
Machine Learning for Scalable Path Latency
Monitoring in Overlay Networks

Martı́n Randall∗
∗Facultad de Ingenierı́a, Universidad de la República, Uruguay

Abstract—We consider a routing overlay in which the delay
of a path can be obtained at some fixed cost by sending probe
packets, and investigate the joint minimization of the probing
cost and the routing delay. We use a Random Forest approach
to estimate the best route to take at each time-slot while fixing
periodical measurements, and compare its results to model-based
approaches.

I. A RANDOM FOREST APPROACH TO NETWORK
MONITORING

Network monitoring is an open problem for overlay net-
works. Since on the overlay we can only measure end-to-end
delays, it is needed to send probe packets through every path
to have full knowledge of the system’s status. This can be
seen as a possible cause for congestion, and as such we will
consider there is a measuring cost to be taken into account.
But what if by sending just enough probe packets we could
have a good estimate of the system’s delays? In this work we
use Random Forests to estimate the system’s delays (round
time-trip, RTT) and to minimize measurements.

Other approaches use a hidden markovian chain modelling
of the path delay, which results in closed form solutions
by using montecarlo methods. As the number of possible
states grows, these solutions quickly encounter the curse of
dimensionality. It has been shown that approximations of such
solutions, as receding horizon algorithms, can scalate better by
avoiding (or delaying) the curse of dimensionality, we hereby
present the exploration and comparison of other machine
learning techniques known to be usefull when working with
RTT estimation [1] [2].

Random Forests are machine learning algorithms, more
precisely of supervised learning (we know the output when
training the algorithm). It is a particular kind of bagging,
where we use many tress built with random features, obtaining
de-correlated trees, which helps to lower the variance of our
prediction. As a quick reminder, trees are usually formed
by dividing the feature space by binary splitting. Bagging
techniques, such as Random Forest, allow us to use the
simplicity and power of the trees while diminishing their high
variance (due to their simplicity: a different first split will
probably result in a completely different tree). Random Forest
algorithms are very popular on network optimization [3], as
they are scalable and robust, although they can be difficult to
interpret.

We will consider a simple scenario where every measure
is done simultaneously on all paths, every T time-slots. Let’s
denote by xi the i-eth route from the N possible routes as

xi ∈ {x1, x2, · · · , xN}. We call xi,t the RTT value for path
i at time-slot t. We will define our system as the last delay
measured, and the time-slots transpired from the measure. The
ouput will be yt the path to choose that minimizes the delay
at time-slot t. We will have then the training samples written
as:

(x1,0, x2,0, · · · , xN,0, 0, y0)

(x1,0, x2,0, · · · , xN,0, 1, y1)

(x1,0, x2,0, · · · , xN,0, 2, y2)

...

(x1,0, x2,0, · · · , xN,0, T − 1, yT−1)

when measuring in the first time-slot. As we move to the
scenario measuring at the second time-slot, we get a new set
of T training samples:

(x1,1, x2,1, · · · , xN,1, 0, y1)

(x1,1, x2,1, · · · , xN,1, 1, y2)

(x1,1, x2,1, · · · , xN,1, 2, y3)

...

(x1,1, x2,1, · · · , xN,1, T − 1, yT)

This is a simple setup, in which we use strong restrictions:
both measuring all paths and doing so periodically. As a
first approximation to supervised learning algorithms, a simple
setup may provide us with good solutions, and justify a deeper
approach. The algorithm is presented in 1. In this article we
center in selecting the best T* amongst a set of possible
T values, and comparing the results with the exact solution
(when possible by policy iteration) and with a receding horizon
approximation.

We will briefly describe the algorithm’s settings. We chose
a 10-tree random forest, as we didn’t see a result improvement
for a larger number of trees. We used no minimum/maximum
number of leaves, and the gini criterion for impurity, as well
as bootstrap samples for building each tree. This is a very
simple usage of the scikit python library [4].

We will compare to the receding horizon solution proposed
by [2], which is a finite approximation of the value policy
based on the receding approach stated in [5]. After presenting

Algorithm 1 Random Forest

Divide training samples into training and validation
for T ∈ Ti, using cross-validation do

Train Random Forest predictor
Evaluate expected reward D̂[Ti] for validation set

end for
for Ti = argmin D̂[Ti] do

Apply random predictor RF [Ti] to test samples.
end for
Find Expected Reward on test samples for routing decisions.
=0

results, a flexibilization of the ”same T for all routes” restric-
tion is proposed on the algorithm.

To test the algorithm, we used on one hand synthetic
scenarios where the paths are markovian built, and as such
we can compute the exact solution. On the other hand, we
used the RIPE-ATLAS dataset [6], which provides us with
72 different overlay configurations with each route measured
every 2 minutes for a week. The overlay settings go from 2
possible paths to 7 different paths. This results in 3836 RTT
samples for each path. This has proven to be a challenge,
since it is not a great amount of samples, but has also allowed
us to use the algorithm on real traces, in particular when the
markovian analysis is non-realistic. This synthetic and real
scenarios have been used in previous work [1] [2].

II. RESULTS

A. Synthetic scenarios

We first use Random Forest to estimate the best route in a
2 paths scenario where each path has 2 possible RTT values,
generated as a markovian process. This example is used in [1],
and its values are result of the path Hong Kong - Kazakhstan,
and Hong Kong - Latvia - Kazakhstan, and can be observed
in table I. The transicion matrices are for each path:

P1 =

(
0.995 0.005
0.05 0.95

)
, P2 =

(
0.995 0.005
0.005 0.995

)
.

RTT Cost
Path 1

[low, high]
Path 2

[low, high] [Path 1, Path 2]

Scenario 1 [350, 440] [320, 370] [4, 4]
Scenario 2 [1, 3] [0.5, 2] [0.15, 0.05]
Rayleigh
scenario [350, 440] [320, 370] [4, 4]

TABLE I: Settings for the synthetic scenarios.

In this setup, we can find the optimal solution to our
measuring/routing problem, by using dynamic programming.
For that purpose we use the common policy iteration algorithm
as described in [7]. We also compute the results of our
Receding Horizon algorithm (with an horizon of 3), and the
result of the Random Forest algorithm (10 tree forest). The

T selection is done by using 5-fold cross-validation of an
expected reward. We consider the expected reward D̂ of policy
π to be defined as follows:

D̂π = Σk−1
i=0 ([c+RTT] ∗ ρk)

Results are shown in table II and figure 1.

0 20 40 60 80 100

Value of T

3240

3250

3260

3270

3280

3290

3300

3310

Ex
pe

ct
ed

 v
al

ue
 F

un
ct

io
n

Value Function over T
Random Forest

Fig. 1: Synthetic scenario number 1, based on paths from
RIPE-ATLAS but processed as markov delays. Expected value
for different T possible values. Minimum is reached for T = 8.

We then try another setup with a more variable route and a
more stable one. This MDP’s settings also comes from [1].
Results are shown in table II and figure 2. The transicion
matrices are for each path:

P1 =

(
0.9 0.1
0.1 0.9

)
, P2 =

(
0.7 0.3
0.3 0.7

)
.

For both these settings the Random Forest performs really
close to the dynamic programming algorithms. It’s interesting
to remark that the T-selection has similar behaviour: the
optimal T is such that the cost isn’t to high (with a low T the
cost can have a huge impact on the expected reward), and the
path measurement is enough to take close to optimal routing
decisions. With a low-cost setting, a lower T will be always
a preferred choice. At the same time, a very changing path
will demand a smaller value of T. Usually there is a value
of T from which the Expected Reward is stable, since the
measuring cost has little impact on the reward estimation, and
the knowledge on paths isn’t enough to make great routing
decisions (the algorithm will rather choose one path and stick
to it). This is particularly clear in figure 2.

We then try our algorithms in a 2 routes 2 levels situation,
but now the routes don’t follow a markovian process, but

0 20 40 60 80 100

Value of T

11.6

11.7

11.8

11.9

12.0

12.1

12.2

12.3

Ex
pe

ct
ed

 v
al

ue
 F

un
ct

io
n

Value Function over T
Random Forest

Fig. 2: Synthetic scenario number 2. Expected value for
different T possible values. Minimum is achieved for T = 2.

are constructed using Rayleigh’s distribution. In this scenario,
all algorithms agree on using a low-measuring policy, and
just selecting which appears to be the best path. The Policy
Iteration and Receding Horizon don’t even measure once, and
the T selection for the Random Forest shows that the larger
the T, the better, which means that we do not need to measure
often to make a path choice. In overall, even if selecting a
”shortest path”, the total cost (once added the measuring cost)
is larger for the Random Forest, but they all are really close
one to another.

Expected
Reward

Total Delay
+ Cost (in e3 ms) T

PI RH RF PI RH RF RF
Scenario 1 3197.7 3201.7 3200.6 16.8 16.8 16.7 8
Scenario 2 10.71 10.75 11.27 5.26 5.29 5.89 2
Rayleigh
scenario 3291 3291 3292 687.1 687.1 687.4 25

TABLE II: Summary of the results achieved for the 3 com-
pared algorithms .

B. Real traces

Finally, we tried our Random Forest for some of the real
traces used in [2]. Results are summarized in table III and
figures 4 and 5 . For both settings, the Random Forest has
proven comparable to the Receding Horizon algorithm. In one
case, performing better than the receding horizon, and at a
much lower processing time/cost, as seen in table III. The
T selection for the Haifa-Santiago selection was done using
the simple (T, T) algorithm, and T = 4. For the Paris-Tokyo
scenario, the T search modification was used, and the result is

a (T1, T2) = (13, 15). The expected reward for combinations
around (14, 14) is shown in figure 3, relative to the minimum
expected reward (just for visualization).

12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

Fig. 3: Expected rewards for Random Forest algorithm trained
with different (T1, T2) values around (14, 14). For visualiza-
tion, expected rewards are plotted in relation to the minimum
achieved, in this case, for (13, 15).

0 500 1000 1500 2000

Time (minutes)

242.5

245.0

247.5

250.0

252.5

255.0

257.5

260.0

D
el

ay
 (

m
s)

Paris_Tokyo
IP path
Minimal Delay / RH(=0.9,H=4)
Random Forest
via Calgary

Fig. 4: Paris-Tokyo delay, with the RF and RH (H=4) routing-
decisions. The average delay of the IP static path is 247.97
ms, the one achieved with the RH is of 247.89 ms and the
best path selection is performed by the RF, with an average
delay of 247.75 ms.

O-D
pair

Avg number
of measures

Avg Processing
time (ms)

Gap to
min Delay

RH RF RH RF RH RF
P-T 0.026 0.072 180 1.96 13.4e-4 7.7e-4
H-S 0.124 0.250 8.42 1.71 0.002 0.019

TABLE III: Summary of the results achieved for the consid-
ered OD pairs, where RH stands for receding horizon, RF for
random forest. Averages are calculated per time-slot. We used
an horizon of H=4 for the receding policy for the Paris-Tokyo
problem, and of H=1 for the Haifa-Santiago scenario (myopic
policy).

0 250 500 750 1000 1250 1500 1750 2000

Time (minutes)

300

320

340

360

380

D
el

ay
 (

m
s)

Haifa_Santiago
IP path
Minimal Delay / RH(=0.9,H=1)
Random Forest
via Curitiva
via Dublin
via Boston

Fig. 5: Haifa-Santiago delay, with the RF and RH routing-
decisions. In this case, as there are four possible paths, we
compared with the myopic policy, which means an horizon of
1 time-step. The average delay of the IP static path is 307 ms,
the one achieved with the RH is of 303 ms and the RF got an
average delay of 308 ms.

An interesting observation is that as the number of paths
grows, the Random Forest algorithm seems to perform more
poorly. This may be due to the need of a larger training set in
order to have an accurate prediction. Also, there is a noticeable
increase in processing time, even if it is much lower than the
processing time of the Receding Horizon algorithm, and even
the myopic policy, which can be viewed as a Receding Horizon
of horizon 1.

C. T search modification

In order to find a better subset of values for when to
measure, and mainly, to dissociate measuring in all paths at
the same time, we propose a modification. Let’s assume that
we are only working on a 2 paths situation. We are selecting
the best (T, T) for a periodical measurement of both paths.

An improvement could be to do a T selection for any possible
(T1, T2), where Ti is the T-value for which we periodically
measure route i. This search can grow as the number of paths
grow, and we will fall back into the curse of dimensionality.
A simpler approach is to only look for a better (T1, T2) in a
small interval around the selected (T, T). This can enable one
of the paths to be measured more often than the other, but not
by a large difference.

We tried this modification, attaining very similar results to
the original algorithm. In many cases, a different couple of
T-values is preferred, but the results end up being practically
the same. A best-case scenario for this application would be a
very stable path and a very changing one, so to have a lower
T-value for the fast changing path, and a larger value for the
stable one. Still, the first selection of a (T, T) couple may be
already restrictive of the possibilities of such an improvement.
We mean that after selecting the T-value, we already used a
compromise between paths, and an interval around that T-value
can be non-optimally for both paths.

We depict the (T1, T2) selection for the real trace Paris-
Tokyo. Selection offers a higher expected reward, but does
not imply in a diminished measuring algorithm, since for one
path we increase measurements while lowering this value for
the other.

Another idea, one that we must look into, is to find somehow
a relationship between Ti and some statistical of our paths.
The goal would be to use to our advantage the knowledge of
path’s variations, looking for a higher T for more stable routes,
and for a smaller T for the more variable ones. This has not
been explored further, and we fear that we might fall back in
an analysis of the expected reward over T, which can take us
back to a markovian framework.

III. CONCLUSION

As a first approach to a supervised machine learning algo-
rithm for our measure+routing problem, the Random Forest
algorithm has proven to be more than capable to compare
in results to state-of-the-art algorithms. Even though this is a
very simple setup, where little features are at play and strong
restrictions are imposed (same periodical T for all paths), the
algorithm has proven its worth both in results and simplicity,
and hence, on scalability, which was a constraint for previous
studied solutions [2].

An important disclaimer to be made is that in fact we are
comparing 2 different optimization problems. In one (receding
horizon), we optimize the expected reward, including cost of
measures, and future routing decisions. In the random forest,
the routing decision is built on a previous state of the routes
and the lag of time from that measurement. This means that the
cost is nowhere to be found, and neither is the future taken into
account. This may point a future work direction, on a better
formulation of the random forest goals and features. Actually,
in the Ti selection, the expected reward is minimized, but not
in the random forest training.

A strong relationship exists between the value of T, the in-
terval between measurements in the Random Forest algorithm

and the cost c of measuring the paths. The costs could be
different for different paths, the same for all paths, etc. In the
random forest scenario, as we measure all routes it’s the sum
of all costs that interests us. This direct bond fixes the number
of measures, for both algorithms considered. Depending on
the value of the cost one algorithm may yield better results or
the other.

Finally, the proposed solution does not imply a markovian
analysis. It could be that the receding horizon algorithm
is more suited to markovian paths, while a random forest
approach would yield better results for non-markovian traces.
This points another line of work, in finding more scalable
solutions amongst machine learning algorithms, or exploring
(and pushing) the limits of the ones at hand.

REFERENCES

[1] S. Vaton, O. Brun, M. Mouchet, P. Belzarena, I. Amigo, B. Prabhu,
and T. Chonavel, “Joint Minimization of Monitoring Cost and Delay
in Overlay Networks: Optimal Policies with a Markovian Approach,”
Journal of Network and Systems Management, vol. 27, no. 1, pp. 188–
232, Jan. 2019.

[2] M. Mouchet, M. Randall, M. Ségneré, I. Amigo, P. Belzarena, O. Brun,
B. Prabhu, and S. Vaton, “Scalable monitoring heuristics for improving
network latency,” in IEEE/IFIP Network Operations and Management
Symposium, 2020.

[3] S. Wassermann, P. Casas, T. Cuvelier, and B. Donnet, “Netperftrace: Pre-
dicting internet path dynamics and performance with machine learning,”
in Proceedings of the Workshop on Big Data Analytics and Machine
Learning for Data Communication Networks, 2017, pp. 31–36.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[5] G. C. Goodwin, M. M. Seron, and J. A. D. Doná, Constrained Control
and Estimation. An Optimisation Approach. Springer-Verlag London,
2005.

[6] “RIPE Atlas,” https://atlas.ripe.net/, accessed: 2019-11-26.
[7] R. S. Sutton and A. G. Barto, Reinforcement Learning, An Introduction,

second edition ed. The MIT Press, 2018.

