Modelado y Procesamiento de Grandes
\Volumenes de Datos

MongoDB — Aggregation Pipeline

CPAP, FING, UdelaR — 2020

MongoDB Aggregation

* Aggregation operations process data records and return computed
results

* MongoDB provides three ways to perform aggregation:
* aggregation pipeline
* map-reduce function
* single purpose aggregation methods

Aggregation Pipeline

* multi-stage pipeline that transforms the documents into an
aggregated result

* stages can use operators (arithmetic, boolean, string, etc)

 provides efficient data aggregation using native operations within
MongoDB (preferred method)

* can operate on a sharded collection
* can use indexes to improve its performance during some of its stages
* has an internal optimization phase

Aggregation Pipeline - Method

Collection

db.orders.aggregate([

Smatch stage =P { Smatch: { status: “A” } },

Sgroup stage =P { Sgroup: { _id: “Scust_id”,total: {$sum: “Samount” } } }
1)

cust id: “Al123",
amount: 500,

status: “A” {
} cust ids: “Al23”,
amount: 500,
{ status: “A” {
cust_id: *“Al23%, } ids *Al123”7,
amount: 250, total: 7
status: “A” {)
} cust id: “Al23~, K

am ;7t: 250,
{ Smatch > S s $group {

cust id: “B212", o P
= } ids “B212%,

total: 200

amount: 200,

status: “A" {

-

enst: ids “*B212%;
amount: 200,

. e status: “A"
cust_id: “Al123",

amount: 300,

status: “D”

orders

Pipeline Expressions

* specify the transformation to apply to input documents of a stage
* have document structure and can contain other expression

* only operate on the current document in the pipeline and cannot refer to

data from other documents

e expression operations provide in-memory transformation of documents

* generally stateless:

e exception, accumulators (Smax, Smin, Savg, $sum, etc) used in Sgroup stage

Pipeline Expressions — Field Paths

 used to access fields in the input documents

e prefixing the field name or the dotted field name (if the field is in the

embedded document) with a S {

" id": "nmoeaesel”,
"primary name": "Fred Astaire”,

° exampIeS: :I::ir*th_year*“: 13%%

death_year"”: 1087,

"primary professions”: ["soundtrack”, "actor”, "miscellaneous”],

"known_for titles": [{
“tconst™: "ttee31983"

* Sknown for titles.tconst }’{mmmﬁtq-uﬂm:r:v

........
b Ao

“tconst™: "tteese4lo”

b Ao

“tconst™: "ttee723es"
]

* Sprimary name

Pipeline Expressions — Operator Expressions

 similar to functions that take arguments

 array of arguments and have the following form:

* { <operator>: [<argumentl>, <argument2> ...] }
{$subtract: ["$death year”, "$birth_year™]}
{$eq: ["$birth_year”, 1958]}
* single argument:
* { <operator>: <argument> }
{$size: "$primary professions”}

f$gte: 20066}

Pipeline Expressions — Operator Expressions

* Arithmetic:
e Sabs, S$round, $sgrt, S$trunc

* Array:

e Sin, Sfirst, S$size, SarrayElemAt

* Boolean:
e Sand, Sor, Snot

* Comparison:
* Seq, Sgt, Sgte, $lt, Slte, Sne

* Conditional, Date, Custom Aggregation, Data Size, Literal, Object, Set,
Text, Trigonometry, Type, Accumulators, Variable

Pipeline Stages — Smatch

* filters the documents to pass only the documents that match the specified
condition(s) to the next pipeline stage

[{
smatch: {
sor: [{
if [{ birth_year: 1971
y ; gmatch: { 1
gmatch: { e - I
: hirth vear: 1971 birth_year: 1971, {
, R o death_year: null birth_year: null
1 j

1] 1,
death_year: null
I
1]

* place the Smatch as early in the aggregation pipeline as possible

Pipeline Stages — Sproject

* passes along the documents with the requested fields to the next
stage in the pipeline
* specified fields can be existing fields from the input documents or newly
computed fields

Specification Form Description

+ <field>: <1 or true> Specifies the inclusion of a field

mm id: <0 or false> Specifies the suppression of the id field

Adds a new field or resets the value of an
+ <field>: <expression> existing field

Bl <ficld>:<0 or false> Specifies the exclusion of a field

Pipeline Stages — Sproject
* inclusion of fields birth year and death year, and suppressionof id

[
$project: {
_id: false,
birth_year: true,
death_year: true
¥
1]

Pipeline Stages — Sproject

* new fields dead at ageand current age

[{
$project: {
current_age: {
[{ $ifNull: [{

Sproject: { $subtract: ["$death year"”, "$birth_

dead_at _age: { 1,

$subtract: [“%#death_year”, "$birth_year"] {

I $subtract: [{

i $year: "EINOW"

¥l

}, "$birth_year™]

Pipeline Stages — Sproject

* exclude fieldsbirth yearand death year:

[

$project: {
birth year: false,
death year: false

[{
gproject: {
birth_year:
death_year: fals

dead at_age: {
Fsubtract:

H

7]

If you specify the exclusion of a field other than id, you
cannot employ any other Sproject specification forms.

Pipeline Stages — Sgroup

* groups input documents by the specified id expression and for each distinct

grouping, outputs a document that can contain computed fields holding the
values of some accumulator expression (Savg, $sum, etc).

[{
[$group: {
fgroup: { _id: {
id: "$birth year"”, birth_year: "$birth_year”,
average death_year: { death_year: "$death year’
$avg: "$death year’ }a
1 count_names: {
} Ssum: 1
1] ¥
¥
Grouping on single field]

birth
(birth year) Grouping on multiple field

(birth year,death year)

Pipeline Stages - Usefull for lab

e Sunwind

e deconstructs an array field from the input documents to output a document for each
element

* Slookup

» performs a left outer join to an unsharded collection in the same database to filter in
documents from the “joined” collection for processing

* SgraphLookup

e performs a recursive search on a collection, with options for restricting the search by
recursion depth and query filter

Aggregation Pipeline — MongoDB Shell

* steps:

* open Mongo shell:

mongo

e switch database:

use <db>

* execute aggregation pipeline:

db.collection.aggregate (<pipeline>, <options>)

e example:

db.names.aggregate ([{$match: {birth year: 1971}}, {Sproject: { id:
false, primary name: true, death year:true}}], {allowDiskUse: true})

Aggregation Pipeline — Mon

Aggregations

v || B © | | »COLATION Untitled- Modified m)

v $match ()

birth_year: 1971
b

v $project (}

_id: false,
primary_name: true,
death_year:true

:

ADD STAGE

Qutput after $match stage (Sample of 20 documents)

_id: "nmesee191”
primary _name: "Ewan McGregor”
birth_year: 1971

» primary_professions: Array

» known_for_titles: Array

Qutput after $pr (Sample of 20 documents)

primary_name: "Ewan McGregor”

goDB Compass

@) savpLe moDE @) AUTO PREVIEW

_id: "nmeeee213"
Winona Ryder”

primary_name:

birth_year: 1971
p primary_professions: Array
» known_for_titles: Array

primary_name: "Winona Ryder”

References

* Aggregation pipeline

https://docs.mongodb.com/manual/core/aggregation-pipeline/

* Aggregation quick reference: Operator expressions
https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#agg-quick-ref-operator-expressions

* Aggregation quick reference: Aggregation accumulator expressions
https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#aggregation-accumulator-

operators

e db.collection.aggregate
https://docs.mongodb.com/manual/reference/method/db.collection.aggregate/#db.collection.aggregate

https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#agg-quick-ref-operator-expressions
https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#aggregation-accumulator-operators
https://docs.mongodb.com/manual/reference/method/db.collection.aggregate/#db.collection.aggregate

