every pointx where two level lines meet: define
Ao < io the minimum and maximum value afin
the neighboring pixels of.

e Wedenote by ; the connected componentah the
set{y, u(y) < A} and byM,, the connected compo-
nent ofx in the set{y, u(y) > u}. Find the smallest
A > Ao such that the area &f;, is larger tham. Call
this valuei;. Find the largesit, 11 < u < o,
such that the area d#l,, is larger tham. We call
this value ;. If wy — A1 > 2b, and if the set
{y, u1—b > u(y) > A1+b} has aconnected compo-
nent containing with area larger than, then retain
x as a valid junction. In Fig. 4 and 5, we display the
computation of junctions on different images.

6.2.1. Removal of Small Connected Components.
As a first tool, related to denoising, permitting a good
visualization of the topographic map, one can apply the
Vincent-Serraalgorithm (Vincent, 1993). This contrast
invariant algorithm removes all connected extremal re-
gions of the image whose area is less than a fixed
number of pixels. This can also be formalized in the
Matheron theory as an opening with all connected sets
with area less than a threshold, followed by a closing
with the same set of structuring elements (see (Masnou
and Morel, 1997, 1998a)). As a consequence of this op-
eration, it can be checked in experiments that the topo-
graphic map becomes readable, a tipical area threshold
being between 10 and 30 according to the image size.

We thank the anonymous second referee for the fol-
lowing remark: “The discrete junction algorithm only
appears to work when there is a variation in background
contrast; this induces a “T” junction between the level
lines of the background and the level lines bounding
the foreground object; when there is no background
variation, there is no junction (according to our defini-
tion) and nothing is signaled by our algorithm.” This
observation is quite true. In fact, the boundary of the
foreground object will have T-junctions in the inside if
it is well-contrasted itself and T-junctions on the out-
side if the background has some contrast. Thus, and
although we have seen no instance of it in experiments,
an occluding boundary without T-junctions is possible
if both foreground and background are strictly constant
in grey level.

6.2.2. Quantization. Another way to make the topo-
graphic map readable is to take advantage of the redun-
dancy of the topographic map, particularly on edges,
where level lines accumulate. Presenting all level lines
with levels multiples of a fixed amount, say 10, will
preserve all edges whose contrast is larger than 10. It
must be emphasized, however, that we do not pretend
that the removed information in the above processes is
irrelevant. We simply take advantage of the possibility
offered by the topographic representation of a partial,
coherent view of the image structure.

Figure 6 and 7 show the result to apply these strate-
gies for the visualization of the topographic map.

6.3. Conclusions

We have shown that a basic structure of an image
6.2. Visualisation of the Topographic Map invariant to local contrast changes, is given by its to-
pographic map. Its ‘atoms’ are the junctions and the
In this section, we discuss several strategies for visual pieces of level lines joining them.
inspection of the topographic map of a digital image. = The topographic map has several structural proper-
Clearly, we can see on a screen all level lines of a dig- ties, not true for other image descriptions:
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1. It contains all the image information, with an obvi- some erosion. Thisis analogous, in a sense, to the more
ous reconstruction algorithm, provided we keep the recent attempts to define nonlinear edge detectors (see
level and orientation of each level line. e.g. (Iverson and Zucker, 1995)).

2. It needs no scale space, that is, no additional scale Between the first submission of this paper and the
parameter. By this, we mean that level lines are, final revision, three years have transcurred, and this has
like edges attend to be, global structures and require the main advantage of having giventime to several tech-
no parameter for their computations. If we intendto nological developments. It had to be demonstrated that
simplify the image, in the scale space sense, that is the local contrast invariant structure given by the topo-
the removal of small details, this can be performed, graphic map can be used in applications. The first obvi-
as indicated in Section 6, by removing small level ousidea has beento use it for the comparison ofimages
lines, in which case a scale parameter is introduced. taken at differenttimes and under different illumination
The need for a more classical scale space can ariseor weather conditions. This is performed in (Ballester
whenwe wishto smooth eachlevellineaswell. This etal., 1998) on satellite images. The idea is to compare
is possible by using curve scale spaces (Kimia et al., all connected components of level sets in both images
1992; Alvarez et al., 1993; Sapiro and Tannenbaum, and, more generally, all “sections”, that is, connected
1993, 1994), who use variants ot the Osher-Sethian components of bilevel seta.[< u < u], A, u € R.
curve evolution computational theory.) From the Thanksto thisalgorithm,images ofthe same scene with
viewpointadopted in (Caselles etal., 1993), and fur- very different radiometry can be compared and it has
ther on in (Malladi et al., 1995), image scale space been experimentally shown that they have many parts
is performed separately on each level line of the of their topographic maps in common. In addition, the
image. complete description given by a topographic map per-

3. In contrast with “edges”, level lines need no con- mitting reconstruction, the comparison algorithm also
nectedness algorithm to be computed: they are im- yields an intersection image, that is, an image hav-
mediately connected curves. The question must be ing roughly for topographic map the intersection of
raised, of how the topographic map can help to get topographic maps of both compared images. A fur-
back to the physical structure of underlying objects. ther extension of this idea is performed in P. Monasse,
As far as shape recognition is concerned, it must be who uses Jordan curves of the topographic map of two
emphasised that pieces of level lines between junc- views in order to perform registration. P. Monasse and
tions perform an easy to compute grouping which F. Guichard have proposed a Fast Level Set Transform
can be used for shape recognition, in the same way in (Monasse and Guichard, 1998), which defines the

as edges are. topographic map as a tree of Jordan curves. All op-
4. lts structure is preserved under standard digitization erations mentionned above (intersection, registration,
processes. Vincent-Serra filters, etc.) can be performed in “real

time”thanks tothe FLST. Simon Mashou uses the topo-

. ) graphic map in order to perform disocclusion, that s, a

7. Discussion reconnection of level lines arriving to junctions bound-
) ) . - ing aspotintheimage (Masnou and Morel, 1998a). Ina
The math_emat_lcal discussion _of the gtabmty of level forthcoming paper, Jacques Froment uses explicitly the
lines and junctions performed in Sections 5_.1 and 5.2 level-lines-junctions as described in this paper to pro-
by no means pretends to lead to a detection theory. hyse 5 structured compression algorithm which selects
It only proves that under certain conditions of contrast he most significant part of the topographic map and
and size of the regions in the analogous image, the level 554 yses the possibility offered of reconstructing anim-

lines and junctions will be preserved in the digitization age from a part of a topographic map (Froment, 1998).
process. Now, we do not exclude the creation of spu-

rious level lines and junctions due to the digitization
process. Appendix: The Upper Topographic Map

As noticed by the second, anonymous reviewer, the
definition of junction corresponds to the conjunction of During the proof of Theorem 5 we shall need the notion
multiple conditions, some of which are introduced to of maximal monotone graph. A monotone graph is a
guarantee the existence of intensity relationships (the set-valued functioR — P(R) such that for every
a’s and g’s) that persist over a neighborhood given 1 € R, G(A) = [g.(A), g*(1)] is a closed interval
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andA > u impliesg,(A) > g*(u). Hereg, (resp.

g*) is a non-decreasing lower semicontinuous (resp.

upper semicontinuous) function frofito R. We say
that a monotone grap® is continuous or maximal
monotone if, in addition, the range &f has no gaps,
that is,U; G(1) is an interval ofR. Note thatG can be
recovered fronmg* (resp.g,) by setting

0 (A) = supg"(w): < A} (30)
in the first case and
g*(A) = inf{g.(n): u > A}
in the second case.
Condition (H1) in Definition 6 is justified by the

following result.

Lemma 5. Let f:Q2 x R — R be a function such
that

(i) f(x,A) is increasing upper semicontinuous as a (iii)

function ofa for all x € Q.
(i) f(x,A) is measurable as a function of x for each
L eR.

Then for any bounded measurable functiou—
[a, b] the functionv(x) = f (X, u(x)) is also measur-
able.

Proof: Recall that a functionv(x) is measurable if
and only if for everyi € R the level setsy: v(x) < A]

are Lebesgue measurable. Recall also that countable
unions and intersections of measurable sets are mea-

surable. Now X:v(x) < A] = [x: f(X,u(x)) < A].
Let us choose a dense sequedagycy in R. Since
f is upper semicontinuous as a functioniofor all
X € , we have thatf(x,r) < i if and only if
for all n € N, there existk € N such thatr < by
and f(x,b) < A+ 3. Thus, kiv(x) < A] =
[x:vn, 3k, be > ux) and f(x,b) <1 +3] =
Mo Uk ([x:ux) < bJN[x: f(x, b < A+ £]). Hence
v is measurable. O

Proof of Proposition 1:

@M If x € Xu, » € R, thenu(x) > 1 and
v(X) = ht(x,ux)) = h*t(x, 1), ie, x €
Xnrxyv. Conversely, ifx € Xp+x.yv, then
h*(x, u(x)) > h*(x, A). By (H2), this implies
thatu(x) > A, i.e.,x € X;u. ltis also easy to see
thatv(x) = suph™(x, A"): x € X,-u}.

(ii) Define

h™(x, 1) = ian h=(x, w)
>
By (H2),h™*: Q2 x R — R. Since
h™(x,2) = inf h™(X, un),
Hn\A

h=(x, 1) is measurable ix for all A € R. We
know also thah=*(x, A) is an increasing upper
semicontinuous function (hence, continuous on
the right) ofA for all x. By Lemma 5, we know
thath=*(x, u(x)) is a measurable function of.
Now, using (H2),

h™*(x, u(x)) = im: )h’(x, w) = ht(x, ux)).
H>u(x

We conclude that(x) = h*(x, u(x)) is measur-
able.

If vy e T = cc(u > 1], x), then, by (H3),
h*(x,2) = h*™(y,4) < h*(x,u(y)) = v(y).
Sincep = h™(x, 1), v(y) > u. Hence,I” C
[v = u]. SinceI” is connected and contains
X, it follows thatT" € cc([v > u],x) = T.
Now, if the inclusion were strict, then for some
zecc(u > ul,x), u@ < A If ht(x, 1) €
h(x, 1), then, using (H4)h(x, ) = h(z, »). If
h™(x, 1) € h(x, 1), then there exists somg <
usuchthaw' € h(x, 1) andz € cc(Jv > '], X).
Again, by (H4),h(x, A) = h(z, 2). In any case,
uw = hT(x,A) = h*(z,1). On the other hand,
by (H2),h™(z,2) > ht(z,u(2)) = v(2) > u, a
contradiction.

Let X be a connected component of & A] and
let x € X. Then, using (iii)), X = cc(Ju >
A, x) = cc([v = p], x) wherepw = ht(x, 1).
Conversely, letY = cc(fv > ul,x), u € R.
If v takes values ind, d], without loss of gen-
erality, we may assume that € [c,d]. Let
A € R such thatu € h(x,1). We know that
cou > Al,x) = co([v = h*(x,)],x) <
cc([v = u],x). If the inclusion is strict, then
u(y) < A for somey e cc([v > u], X) Since, by
(H4),h(x, ») = h(y, 1), thenu € h(y, 1). Using
(H2), we may write

pn<v(y) =h"(y,uy)) =h7(y,2) < .

Hence,u = h*(y,u(y)). Now, using (iii), we
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have cc(Xy, X) = cc(X,, X), we immediately see from
the definition of G that G(x, 1) = G(x, u). |If
co([v = u], x) = cc([v = h*(y, u(y)l. y) CC(X, X) # cC(X,, X), then for every.” € G(x, A)

andu’ € G(x, u) we havecc(Y;,, x) € cc(Yy, X)
andcc(Yy/, X) # cc(Y,, X), so thatr” > p/.

Step 3.Let x € R". We finally show thaG(x, .) is
onto in the sense that,G(x,») = [c — 1,d + 1].
Let A’ € [c— 1,d + 1]. By definition of G we
may assume that < 1’ < v(x). By assumption
for every)’ € [c, v(x)] and every connected com-
ponent ofY;, containingx, cc(Yy, X), there exists
some € R such thatc(Y;,, X) = cc(X;, X). Thus
A e G(X, A).

Step 4.By definition of G we have thag™ (x, u(x)) <
v(X). Now, since

= cc([u > u(y)l, y).

In other words, there is some= u(y) and some
connected componeit of X, such thatX =Y.
]

Let us prove the converse of Proposition 1 given by
Theorem 1.

Theorem 1. Letu, v:R" — R be two bounded mea-
surable functiongimage$ whose upper level sets have,
at most, countably many connected components. Let
X, respectively Y, be the families of the level sets of u
respectivelyw. Suppose that for each connected com-
ponent X of X there existg. and a connected compo- =supuipn € G(X,A) As. t. xe X}
nentY of Y, such that X= Y and a converse statement =sup{gt(x, A):A St xecce(Xy, X))
with X, and Y, interchanged. Then there exists a local
contrast change , 1) such that (x) = g*(x, u(x)).

v(X) =supgu:X € Y.}

< gt (x, supr: x € cc(Xy, X)),

Proof: Suppose thati takes values ind, b] and v we have thab(x) = g*(x, u(x)).
takes values ind,d]. Letx € R" andx € R. If o )
a < A < u(x), thenx € X, and we define the set We finish the proof with the next Lemma.

(nonempty, by assumption)
Lemma6. G(x, A) is alocal contrast change of u.

G(x, 1) = {1 €[c,d]: cc(X;, X) = cc(Yy, X)}.
Proof:
If A > u(x) we defineG(x, ») = [v(x),d + 1]. If
A < a, we defineG(x, A) = [c — 1, c]. Let us prove (H1) Letx € R. Letus prove that the correspondence

thatG is a monotonous multifunction. X € Q@ — G(x, ) = the closure of5(x, 1) has
ameasurable graph. Sinceitis a correspondence
Step 1. Gx, ) is an interval. We may assume that whose values are closed sets this is equivalent to
a <A < u(x). If »’ and)” belong toG(x, 1) , then prove thatx € @ — G(., 1) is weakly mea-
for every)’ < u < A”, we have surable, that is, for any open sétin R, the
set{x € Q:G(x,A) N O # @} is measurable
cc(Xy, X) = cc(Yr, X) € cc(Y,,, X) ((Aliprantis, 1994), chap. 14). It is sufficient to

consider the case whef@ is an interval(a, 8).

If A < a this set is obviously measurable. As-
sume that. > a. Observe that we may write
{x € Q:G(x, 1) N O # @} as the union of two
sets:

C cc(Yy, X) = cc(X;, X),

so thaty € G(x,A). ConsequentlyG(x, 1) is

an interval. Letg=(x, 1) = inf{u:u € G(x, L)},

gt(x,A) = supu:pu € G(x,1)}. Observe that,
whena < A < u(x), g™ (x, A) < v(X).

Step 2. We wish to show that ik > wu, then ei- A={xeux)zr GxHNO#H

ther G(x, 1) = G(x, u) or g~ (x,A) > g (x, w). B={xeQuXx) <i, G(x,1)NO0 #a}.
We may assume that < u < A < u(x). In-
deed, since. > u, we have thatcc(X;, X) C Since

cc(X,, x) and thereforecc(Y,,, x) < cc(Y,, X)
for every )’ € G(x,A) andu' € G(X, ). |If B={xeQuX) <A, [vXX),d+1]Nn0O # 3},
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(H2)

(H3)

(H4)

(HS)
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it is obviously measurable. Ki(x) > A > a,
observe thalG(x,A) N O # @ if and only if
there exists somg € O such thatc(X;, X) =
cc(Y,, X). Now, if for somex € €, G(x, 1) N
O # @, then for ally € cc(X,, X) there ex-
ists someu € R (the same as above) such
that cc(X,,y) = cc(X;,x) = cc(Y,, X) =
cc(Y,, y). Thus, for anyx € Q we have either

cc(X;,X) C A
or
cc( X, Xx)yNA=4.
We may write

A = Ufcc(Xy):du e O s. t.

cc(X,) = cc(Yy)} (31)

Since the connected componentsXf, being
closed in X,, are measurable and there are,
at most, countably many, it follows thak is

a measurable subset 6f and the multifunc-
tion G(., A) is weakly measurable. According
to the measure theoretic analogue of Berge's
theoremg™(x, 1) = sugu:u € G(X,1)} =
supu: e € G(x, 1)} is a measurable function
((Eatwell et al., 1994), vol. 1, p. 680).

If u(x) < A, by the definitions above™(x,
ux)) =g (X, A) < gt (x, A).

Note that infcqg~(Xx,2) > ¢ — 1 and
SURq 07 (X, A) <d+ 1, for eachh € R.

LetA € R, x,y in the same connected com-
ponent of I > A]. If A € G(x, 1), then
cc(X;, X) = cc(Yy, X). Sincey € cc(X;, X) =
cc(Yy, X) then cc(X;,y) cc( Xy, X)
cc(Yy, X) = cc(Yy, ). Hence,l € G(y, A).
Therefore G(x,A) < G(y,A). The other
inequality being proven similarly, it follows
that G(x,A) = G(y, A) and, in consequence,
gt(x,A) =g*(y, 1.

Assume thaty € cc([v > pu],x) with u €
G(X, A1), X,y € , L € R. Thencc(fv >
u], X) = cc(Xy, X). Hencey e cc(Xy, X).
Thus cc(X;,x) = cc(X,,y) and G(x, 1) =
G(y, 1) follows. O

If u, v of Theorem 1 are lower semicontinuous
functions then almost all upper level sets have,
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