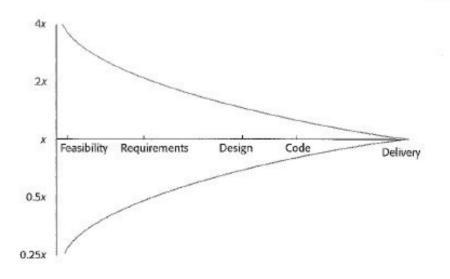


Introducción a la Gestión de Proyectos

Temario - Clase 2

- Definición de actividades
- Estimaciones
 - Introducción
 - Métricas de tamaño
 - Basadas en experiencia: Analogía, Juicio de expertos, Delphi y variantes
 - Algoritmos: Cocomo II
- Desarrollar el cronograma
 - Camino crítico
 - Ejercicio
 - Cronograma
 - Ejemplo
 - Nivelación de recursos
 - Fast tracking y crashing
 - Ejercicio
- Repaso

Actividades


- Ya vimos...
 - Relevamiento de los requisitos
 - Definición del alcance
 - Creamos la EDT
- Ahora hay que identificar las actividades:
 - Los paquetes de trabajo de la edt se descomponen en actividades
 - Estas actividades van a poder ser estimadas, van a ser parte del cronograma y servirán para el seguimiento.
- Luego es necesario identificar precedencia entre las actividades
 - Identificar las relaciones lógicas en las actividades
 - Todas las actividades, salvo la primera y la última, se conectan a por lo menos una predecesora y una sucesora
- Veamos primero estimaciones...

Estimaciones

 Definición: es predecir cuánto va a durar un proyecto o cuánto va a costar.

Difícil no?

- Por qué son inexactas las estimaciones:
 - Definición de requisitos poco precisa
 - Entornos desconocidos / tecnología de punta
 - Experiencia del equipo
- Si tenemos en cuenta que:

SEE SOLD ESTO

Estimaciones - Principios

- Una estimación es una proyección de la experiencia del pasado hacia el futuro, ajustando según las diferencias entre el pasado y el futuro.
 - Es necesario contar con experiencia pasada
 - Es necesario saber algo del futuro
 - Es necesario saber cómo ajustar
- Todas las estimaciones están basadas en supuestos y restricciones.
- Los proyectos deben re-estimarse en forma periódica y aperiódica, cuando corresponda.
 - Por ej: un cambio mayor de requerimientos, pérdida de personal clave, reducción del presupuesto, etc.

Estimaciones - Factores que influyen

- Tamaño
 - Factor determinante
 - Cuanto mayor el SW, más líneas de comunicación. La productividad no es proporcional.
- Tipo de SW
 - La productividad varía según el tipo de SW
- Factores del personal
 - Productividad de personal varía por un factor de 10
 - En la misma organización de pueden tener medidas similares
- Lenguaje de programación
 - Depende de la experiencia del equipo en el lenguaje

Métricas de Tamaño

- ¿Por qué medir tamaño?
 - Fuerte impacto en esfuerzo y cronograma
 - Puede ser medido de forma más objetiva que otros atributos
 - Algunas técnicas puede estimar tomando los requerimientos como punto de partida
 - Es un dato que junto con el esfuerzo y cronograma puede guardarse de un proyecto a otro para tenerlo como base de conocimiento.
- Vamos a ver dos técnicas:
 - LOCs
 - Puntos de función

Métricas de Tamaño - LOCs

- Líneas de código
- Algunos problemas:
 - Es difícil estimar LOCs temprano en el proyecto
 - Si se utiliza como medida de productividad puede llevar a producir muchas LOCs de baja calidad en lugar de pocas de buena calidad
 - La reutilización de componentes y código abierto complejiza la relación entre LOCs y atributos funcionales
 - Varía mucho de una persona a otra
 - Se deben definir criterios claros de cómo contar.
- Ventajas
 - Fácil de medir automaticamente
 - Permite comparar proyectos y estimar proyectos futuros basándose en datos pasados.

Métricas de Tamaño - Puntos de función

- Albrecht 79
- Son calculados contando: cantidad de entradas, salidas, archivos internos, queries e interfaces
- El cálculo se basa en reglas
- Se contabilizan los puntos de función y se ajusta
- Tablas de conversión a LOCs
- Ventajas:
 - Se puede medir sin que exista el código, sólo a partir de requisitos o diseño
 - Independiente del lenguaje
- Desventajas:
 - Aplicación restringida a sistemas con uso intensivo de datos y poco peso algorítmico.
 - Medir PF requiere esfuerzo, es complejo

Estimaciones

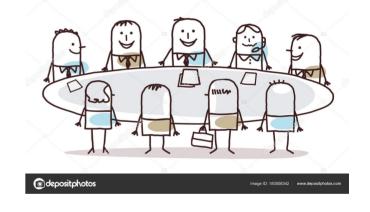
Dos tipos de técnicas:

- Basadas en la Experiencia
 - La estimación se realiza acorde a la experiencia y conocimiento del equipo en proyectos pasados.
 - Ejemplos:
 - Analogia
 - Juicio de expertos
 - Delphi
- Algoritmos
 - Se aplican modelos matemáticos considerando atributos del producto como tamaño, experiencia, etc
 - Ejemplo:
 - Cocomo

Analogía

- Encontrar proyectos análogos para utilizarlos como referencia.
- Cuanto más análogo el proyecto, mayor certeza
- Se puede armar una tabla con proyectos pasados para identificar similitudes.
 - Considerar por ejemplo:
 - Tipo de producto
 - Tamaño
 - Factores de ajuste (complejidad, experiencia equipo de desarrollo)
 - Duración estimada y real
 - Lecciones aprendidas, etc

Juicio de expertos


- Consultar a 1 o n expertos por la estimación (esfuerzo, tiempo, conocimientos del equipo, riesgos, etc)
- Los expertos ajustaran según su criterio, por ejemplo si conocen el equipo, políticas, el cliente, etc
- Fortalezas:
 - Tener varias opiniones diversas, con un criterio de ajuste humano
- Debilidad
 - Posibilidad de que los expertos sean demasiado optimistas
 - Las referencias pasadas pueden ser incorrectas o incompletas

Delphi

- Estmación combinada de varios expertos
- A cada experto se le brinda la misma información
- Se les pide que estimen
- Luego se devuelve al grupo de expertos los resultados y toda la información adicional que se tenga
- Se les pide una nueva estimación
- Entre las estimaciones deben pasar entre 1 y 2 días, no mucho más de eso
- En general, luego de 3 o 4 rondas la estimación debe tender a converger
- Ventaja
 - Tener múltiples opiniones sin verse afectadas por otros
- Si converge -> reunión para confirmar, ver preocupaciones, etc.
- Si no converge -> se hace reunión para ver diferencias. Si en la reunión no converge, se pueden utilizar esos rangos para hacer funciones de probabilidad.

Variantes de Delphi

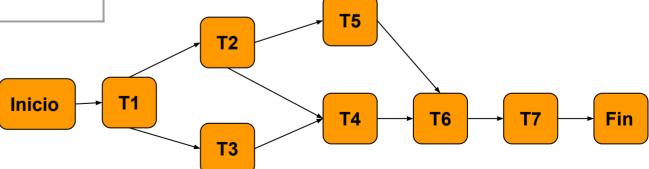
- Wideband Delphi
 - Reunión de los expertos al principio para discutir el proyecto, permitir tiempo para reflexionar y brindar estimaciones anónimas
 - Puede existir influencia de un estimador a otro
- Planning poker
 - Todo en una misma reunión
 - Lo vamos a ver en la 4° clase

<u>Algoritmos</u>

- Formula matemática
- E = A x Size elevado B x M
 - A: es un factor constante organizacional
 - Size: medida del producto por ej. puntos de función
 - B: es complejidad, en general entre 1 y 1.5
 - M: es factor que considera proceso, atributos, equipo, etc.
- SLOC (métrica de tamaño)
- Su uso puede sonar muy atractivo pero... tiene problemas:
 - Muy difícil de aplicar en etapas tempranas
 - La estimación de B y M son subjetivas
 - o En general son complejos y difíciles de usa
 - Es necesario calibrar a la propia historia organizacional. No todas las organizaciones recolectan suficientes datos para usarlos para calibrar
- Se recomienda el uso de tres valores. Por ejemplo: peor caso, mejor y más probable.

COCOMO II

- De COCOMO (constructive cost model), Bohem 1981
- Datos recolectados de varios proyectos de diferentes tamaños
- Se analizan estos datos y se definen fórmulas
- Estas fórmulas relacionan: tamaño de sistema, del producto y equipo
- 4 sub-modelos:
 - Composición de aplicaciones
 - Diseño temprano
 - Reuso
 - Modelo post arquitectura


Para sus casas profundizar en sommerville 23.5.1

Desarrollar el cronograma

- Ya:
 - Relevamos
 - Definimos el alcance
 - Creamos la EDT
 - Definimos las actividades
 - Estimamos
- Y ahora?
 - A armar el cronograma!!
 - Definamos:
 - Grafo de precedencias
 - Camino critico
 - Creemos el cronograma!

Grafo de precedencias

Tarea	Estimación	Precedencia
Inicio	0	-
T1	2	Inicio
T2	4	T1
Т3	3	T1
T4	1	T2, T3
T5	6	T2
Т6	5	T4, T5
T7	2	Т6
Fin	0	-

Desarrollar el cronograma - Camino crítico

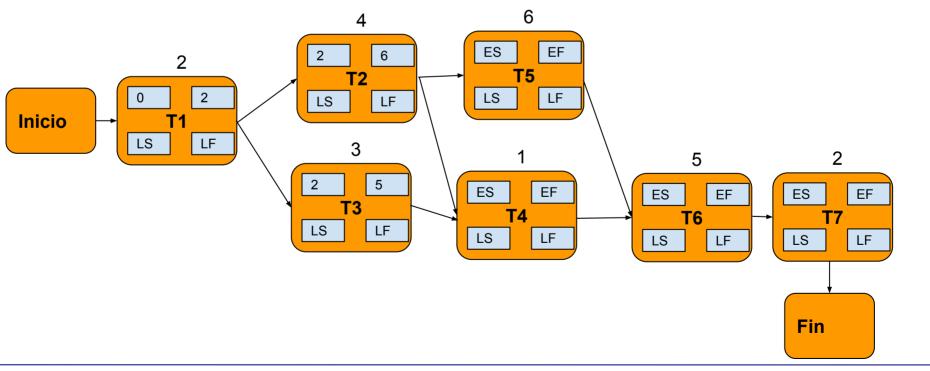
- El grafo creado con las actividades tiene varios caminos.
- Qué es el camino crítico?
 - Camino que si se retrasa, retrasa todo el proyecto, A ese camino, lo denominamos camino crítico.
 - Es el camino más largo en duración
 - Puede haber más de uno
 - Puede cambiar durante el ciclo de vida
 - No tiene relación con la importancia técnica de las actividades
- Por qué nos interesa conocerlo?

Desarrollar el cronograma - Camino crítico

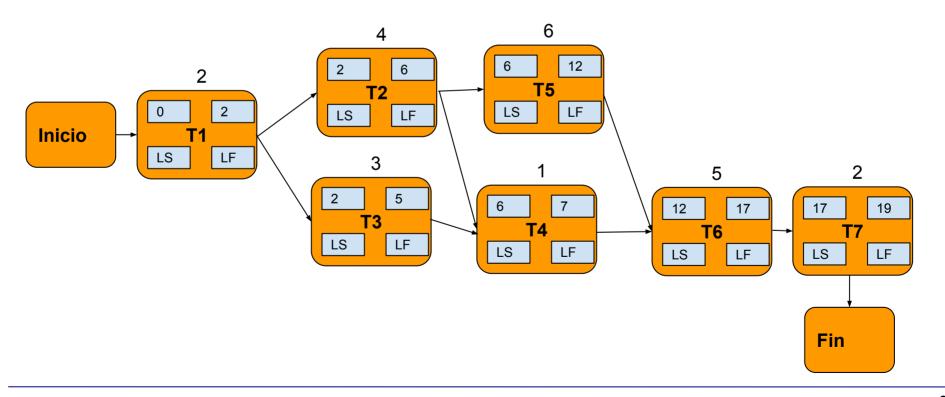
- Veamos un método para calcularlo.
- Definiciones:
 - Comienzo temprano (ES): lo antes posible que puede comenzar una actividad respetando las precedencias y duraciones.
 - Fin Temprano (EF): la fecha de fin si la actividad comienza lo antes posible y dura lo previsto.
 - Comienzo tardío (LS): lo más tarde que puede comenzar la actividad sin afectar la duración del proyecto.
 - Fin tardío (FT): lo más tarde que puede terminar la actividad sin afectar la duración del proyecto.
 - Holgura total: cuánto se puede retrasar el comienzo de un actividad sin afectar la fecha de fin del proyecto.
 - Holgura libre: cuánto se puede retrasar un actividad dentro de un camino sin retrasar la fecha de inicio temprana de cualquier actividad subsiguiente inmediata.

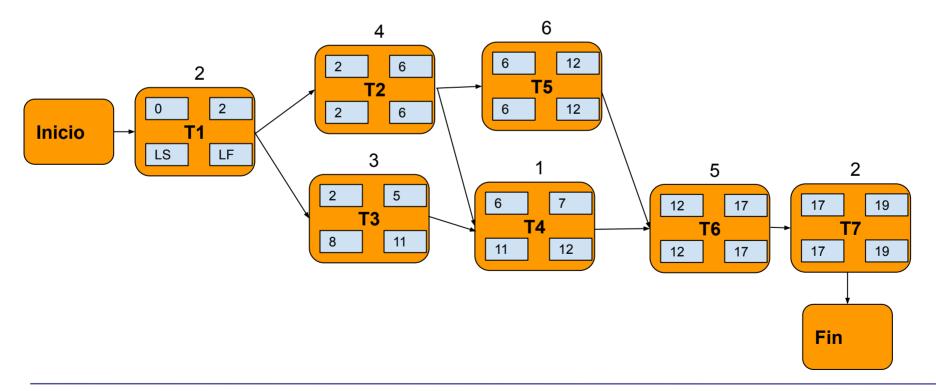
Camino crítico

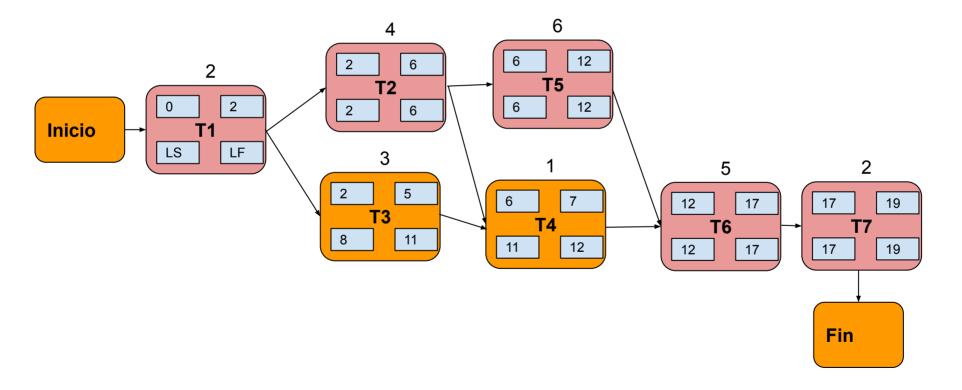
Definiciones:


 Camino crítico: integrado por actividades que si se retrasan, retrasan el proyecto (holgura total=0).

Método


- Consiste en hacer una recorrida hacia adelante en el grafo calculando ES y EF y luego una recorrida del final al inicio calculando LS y LF.
- La primera actividad, tiene ES=0
- El EF = ES + Duración de tarea
- Vamos a usar la siguiente nomenclatura:


Comencemos a aplicar el método al ejemplo que venimos manejando


- Si una actividad tiene más de una actividad precedente, como por ejemplo T4. ES = MAX(EF_Tareas_predentes). En este caso, máximo (5,6) = 6
- Siguiendo con nuestro ejemplo:

- Luego comienza la recorrida hacia atrás donde calcularemos LS y LF
- Para la última actividad LF=EF y LS=LF- Duración
- Para las actividades que tengan más de un actividad siguiente, en nuestro ejemplo T2. En este caso LF=min(LS_tareas_siguientes)
- Siguiendo con nuestro ejemplo:

- Las actividades de la ruta crítica son las que tienen holgura = 0.
- En nuestro ejercicio son las actividades: T1, T2, T5, T6 y T7 -> ¿Esto qué quiere decir?

Ejercicio

Descripción:

- La actividad 1 puede iniciar inmediatamente y tiene una duración estimada de 3 semanas.
- La actividad 2 puede iniciar después de que la actividad 1 esté finalizada y tiene una duración estimada de 3 semanas.
- La actividad 3 puede iniciar después de que la actividad 1 esté finalizada y tiene una duración estimada de 6 semanas.
- La actividad 4 puede iniciar después de que la actividad 2 esté finalizada y tiene una duración estimada de 8 semanas.
- La actividad 5 puede iniciar después de que la actividad 4 esté finalizada y después de que la actividad 3 esté finalizada. Esta actividad lleva 4 semanas.

Resolver

- ¿Cuál es la duración de la ruta crítica?
- ¿Cuál es la holgura de la actividad 2?

Cronograma

• Armemos el cronograma del ejemplo que venimos trabajando en clase:

Tareas/Semanas		N	11		M2					١	/ 13			N	14		M5					
	S1	S2	S 3	S4	S 5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20		
T1																						
T2																						
T3																						
T4		0.										92		0		00		0		97		
T5																						
T6																		88 .				
T7																						

Cronograma

Tareas/Semanas		N	11			N	12			N	//3			N	14		M5				
	S1	S2	S 3	S4	S 5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	
T1																					
T2																					
T3																					
T4		0,												0		8		92		9	
T5																					
T6																					
T7																					

- Si tenemos solo una persona, qué ocurre en las semanas S3, S4, S5, S6 y S7?
 - Debería trabajar 16 horas.. :(
 - Qué hacemos?
 - Nivelación de recursos

Cronograma - Nivelación de recursos

•

- Se ajustan fechas de inicio y/o fin cuando hay restricciones de recursos
- Se usa luego de determinar el camino crítico y cuando hay recursos:
 - Compartidos o críticos durante ciertos momentos
 - Disponibles en cantidades limitadas
 - Que se desean utilizar con un nivel constante de ocupación en un período de tiempo
- Es necesario cuando hay sobreasignación de recursos
- Puede cambiar el camino crítico, usualmente crece en tiempo.

Cronograma - Nivelación de recursos

•

- Solo tenemos 1 persona
- Entonces... -> Nivelación de recursos

	M1 M2					M2 M3					//3	13 M4					M5					M6				
Tareas/Semanas	S1	S2	S 3	S4	S 5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24		
T1																										
T2																								9		
T3												3 3 5 3														
T4		50.				. 50					į.			32		(a. —);		8		3						
T5																										
T6										65 S	0	8				8 0										
T7		90 2				S 63				00 8	·			60 E			·	00 8	\ \							

- Qué ocurrió con?
 - La duración del proyecto
 - El camino critico

Cronograma - Técnicas para comprimir

- Qué sucede si es necesario acortar el cronograma?
 - Dos técnicas, Crashing (compresión) y Fasttracking (ejecución rápida).
- Crashing
 - Objetivo: acortar el cronograma con el menor incremento de costo posible
 - Ejemplos: horas extra, más recursos, pago adicional por acelerar la entrega, etc.
 - Sólo funciona para actividades del camino crítico
 - No siempre es viable, ojo con el incremento de costos y riesgos
- Fast tracking
 - Actividades o fases que en general se hace secuenciales, se hacen en paralelo
 - Puede generar retrabajo y aumento en riegos
 - Solo funciona si la paralelización de tareas es viable

Cronograma - Ejercicio

- Para el ejercicio de camino crítico, crear un cronograma sabiendo que cuentan con 2 personas 1 full y otra medio tiempo.
- Realizar nivelación de recursos para mantener la asignación del equipo en forma continua el mayor tiempo posible.

¿Qué tanto recuerdan de la clase?

Igresen a https://kahoot.it/