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Introduction

Another denominations: machine learning, statistical learning, artificial intelligence

The techniques of Statistical Learning can help solve the problems that frequently arise
when modeling an ecological problem, economic phenomenon, medical situation, climatic
situation, etc..

Idea: from a (training) data set, build and train a model that will allow, given a new
observation, to predict the category to which it belongs or some relevant output value.
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Examples

Predict whether an email is spam or not spam.

Predict whether a patient is prone to heart disease.

Estimate the ozone rate in a city taking into account climatic variables.

Predict the absence or presence of a species in a given environment.

Predicting customer leaks for a financial institution.

Identify handwritten figures of postcards in envelopes.

Split a population into several subgroups.
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Statistical Learning
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Framework of Machine Learning

General framework:
L a data basis.

We search about f : X → Y a good predictor or a good explainer.

Supervised Learning: L = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y ⊂ Rd × R
X : input variable, independent variable, explanatory (real o multidimensional), continuous,
categorical, binary, ordinal.

Y : output variable, dependent variable, real o categorical.

I Classification: y ∈ {−1, 1} (binary) or y ∈ {1, . . . ,K} (multiclass).
I Regression: y ∈ R.

Unsupervised Learning L = {x1, . . . , xn} ⊂ X ⊂ Rd

I Clustering
I Density estimation

In all cases, the sample L is a collection of n independents realization of a multivariate
random variable (X ,Y ) or X
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A little formality

Let see how three famous problem in Statistics can be viewed as statistical learning problem.

Consider a loss function L, i.e L(y , u) which measures the cost of deciding u = f (x) for the input
x knowing that y is the true output.

Ejemplos:

1 L(y , u) = 1{y 6=u} (classification)

2 L(y , u) = (y − u)2 (regression)

3 L(u) = −log(u) (density estimation)

We look for a function fC (the original), among all the functions of a certain class C, that
minimizes the expected value of L (which we call risk or Expected Predictive Error), i.e:

fC = Argmin
f∈C

RL(f ) = Argmin
f∈C

E
(
L(Y , f (X )

)
The choice of C depends on the nature of the phenomenon being modeled, the hypotheses and
experience on the data available, the opinion of the experts, etc.
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A little formality

In practice, this predictor is constructed from a data set L = {(x1, y1), (x2, y2), . . . , (xn, yn)}
where xi ∈ X ⊂ Rd and yi ∈ Y = {1, . . . ,K} or yi ∈ Y ⊂ R where it supposed that all the n
labeled observations of L are independent realization of the variable (X ,Y ) with unknown
distribution law.
As it is impossible to lead with the expected risk (as distribution of (X ,Y ) is unknown), the goal
consists to minimize the empirical risk

Rn,L(f ) =
1

n

n∑
i=1

L
(
yi , f (xi )

)
That is to search a function f̂n ∈ C such that:

f̂n = Argmin
f∈C

Rn,L(f ) = Argmin
f∈C

1

n

n∑
i=1

L
(
yi , f (xi )

)
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The classification problem

For example, in a classification problem if y ∈ {1, . . . ,K}, we use as loss function
L(x , y , u) = 1{u 6=y}.

The associated risk with L is:
RL(f ) = P

(
Y 6= f (X )

)
and the empirical risk is

RL,n(f ) =
1

n
#{i : f (xi ) 6= yi}

The function that minimizes RL(f ) is

f ∗(x) = Argmax
k∈{1,...,K}

P(Y = k|X = x)

and predicts the class k that maximizes the posterior probability of Y knowing X . This classifier
is known as Bayes classifier and can be interpreted as follows:, the problem is reduced in looking
for that function that minimizes the amount of errors committed on the sample.
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The classification problem

Suppose our problem is binary and we want to classify the observations into two categories: 0
and 1. In this case the Bayes classifier is the function f ∗ that minimizes the probability of being
wrong:

f ∗ = Argmin
f :X→{0,1}

P(f (X ) 6= Y )

Observe that:

f ∗(x) =

{
1 si P(Y = 1|X = x) ≥ 1

2
0 si P(Y = 1|X = x) < 1

2

= Argmax
y∈{0,1}

P(Y = y |X = x)
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The classification problem

Another justification of Bayes Classifier:

RL(f ) = Argmin
f∈C

E
(
L(Y , f (X )

)
= EX

(
K∑

k=1

L(k, f (x))P(Y = k|X = x)

)
We have to minimize pointwise this quantity:

f (x) = k∗ = Argmin
k

K∑
k=1

L(k, f (x))P(Y = k|X = x)

Suppose we have two classes 1 and 2, then if k = 1:

L(1, 1)P(Y = 1|X = x) + L(2, 1)P(Y = 2|X = x) = P(Y = 2|X = x) = 1− P(Y = 1|X = x)

and if k = 2:

L(1, 2)P(Y = 1|X = x) + L(2, 2)P(Y = 2|X = x) = P(Y = 1|X = x) = 1− P(Y = 2|X = x)

then
f (x) = Argmin

k∈{1,2}
(1− P(Y = k|X = x)) = Argmax

k∈{1,2}
P(Y = k|X = x)
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The classification problem

In the multiclass context, that is when there are more than two categories and the set of labels is
{1, . . . ,K}, the Bayes’ classifier is the one that assigns the label k to observation x that has the
highest posterior probability, that is to say

f ∗(x) = Argmax
k∈{1,...,K}

P(Y = k|X = x)

The Bayes classifier produces the smallest error that any classifier can make. The error if X = x0

is
1− max

k∈{1,...,K}
P(Y = k|X = x0)

and therefore the error rate, covering all the possible values x0 of X is

1− E
(

max
k∈{1,...,K}

P(Y = j |X )

)
This quantity is called Bayes error rate. However, in real problems, not knowing the distribution,
it is impossible to calculate Bayes error rate.

Many algorithms try to estimate posterior probabilities and classify the observation in that class
that maximize it (KNN, CART, Boosting, etc.)
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The regression problem

In a regression problem we look at a function f : Rd → R so that, for a new observation (x , y),
the prediction f (x) is a good approximation of y in the sense that distance between f (x) and y is
small. We use as loss function L(y , u) = (u − y)2.
the associate risk L is:

RL(f ) = E(X ,Y )

[
(Y − f (X ))2

]
and the empirical risk is

RL,n(f ) =
1

n

n∑
i=1

(
yi − f (xi )

)2

The function that minimizes RL(f ) is

f ∗(x) = m(x) = E(Y |X = x)

If instead of minimizing theoretical risk we minimize empirical risk, then the solution is the
function that minimizes the least squares method.
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Approach errors

Let summarize the different functions previously encountered:

f is the theoretical predictor (we don’t know it).

fC is the best among all possible predictors within a class of functions C (we don’t know it).

f̂n is the predictor we use in practice, the function that minimizes empirical risk:

n

C

Clase de funciones C

Error de estimación
(controlable)

Error de modelización

f
f

f
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Approach errors

Modelling error (associated with bias): f − fC
It depends on the choice of class C. Observe that if we consider as the family of all possible
functions, we will have overfitting.

Estimation error (associated with the variance): f̂n − fC
It is a statistical error, if the size of the sample is large, under certain hypotheses about the

class C, it is true that f̂n converge, when n tends to infinity to fC . In fact it is a convergence
of the risks (Vapnik’s theorem)

Theorem 1

The Fundamental Theorem of Learning (Vapnik, 1997) states that, under certain conditions on

the class of functions C, f̂n “converges” to fC (risks through) . These conditions are related to
the dimension of Vapnik-Chervonenkis (VC dimension) of the function class C. The VC
dimension measures “how big” is an infinite class of functions, so if C is not too large, that is,
the VC dimension is finite, is in the hypothesis of the Fundamental Theorem of Learning
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How estimate f ?

The goal is from a sample L = {(x1, y1), (x2, y2), . . . , (xn, yn)} estimate an unknown function f ,

finding an estimator f̂ such that

y ≈ f̂ (x)

for a new observation (x , y). As we say before, we suppose that observations of L are n
independent realizations of a multivariate random variable (X ,Y ) of unknown distribution.

1 Parametric methods. The problem of estimating f is reduced to estimate some parameters,
after assuming that f belongs to a certain family of functions.

1) An assumption is made about the shape of the model, for example linear

f (X ) = β0 + β1X1 + · · ·+ βpXp

where we have to estimate β0, β1, . . . , βp .
1 After the model is selected, it is trained from L. For example, in the case of the linear

model,
β̂ = (X ′X )−1X ′Y

where

X =


1 x11 . . . x1p

1 x21 . . . x2p

...
...

. . .
...

1 xn1 . . . xnp


n×(p+1)

, Y =


y1

y2

...
yn

 ∈ Rn, β̂ =


β̂0

β̂1

...

β̂p

 ∈ Rp+1
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How estimate f ?
2) Non parametric methods. No assumption is made about the nature of f . In general, it

allows covering a greater spectrum of forms for f , making the model more plausible to the
true f . However, in general, a large number of observations is needed to obtain a
performant model.

|
Temp < 82.5

Wind < 7.15

Solar.R < 79.5

Temp < 77.5

Wind < 10.6

Temp < 88.5

Solar.R < 205

 61.00

 12.22

 20.97  34.56

 74.54

 83.43 102.40

 48.71

Ozone

|
Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor

virginica virginica virginica

Iris

Figure: Classification and Regression Trees (Breiman, 1984)
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Performance vs Interpretability
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Evaluation of the model
1 In regression quality of the fitting of a predictor can be evaluated by the mean squared error

MSE:

MSE =
1

n

n∑
i=1

(
yi − f̂ (xi )

)2

It will be small if the predictions are close to the true response values and large if for some
observations the prediction and the label are very different.

However, evaluating the performance of the model on the data with which it has been
trained, is not very interesting, or at least it is not as interesting as evaluating it on fresh

data, which were not used for the estimation of f̂ .

The performance of f̂ (construct over L) is evaluated on a testing set
T = {(z1, u1), (z2, u2), . . . , (zs, us)} computing the test-MSE (generalization error):

1

s

s∑
i=1

(
ui − f̂ (zi )

)2

In practice, original data set is divided in two parts: the first, L, usually 2/3, to train the
model, and the remaining 1/3, T , to test it. Also in this way, the overfitting is avoided

2 In classification the error is measured with the misclassified rate:

1

n

n∑
i=1

1{yi 6=ŷi}

where ŷi is the class prediction of f for observation i .
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trained, is not very interesting, or at least it is not as interesting as evaluating it on fresh

data, which were not used for the estimation of f̂ .

The performance of f̂ (construct over L) is evaluated on a testing set
T = {(z1, u1), (z2, u2), . . . , (zs, us)} computing the test-MSE (generalization error):

1

s

s∑
i=1

(
ui − f̂ (zi )

)2

In practice, original data set is divided in two parts: the first, L, usually 2/3, to train the
model, and the remaining 1/3, T , to test it. Also in this way, the overfitting is avoided

2 In classification the error is measured with the misclassified rate:

1

n

n∑
i=1

1{yi 6=ŷi}

where ŷi is the class prediction of f for observation i .
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where ŷi is the class prediction of f for observation i .

M.Bourel (IMERL, UdelaR) March 21, 2019 20 / 28



Evaluation of the model
1 In regression quality of the fitting of a predictor can be evaluated by the mean squared error

MSE:

MSE =
1

n

n∑
i=1

(
yi − f̂ (xi )

)2

It will be small if the predictions are close to the true response values and large if for some
observations the prediction and the label are very different.

However, evaluating the performance of the model on the data with which it has been
trained, is not very interesting, or at least it is not as interesting as evaluating it on fresh

data, which were not used for the estimation of f̂ .

The performance of f̂ (construct over L) is evaluated on a testing set
T = {(z1, u1), (z2, u2), . . . , (zs, us)} computing the test-MSE (generalization error):

1

s

s∑
i=1

(
ui − f̂ (zi )

)2

In practice, original data set is divided in two parts: the first, L, usually 2/3, to train the
model, and the remaining 1/3, T , to test it. Also in this way, the overfitting is avoided

2 In classification the error is measured with the misclassified rate:

1

n

n∑
i=1

1{yi 6=ŷi}
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Bias-variance trade-off

If we assume that y = f (x) + ε, it is possible to prove that the expected value of the MSE for a
fixed test value x0, can be decomposed as:

E
(
y0 − f̂ (x0)

)2
= Var

(
f̂ (x0)

)
+
[
Sesgo

(
f̂ (x0)

)]2
+ Var(ε)

As Var
(
f̂ (x0)

)
and

[
Sesgo

(
f̂ (x0)

)]2
are non negatives, it follows that E

(
y0 − f̂ (x0)

)2
has as

lower bound Var(ε).

We call variance to the amount that varies f̂ if we change the training set (different set of

workouts produce different f̂ ). Under ideal conditions, the estimate of f does not change
much if we change the training sets. In general, very flexible statistical models (with many
parameters) have high variance. For example in the case of simple linear regression, when
we change an element of the data set, the estimator does not vary so much. On the other
hand if the model is very adjusted, changing a point produces a significant change in the
estimation.

Bias refers to the modelling error: explaining a real and complicated problem by a simpler
mathematical model. For example, linear models assume that there is a linear relationship
between Y and explanatory variables X1, . . . ,Xp which clearly has little chance of
happening, so the bias will be important. In general, flexible statistical methods have a little
bias.
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Bias-variance trade-off
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Bias-variance trade-off. Example
Several estimators (smoothing splines) are considered for different data sets (example extracted
of James, Witten, Hastie and Tibshirani book).
Example 1. On the left hand three estimators with different flexibility adjusting the same data
points and on the right hand the MSE curve of the flexibility on the training set (grey) and on a
generalization set (red).
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Bias-variance trade-off. Example
Example 2. On the left hand three estimators with different flexibility adjusting the same data
points and on the right hand the MSE curve of the flexibility on the training set (grey) and on a
generalization set (red).
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Bias-variance trade-off. Example
Example 3. On the left hand three estimators with different flexibility adjusting the same data
points and on the right hand the MSE curve of the flexibility on the training set (grey) and on a
generalization set (red).
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Bias-variance trade-off. Example

Figure: The three graphs refer to the MSE, bias and variance curves of three previous examples
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Bias-variance trade-off. Example

The choice of the model will also be important to consider it a classification problem:
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