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Preface

Many practical problems require the fitting of a probability distribution to a data
sample, and in many fields of application the available data consist of not just a
single sample but a set of samples drawn from similar probability distributions. It
is natural to wonder whether the distribution for one sample can be more accu-
rately estimated by using information not just from that sample but also from the
other related samples. In the environmental sciences the data samples are typically
measurements of the same kind of data made at different sites, and the process
of using data from several sites to estimate the frequency distribution is known as
regional frequency analysis. We have developed an approach to regional frequency
analysis that is statistically efficient and reasonably straightforward to implement.
Our aim in this monograph is to present a complete description of our approach:
the specification of all necessary computations, a description of the theoretical
statistical background, an assessment of the method's performance in plausible
practical situations, recommendations to assist with the subjective decisions that
are inevitable in any statistical analysis, and consideration of how to overcome some
of the difficulties often encountered in practice. The technical level of exposition is
intended to be comprehensible to practitioners with no more than a basic knowledge
of probability and statistics, including an understanding of the concepts defined in
Sections 2.1-2.3.

The origins of our work can be traced to the early 1970s, when there was a growing
awareness among hydrologists that annual maximum streamflow data, although
commonly modeled by the Gumbel distribution, often had higher skewness than was
consistent with that distribution. Moment statistics were widely used as the basis for
identifying and fitting frequency distributions, but to use them effectively required
knowledge of their sampling properties in small samples. A massive (for the time)
computational effort using simulated data was performed by Wallis, Matalas, and
Slack (1974). It revealed some unpleasant properties of moment statistics - high bias
and algebraic boundedness. Wallis and others went on to establish the phenomenon

XI



xii Preface

of "separation of skewness," which is that for annual maximum streamflow data "the
relationship between the mean and the standard deviation of regional estimates of
skewness for historical flood sequences is not compatible with the relations derived
from several well-known distributions" (Matalas, Slack, and Wallis, 1975). Separa-
tion can be explained by "mixed distributions" (Wallis, Matalas, and Slack, 1977) -
regional heterogeneity in our present terminology - or if the frequency distribution
of streamflow has a longer tail than those of the distributions commonly used in the
1970s. In particular, the Wakeby distribution does not exhibit the phenomenon of
separation (Landwehr, Matalas, and Wallis, 1978). The Wakeby distribution was
devised by H. A. Thomas Jr. (personal communication to J. R. Wallis, 1976). It
is hard to estimate by conventional methods such as maximum likelihood or the
method of moments, and the desirability of obtaining closed-form estimates of
Wakeby parameters led Greenwood et al. (1979) to devise probability weighted
moments. Probability weighted moments were found to perform well for other
distributions (Landwehr, Matalas, and Wallis, 1979a; Hosking, Wallis, and Wood,
1985b; Hosking and Wallis, 1987a) but were hard to interpret. Hosking (1990)
found that certain linear combinations of probability weighted moments, which he
called "L-moments," could be interpreted as measures of the location, scale, and
shape of probability distributions and formed the basis for a comprehensive theory
of the description, identification, and estimation of distributions.

The modern use of the index-flood procedure stems from Wallis (1981, 1982),
who used it in conjunction with probability weighted moments and the Wakeby
distribution as a method of estimating quantiles in the extreme upper tail of the
frequency distribution. Comparative studies showed that this "WAK/PWM" al-
gorithm, and analogs in which other distributions were fitted, outperformed the
quantile estimation procedures recommended in the U.K. Flood Studies Report
(Hosking, Wallis, and Wood, 1985a) and the U.S. "Bulletin 17" (Wallis and Wood,
1985). Later work investigated the performance of this index-flood procedure in the
presence of paleological and historical data (Hosking and Wallis, 1986a,b), regional
heterogeneity (Lettenmaier, Wallis, and Wood, 1987), and intersite dependence
(Hosking and Wallis, 1988). The practical utility of regional frequency analysis
using this index-flood procedure, however, still required subjective judgement at
the stages of formation of the regions and choice of an appropriate frequency dis-
tribution for each region; statistics to assist with these judgements were developed
by Hosking and Wallis (1993).

The foregoing chronology describes our own work, but the complete theory
and practice of regional frequency analysis of course involves the work of many
other authors, whose contributions we have acknowledged (fairly, we hope!) in the
following chapters.
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Errata

page 64, Table 4.1. In column 4 (No. of sites), row 9, for "2" read "21".

page 74, line 7. For "600 kmt*"1" read "l^OOkmhr"1".

page 76, line 6. After "range" insert "of.

page 124, line - 3 . For "/? > 40" read "/i > 100" (see next item).

page 125, Fig. 7.13. Figure 7.13 shows RMSE of growth curve, not quantiles. A
corrected figure is shown below. Observe that, compared with the original version,
it is more favorable to regional estimation over at-site estimation.
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Fig. 7.13, corrected. Regional average relative RMSE of estimated quantiles for heteroge-
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GEV.

page 203, equation (A.100). The computed value of X4 has the wrong sign. The
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(Note: the values computed by routine LMRKAP in the LMOMENTS package cited
on page 13 are correct.)

pages 220-224. All roman page numbers in the Author Index and the Subject
Index are too large by 2. For example, the entry for "separation of skewness"
should be xii, not xiv.



1

Regional frequency analysis

1.1 Introduction

Frequency analysis is the estimation of how often a specified event will occur.
Estimation of the frequency of extreme events is often of particular importance.
Because there are numerous sources of uncertainty about the physical processes
that give rise to observed events, a statistical approach to the analysis of data is
often desirable. Statistical methods acknowledge the existence of uncertainty and
enable its effects to be quantified. Procedures for statistical frequency analysis
of a single set of data are well established. It is often the case, however, that
many related samples of data are available for analysis. These may, for example,
be meteorological or environmental observations of the same variable at different
measuring sites, or industrial measurements made on samples of similar products.
If event frequencies are similar for the different observed quantities, then more
accurate conclusions can be reached by analyzing all of the data samples together
than by using only a single sample. In environmental applications this approach
is known as regional frequency analysis, because the data samples analyzed are
typically observations of the same variable at a number of measuring sites within a
suitably defined "region." The principles of regional frequency analysis, however,
apply whenever multiple samples of similar data are available.

Suppose that observations are made at regular intervals at some site of interest.
Let Q be the magnitude of the event that occurs at a given time at a given site.
We regard Q as a random quantity (a random variable), potentially taking any
value between zero and infinity. The fundamental quantity of statistical frequency
analysis is the frequency distribution, which specifies how frequently the possible
values of Q occur. Denote by F(x) the probability that the actual value of Q is at
most x:

(1.1)
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F(x) is the cumulative distribution function of the frequency distribution. Its inverse
function x(F), the quantile function of the frequency distribution, expresses the
magnitude of an event in terms of its nonexceedance probability F. The quantile of
return period T, Q7, is an event magnitude so extreme that it has probability \/T
of being exceeded by any single event. For an extreme high event, in the upper tail
of the frequency distribution, QT is given by

QT=x(l-l/T) (1.2)

or

F(QT)=l-l/T; (1.3)

for an extreme low event, in the lower tail of the frequency distribution, the corre-
sponding relations are QT = x{\/T) and F(QT) = l/T. The goal of frequency
analysis is to obtain a useful estimate of the quantile QT for a return period of
scientific relevance. This period may be the design life of a structure (T = 50
years, say) or some legally mandated design period (e.g., T = 10000 years in some
dam safety applications). More generally, the goal may be to estimate QT for a
range of return periods or to estimate the entire quantile function. To be "useful,"
an estimate should not only be close to the true quantile but should also come with
an assessment of how accurate it is likely to be.

If data are available at the site of interest, then the observed data provide a
sample of realizations of Q. In many environmental applications the sample size
is rarely sufficient to enable quantiles to be reliably estimated. It is generally held
that a quantile of return period T can be reliably estimated from a data record
of length n only if T < n. However, in many engineering applications based on
annual data (e.g., annual maximum precipitation, streamflow, or windspeed) this
condition is rarely satisfied - typically n < 50 and T = 100 or T = 1000. To
overcome this problem, several approaches have been devised that use alternative
or additional sources of data. This monograph is concerned with one of them -
regional frequency analysis.

Regional frequency analysis augments the data from the site of interest by using
data from other sites that are judged to have frequency distributions similar to
that of the site of interest. If a set of N sites each with n years of record can be
found, then one might naively hope that the Nn data values will provide accurate
estimates of quantiles as extreme as the Afra-year quantile QNW In practice this is
not reasonable; problems arise because frequency distributions at different sites are
not exactly identical and because event magnitudes at different sites may not be
statistically independent.
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Nonetheless, we advocate the use of regional frequency analysis, because we
believe that a well-conducted regional analysis will yield quantile estimates accu-
rate enough to be useful in many realistic applications. This conclusion is drawn
principally from recent research (Hosking et al., 1985a; Lettenmaier and Potter,
1985; Wallis and Wood, 1985; Lettenmaier et al., 1987; Hosking and Wallis, 1988;
Potter and Lettenmaier, 1990) that has investigated the properties of variants of
the "regional PWM algorithm," a regional frequency analysis procedure based on
statistical quantities called "probability weighted moments" (PWMs) and first used
by Greis and Wood (1981) and Wallis (1981, 1982). Cunnane (1988) reviewed
twelve different methods of regional frequency analysis and rated the regional
PWM algorithm as the best. L-moments (Hosking, 1986a, 1990) are statistical
quantities that are derived from PWMs and increase the accuracy and ease of use of
PWM-based analysis. In this monograph we describe a regional frequency analysis
procedure based on L-moments, and we show how the procedure can be used to
obtain quantile estimates. The next section sets out the principles that underlie
our approach.

1.2 Current ideas

Regional frequency analysis has been an established method in hydrology for many
years; the index-flood procedure of Dalrymple (1960) is an early example. Several
methods recommended by national organizations for general use by hydrologists
have a regional component. Bulletin 17 of the U.S. Water Resources Council (1976,
1977,1981) fits a log-Pearson type III distribution to annual maximum streamflows
at a single site, that is, the distribution of log Q is assumed to be Pearson type III.
The skewness of the distribution of log Q is estimated by combining a data-based
estimate with a value read from a map. The method uses regional information
insofar as the mapped values are derived from observed skewness statistics at many
sites. It is discussed in more detail in Section 8.3. The method recommended in
the U.K. Flood Studies Report (Natural Environment Research Council, 1975) has
a strong regional component. It divides the British Isles into eleven regions with
region boundaries largely following those of major catchments. The frequency
distribution of annual maximum streamflow is assumed to be the same at each
gaging site in a region after the streamflow values have been divided by the site
mean annual maximum streamflow.

Since these methods were published, research has indicated several ways in
which regional frequency analysis can be improved and several principles that are
useful for constructing a regional frequency analysis procedure.
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Frequency analysis should be robust

Statistical frequency analysis procedures, like virtually all scientific methods, pos-
tulate some kind of model for the process that generates the observed data. In most
environmental applications the actual data-generating mechanism is so complicated
that it is unreasonable to expect the model to be "true," that is, an exact representation
of the physical process. A model is at best an approximation. Therefore when fitting
a model to the data, any desirable attributes possessed by a model-fitting procedure
when the model is true may be irrelevant. Much more important is that the procedure
should yield quantile estimates whose accuracy is not seriously degraded when the
true physical process deviates from the model's assumptions in a plausible way. A
modeling procedure with this property is said to be robust.

To assess a frequency analysis procedure, use simulation
To establish the properties of a frequency analysis procedure, or to compare two or
more procedures, we recommend the use of Monte Carlo simulation. Though when
specifying a model for use in frequency analysis the exact mechanism by which
the data are generated may not be known, it can be recognized that some kinds of
departure from the model are plausible. For example, the frequency distribution
may have a heavier or a lighter tail than the model assumes, and magnitudes of
events occurring at the same time at different sites may be correlated. Data can be
generated according to whatever pattern of real-world data structure is of concern,
and the adequacy of the proposed modeling procedure can be assessed for such data.
The advantage of using simulated data for this purpose is that the true quantiles of
the frequency distribution are known, so it is easy to judge how well the modeling
procedure performs. This is not the case for methods that use only observed data,
such as split-sample testing or comparing probability plots of observed samples
and fitted distributions.

Regionalization is valuable
Regionalization is the inclusion in frequency analysis of data from sites other than
the site at which quantile estimates are required. Because more information is used
than in an "at-site" analysis using only a single site's data, there is potential for
greater accuracy in the final quantile estimates. But the extra information comes at
the price of having to specify the relationships between frequency distributions at
different sites. For example, index-flood procedures, such as that described in Sec-
tion 1.3, assume that frequency distributions at different sites are identical apart from
a scale factor, that is, that the sites form a "homogeneous region." Benson (1962)
suggested that this assumption was not valid for U.S. streamflow data because the
coefficient of variation of the frequency distribution tends to decrease as catchment
area increases. Thus there is reason to doubt whether regionalization is worthwhile.
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However, research has shown these doubts to be unjustified. Even though a region
may be moderately heterogeneous, regional analysis will still yield much more
accurate quantile estimates than at-site analysis (Lettenmaier and Potter, 1985;
Lettenmaier et al., 1987; Hosking and Wallis, 1988; Potter and Lettenmaier, 1990).

Regions need not be geographical
Regional frequency analysis is advantageous when the sites forming a region have
similar frequency distributions. The term "region" suggests a set of neighboring
sites, but geographical closeness is not necessarily an indicator of similarity of
the frequency distributions. Indeed, for certain kinds of data, some aspects of the
frequency distribution can show sharp discontinuities when considered as functions
of the location of the site. In the analysis of streamflow data, for example, consider
a site downstream of the confluence of two rivers and sites on the two upstream
branches. It is plausible that the shape of the frequency distribution could be very
different at the three sites. For this reason, maps of regional skewness, as used by
Bulletin 17 (U.S. Water Resources Council, 1981), seem likely to be very unreliable.

It is reasonable to identify regions by measuring at each site the variables that
are thought to influence the frequency distribution - the "site characteristics" - and
then grouping together sites that are adjacent in some suitably defined space of site
characteristics. The characteristics used to define this space could be geographical
- latitude and longitude, say - but other characteristics may be more directly
and physically related to the frequency distribution at the site. In the analysis of
streamflow data, for example, such characteristics might include altitude, mean
annual precipitation, drainage basin area, soil type, and the location and size of
swamps and lakes.

A further advantage of choosing a region that is geographically dispersed rather
than compact is that the frequency distributions at the different sites are then less
likely to be highly correlated. This reduces the variability of the eventual quantile
estimates.

Frequency distributions need not be "textbook" distributions
Lognormal, Pearson type III, and extreme-value type I (Gumbel) are examples
of probability distributions for which a fairly thorough mathematical and statis-
tical theory has been developed and which resemble in their general shape what
experience suggests a typical frequency distribution should look like for many
environmental variables. It is therefore tempting to declare one such "textbook"
distribution to be the frequency distribution for fitting to data or to choose a
distribution from among a small group of textbook distributions. A problem with
this approach is that the sample sizes that are typically available are not so large
that the frequency distribution can be unequivocally identified. In particular, failure
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to detect that the frequency distribution is heavy-tailed, with Qj increasing rapidly
as T increases, will result in severe underestimation of extreme quantiles. Several
authors have found evidence that frequency distributions of environmental data
can be heavy-tailed (Houghton, 1978; Landwehr et al., 1978; Rossi, Fiorentino,
and Versace, 1984; Ahmad, Sinclair, and Werritty, 1988). It is therefore wise
to consider as candidate frequency distributions a wide range of moderate- and
heavy-tailed distributions or to use a distribution with enough free parameters that
it can mimic a wide range of plausible frequency distributions. The Wakeby dis-
tribution (Houghton, 1978), with five parameters, is one such "mimic-everything"
distribution.

L-moments are useful summary statistics
Most regional frequency analysis procedures attempt to fit to the data a distribution
whose form is specified apart from a finite number of undetermined parameters.
Sample moment statistics, particularly skewness and kurtosis, are often used to
judge the closeness of an observed sample to a postulated distribution. However,
these statistics are unsatisfactory. They are algebraically bounded, with bounds
dependent on sample size, and in many small or moderate samples it is unusual for
sample skewness and kurtosis to take values anywhere near the population values.

We recommend an alternative approach based on the "L-moment" statistics
described in Chapter 2. These are analogous to the conventional moments but
can be estimated by linear combinations of the elements of an ordered sample, that
is, by L-statistics. L-moments have the theoretical advantages over conventional
moments of being able to characterize a wider range of distributions and, when
estimated from a sample, of being more robust to the presence of outliers in the data.
Experience also shows that, compared with conventional moments, L-moments are
less subject to bias in estimation. Examples and further comparisons of moments
and L-moments are given in Section 2.9.

1.3 An index-flood procedure

Index-flood procedures are a convenient way of pooling summary statistics from
different data samples. The term "index flood" arose because early applications
of the procedure were to flood data in hydrology (e.g., Dalrymple, 1960), but the
method can be used with any kind of data.

Suppose that data are available at N sites, with site i having sample size n\ and
observed data Qij,j = l,...,rii. Let Qt (F), 0 < F < 1, be the quantile function of
the frequency distribution at site /. The key assumption of an index-flood procedure
is that the sites form a homogeneous region, that is, that the frequency distributions
of the N sites are identical apart from a site-specific scaling factor, the index flood.
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We may then write

Qi(F) = mq(F), i = l,...,N. (1.4)

Here //,; is the index flood. We shall take it to be the mean of the at-site frequency
distribution, though any location parameter of the distribution may be used instead.
Smith (1989), for example, used the 90% quantile 2/(0.9). The remaining factor
in (1.4), q(F), is the regional growth curve, a dimensionless quantile function com-
mon to every site. It is the quantile function of the regional frequency distribution,
the common distribution of the Qij/fii.

The index flood is naturally estimated by #,,- = g,-, the sample mean of the data
at site /. Other location estimators such as the median or a trimmed mean could be
used instead.

The dimensionless rescaled data qtj — Qij/fa, j = 1 , . . . ,  w,-, i = 1 , . . . , N,
are the basis for estimating the regional growth curve q(F), 0 < F < 1. It is usually
assumed that the form of q(F) is known apart from p undetermined parameters
01, . . . , 0p, so we write q(F) as q(F;0\,..., 0p). For example, these parameters
may be the coefficient of variation and the skewness of the distribution, or the
L-moment ratios r, t 3 , . . . , defined in Section 2.4. The mean of the regional
frequency distribution is not an unknown parameter, because by taking /z; in (1.4)
to be the mean of the frequency distribution at site i we ensure that the regional
frequency distribution has mean 1. In our approach the parameters are estimated
separately at each site, the site-/ estimate of Ok being denoted by 0^\ These at-site
estimates are combined to give regional estimates:

1=1 1=1

This is a weighted average, with the site-/ estimate given weight proportional to n,-
because for regular statistical models the variance of 0^ is inversely proportional
to rii. Substituting these estimates into q(F) gives the estimated regional growth
curve q(F) = q(F\ Of,..., 0^). This method of obtaining regional estimates is
essentially that of Wallis (1981), except that the weighting proportional to ni is a
later addition, suggested by Wallis (1982). Somewhat different methods were used
by Dalrymple (1960) and the Natural Environment Research Council (1975).

The quantile estimates at site / are obtained by combining the estimates of /z;

Qi(F) = paqiF). (1.6)
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This index-flood procedure makes the following assumptions.

(i) Observations at any given site are identically distributed,
(ii) Observations at any given site are serially independent,

(iii) Observations at different sites are independent,
(iv) Frequency distributions at different sites are identical apart from a scale factor.
(v) The mathematical form of the regional growth curve is correctly specified.

The first two assumptions are plausible for many kinds of data, particularly for
annual totals or extremes, which are free from seasonal variations. It is a basic
assumption of most methods of frequency analysis that the events observed in the
past are likely to be typical of what may be expected in the future. This assumption
may be undermined when obvious sources of time trends are present; frequency
distributions for streamflow data, for example, are affected by changes in land
use and by artificial regulation of the flow. When sites affected by such obvious
sources of nonstationarity are removed from the data set, the assumption of identical
distributions for a site's observations is often reasonable.

The effect of serial dependence on at-site frequency analysis has been inves-
tigated by Landwehr et al. (1979a) and McMahon and Srikanthan (1982). They
considered frequency distributions of extreme-value type I and log-Pearson type III,
respectively, and found that serial dependence caused a small amount of bias and a
small increase in the standard error of quantile estimates. We conclude that a small
amount of serial dependence in annual data series has little effect on the quality
of quantile estimates. If trends, periodic variation, or serial dependence are present
to a large extent in the data, some kind of time-series analysis is likely to be more
appropriate than the time-independent frequency analysis considered here.

The last three assumptions are unlikely to be satisfied by environmental data.
Correlation between nearby sites may be expected for many kinds of data. Meteo-
rological events such as storms and droughts typically affect an area large enough to
contain more than one measuring site, and the event magnitudes at neighboring sites
are therefore likely to be positively correlated. The last two assumptions will never
be exactly valid in practice. At best they may be approximately attained, by careful
selection of the sites that are to be regarded as forming a region and by careful
choice of a frequency distribution that is consistent with the data. Therefore an
index-flood procedure can be appropriate only if it is robust to physically plausible
departures from these three assumptions. Recent research (Hosking et al., 1985a;
Lettenmaier and Potter, 1985; Wallis and Wood, 1985; Lettenmaier et al., 1987;
Hosking and Wallis, 1988) has shown that it is possible to construct index-flood
procedures that yield suitably robust and accurate quantile estimates.

The definition of a homogeneous region and the relation (1.4) between the at-site
quantile functions are appropriate when the quantity of interest, Q, can take only
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positive values. Some quantities, such as temperature measured on the Celsius scale,
can take both positive and negative values. The index-flood procedure described
here is not appropriate for such data, but analogous methods could be developed
based on suitable modifications of Eq. (1.4). For example, if instead of Eq. (1.4)
the frequency distributions in a region could be described by the location-scale
model Qt(F) = /z; + aiq(F), the regional shape estimation procedure described
in Section 8.2 would be appropriate.

An alternative approach to regional estimation is to model log Q rather than Q,
basing the analysis on logarithmically transformed data. Taking logarithms in
Eq. (1.4) gives

log Qi(F) = log/z, + logq(F). (1.7)

The index flood enters as an additive term, which makes some aspects of the analysis
easier. For example, if unbiased estimators of log/z; and log q(F) can be found,
their sum will be an unbiased estimator of log Qt (F). The disadvantage of using log-
transformed data is that low data values may become low outliers after logarithmic
transformation and have an undue influence on the estimates. In applications in
which estimation of quantiles in the upper tail of the distribution is of principal
importance, it is particularly unfortunate for low data values to have a strong effect
on the upper tail of the estimated frequency distribution. For this reason we generally
prefer to work with the original untransformed data.

1.4 Steps in regional frequency analysis

Given that data are available at a large number of sites and that quantile estimates
are required at each site, regional frequency analysis using an index-flood procedure
will involve the four steps outlined below.

Step L Screening of the data
As with any statistical analysis, the first stage of regional frequency analysis is
a close inspection of the data. Gross errors and inconsistencies should be elim-
inated and a check made that the data are homogeneous (stationary) over time.
External information can be useful here, especially information about methods of
data collection and measurement and about any changes over time that may have
affected the frequency distribution at any site.

Step 2. Identification of homogeneous regions
The next step in regional frequency analysis is the assignment of the sites to
regions. A region, a set of sites whose frequency distributions are (after appropriate
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scaling) considered to be approximately the same, is the fundamental unit of re-
gional frequency analysis. We do not suppose that the sites can be divided into
regions within which the homogeneity criterion (1.4) is exactly satisfied. Approxi-
mate homogeneity is sufficient to ensure that regional frequency analysis is much
more accurate than at-site analysis.

As noted in Section 1.2, regions need not be geographical, but should instead
consist of sites having similar values of those site characteristics that determine
the frequency distribution. Suitable site characteristics depend on the kind of data
being analyzed. Latitude and longitude are also site characteristics and may be
used as surrogates for unmeasured characteristics that vary smoothly with location.
The homogeneity of a proposed region should be tested by calculating summary
statistics of the at-site data and comparing the between-site variability of these
statistics with what would be expected of a homogeneous region. L-moments are
suitable statistics for this purpose.

Step 3. Choice of a frequency distribution
After a region has been identified, the final stage in the specification of the statis-
tical model is the choice of an appropriate regional frequency distribution, q(F)
in Eq. (1.4). This is a common statistical problem, often solved by applying a
goodness-of-fit test, a procedure that involves computing summary statistics from
the data and testing whether their values are consistent with what would be expected
if the data were a random sample from some postulated distribution. This approach
can be used in regional frequency analysis, but two extra considerations apply.
First, the available data are not a single random sample but a set of samples from
the different sites; and second, the chosen distribution should not merely fit the data
well but should also yield quantile estimates that are robust to physically plausible
deviations of the true frequency distribution from the chosen frequency distribution.

Step 4. Estimation of the frequency distribution
Estimation of the regional frequency distribution can be achieved by estimating the
distribution separately at each site and combining the at-site estimates to give a
regional average, as described in Section 1.3. An efficient method of doing this is
to combine the at-site L-moment statistics via the weighted average (1.5); we call
this method the regional L-moment algorithm.

There are two important situations in which the foregoing procedure must be
modified or extended.

First, there may be one site of special interest, such as a nuclear power plant or
an actual or proposed dam site, where the aim of the analysis is to obtain quantile
estimates for this site. In this case special care should be taken to make the site typical
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of the region to which it is assigned. So far as is possible, the site characteristics
of the site of interest should be typical of those of the other sites in its region and
should not be at either extreme of the range of values of the site characteristics.
This is to reduce the bias in quantile estimates that can occur at sites that are not
typical of the region as a whole.

Second, quantile estimates may be required at one or more ungaged sites, where
no data have been observed. On the basis of its site characteristics, an ungaged site
can be assigned to one of the regions identified for the gaged sites. This gives an
estimate of the regional growth curve at the ungaged site. There remains only the
problem of estimating the index flood, usually the mean /x of the at-site frequency
distribution, at ungaged sites. The most reasonable approach is to regard \JL as being
a function of site characteristics and to calibrate the relationship between \i and site
characteristics by using data from the gaged sites. This is discussed in Section 8.4.

1.5 Outline of the monograph

The following chapters expand on the approach described in the foregoing sections.
Chapter 2 contains a general introduction to L-moments, which form the basis

of our statistical methods.
Chapters 3 through 6 describe the four steps in regional frequency analysis listed

in Section 1.4. The first three steps involve subjective judgement; L-moments are
used to construct statistics that provide objective backing for these judgements.

Chapter 3 is concerned with the initial screening of data. L-moments can be
used to construct a discordancy measure, described in Section 3.2. This identifies
unusual sites, those whose at-site sample L-moment ratios are markedly different
from those of the other sites in the data set. The discordancy measure provides
an initial screening of the data and indicates sites where the data may merit close
examination.

Chapter 4 is concerned with the construction and testing of homogeneous regions.
Section 4.1 surveys methods of forming regions. After an initial set of regions has
been obtained, there is a need to test whether a proposed region is acceptably close to
homogeneous. This can be done by calculating summary statistics of the at-site data
and comparing the between-site variability of these statistics with what would be
expected of a homogeneous region. Section 4.3 describes a heterogeneity measure
that performs this test. The summary statistics that it uses are the sample L-moments.

Chapter 5 is concerned with the choice of an appropriate frequency distribution.
Section 5.2 describes a goodness-of-fit measure. This tests whether a candidate
distribution gives a good fit to a region's data: specifically, whether there is a
statistically significant difference between the regional average L-moments and
those of the fitted distribution.
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Table 1.1. Conversions between imperial
and metric units.

Imperial unit

inch
foot
mile
square mile
cubic foot

Metric equivalent

1 in = 25.4 mm
1 ft = 0.3048 m
l m i = 1.609 km
1 mi2 = 2.590 km2

lft3 = 0.02832 m3

Chapter 6 is concerned with the estimation of regional and at-site quantiles.
Section 6.2 describes the regional L-moment algorithm. Section 6.4 describes a
method of assessing the accuracy of estimated quantiles.

Chapter 7 studies the performance of the regional L-moment algorithm for a wide
range of possible regions.

Chapter 8 discusses some topics peripheral to our main concerns, including
variants of the basic index-flood procedure for regional frequency analysis, quantile
estimation at ungaged sites and the use of historical information.

Chapter 9 presents two detailed examples of regional frequency analysis, illus-
trating all the steps listed in Section 1.4.

The appendix contains specifications of the cumulative distribution functions
and quantile functions, and the relations between parameters and L-moments, for
a selection of distributions useful in regional frequency analysis.

The data used in the examples are of U.S. origin and are measured in imperial
units. Conversions to metric units are given in Table 1.1.

The methods described in this monograph involve a considerable amount of
computation but are comfortably within the scope of current personal computers and
mainframes. The numerical methods have been programmed as Fortran routines.
Hosking (1996) documents routines that perform the following calculations:

• computation of the cumulative distribution function and quantile function
of the distribution, the L-moments given the parameters, and the parameters
given the low-order L-moments for each of the distributions discussed in the
appendix - except the uniform distribution;

• computation of the probability weighted moments and L-moments of a data
sample;

• cluster analysis using Ward's method;
• computation of the discordancy, heterogeneity, and goodness-of-fit measures

described in Chapters 3-5;
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• fitting a distribution to a regional data set using the regional  L-moment algo-
rithm described in Chapter 6; and

• assessment of the accuracy of regional estimates using the procedure described
in Section 6.4.

The LMOMENTS package contains Fortran-77 source code for these routines. It is
freely available electronically from the authors, by request from hoskingOwat son.
ibm. com, or from the Statlib software repository, h t t p : / / l i b . s t a t . emu. edu/
general/lmoments.
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L-moments

2.1 Probability distributions

Let X be a random variable, taking values that are real numbers. The relative
frequency with which these values occur defines the frequency distribution or
probability distribution of X and is specified by the cumulative distribution function

F(x) = Pr[X <x], (2.1)

where Pr[A| denotes the probability of the event A. F{x) is an increasing function
of JC, and 0 < F(x) < 1 for all x. We shall normally be concerned with continuous
random variables, for which Pr[X = t] = 0 for all t, that is, no single value has
nonzero probability. In this case, F(.) is a continuous function and has an inverse
function x(.), the quantile function of X. Given any «, 0 < u <  1, x(u) is the
unique value that satisfies

F(x(u)) = u. (2.2)

For any probability /?, x(p) is the quantile of nonexceedance probability /?, that
is, the value such that the probability that X does not exceed x(p) is p. The goal
of frequency analysis is accurate estimation of the quantiles of the distribution of
some random variable. In engineering and environmental applications a quantile is
often expressed in terms of its return period, defined in Section 1.1.

If F(x) is differentiate, its derivative f(x) = j^F(x) is the probability density
function of X.

The expectation of the random variable X is defined to be

E(X)= / xdF(x)= / xf(x)dx (2.3)
J—oo J—oo

14
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provided that this integral exists. We may also write, via the transformation
u = F(x\

E(X) = [ x(u)du. (2.4)

Jo

A function g(X) of a random variable is itself a random variable and has expectation

poo poo r\
B{g(X)}= g(x)dF(x) = g(x)f(x)dx= g{x{u))du. (2.5)

J—oo J —oo J0

The dispersion of the values taken by the random variable X can be measured
by the variance of X,

var(Z) = E[{X - E(X)}2]. (2.6)

We shall occasionally use measures of the tendency of two random variables X
and Y to take large values simultaneously. This can be measured by the covariance
ofXandF,

cov(X, Y) = E[{X - E(X)}{Y - E(Y)}]. (2.7)

The correlation between X and F,

corr(X, Y) = cov(X, F)/{var(X) var(F)}1/2 , (2.8)

is a dimensionless analog of covariance, taking values between —1  and +1.

2.2 Estimators

In practice it is often assumed that the distribution of some physical quantity is
exactly known apart from a finite set of parameters 0\,..., Op. When needed for
clarity, we write the quantile function of a distribution with p unknown parameters
as x(u; 0 i , . . . , Op). In most applications the unknown parameters include a location
parameter and a scale parameter. A parameter § of a distribution is a location
parameter if the quantile function of the distribution satisfies

x{u\ £, 0 2 , . . . , 0 , ) = £ + x(*90, 92,..., Op). (2.9)
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A parameter a of a distribution is a scale parameter if the quantile function of the
distribution satisfies

x(u;a, 92,..., 0p) = a x x(u; 1, 92,..., 0P), (2.10)

or, if the distribution also has a location parameter £,

, a, 0 3 , . . . , 0p) = £ + a x *(M; 0, 1,03 0p). (2.11)

The unknown parameters are estimated from the observed data. Given a set of
data, a function 6 of the data values may be chosen as an estimator of 9. The
estimator 0 is a random variable and has a probability distribution. The goodness
of 9 as an estimator of 9 depends on how close 0 typically is to 9. The deviation
of 0 from 9 may be decomposed into bias - a tendency to give estimates that are
consistently higher or lower than the true value - and variability - the random
deviation of the estimate from the true value that occurs even for estimators that
have no bias.

Common measures of the performance of an estimator 0 are its bias and root
mean square error (RMSE), defined by

bias(0) = E0 - 9), RMSE(0) = {E0 - 6>)2}1/2. (2.12)

We say that 0 is unbiased if bias(0) = 0, that is, if E(0) = 9. Different unbiased
estimators of the same parameter may be compared in terms of their variance;
the ratio var(0(1))/var(0(2)) is the efficiency of the estimator #(2) relative to the
estimator 0(1). We have

RMSE(0) - [{bias(0)}2 + var(0)]1/2 , (2.13)

showing that RMSE combines the bias and variability of 0 to give an overall measure
of estimation accuracy. In regular statistical problems involving estimation based on
a sample of size n, both the bias and variance of 9 are asymptotically proportional
to n~l for large n (see, e.g., Cox and Hinkley, 1974, Section 9.2). The RMSE of 0
is therefore typically proportional to n~1/2.

Both the bias and RMSE of 0 have the same units of measurement as the
parameter 9. It is convenient to express bias and RMSE as ratios with respect
to the parameter itself. We thereby obtain dimensionless measures, the relative
bias, bias(0)/#, and the relative RMSE, RMSE(9)/9. These are the quantities that
we primarily use in Chapter 7 to compare different estimators in regional frequency
analysis.
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2.3 Moments

The shape of a probability distribution has traditionally been described by the
moments of the distribution. The moments are the mean

(2.14)

and the higher moments

fir = E(X - /x)r, r = 2, 3 , . . . . (2.15)

The mean is the center of location of the distribution. The dispersion of the distri-
bution about its center is measured by the standard deviation,

a = / 4 / 2 = {E(X - /x)2}1/2, (2.16)

or the variance, a2 = var(X). The coefficient of variation (CV), Cv = cr/in,
expresses the dispersion of a distribution as a proportion of the mean. Dimensionless
higher moments /xr//4 a r e a l s o used, particularly the skewness

y=fi3/l4/2 (2.17)

and the kurtosis

l (2.18)

Analogous quantities can be computed from a data sample x\, X2,. •., xn. The
sample mean

is the natural estimator of /x. The higher sample moments

mr =

are reasonable estimators of the /xr, but are not unbiased. Unbiased estimators
are often used. In particular, a2, /X3 and the fourth cumulant K4 = JJLA —  3 ^ a r e
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unbiasedly estimated by

s2 = (n —  l)~l y^Oc- —  x)2 (2.21)

m3 = 7 IT; zr m-x,, (2.22)
(n - l)(n - 2)

4̂ = 7 ^ T7 ( f ^ 4 ) m4 - 3m| } , (2.23)

respectively. The sample standard deviation, s = V s2, is an estimator of a but is
not unbiased. The sample estimators of CV, skewness and kurtosis are, respectively,

Cv=s/x, g = m3/s\ k = k4/s4 + 3. (2.24)

Moment estimators have some undesirable properties. The estimators g and k can
be severely biased, as noted by many authors and investigated in detail by Wallis
et al. (1974). Indeed g and k have algebraic bounds that depend on the sample size;
for a sample of size n the bounds are

\g\<n1/2 and k < n + 3. (2.25)

These results follow from bounds on ra3/ra2 and m^lm\ given by Wilkins
(1944) - whose work has apparently been overlooked by other authors who have
subsequently rediscovered similar bounds - and Dalen (1987), respectively. Thus
if a distribution is sufficiently skew, it may be impossible for this skewness to
be reflected in a sample of fixed size. For example, a two-parameter lognormal
distribution, with cumulative distribution function given by Eq. (A.67) with a — 1,
has skewness 6.91, but a sample of size 20 drawn from this distribution cannot have
sample skewness larger than 4.47, or 65% of the population value.

Inferences based on sample moments of skew distributions are therefore likely
to be very unreliable. A more satisfactory set of measures of distributional shape is
obtained from L-moments, described in the next section.

2.4 L-moments of probability distributions

L-moments are an alternative system of describing the shapes of probability dis-
tributions. Historically they arose as modifications of the "probability weighted
moments" of Greenwood et al. (1979).
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Probability weighted moments of a random variable X with cumulative distribu-
tion function F(.) were defined by Greenwood et al. (1979) to be the quantities

Mp^s = E [XP{F(X)}r{l - F(X)}S] . (2.26)

Particularly useful special cases are the probability weighted moments ar = M\^,r
and pr = Mi,r?o- For a distribution that has a quantile function x(u), Eqs. (2.5)
and (2.26) give

ar= f x(u){\ - u)r du, Pr= [ x(u)ur du . (2.27)
Jo Jo

These equations may be contrasted with the definition of the ordinary moments,
which may be written as

/•I
= / {x(u)}rdu. (2.28)

Jo

Conventional moments involve successively higher powers of the quantile func-
tion x(w), whereas probability weighted moments involve successively higher pow-
ers of u or 1 —  u and may be regarded as integrals of x(u) weighted by the
polynomials ur or (1 —  u)r.

The probability weighted moments ar and fir have been used as the basis of
methods for estimating parameters of probability distributions by Landwehr, Mata-
las and Wallis (1979a,b), Greis and Wood (1981), Wallis (1981, 1982), Hosking,
Wallis and Wood (1985b) and Hosking and Wallis (1987a). However, they are
difficult to interpret directly as measures of the scale and shape of a probability distri-
bution. This information is carried in certain linear combinations of the probability
weighted moments. For example, estimates of scale parameters of distributions are
multiples of «o  —  2a\ or 2/*i —  $> (Landwehr, Matalas and Wallis 1979a; Hosking,
Wallis and Wood, 1985b). The skewness of a distribution can be measured by
6)62 —  6/3i + /?o (Stedinger, 1983). These linear combinations arise naturally from
integrals of x(u) weighted not by the polynomials ur or (1 —  u)r but by a set of
orthogonal polynomials.

We define polynomials P*{u), r = 0, 1, 2 , . . . , as follows

(i) Pr*(w) is a polynomial of degree r in u.
(ii) Pr*(l) = 1.

(iii) Jo1 Pr*(u)Ps*(u)du = 0 if r / s.

Condition (iii) is the orthogonality condition. These conditions define the shifted
Legendrepolynomials ("shifted," because the ordinary Legendre polynomials Pr(u)
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are defined to be orthogonal on the interval — 1  < u < +1 , not 0 < u < 1). The
polynomials have the explicit form

» J2 > k, (2-29)
£ = 0

where

"r* v ' \kj\ k )

For a random variable X with quantile function x(w), we now define the
L-moments of X to be the quantities

Xr= f x{u)P;_x{u)du. (2.31)
Jo

In terms of probability weighted moments, L-moments are given by

X\ = oiQ = /3Q , (2.32)

X2 = ofo —  2a? 1 = 2/?i —  fio , (2.33)

+ 30a2 - 20a3 = 20^3 - 30^2 + 12/Ji - A) > (2-35)

and in general

kr+l = ( - 1 / j ^ p*kak = ^ p*tj8t. (2.36)

It is convenient to define dimensionless versions of L-moments; this is achieved
by dividing the higher-order L-moments by the scale measure A.2- We define the
L-moment ratios

(2.37)

L-moment ratios measure the shape of a distribution independently of its scale of
measurement.
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We also define the L-CV

r =A.2/A.i. (2.38)

This quantity is analogous to the ordinary coefficient of variation, Cv. (L-CV is not
an abbreviation of "L-coefficient of variation": in words it would be more properly
described as a "coefficient of L-variation.")

2.5 L-moments and order statistics

An intuitive justification for L-moments can be obtained by considering linear com-
binations of the observations in a sample of data that has been arranged in ascending
order. Consider the measurement of the shape of a distribution, given a small sample
drawn from the distribution. Denote by X*:n the fcth smallest observation from a
sample of size n, so that the ordered sample is X\:n < X^-.n < • • •  < Xn:n.

A sample of size 1 is the single observation X\:\. It contains information about
the location of the distribution. If the distribution is shifted towards larger values,
then we would expect to observe larger values of X\:\. See Figure 2.1.

A sample of size 2 contains two observations, X\:2 and X2a> The sample contains
information about the scale, or dispersion, of the distribution. If the distribution is
tightly bunched around a central value, then the two observations will tend to be
close together. If the distribution is widely dispersed, then the two observations
will typically be far apart. See Figure 2.2. Thus the difference between the two
observations, X2a —  Xi:2, is a measure of the scale of the distribution.

A sample of size 3, X\3 < X23 < X33, also contains information about the
skewness of the distribution. If the distribution is symmetric about a central value,
then the two extreme observations will typically be approximately equidistant from
the central observation; that is, we will have X33 —  X23 ~ X23 —  X13 or X33 —
2X2-3 + ^1:3 ^ 0. If the distribution is skewed to the right, so that the upper
tail is heavier than the lower tail, then typically X33 —  X23 will be larger than
X23 —  ^1:3, and so X33 —  2X23 + X13 will be positive. See Figure 2.3. Similarly,
if the distribution is skewed to the left, X33 —  2X2-3+X13 will typically be negative.
Thus X33 — 2X2-3  + X\3> the central second difference of the ordered sample, is
a measure of the skewness of the distribution.

For a sample of size 4 we are similarly led to consider the central third difference
of the ordered sample, X44 —  3X^4 + 3^2:4 —  Xi*. Writing this as ( X ^ —  Xi*) —
3(X3:4 —  X24), we see that it measures how much further apart the two extreme
values of the sample are than the two central values. If the distribution has a flat
density function, then the sample values will typically be approximately equally
spaced and the central third difference will be close to zero. If the distribution has a
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high central peak and long tails, then the central third difference is typically large.
See Figure 2.4. Thus *4:4 —  3X3:4 + 3X2:4 —  X\:4 is a measure of the kurtosis of
the distribution.

We have seen that certain linear combinations of the elements of an ordered
sample contain information about the location, scale, and shape of the distribution
from which the sample was drawn. L-moments are defined to be the expected
values of these linear combinations, multiplied for numerical convenience by scalar
constants. The "L" in L-moments emphasizes the construction of L-moments from
linear combinations of order statistics. The L-moments of a probability distribution
are defined by

A.1 - E(Xi:1), (2.39)

k3 = | E(X3:3 " 2X2:3 + X1:3), (2.41)

\4 = I E(X4:4 - 3X3:4 + 3*2:4 - XVA), (2.42)

and in general

(2.43)
\ T /

7=0

The two definitions (2.31) and (2.43) are consistent. The expectation of an order
statistic can be written

E(Xnn) = - ^ / x(u) ur-\\- u)n~r du , (2.44)
( r - l ) ! ( n - r ) ! i o

whence in Eq. (2.43) Xr can be written as an integral of x(u) multiplied by a
polynomial in u; this polynomial can be shown to be P*_{(u) (Hosking, 1990,
p. 106).

2.6 Properties of L-moments

The L-moments A.i and A.2, the L-CV r and the L-moment ratios T3 and 14 are
the most useful quantities for summarizing probability distributions. Their most
important properties are as follows (proofs are given in Hosking (1989, 1990)):

Existence. If the mean of the distribution exists, then all of the L-moments exist.
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1 F
Fig. 2.1. Definition sketch for first L-moment.

Tl f F
Fig. 2.2. Definition sketch for second L-moment.

f i t
Fig. 2.3. Definition sketch for third L-moment.

ttTf
Fig. 2.4. Definition sketch for fourth L-moment.
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Uniqueness, If the mean of the distribution exists, then the L-moments uniquely
define the distribution, that is, no two distributions have the same L-moments.

Terminology

X\ is the L-location or mean of the distribution.
A.2 is the L-scale.
r is the L-CV.
t3 is the L-skewness.
T4 is the L-kurtosis.

Numerical values

k\ can take any value.
k2 > 0 .
For a distribution that takes only positive values, 0 < r < 1.

L-moment ratios satisfy \rr | < 1 for all r > 3. Tighter bounds can be found for
individual xr quantities. For example, bounds for T4 given 13 are

i(5r3
2 - 1) < r4 < 1. (2.45)

For a distribution that takes only positive values, bounds for x^ given r are 2r — 1  <
T 3 < 1 .

Linear transformation. Let X and Y be random variables with L-moments kr and
A,*, respectively, and suppose that Y = aX + b. Then

\ b\ (2.46)

^2 = \a\X2; (2.47)

rr* = (signa)rrr, r > 3. (2.48)

Symmetry. Let Z be a symmetric random variable with mean /x, that is, Pr[X >
ix + x] = Pr[X < /x —  x] for all JC. Then all of the odd-order L-moment ratios of X
are zero, that is, rr = 0, r = 3, 5,

L-moments have been calculated for many common distributions. A list is given
in the appendix. Some cases are of particular interest. The uniform distribution has a
quantile function x(u) that is linear in u. We can show that a linear function x(u) can
be written as a weighted sum of P0*(w) and P*(w). From the orthogonality relation,
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Fig. 2.5. L-moment ratio diagram. Two- and three-parameter distributions are
shown as points and lines, respectively. Key to distributions: E - exponential,
G - Gumbel, L - logistic, N - Normal, U - uniform, GPA - generalized Pareto, GEV
- generalized extreme-value, GLO - generalized logistic, LN3 - lognormal, PE3 - Pearson
type III. The shaded area contains the possible values of 13 and 14, given by (2.45).

(iii) in Section 2.4, it follows that /Q1 x(u)P?(u)du = 0 for r > 2, whence all of
the higher-order L-moments A.r, r > 3, and the L-moment ratios rr, r > 3, are zero
for the uniform distribution. The distribution thus plays a central role in L-moment
theory analogous to that of the Normal distribution in cumulant theory. The Normal
distribution, being symmetric, has zero odd-order L-moments, but its even-order
L-moments are not particularly simple. For example, the Normal distribution has
t4 ^ 0.123. The exponential distribution has particularly simple L-moment ratios:
?3 = 5, U = g.

A convenient way of representing the L-moments of different distributions is the
L-moment ratio diagram, exemplified by Figure 2.5. This shows the L-moments on a
graph whose axes are L-skewness and L-kurtosis. A two-parameter distribution with
a location and a scale parameter plots as a single point on the diagram, because two
distributions that differ only in their location and scale parameters are distributions
of random variables X and Y = aX + b with a > 0, and by Eq. (2.48) these random
variables have the same L-skewness and L-kurtosis. A three-parameter distribution
with location, scale, and shape parameters plots as a line, with different points
on the line corresponding to different values of the shape parameter. Distributions
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with more than one shape parameter generally cover two-dimensional areas on the
graph. An enlargement of a particularly useful part of the L-moment ratio diagram
is given in the appendix, Section A. 13.

When plotting an L-moment ratio diagram, it is convenient to have explicit
expressions giving T4 as a function of 13 for different three-parameter distributions.
Polynomial approximations for 14 have been obtained for several distributions and
are given in the appendix, Section A. 12.

2.7 Sample L-moments

L-moments have been defined for a probability distribution, but in practice must
often be estimated from a finite sample. Estimation is based on a sample of size n,
arranged in ascending order. Let x\:n < x^n < ... < xn:n be the ordered sample.
It is convenient to begin with an estimator of the probability weighted moment fir.
An unbiased estimator of jir is

(Landwehr et al., 1979a). This may alternatively be written as

(2.50)

_! " (7-1XJ-2)

and in general

Analogously to Eqs. (2.32)-(2.36), the sample L-moments are defined by

l\=bo, (2.54)

l2 = lbx - b0, (2.55)
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sample size n = 19.

= 6b2 - 6b! + b0 (2.56)

(2.57)

and in general

(2.58)

the coefficients /?*^ are defined as in Eq. (2.30). The sample L-moment lr is an
unbiased estimator of Xr.

From Eqs. (2.49) and (2.58), lr is a linear combination of the ordered sample
values x\:n,..., xn:n, and we can write

(2.59)
7=1

jThe weights wjn are illustrated in Figure 2.6 for the case n = 19; this shows the
relative contributions of each observation to each sample L-moment. The weights
have a pattern that resembles polynomials of degree r — 1  in j . Indeed, in the no-
tation of Neuman and Schonbach (1974), w^)n is the discrete Legendre polynomial
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Table 2.1. Bias of sample L-CV.

0.0
0.1
0.2
0.3
0.4
0.5

0.1

-0.001
-0.001
-0.001
-0.001
-0.002
-0.003

0.2

0.000
-0.001
-0.002
-0.003
-0.006
-0.011

r

0.3

0.003
0.001

-0.001
-0.005
-0.010
-0.018

0.4

0.009
0.005
0.001

-0.004
-0.012
-0.025

0.5

0.020
0.014
0.008
0.000

-0.011
-0.027

Note: Results are for samples of size 20 from a generalized extreme value distribution with
L-CV r and L-skewness T3.

Analogously to Eqs. (2.37) and (2.38), the sample L-moment ratios are defined
by

tr = lr/l2 (2.60)

and the sample L-CV by

(2.61)

They are natural estimators of xr and r, respectively.
The estimators tr and t are not unbiased, but their biases are very small in moderate

or large samples. Large-sample biases can be calculated using asymptotic theory
(Hosking, 1990, p. 116). For example, the asymptotic bias of t?> for a Gumbel
distribution is O.l9n~l, and the asymptotic bias of t$ for a Normal distribution is
0.03ft-1, where n is the sample size.

Bias for smaller samples can be evaluated by simulation. It is generally the case
that the bias of the sample L-CV, t, is negligible in samples of size 20 or more. For
example, Table 2.1 gives the bias of t for samples of size 20 from a generalized
extreme-value distribution. For a wide range of population r and T3 values of the
distribution, the bias of t is very small. Only when t3 exceeds 0.4, corresponding
to a shape parameter k < —0.33,  does the relative bias of t exceed 4%.

Figure 2.7 illustrates the bias of the sample L-skewness, £3, and the sample
L-kurtosis, £4. Bias is shown graphically, by arrows that lead from the population
values t3 and T4 to the means of the sample statistics £3 and t$. Results are based
on 10,000 simulations of distributions with T3 and T4 at intervals of 0.05 over
the range 0 < T3 < 0.5, 0 < x^ < 0.3. The parent distributions are kappa
distributions when there exists a kappa distribution with the given T3 and 14 values
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Sample size 20

0.0 0.1

Sample size 80

0.2 0.3
L-skewness

0.3-I

0.5

/

0.1 0.2 0.3
L-skewness

0.4 0.5

Fig. 2.7. Bias of sample L-skewness and L-kurtosis statistics. Upper graph is for sample size
20, lower graph is for sample size 80. Arrows lead from the population values to the mean of
the sample statistics. Solid lines are the relationships between L-skewness and L-kurtosis for
the generalized logistic (GLO), generalized extreme value (GEV), and generalized Pareto
(GPA) distributions. Results are based on simulated samples drawn from kappa and Wakeby
distributions.

(see Figure A. 1 on page 204) and Wakeby distributions otherwise. Biases could
of course be different for samples drawn from other parent distributions. The
graphs also show the relationships between population L-skewness and population
L-kurtosis for the generalized logistic, generalized extreme value, and generalized
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Pareto distributions. The upper graph is for sample size 20. Even for this small
sample size, the biases are generally small, 0.01 or less, for T4 < 0.2, except for a
few distributions with high skewness and low kurtosis. Biases are certainly small
compared with the differences in L-moments between the different families of
distributions. This indicates that we can expect to make unbiased inferences when
using the L-moments of a sample to identify the type of distribution from which
the sample was drawn. The lower graph in Figure 2.7 is for sample size 80. Here
the biases are smaller still, being essentially negligible when 14 < 0.25.

The first two sample L-moments are well-known statistics. The first L-moment,
l\, is the sample mean, and £2 can be written as ^G, where

G=\V\ E E (Xj:n-*i:n) (2.62)

is Gini's mean difference statistic (Gini, 1912; Stuart and Ord, 1987, Section 2.22).
The quantities I\,l2 (or 0> h, a nd U are useful summary statistics of a sample of

data. As an example we calculate them for six sets of annual maximum windspeed
data taken from Simiu, Changery, and Filliben (1979). The data are tabulated in
Table 2.2 and plotted in Figure 2.8. Each graph in Figure 2.8 is equivalent to
a plot of the data values on extreme-value probability paper; the horizontal axis
is transformed so that a Gumbel distribution would plot as a straight line, and
the data point Xj:n is plotted at the horizontal position —  log(— log  pj:n), where
pj.n = (j —  0A4)/(n + 0.12) is the Gringorten plotting position (Gringorten, 1963;
Cunnane, 1978). The sample L-moments and L-moment ratios can be calculated
using (2.49), (2.58), (2.60), and (2.61). The results are given in Table 2.3 and are
plotted on an L-moment ratio diagram in Figure 2.9. In Table 2.3 the sites are listed
in increasing order of L-skewness.

The Macon data set has flattened upper and lower tails on the extreme-value plot.
This is an indication that the L-skewness and L-kurtosis of the data are smaller than
those of the Gumbel distribution, as is indeed the case. The Brownsville data lie
close to a straight line on Figure 2.8, reflecting the fact that its sample L-skewness
and L-kurtosis, 0.1937 and 0.1509, are fairly close to the corresponding quantities,
0.1699 and 0.1504, for the Gumbel distribution. The Port Arthur data plot and
L-moments are both similar to those of Brownsville. The Key West data set is more
dispersed than the others; for Key West, the slope of the points on Figure 2.8 is
greater and so is the L-scale statistic t^- The Corpus Christi data set contains a very
high outlier, which accounts for its high L-skewness and L-kurtosis values. The
Montgomery data plot, L-skewness and L-kurtosis are intermediate between those
of Port Arthur and Corpus Christi.
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Table 2.2. Annual maximum windspeed data, in miles
per hour, for six sites in the eastern United States.

Macon, Ga., 1950-1977.
32 32 34 37 37 38 40 40 40 42
42 42 43 44 45 45 46 48 49 50
51 51 51 53 53 58 58 60

Brownsville, Tex., 1943-1977.
32 33 34 34 35 36 37 37 38 38
39 39 40 40 41 41 42 42 43 43
43 44 44 46 46 48 48 49 51 53
53 53 56 63 66

Port Arthur, Tex., 1953-1977.
39 43 44 44 45 45 45 45 47 49
51 51 51 51 54 55 55 57 57 60
61 63 66 67 81

Montgomery, Ala., 1950-1977.
34 36 36 37 38 40 40 40 40 40
43 43 43 43 46 46 46 46 47 47
48 49 51 51 51 52 60 77
Key West, Fla., 1958-1976.
35 35 36 36 36 38 42 43 43 46
48 48 52 55 58 64 78 86 90

Corpus Christi, Tex., 1943-1976.
44 44 44 44 45 45 45 45 46 46
46 47 48 48 48 48 48 49 50 50
50 51 52 55 57 58 60 60 66 67
70 71 77 128

2.8 Plotting-position estimators

A plotting position is a distribution-free estimator of F(xj:n). Reasonable choices
for plotting positions include pj:n = (j + y)/(n + 8) for 8 > y > —  1. Landwehr
et al. (1979b) suggested the estimator

Pr.nYxj:n (2.63)

1=1

of ar. Analogously, we can define plotting-position estimators of Xr and rr by

l(Pj:n)xj:n, (2.64)
7 = 1

xr = Klh • (2.65)
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Fig. 2.8. Annual maximum windspeed data for the sites in Table 2.2.
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Table 2.3. L-moments of the annual maximum windspeed data in Table 2.2.

Site

Macon
Brownsville
Port Arthur
Montgomery
Key West
Corpus Christi

n

28
35
25
28
19
34

h
45.04
43.63
53.08
45.36
51.00
54.47

li

4.46
4.49
5.25
4.34
9.29
6.70

t

0.0990
0.1030
0.0989
0.0958
0.1821
0.1229

h

0.0406
0.1937
0.2086
0.2316
0.3472
0.5107

U

0.0838
0.1509
0.1414
0.2490
0.1245
0.3150

0.4-,

CO
CO

o
^ 0.2-
3

0.0

N

u -
0.0 0.2 0.4 0.6

/_-skewness

Fig. 2.9. L-moment ratio diagram for the annual maximum windspeed data in Table 2.2.

In general kr is not an unbiased estimator of A,r, but its bias tends to zero in large
samples.

Plotting-position estimators were introduced by Landwehr et al. (1979b) for
use in estimating the parameters of the Wakeby distribution. In particular, the
choice pj:n = (j —  0.35)/n was found to give good results for the Wakeby and
also for generalized extreme-value and generalized Pareto distributions (Hosking
et al., 1985b; Hosking and Wallis, 1987a). These investigations were all primarily
concerned with estimation of quantiles fitted to data with a physical lower bound
of zero and L-CV and L-skewness both in the approximate range 0.1 to 0.3.

For other applications, these plotting-position estimators have significant dis-
advantages (Hosking and Wallis, 1995). Plotting-position estimators with pj:n =
(j—0.35)/n  are not invariant under location transformations of the data; if a constant
is added to the data values, the estimators Xr, r > 2, are changed. In extreme
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Table 2.4. Notation for moments and L-moments.

Location (mean)
Scale
CV
Skewness
Kurtosis

Population
moment

/x
a
cv
y
K

Sample
moment

X
s

cv
g
k

Population
L-moment

X2
X

r4

Sample
L-moment

h
t
h

Note: In other chapters y is used to denote Euler's constant, 0.5772..., and both y and k are
used to denote parameters of certain probability distributions.

cases, plotting-position estimators can take values that would be impossible for the
L-moments of any probability distribution; for example, the scale estimator X2 can
take negative values. Most importantly, plotting-position estimators of L-moment
ratios have generally higher bias than the sample L-moment ratios. In particular,
the plotting-position estimator of L-kurtosis has substantial positive bias. When
estimation of L-moments and L-moment ratios is of direct interest, rather than as an
intermediate step towards the estimation of quantiles, the sample L-moments and
L-moment ratios are greatly preferable to the plotting-position estimators.

In this monograph we work throughout with the estimators tr, t and tr. We refer
to them as "unbiased" estimators when necessary for comparison with plotting-
position estimators; the quotation marks serve as a reminder that t and tr are not
exactly unbiased. They are inferior to the plotting-position estimators only for some
instances of estimation of extreme quantiles in regional frequency analysis and have
generally lower bias as estimators of the L-moment ratios, xr. This makes them more
suitable than the plotting-position estimators for the applications in Chapters 3-5,
which involve using the L-moments of a data sample to summarize the properties
of the sample and to infer the shape of the underlying population from which the
sample was drawn.

2.9 Moments and L-moments

Both moments and L-moments are measures of the location, scale, and shape of
probability distributions. Here we consider their similarities and differences. For
reference, Table 2.4 gives our notation for moments and L-moments. First we
compare the individual moment and L-moment quantities.

The L-moment measure of location is the mean, X\. This is, of course, the same
as the first moment /x.
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To compare A2 with the moment-based scale measure a, the standard deviation,
we write

*2 = \ E(X2:2 - X1:2), a1 = I E(X2:2 - X1:2)2. (2.66)

Both quantities measure the difference between two randomly drawn elements of
a distribution, but a2 gives relatively more weight to the largest differences.

The two quantities satisfy the inequality

a > V3A,2, (2.67)

which follows from Plackett (1947); equality is achieved only by the uniform
distribution. Many moderately skew distributions have a « 2A 2; the exact equality
a = 2A2 holds for the exponential distribution (13 = 0.3333) and for a generalized
extreme-value distribution with T3 = 0.2628.

CV and L-CV are related similarly to a and A,2. Their estimators satisfy

which follows from Barker (1983). This bound is almost reached by many samples
from symmetric or nearly symmetric distributions. For example, samples of size 50
from the Normal distribution lie close to this bound, as illustrated by the left graph
of Figure 2.10. For moderately skew distributions Cv is often approximately twice
as large as t, but if outliers are present Cv is larger still. See, for example, the right
graph of Figure 2.10.

Figure 2.11 compares the skewness measures T3 and y for different distributions.
For symmetric distributions, both 13 and y are zero, and many near-symmetric
distributions have y «  6T3, but in general there is no simple relationship between y
and T3. Both y and T3 may yield a large positive skewness either when a distribution
has a heavy right tail or when a continuous distribution is reverse J-shaped, that
is, has a finite lower bound near which f(x) —>• 00. The former case tends to
yield particularly high values of y relative to T3, because y is more sensitive to the
extreme tail weight of the distribution. Indeed for some heavy-tailed distributions,
y approaches infinity while x^ has still quite a modest value, for example, 0.33 in
the case of the generalized logistic distribution.

Kurtosis, as measured by the moment ratio K, has no unique interpretation. It
can be thought of as the "peakedness" of a distribution, or as "tail weight," but
only for fairly closely defined families of symmetric unimodal distributions do
these interpretations have any demonstrable validity (see Balanda and MacGillivray,
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Fig. 2.10. Sample CV, Cv, and sample L-CV, t, for 50 samples of size 50 simulated from a
Normal distribution with r = 0.2 (left graph) and a generalized extreme-value distribution
with r = 0.2 and x^ = 0.3 (right graph). The solid line on each graph is the lower bound
(2.68); the dotted line is the reference line Cv = 2t.
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Fig. 2.11. Comparison of skewness and L-skewness. Key to distributions: E - exponential,
G - Gumbel, 1 - generalized logistic, 2 - generalized extreme value, 3 - generalized
Pareto, 4 - lognormal, 5 - Pearson type III, 6 - Weibull (reverse generalized extreme
value), 7 - reverse generalized Pareto.

1988, and references therein). L-kurtosis, T4, is equally difficult to interpret uniquely
and is best thought of as a measure similar to K but giving less weight to the extreme
tails of the distribution.

Both sample L-skewness and sample L-kurtosis are much less biased than the
ordinary skewness and kurtosis. Figure 2.7, for example, shows much lower biases
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Fig. 2.12. Sample moment ratios and L-moment ratios for 80 samples of size 50 simulated
from a Gumbel distribution. The + marks indicate the population moment ratios and
L-moment ratios for the Gumbel distribution.

than those found for the conventional skewness statistic, g, by Wallis et al. (1974)
for similar distributions. Royston (1992, Figure 7) illustrates similar results for the
lognormal distribution.

The joint distribution of the ordinary sample skewness and sample kurtosis is
asymptotically Normal, but in small and moderate samples the asymptotic distribu-
tion is a poor approximation, particularly when the underlying distribution is even
moderately skew. Figure 2.12 shows the joint distribution of sample moment ratios
and L-moment ratios for 80 random samples of size 50 simulated from a Gumbel
distribution. The sample skewness and kurtosis values lie close to a single line in the
(g, k) plane, indicating that k gives little information about the sample additional
to that conveyed by g. The joint distribution of g and k is clearly far from Normal.
The sample L-skewness and L-kurtosis, in contrast, have a joint distribution that is
nondegenerate and appears to be close to bivariate Normal. This near-Normality
of the sampling distributions is a property that we make use of in some of the
procedures described in later chapters.

Now we consider more general properties of moments and L-moments.
As mentioned earlier, L-moments exist whenever the mean of the distribution

exists. This includes cases in which some of the higher moments fail to exist.
These cases do occur in practice. For example, for the generalized extreme-value
distribution the third and fourth moments fail to exist when the distribution's shape
parameter k satisfies k < —  | and k < —  | , respectively. At these k values the
L-moment ratios take the fairly moderate values x?> = 0.403 and t4 = 0.241,
respectively. Data samples that yield sample L-moment ratios as large as this occur
frequently in the analysis of some kinds of data (e.g., windspeed data such as those
in Table 2.2 or the annual maximum streamflow data of Section 9.2). Although
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Fig. 2.13. Probability density function of a lambda distribution with parameter X =
-0.1466.

sample moments can be calculated in such cases, they cannot be expected to yield
reliable information about the form of the underlying distribution.

Moment ratios are unbounded, whereas L-moment ratios have a natural bound
\rr\ < 1. We consider the boundedness of L-moment ratios to be an advantage.
Intuitively, it seems easier to interpret a measure such as T3, which is constrained
to lie within the interval — 1  < T3 < 1, than the ordinary skewness, which can take
arbitrarily large positive or negative values.

Algebraic bounds on the sample moment ratios were mentioned in Section 2.3.
L-moment ratios are not subject to such restrictive bounds. The sample L-moment
ratios can take any values that the population L-moment ratios can (Hosking, 1990).

Perhaps the main difference between moments and L-moments is that moments
give greater weight to the extreme tails of the distribution. This can be seen by
comparing Eqs. (2.28) and (2.31). As r increases, the weight given to the tail of
the distribution, u ~ 1, increases as {x(u)}r in Eq. (2.28) but as ur in Eq. (2.31).
For most distributions, x(u) increases much faster than u as u approaches 1; for
distributions with no upper bounds, of course, x(u) -> 00 as u -> 1.

To illustrate the greater dependence of the ordinary moments on the extreme
tails of a distribution, consider a lambda distribution (Tukey, 1960) with quantile
function x(u) = (ux — (1 —  u)x)/X and k = —0.1466.  If the distribution is truncated
at its 0.001 and 0.999 quantiles, its kurtosis K falls from 10.00 to 5.48, but its
L-kurtosis T4 falls only from 0.224 to 0.204. The probability density function of the
truncated distribution is shown in Figure 2.13. On the scale of the figure, the tails
of the distribution beyond the truncation points are indistinguishable from zero.

Sample moments, too, are more affected than their L-moment analogs by extreme
observations. For example, consider the Corpus Christi windspeed data given in
Table 2.2 and Figure 2.8. If the largest observation is deleted, the sample coefficient
of variation Cv falls from 0.289 to 0.173 and the sample skewness g falls from
3.37 to 1.32, falls of 40% and 61%, respectively. The sample L-CV t falls from
0.1229 to 0.0908 and the sample L-skewness t3 falls from 0.5107 to 0.3721, falls of
only 26% and 27%, respectively. Vogel and Fennessey (1993) show that, even for
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Fig. 2.14. Annual maximum streamflows, Oconto River near Gillett, Wis.
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Fig. 2.15. Skewness and L-skewness of subsamples of the Oconto River data of Fig. 2.14.

sample sizes in excess of 5000, g can be severely affected by an outlier, whereas
t3 is not.

As a further example, consider the data set shown in Figure 2.14. The data,
obtained from the U.S. Geological Survey, are annual maximum streamflows at
USGS site 04071000, Oconto River near Gillett, Wis., for the period 1907-1987.
There are four missing values, so the sample size is 77. The largest data value
is to some extent an outlier, being nearly 50% larger than the second-largest
value. Subsamples of the data were obtained by randomly deleting data points,
and moments and L-moments were calculated for the subsamples. The results for
subsamples of size 20, 21, . . . , 77 are shown in Figure 2.15. The ordinary sample
skewness appears to take two distinct values depending on whether the outlier
is or is not in the subsample. In contrast, the sample L-skewness, though clearly
affected by the outlier and quite variable in small samples, is fairly stable around its
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L-kurtosis, for samples of size 100 simulated from the three distributions of Fig. 2.16.

complete-sample value of 0.1918. This presentation follows Royston (1992), who
gave a similar example for medical data.

An important application of summary statistics calculated from an observed
random sample is identification of the distribution from which the sample was
drawn. This is much more easily achieved, particularly for skew distributions,
by using L-moments rather than conventional moments. The following example
is from Hosking (1990). Using Monte Carlo simulation, 50 random samples of
size 100 were generated from each of three distributions: a generalized extreme-
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Table 2.5. Estimated parameters and quantiles for GEVdistributions fitted to the
windspeed data in Table 2.2.
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Site

Macon
Brownsville
Port Arthur
Montgomery
Key West
Corpus Christi

42.1
39.8
48.5
41.5
41.9
47.5

Parameters

a

7.56
6.26
7.15
5.70
9.89
4.87

k

0.212
-0.037
-0.059
-0.094
-0.258
-0.471

.01

28
30
38
33
30
42

Quantiles,

.10

35
35
43
37
35
44

F

.50

45
42
51
44
46
49

x(F)

.90

56
55
66
56
72
67

.99

64
71
86
74

129
127

value (GEV) distribution with skewness 3.0 and two Weibull distributions, one with
the same skewness and one with the same L-skewness as this GEV distribution.
The distributions are illustrated in Figure 2.16. Moments and L-moments of the
generated samples are shown in Figure 2.17. The sample conventional moments
from the three distributions all lie close to a single line on the graph and overlap each
other; they offer little hope of identifying the population distribution. In contrast, the
sample L-moments plot as fairly well separated groups and permit a high probability
of discrimination between the three distributions.

2.10 Parameter estimation using L-moments

A common problem in statistics is the estimation, from a random sample of size n,
of a probability distribution whose specification involves a finite number, p, of
unknown parameters. Analogously to the usual method of moments, the method of
L-moments obtains parameter estimates by equating the first p sample L-moments
to the corresponding population quantities. This requires expressions for the pa-
rameters in terms of the L-moments. Such expressions have been obtained for many
standard distributions. Examples are given in the appendix.

As an example, we fit the generalized extreme-value distribution to the six
windspeed data sets given in Table 2.2. The sample L-moments are given in
Table 2.3. Parameter estimates are calculated by substituting the sample L-moments
into Eqs. (A.55) and (A.56). Quantile estimates are obtained by substituting the
estimated parameters into Eq. (A.44). Results are given in Table 2.5. The fitted
distributions are graphed in Figure 2.18.

Exact distributions of parameter estimators obtained by the method of L-moments
are in general difficult to derive, but large-sample approximations can be obtained
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Fig. 2.18. GEV distributions fitted to the windspeed data of Table 2.2.
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by asymptotic theory. Hosking (1986a) gives several examples of such results.
For most standard distributions, this approach can be used to show that L-moment
estimators of parameters and quantiles are asymptotically Normally distributed and
also to find standard errors and confidence intervals.

Hosking et al. (1985b) and Hosking and Wallis (1987a) found that with small and
moderate samples the method of L-moments is often more efficient than maximum
likelihood. These results are for estimators based on a single sample of data, and are
not directly relevant to regional frequency analysis. However, they demonstrate that
the method of L-moments yields efficient and computationally convenient estimates
of parameters and quantiles, and we may reasonably expect these properties to
continue to hold in index-flood procedures for regional frequency analysis.



3

Screening the data

3.1 The importance of screening the data

The first essential of any statistical data analysis is to check that the data are
appropriate for the analysis. For frequency analysis, the data collected at a site
must be a true representation of the quantity being measured and must all be drawn
from the same frequency distribution. An initial screening of the data should aim
to verify that these requirements are satisfied.

The exact nature of the problems that may affect the data depend on the kind of
data that were measured. For environmental data for which a frequency analysis is
being attempted, two kinds of error are particularly important and plausible.

First, data values may be incorrect. Incorrect recording or transcription of data
values is easily done and casts doubt on any subsequent frequency analysis of the
data.

Second, the circumstances under which the data were collected may have changed
over time. The measuring device may have been moved to a different location or
trends over time may have arisen from changes in the environment of the measuring
device. This means that the frequency distribution from which the data were sampled
is not constant over time, and frequency analysis of the data will not be a valid basis
for estimating the probability distribution of future measurements at the site.

Even though the data may reputedly be reliable, it is still important to check
for errors. A sobering example was provided by Wallis, Lettenmaier, and Wood
(1991), who compiled a set of daily precipitation and temperature records for 1009
sites in the United States from data supplied by the National Climatic Data Center
(NCDC). The data had already been collected by NCDC from the original sources
and had undergone some validity checking and preprocessing for incorporation
into NCDC's Historical Climatology Network. However, 38% of the sites had at
least one occurrence of such gross errors as daily precipitation less than zero or
more than 20 in (500 mm), daily temperature range (maximum minus minimum)
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less than zero or more than 100°F (56°C), or maximum temperature less than 20°F
(—7°C)  during the period May-September.

In regional frequency analysis, related data are available for several or many sites.
At least three kinds of checks on the data can be useful. Checks of individual data
values can reveal the kind of gross errors found by Wallis et al. (1991). Checks of
each site's data separately can identify outlying values and repeated values, which
may arise from errors in recording or transcribing the data. Checks for trends
and changes in level of the data are also useful. Comparisons between data from
different sites can reveal many kinds of data irregularities. If a site is discordant
with other apparently similar sites, then there may be a problem with the data for
the discordant site.

Tests for outliers and trends are well established in the statistical literature (e.g.,
Barnett and Lewis, 1994; Kendall, 1975). For comparison of data from different
sites, some techniques, such as double-mass plots or quantile-quantile plots, are
well known. In the context of regional frequency analysis using L-moments, we have
found that useful information can be obtained by comparing the sample L-moment
ratios for different sites. Incorrect data values, outliers, trends, and shifts in the
mean of a sample can all be reflected in the L-moments of the sample. A convenient
amalgamation of the L-moment ratios into a single statistic, a measure of the
discordancy between the L-moment ratios of a site and the average L-moment
ratios of a group of similar sites, is presented in Section 3.2.

3.2 A discordancy measure

3.2.1 Aim

Given a group of sites, the aim is to identify those sites that are grossly discordant
with the group as a whole. Discordancy is measured in terms of the L-moments of
the sites' data.

3.2.2 Heuristic description

Regard the sample L-moment ratios (L-CV, L-skewness, L-kurtosis) of a site as
a point in three-dimensional space. A group of sites will yield a cloud of such
points. Flag as discordant any point that is far from the center of the cloud. "Far" is
interpreted in such a way as to allow for correlation between the sample L-moment
ratios.

For example, see Figure 3.1. For convenience we consider L-CV and L-skewness
only. The center of the cloud of points, marked by +, is the point whose coordinates
are the group average values of L-CV and L-skewness. We construct concentric el-
lipses with major and minor axes chosen to give the best fit to the data, as determined



46 Screening the data

*-

o
/ •

•

• • • •

•

•

+
>

) }

---"

L-skewness, t3

Fig. 3.1. Definition sketch for discordancy.

by the sample covariance matrix of the sites' L-moment ratios. "Discordant" points
are those that lie outside the outermost ellipse.

3.2.3 Formal definition

Suppose that there are N sites in the group. Let u,- = [ t^ t^ t^ ]T be a vector
containing the t, £3, and £4 values for site /: the superscript T denotes transposition
of a vector or matrix. Let

N

(3.1)

be the (unweighted) group average. Define the matrix of sums of squares and
cross-products,

N
A = (U; - U)T. (3.2)

Define the discordancy measure for site /,

(3.3)

Declare site / to be discordant if Di is large. The definition of "large" depends on
the number of sites in the group. We suggest that a site be regarded as discordant if
its D( value exceeds the critical value given in Table 3.1.
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Table 3.1. Critical values for the discordancy statistic D(.
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Number of sites
in region

5
6
7
8
9

Critical
value

1.333
1.648
1.917
2.140
2.329

Number of sites
in region

10
11
12
13
14

> 15

Critical
value

2.491
2.632
2.757
2.869
2.971
3

3.2.4 Notes

Di is a standard discordancy measure for multivariate observations. Wilks (1963)
proposed an outlier measure that is equivalent to the largest of the D/. For a
univariate observation, D,- reduces to a multiple of (m — u) 2/s2, the squared
studentized residual; the maximum absolute studentized residual has been widely
used as an outlier measure since its introduction by Thompson's (1935) work. The
average of Dt over all sites is 1.

It is not easy to choose a value of D,- that can be used as a criterion for deciding
whether a site is discordant. Hosking and Wallis (1993) initially suggested the
criterion D{ > 3, but this is not satisfactory for small regions. We can show that D{
satisfies the algebraic bound

(3.4)

thus, for example, values of Dt larger than 3 can occur only in regions having 11 or
more sites. To some extent, the criterion for discordancy should be an increasing
function of the number of sites in the region. This is because large regions are more
likely to contain sites with large values of D;. However, we still recommend that
any site with Di > 3 be regarded as discordant, as such sites have L-moment ratios
that are markedly different from the average for the other sites in the region.

A discordancy criterion for small regions can be derived from theoretical con-
siderations. If it is assumed that the u,- are drawn from independent identical
multivariate Normal distributions, then the distribution of Wilks's statistic can be
derived (see Wilks, 1963, or Caroni and Prescott, 1992), and a significance test for
the presence of an outlier can be obtained. For a test with significance level a an
approximate critical value of max/ D( is (N —  \)Z/{N —  4 + 3Z), where Z is the
upper lOOa/Af percentage point of an F distribution with 3 and N —  A degrees
of freedom. This critical value is a function of a and N. We regard a choice of
a = 0.10 as reasonable; with this choice of a there is approximately a 10% chance
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that in a group of sites that in fact constitute a homogeneous region, at least one site
would be flagged as discordant. For a = 0.10 and 5 < N < 15 the critical values
are those tabulated in Table 3.1. For N > 15 the critical value is greater than 3, but,
as noted above, we recommend that sites with D,- > 3 be regarded as discordant
anyway. In any case, it is advisable to examine the data for the sites with the largest
Dt values, regardless of the magnitude of these values.

In very small regions the statistic D,- is not very informative. When N < 3 the
matrix A is singular and D; cannot be calculated. When N = 4 each D\ value
is 1. When N = 5 ov N = 6 the critical values in Table 3.1 are very close to the
bound (3.4). Thus D; is likely to be useful only for regions with N >7. This should
not be a complete surprise, as it is difficult to judge whether a site is grossly unusual
when there are few other sites with which to compare it.

The use of an unweighted average in the definition of u is preferred to the
weighted average used in the heterogeneity and goodness-of-fit measures described
in Chapters 4 and 5. A weighted average allows for greater variability in short
records and would permit a short-record site to be further from the group average
before being flagged as discordant. However, the £),- statistics are calculated at an
early stage of the analysis, when it is important to identify the unusual sites and
their potential data errors regardless of the record length.

3.3 Use of the discordancy measure

Two uses for the discordancy measure are envisaged.
First, at the outset of the analysis the discordancy measure may be applied to

a large group of sites, all those within some large geographical area. The idea is
that sites with gross errors in their data will stand out from the other sites and be
flagged as discordant. Sites flagged as discordant at this stage should therefore be
closely scrutinized for errors in the recording or transcription of data or for sources
of unreliability in the data, such as a recording gage having been moved, or for
man-induced changes of the site's frequency distribution over time.

Later in the analysis, when homogeneous regions have been at least tentatively
identified, the discordancy measure can be calculated for each site in a proposed
region. If any site is discordant with the region as a whole, the possibility of moving
that site to another region should be considered. It must be borne in mind, however,
that a site's L-moments may differ by chance alone from those of other physically
similar sites. For example, an extreme but localized meteorological event may have
affected only a few sites in a region. If such an event is approximately equally likely
to affect any of the sites in the future, then it is correct to treat the entire group of
sites as a homogeneous region, even though some sites may appear to be discordant
with the region as a whole.
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Table 3.2. Summary statistics for annual maximum streamflow data for sites in
Region 3 with small drainage

HUC

02099000
02111000
02044000
02051000
02267000
02138500
02310000
02088000
02143000
02111500
02065500
02070000
02046000
02074500
02154500
02085500
02333500
02228500

Area

14
28
38
55
58
66
72
83
83
89
98
108
112
112
116
149
153
160

n

60
48
42
40
38
66
44
48
52
48
42
60
42
59
58
63
53
48

basin area.

u
2010
1979
2520
3378
90

5428
1209
1735
5687
4487
2467
4032
2754
4775
3549
7585
7807
1978

t

0.3287
0.5003
0.3541
0.3094
0.2400
0.3979
0.4396
0.3716
0.3317
0.3623
0.4234
0.4313
0.4400
0.3803
0.3250
0.2768
0.3310
0.3999

h

0.2353
0.5995
0.3787
0.3937
0.3447
0.4127
0.3595
0.2893
0.2596
0.3755
0.4064
0.4883
0.4039
0.4176
0.2832
0.1733
0.2449
0.3889

k

0.1699
0.4781
0.3702
0.4542
0.2349
0.3110
0.2111
0.1900
0.1135
0.2883
0.2979
0.2993
0.2140
0.2684
0.2136
0.1626
0.1572
0.3300

49

USGS

Dt

0.62
2.22
0.80
2.69
3.88*
0.11
0.91
0.40
0.90
0.05
0.29
1.16
0.90
0.53
0.21
1.43
0.50
0.41

Note: HUC is the Hydrologic Unit Code of the basin. Area is the area of the basin, in square
miles.
*denotes a Dt value that exceeds the critical value in Table 3.1.

3.4 Examples

As an example we use annual maximum streamflow data obtained from the U.S.
Geological Survey (USGS). Data, measured in cubic feet per second, were obtained
for a subset of the sites in the data set compiled by Wallis et al. (1991), and for this
example we consider the sites in the southeastern U.S.A. (USGS Water Resources
Region 3, as defined in Seaber, Kapinos, and Knapp, 1987). The 105 sites in Region 3
were assigned to six groups according to their drainage basin area. Record lengths
and L-moment ratios for the 18 sites with smallest drainage basin areas are given
in Table 3.2 and illustrated in Figure 3.2.

For the USGS Region 3 data, the Dt values are also given in Table 3.2. The critical
value, 3, is exceeded by only one site: site 02267000, Catfish Creek near Lake Wales,
Fla. This site has the lowest L-CV of any in the group, but it is not this fact alone that
causes the high D\ value. As Figure 3.2 suggests, the discordancy arises because the
combination of low L-CV and moderate L-skewness and L-kurtosis is discordant
with the pattern of the other sites. In contrast, site 02111000, which has extremely
high values of L-CV, L-skewness, and L-kurtosis, is not particularly discordant
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Fig. 3.2. L-moment ratios of the USGS Region 3 small-area sites. The circled point is for
the site with Dt > 3.
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Fig. 3.3. Time-series plot of the data for site 02267000.

with the other sites. For this site, the deviation of the L-moment ratios from the
group average, though large, is in a direction concordant with the corresponding
deviations of the other sites, this direction being that of the major axis of the ellipsoid
in Figure 3.1, and is downweighted by the A"1 matrix in the definition of £>,-.

The data for the discordant site 02267000 are plotted in Figure 3.3 and show
some evidence of a downward trend over time. Additionally, from Table 3.2 it is
clear that the mean at this site is surprisingly low compared with other sites in
the region with comparable drainage areas. There is, therefore, some reason to be
suspicious of the data for this site. A final decision on whether to include this site
in the analysis might require further investigation of whether the apparent trend
can be attributed to random variation or whether it is a consequence of land-use
changes or other man-induced effects that make the site an unreliable indicator of
natural flow conditions. The missing values in 1979-81 should also be investigated.
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Table 3.3. Summary statistics for annual maximum streamflow data for sites in
Region 3 with

HUC

02347500
02083500
02202500
02478500
02228000
02135000
02156500
02349500
02475000
02365500
02488500
02352500
02489500
02479000
02320500
02131000
02226000

large drainage basin

Area

1850
2183
2650
2690
2790
2790
2790
2900
3495
3499
4993
5310
6573
6590
7880
8830
13600

n

70
87
56
51
58
47
50
84
48
61
65
96
50
84
57
50
64

area.

l\

30611
15491
14600
25961
16426
13181
45374
30489
42463
36987
39157
34739
48728
71568
19516
48636
69569

t

0.3036
0.2617
0.3465
0.2710
0.3579
0.2435
0.2248
0.3100
0.2923
0.3017
0.2491
0.2624
0.2570
0.2803
0.3173
0.2879
0.3149

h

0.2103
0.2556
0.2818
0.2767
0.2635
0.1733
0.2754
0.2248
0.3059
0.4317
0.2490
0.2059
0.2553
0.2655
0.2799
0.3476
0.2936

k

0.1797
0.1771
0.2191
0.1465
0.1666
0.1618
0.2576
0.1708
0.2057
0.4164
0.1926
0.1357
0.2409
0.1472
0.2506
0.2700
0.2231
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USGS

Dt

0.90
0.33
1.01
1.54
1.60
1.62
1.37
0.52
0.53
3.38*
0.40
0.55
0.66
0.96
0.65
0.74
0.23

Note: HUC is the Hydrologic Unit Code of the basin. Area is the area of the basin, in square
miles.
*denotes a Dt value that exceeds the critical value in Table 3.1.

If they are missing for a reason related to the flow magnitude - for example, if
a very large flood washed away the stream gage - then frequency analysis of the
data must make allowance for this.

As a further example, we consider the sites in USGS Region 3 with the largest
drainage areas. Record lengths and L-moment ratios for the 17 sites with the largest
drainage basin areas are given in Table 3.3 and illustrated in Figure 3.4. The critical
value, 3, is exceeded at only one site: site 02365500, Choctawhatchee River at
Caryville, Fla. The site has moderate L-CV but very high L-skewness and L-kurtosis.
A plot of the data shows that there was a very large flood in 1929. This outlying
data value accounts for the high L-skewness and L-kurtosis for this site. The data
value is plausible: The occurrence of a large flood in this year is confirmed by
streamflow records at other nearby sites. For example, site 02349500, Flint River
at Montezuma, Ga., 150 miles from Cary ville, also had its largest flood on record
in 1929. Plots of the data for these two sites are given in Figure 3.5. In this case
there is no clear reason to doubt the validity of the data for the discordant site. This
will often be the case in practice, because the variation of L-moment ratios between
apparently similar sites can be quite large for many kinds of data.
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Fig. 3.4. L-moment ratios of the USGS Region 3 large-area sites. The circled point is for
the site with Dt > 3.
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Fig. 3.5. Time-series plot of the data for sites 02365500 and 02349500.

A final example uses a set of annual precipitation totals obtained from the U.S.
Historical Climatology Network (Karl et al., 1990). The data, in inches, are for the
"North Cascades" region, one of 23 climatic divisions of the continental United
States used by Plantico et al. (1990). Data are available for 19 sites. Record lengths
and L-moment ratios are given in Table 3.4 and illustrated in Figure 3.6. Table 3.4
also shows the D; values for the North Cascades data. None of the D[ values exceeds
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Table 3.4. Summary statistics for the North Cascades precipitation data.
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Fig. 3.6. L-moment ratios of the North Cascades sites.
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Site code

350304
351433
351862
351897
352997
353445
353770
356907
357169
357331
357354
358466
450945
451233
453284
454764
454769
457773
458773

n

98
59
90
61
65
86
78
72
67
99
49
61
69
73
70
66
59
74
82

l\

19.69
62.58
40.85
46.05
45.02
31.04
80.14
41.31
30.59
32.93
17.56
69.52
47.65
102.50
52.41
79.70
44.64
58.66
39.02

t

0.1209
0.0915
0.1124
0.1032
0.0967
0.1328
0.1008
0.1143
0.1107
0.1179
0.1308
0.1119
0.1018
0.1025
0.1054
0.1174
0.1115
0.1003
0.1046

0.0488
0.0105
0.0614
0.0417

-0.0134
-0.0176
0.0943
0.0555
0.0478
0.0492
0.0940

-0.0429
0.0435
0.0182

-0.0224
0.0124

-0.0346
0.0446
0.0128

k

0.1433
0.1569
0.1541
0.1429
0.1568
0.1206
0.1967
0.1210
0.1371
0.0900
0.1273
0.0927
0.1446
0.1047
0.1664
0.1317
0.1032
0.1450
0.1583

-0.0004
0.0020

-0.0058
-0.0022
0.0173
0.0235
0.0856
0.0487
0.0316
0.0225
0.0352

-0.0061
-0.0056
-0.0221
0.0035

-0.0176
0.0083

-0.0379
0.0443

A
0.60
1.02
0.38
0.23
0.93
2.63
2.12
0.45
0.11
1.61
2.08
1.52
0.31
1.30
1.58
0.29
1.04
0.43
0.38

0.10

the critical value, 3. The largest is 2.63 for site 353445, which has high L-CV and
low L-skewness. It might be worthwhile to shift this site to another region if there
are physical grounds for doing so, but there is no evidence of gross errors in the
data.
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Identification of homogeneous regions

4.1 Methods of forming regions

4.1.1 General considerations

Of all the stages in a regional frequency analysis involving many sites, the iden-
tification of homogeneous regions is usually the most difficult and requires the
greatest amount of subjective judgement. The aim is to form groups of sites that
approximately satisfy the homogeneity condition, that the sites' frequency distri-
butions are identical apart from a site-specific scale factor. This is usually achieved
by partitioning the sites into disjoint groups. An alternative approach is to define for
each site of interest a region containing those sites whose data can advantageously
be used in the estimation of the frequency distribution at the site of interest. This is
the basis of the "region of influence" approach to the formation of regions, discussed
in Section 8.1.

4.1.2 Which data to use?

Formation of regions is difficult because the at-site frequency distribution of the
quantity of interest, <2, is not observed directly. The available data for region
formation are quantities calculated from the at-site measurements of Q, which
we call at-site statistics, and other site descriptors that we call site characteristics.
In environmental applications the site characteristics would typically include the
geographical location of the site, its elevation, and other physical properties as-
sociated with the site. Other site characteristics may be based on estimates rather
than direct measurements, but are sufficiently accurate to be treated as though
they were deterministic quantities. It is usually felt, for example, that mean annual
precipitation can be reliably estimated from isohyetal maps prepared by state and
government agencies. In principle, site characteristics are quantities that are known
even before any data are measured at the site. However, it is reasonable to include
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among the site characteristics some quantities that are estimated from data measured
at the site, provided that these measurements are not too highly correlated with the Q
values themselves. Site characteristics of this kind might include the time of year at
which the annual maximum event (flood or extreme precipitation) most frequently
occurs. If quantile estimates are required at ungaged sites - a topic further discussed
in Section 8.4 - it is advisable to use only site characteristics that can be reliably
estimated when no at-site data are available.

We have made a distinction between at-site statistics and site characteristics,
because we consider this distinction to be important. We strongly prefer to base the
formation of regions on site characteristics and to use the at-site statistics only in
subsequent testing of the homogeneity of a proposed set of regions. To understand
why, suppose for the sake of concreteness that at-site sample L-CV values are used
as the basis for forming regions, sites with similar values of L-CV being grouped
together in the same region. L-CV is a critical variable for the formation of regions,
because - as will be seen in Section 1.5.1 - it is the amount of dissimilarity between
the L-CVs of the population distributions in a region that largely determines how
much better regional frequency analysis will be than at-site analysis. There are three
problems with defining regions based on the scatter of the sample L-CV values.
First, little can be gained by using the regional estimate of L-CV from such a region,
because the regional average L-CV will not be much different from any of the at-site
sample L-CV values. Second, there is a tendency to group together all sites that
have high outliers, and hence high L-CV, even though these outliers may be due to
random fluctuations that happened to affect one site but not its neighbors. Third, we
recommend that the homogeneity of the final regions be tested by a statistic that is
calculated from the at-site statistics - the details are discussed in Sections 4.3-4A.
The integrity of this test is compromised if the same data are used both to form
regions and to test them.

4.1.3 Grouping methods

Several authors have proposed methods for forming groups of similar sites for use in
regional frequency analysis. The procedures can be roughly categorized as follows.

Geographical convenience
Regions are often chosen to be sets of contiguous sites, based on administrative
areas (Natural Environment Research Council, 1975; Beable and McKerchar, 1982),
or major physical groupings of sites (Matalas et al., 1975). Even though region
boundaries may be adjusted after considering model fit (as in Schroeder and Massey,
1977), these approaches seem arbitrary and subjective and the resulting regions
rarely give the impression of physical integrity.
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Subjective partitioning

It is sometimes possible, particularly in small-scale studies, to define regions
subjectively by inspection of the site characteristics. Schaefer (1990), analyzing
annual maximum precipitation data for sites in Washington state, formed regions
by grouping together sites with similar values of mean annual precipitation. Gingras,
Adamowski, and Pilon (1994) formed regions for annual maximum streamflow data
in Ontario and Quebec by grouping the sites according to the time of year at which
the largest flood typically occurred.

Though methods such as these are subjective, the resulting regions can be ob-
jectively tested by the heterogeneity measure described in Section 4.3 below. A
problem arises only if at-site statistics rather than site characteristics are used as
the basis for the subjective partitioning. For example, Gingras and Adamowski
(1993) formed regions for annual maximum streamflow data in New Brunswick,
Canada, by grouping the sites according to whether a nonparametric estimate of the
frequency distribution was unimodal, bimodal, or long-tailed. This procedure in-
volves the at-site statistics to an extent that may affect the validity of the subsequent
use of a heterogeneity measure to validate the regions.

Objective partitioning
In partitioning methods, regions are formed by assigning sites to one of two groups
depending on whether a chosen site characteristic does or does not exceed some
threshold value. The threshold is chosen to minimize a within-group heterogeneity
criterion, such as a likelihood-ratio statistic (Wiltshire, 1985), within-group varia-
tion of the sample coefficient of variation Cv (Wiltshire, 1986a), or within-group
variation of sample L-CV and L-skewness (Pearson, 1991a). The groups are then
further subdivided in an iterative process until a final set of acceptably homoge-
neous regions is obtained. This approach is comparable to extrinsic hierarchical
classification techniques of multivariate analysis, such as automatic interaction
detection (Fielding, 1977), with which it shares the disadvantage that optimal
choice of each successive dichotomous split of the set of sites need not yield
an optimal final classification. Furthermore, the likelihood-ratio or within-group
heterogeneity statistics are affected to an unknown degree when data at different
sites are statistically dependent. There seems no reason to prefer this approach to
the more standard cluster analysis methods, but it can be effective when used in
conjunction with a subsequent assessment of whether the final regions are homo-
geneous, based, for example, on the heterogeneity measure defined in Section 4.3
below. Pearson (1991b) used this approach with Wiltshire's (1985) partitioning
criterion and achieved a successful regionalization of streamflow data for small
drainage basins in New Zealand.
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Cluster analysis
Cluster analysis is a standard method of statistical multivariate analysis for di-
viding a data set into groups and has been successfully used to form regions for
regional frequency analysis. A data vector is associated with each site, and sites
are partitioned or aggregated into groups according to the similarity of their data
vectors. The data vector can include at-site statistics, site characteristics, or some
combination of the two; as noted above, we prefer to use only site characteristics.

De Coursey (1973) applied cluster analysis to site characteristics of streamflow
gaging sites in Oklahoma to form groups of sites having similar flood response.
Acreman and Sinclair (1986) analyzed annual maximum streamflow data for 168
gaging sites in Scotland and formed five regions, four of which they judged to be
homogeneous. Burn (1989) used cluster analysis to derive regions for flood fre-
quency analysis, though his clustering variables include at-site statistics. Guttman
(1993) analyzed annual precipitation totals for 1119 sites in the U.S.A. and formed
104 regions, 101 of which were accepted as homogeneous; more details of this
analysis are given in Section 9.1. Other examples of the use of cluster analysis
in forming hydrological or climatological regions, albeit not for use in frequency
analysis, have been given by Mosley (1981), Richman and Lamb (1985), Nathan
and McMahon (1990), and Fovell and Fovell (1993). Farhan (1984) used cluster
analysis to classify stream gaging sites in Jordan into regions on the basis of four
principal components formed from a matrix of site characteristics.

We regard cluster analysis of site characteristics as the most practical method of
forming regions from large data sets. It has several major variants and involves
subjective decisions at several stages. Some suggestions for the use of cluster
analysis in regional frequency analysis are given in the following subsection.

Other multivariate analysis methods
Other statistical multivariate analysis techniques have occasionally been used to
form groups of similar sites. White (1975) used factor analysis of site characteristics
to classify drainage basins in Pennsylvania. Burn (1988) used principal components
analysis on series of annual maximum streamflow data and classified gaging sites
according to which of a subjectively rotated set of the principal components a site's
data record most closely resembled. This procedure is based on at-site statistics,
but in a way that does not directly involve the shape of the at-site frequency
distribution and therefore may not compromise the use of a statistical homogeneity
test; however, for the same reason, it is not clear that the features of the at-site
data that determine the grouping are useful in identifying sites that have similar
frequency distributions.
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4.1.4 Recommendations for cluster analysis

We regard cluster analysis of site characteristics as the most practical method of
forming regions from large data sets. General descriptions of clustering methods
are given by Gordon (1981) and Everitt (1993), and good discussions of the use
of cluster analysis in environmental applications are given by Kalkstein, Tan, and
Skindlov (1987) and Fovell and Fovell (1993). When the regions are intended for use
in regional frequency analysis, some special considerations apply to cluster analysis.

Clusters are formed from groups of sites with similar site characteristics. Most
clustering algorithms measure similarity by the reciprocal of Euclidean distance
in a space of site characteristics. This distance measure is affected by the scale of
measurement of the site characteristics, and in practice it is usual to rescale the site
characteristics so that they all have the same amount of variability, as measured by
their range or standard deviation across all of the sites in the data set. This rescaling
effectively gives equal weight to each site characteristic in determining clusters; this
may not be appropriate, because some site characteristics have a greater influence
on the form of the frequency distribution and should be given greater weight in
the clustering. It is difficult to choose appropriate weights. This is not a critical
problem, however, because the validity of the final regions can be tested, by the
method described in Section 4.3 below, without requiring that accurate weights be
determined. Nonlinear transformation of the site characteristics may be appropriate
too, to ensure that the influence of the site characteristic on the form of the frequency
distribution is uniform across the range of values of the site characteristic.

There is no assumption that there are distinct clusters of sites that satisfy the
homogeneity condition. More realistically, the form of the frequency distribution
varies smoothly with the site characteristics, and the aim is to find groups of sites
within which the site characteristics, and hence the at-site frequency distributions,
vary so little that regional frequency analysis is preferable to at-site analysis and
to regional frequency analysis based on any other set of regions. Thus there is
no "correct" number of clusters; instead a balance must be sought between using
regions that are too small or too large. Regions that contain few sites will achieve
little improvement in the accuracy of quantile estimates over at-site analysis. Re-
gions that cover a large part of the space of site characteristics may well fail to be
homogeneous, causing bias in the quantile estimates at some of the sites.

These considerations have implications for the choice of clustering algorithm.
Methods that tend to form clusters of roughly equal size should give good results.
Examples of such algorithms are average-link clustering, which tends to form clus-
ters with equal within-cluster variance of site characteristics, and Ward's method,
which tends to form clusters containing equal numbers of sites. Methods that tend
to form a small number of very large clusters, with a few small outlying clusters on
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4.2 Tests of regional homogeneity 59

the fringes of the space of site characteristics, are less likely to yield good regions
for regional frequency analysis. Single-link, or nearest-neighbor, clustering is an
example.

For regional frequency analysis with an index-flood procedure there is little ad-
vantage in using very large regions. Little gain in the accuracy of quantile estimates
is obtained by using more than about 20 sites in a region - see Section 7.5.4. Thus
there is no compelling reason to amalgamate large regions whose estimated regional
frequency distributions are similar.

When cluster analysis is based on site characteristics, the at-site statistics are
available for use as the basis of an independent test of the homogeneity of the
final regions. Such tests are discussed in Sections 4.2-4A. These tests directly
address the aim of the cluster analysis and are a better guide to the choice of an
appropriate number of clusters than the usual criteria of cluster analysis, such as the
pseudo-f2 criterion of Duda and Hart (1973) or the pseudo-F criterion of Calinski
and Harabasz (1974).

The output from the cluster analysis need not, and usually should not, be final.
Subjective adjustments can often be found to improve the physical coherence of
the regions and to reduce the heterogeneity of the regions as measured by the het-
erogeneity measure H described in Section 4.3 below. Several kinds of adjustment
of regions may be useful:

• move a site or a few sites from one region to another;
• delete a site or a few sites from the data set;
• subdivide the region;
• break up the region by reassigning its sites to other regions;
• merge the region with another or others;
• merge two or more regions and redefine groups; and
• obtain more data and redefine groups.

All of these adjustments were used in the example discussed in Section 9.1.

4.2 Tests of regional homogeneity

Once a set of physically plausible regions has been defined, it is desirable to assess
whether the regions are meaningful. This involves testing whether a proposed region
may be accepted as being homogeneous and whether two or more homogeneous
regions are sufficiently similar that they should be combined into a single region.

The hypothesis of homogeneity is that the at-site frequency distributions are the
same except for a site-specific scale factor. A test of this hypothesis is naturally
based on whether the data at the TV sites in the region are consistent with this
relation between the at-site frequency distributions. The test is most conveniently
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60 Identification of homogeneous regions

constructed as a statistical significance test of the similarity of appropriately chosen
statistics calculated from the at-site data. However, as we discuss in Section 4.4,
such an interpretation of the test statistics should be used only with caution.

Tests of whether a region is homogeneous have been proposed by Dalrymple
(1960), Acreman and Sinclair (1986), Wiltshire (1986a,b), Buishand (1989), Chowd-
hury, Stedinger, and Lu (1991), Lu and Stedinger (1992a), Hosking and Wallis
(1993), and Fill and Stedinger (1995). Most of the tests involve a quantity 0 that
measures some aspect of the frequency distribution and is constant in a homoge-
neous region: 6 may be the 10-year event scaled by the mean (Dalrymple, 1960;
Lu and Stedinger, 1992a; Fill and Stedinger, 1995), the coefficient of variation
(Wiltshire, 1986a), a combination of L-CV and L-skewness (Chowdhury et al.,
1991), or the L-CV or some combination of L-CV, L-skewness, and L-kurtosis
(Hosking and Wallis, 1993). Estimates of 0 are calculated: 6^ is an at-site estimate
based on the data for site /, and 9R is a regional estimate using data from all the
sites in the region and assuming homogeneity. A test statistic S is then constructed
that measures the difference between the at-site estimates and the regional estimate;
one possible choice is

(4.1)

This observed value of S is compared with the "null distribution" that S would have
if the region were indeed homogeneous. The calculation of the null distribution
usually involves an assumption about the form of the frequency distribution for the
sites in the region. This distribution is assumed to be Gumbel by Dalrymple (1960)
and Fill and Stedinger (1995), generalized extreme-value by Chowdhury et al.
(1991) and Lu and Stedinger (1992a), and kappa by Hosking and Wallis (1993).
Wiltshire (1986a) estimates the null distribution by a nonparametric jackknife
procedure. If the observed value of S lies far in the tail of its null distribution,
the hypothesis of homogeneity is rejected because it is deemed unlikely that so
extreme a value of S could have arisen by chance from a homogeneous region.

Of the other approaches, Acreman and Sinclair (1986) and Buishand (1989)
use likelihood-ratio tests that compare the fit of regional and at-site generalized
extreme-value distributions fitted to the data by the method of maximum likelihood.
Wiltshire's (1986b) test is based on the observation that if site / has data Qij,
j = 1 , . . . , nu and a frequency distribution with cumulative distribution function
Ft (.), then the "G-statistics" Gy = Ft(Qtj•), j = 1 , . . . , n,-, form a random sample
from a uniform distribution on the interval (0, 1) and should take an average value
of 0.5. When F/ is replaced by a fitted distribution obtained from regional analysis
assuming homogeneity, uniformity of the G-statistics may be expected to hold
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4.3 A heterogeneity measure 61

approximately if the region really is homogeneous, but not otherwise. Wiltshire
obtained a statistic that tests the similarity of the average deviations from 0.5 of
each site's G-statistics calculated from the fitted regional distribution.

No general comparison of these tests has been made. All of the tests are statis-
tically valid except that Dalrymple's calculation of the null distribution is invalid
and has been corrected by Fill and Stedinger (1995). Some limited simulation
experiments of Lu and Stedinger (1992a) and Fill and Stedinger (1995) found that
tests based on L-moments outperform those of Wiltshire (1986a,b). We consider it
inadvisable to use a test that makes too strict an assumption about the form of the fre-
quency distribution. This is another aspect of the robustness discussed in Section 1.2.
The tests of Hosking and Wallis (1993), which are based on L-moments and assume
a kappa distribution - less restrictive than Gumbel or generalized extreme-value -
for the underlying frequency distribution, can be generally recommended. These
tests are described in Section 4.3.

4.3 A heterogeneity measure

4.3.1 Aim

The aim is to estimate the degree of heterogeneity in a group of sites and to assess
whether the sites might reasonably be treated as a homogeneous region. Specif-
ically, the heterogeneity measure compares the between-site variations in sample
L-moments for the group of sites with what would be expected for a homogeneous
region.

4.3.2 Heuristic description

In a homogeneous region all sites have the same population L-moment ratios. Their
sample L-moment ratios will, however, be different, owing to sampling variability.
Thus a natural question to ask is whether the between-site dispersion of the sample
L-moment ratios for the group of sites under consideration is larger than would be
expected of a homogeneous region. See Figure 4.1.

Let us consider how to measure the "between-site dispersion of sample L-moment
ratios" and how to establish "what would be expected of a homogeneous region."

A visual assessment of the dispersion of the at-site L-moment ratios can be
obtained by plotting them on graphs of L-skewness versus L-CV and L-skewness
versus L-kurtosis. Reasonable numerical measures of dispersion based on these
plots are the average distance from a site's plotted point on such a graph to the
group average point. To allow for the greater variability of L-moment ratios in small
samples, averages should be weighted proportionally to the sites' record lengths. An
alternative and simple measure of the dispersion of the sample L-moment ratios is
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V

Observed data Simulated data,
homogeneous region

: - V

/.-skewness, t3 L-skewness, f3

Fig. 4.1. Definition sketch for heterogeneity.

the standard deviation, again weighted proportionally to record length, of the at-site
L-CVs. It is reasonable to concentrate on L-CV, as between-site variation in L-CV
has a much larger effect than variation in L-skewness or L-kurtosis on the variance
of the final estimates of all but the most extreme quantiles - see Section 7.5.7, in
particular Table 7.11.

To establish "what would be expected" we use simulation. By repeated simulation
of a homogeneous region with sites having record lengths the same as those of the
observed data, we obtain the mean and standard deviation of the chosen disper-
sion measure. To compare the observed and simulated dispersions, an appropriate
statistic is

(observed dispersion) —  (mean of simulations)
(standard deviation of simulations)

(4.2)

A large positive value of this statistic indicates that the observed L-moment ratios
are more dispersed than is consistent with the hypothesis of homogeneity.

Finally, we must choose a distribution from which to generate the simulated
data. If the observed sites do form a homogeneous region, this region's population
L-moment ratios are likely to be close to the average of the sample L-moment
ratios of the observed data. To avoid committing ourselves to a particular two-
or three-parameter distribution, we use a four-parameter kappa distribution for
the simulations. The kappa distribution, defined in Section A. 10 of the appendix,
includes as special cases the generalized logistic, generalized extreme-value, and
generalized Pareto distributions. It is therefore capable of representing many of the
distributions occurring in the environmental sciences. Its L-moments can be chosen
to match the group average L-CV, L-skewness, and L-kurtosis of the observed data.
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4.3.3 Formal definition

Suppose that the proposed region has N sites, with site / having record length m
and sample L-moment ratios f ( l \ t%\ and t%\ Denote by tR, tf, and tf the regional
average L-CV, L-skewness, and L-kurtosis, weighted proportionally to the sites'
record length; for example

/ . (4.3)
1 = 1 1 = 1

Calculate the weighted standard deviation of the at-site sample L-CVs,

{ N N } l/2

Y^ni^-t^f/Y.ni) • (4.4)
i = l i=\ J

Fit a kappa distribution to the regional average L-moment ratios l9tR,tf, and tf
(see Section A. 10 of the appendix).

Simulate a large number Afsim of realizations of a region with N sites, each
having this kappa distribution as its frequency distribution. The simulated regions
are homogeneous and have no cross-correlation or serial correlation; sites have the
same record lengths as their real-world counterparts. For each simulated region,
calculate V.

From the simulations determine the mean and standard deviation of the Afsim
values of V. Call these /xy and ay.

Calculate the heterogeneity measure
V-»* ) (4.5)

ay

Declare the region to be heterogeneous if H is sufficiently large. We suggest
that the region be regarded as "acceptably homogeneous" if H < 1, "possibly
heterogeneous" if 1 < H < 2, and "definitely heterogeneous" if H > 2.

4.3.4 Performance

The performance of H as a heterogeneity measure was assessed in a series of
Monte Carlo simulation experiments. For each of a number of artificial regions,
100 replications were made of data from the region, and the accuracy of quantile
estimates and values of the heterogeneity measure H were calculated. Ns[m, the
number of regions simulated in the computation of H, was 500. Simulation results
are given in Table 4.1. Regions were specified by the number of sites in the region,
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Table 4.1. Simulation results for the heterogeneity measure H.

Region
type

Horn
n = 30

Het 30%
n = 30

Het 50%
ft = 30

Horn
n = 60

Het 30%
« = 60

L-CV

Ave.

.20

.20

.20

.30

.15

.20

.20

.20

.30

.15

.20

.20

.20

.30

.15

.20

.20

.20

.20

.20

.20

Range

0
0
0
0
0

.06

.06

.06

.09

.045

.10

.10

.10

.15

.075

0
0
0

.06

.06

.06

No of
sites

6
11
21
21
21

6
11
21
2

21

6
11
21
21
21

6
11
21

6
11
21

RMSE of quantiles

.01

9.4
8.2
7.8

14.0
5.9

12.9
12.3
11.5
19.8
7.6

18.2
17.4
16.3
28.1
9.9

6.8
5.8
5.4

12.0
10.8
10.3

.1

7.1
6.8
6.8

11.2
5.0

8.6
8.7
8.5

14.1
6.0

11.3
11.4
10.9
18.5
7.5

5.1
4.9
4.8

7.7
7.3
7.1

.99

8.7
8.1
7.9

12.8
5.4

12.5
11.0
10.8
16.4
8.6

16.9
15.0
14.6
21.3
12.3

6.8
5.9
5.3

10.7
9.5
8.9

.999

11.7
10.5
10.0
16.1
6.5

18.1
15.8
15.3
23.2
12.1

25.1
22.2
21.5
32.2
18.0

9.4
7.6
6.3

16.3
13.9
12.9

Ave. of het.
measures

H

0.11
0.10
0.06
0.02
0.00

0.91
1.08
1.19
1.07
1.37

2.09
2.51
2.96
2.49
3.41

-0.02
0.28
0.07

1.55
2.16
2.41

H*

1.03
1.02
1.01
1.00
1.00

1.30
1.25
1.19
1.19
1.22

1.69
1.58
1.48
1.44
1.54

0.99
1.06
1.01

1.51
1.49
1.39

the record lengths at each site, and the frequency distribution at each site. Frequency
distributions were generalized extreme-value at each site and were specified by their
L-moment ratios r and T3; the at-site mean was, without loss of generality, set to 1
at each site. Three types of region were used in the simulations: homogeneous;
heterogeneous, with L-CV and L-skewness varying linearly from site 1 through
site Af; and "bimodal," with half the sites having one distribution and half another.
These regions test the ability of H to detect heterogeneity both when the frequency
distributions vary smoothly from site to site and when there is a sharp difference
between the frequency distributions at two subsets of sites. The base region for the
simulations has N = 2l and n,- = 30 at each site and regional average values of 0.2
for both r and 13. Variations on this region include changing N to 6 or 11, changing
each rii to 60, and changing the regional average r to 0.1 or 0.3 with appropriate
changes in T3. Both homogeneous and heterogeneous variants of these regions were
simulated.



Region
type

Het 50%
n = 60

(a)
TT * ->rw fa)
Het 30% / x

(d)

Horn
rc = 30

Bimodal 20%
rc = 30

Bimodal 30%
rc = 30

Bimodal 50%
72 = 30

Note: "Region
crease linearly

L-CV

Ave.

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

.20

type" i

Range

.10

.10

.10

.06

.06

.06

.06

0
0
0
0

.04

.04

.04

.04

.06

.06

.06

.06

.10

.10

.10

.10

4.3 A heterogeneity measure

Table A

No ofixUi yji.

sites

6
11
21

21
21
21
21

2
4

10
20

2
4

10
20

2
4

10
20

2
4

10
20

LS Homogeneous,
from site 1 to site N\

.1. (continued)

RMSE of quantiles

.01

18.1
16.3
15.8

12.8
12.0
12.1
12.3

13.1
10.7
8.4
7.7

16.8
14.3
12.6
12.0

20.3
17.9
16.5
16.0

28.8
26.3
25.4
25.2

.1

11.0
10.3
10.1

9.9
8.7
9.1
9.5

7.5
7.3
6.7
6.9

9.5
9.1
8.7
8.8

11.5
11.0
10.8
10.8

16.4
16.0
15.8
15.9

Heterogeneous

.99

15.5
13.8
13.2

11.7
11.6
11.1
11.0

12.8
10.6
8.6
7.8

15.0
13.3
11.8
11.3

17.5
16.1
14.8
14.4

24.0
22.9
21.6
21.6

> (L-CV
or Bimodal (half the

.999

24.0
20.9
19.9

15.8
16.4
15.1
14.8

21.6
15.7
11.9
9.6

25.4
20.5
17.2
15.8

29.6
25.0
21.9
20.9

39.9
35.7
32.6
32.2

Ave.

65

of het.
measures

H

3.53
4.51
5.45

1.37
0.80
1.63
0.79

0.00
-0.01

0.11
0.13

0.62
0.71
1.00
1.56

1.27
1.48
2.03
3.02

2.83
3.30
4.59
6.57

H*

2.16
2.03
1.87

1.22
1.13
1.27
1.13

1.00
0.99
1.02
1.02

1.46
1.30
1.24
1.26

1.97
1.63
1.50
1.51

3.16
2.42
2.13
2.10

r and L-skewness T3 in-
sites have high r and t3,

the other half have low r and T3). All regions have generalized extreme-value frequency
distributions. "Het 30%" means that (range of r) -=- (average r) is 0.3. Columns 2 and
3 are the average and the range of r for the region. Here, T3 is equal to r at all sites,
except when average r is 0.15; in this case average T3 is 0.1 and the range of r3 is
0.09 for the Het 30% region and 0.15 for Het 50%. "RMSE of quantiles" is the rela-
tive RMSE of estimated quantiles, expressed as a percentage; tabulated values are cal-
culated from 100 simulations. Sample size: nt = 30 or nt = 60 at each site, where
indicated; Region (a) has ni = 50 ,48 , . . . , 10 at sites i = 1, 2 , . . . , 21; Region (b) has
fit = 10, 12 , . . . , 50; Region (c) has m = 50 ,46 , . . . , 14, 10, 14 , . . . , 46, 50; and Region
(d) has m = 10, 14 , . . . , 46, 50 ,46 , . . . , 14, 10.
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Fig. 4.2. Average H value and relative RMSE of quantile estimates for the simulated regions
of Table 4.1.

Quantile estimates were obtained by regional frequency analysis, fitting a gener-
alized extreme-value distribution using the regional L-moment algorithm described
in Section 6.2. The relative RMSE of the quantile estimate Qt(F) was calculated
for each site. The "RMSE of quantiles" in Table 4.1 is the average over all sites
in the region of this relative RMSE, expressed as a percentage. The "Ave. of het.
measures" columns give the average, over the 100 replications of each region, of the
heterogeneity statistic H and of a variant H* described below in Subsection 4.3.7.

For purposes of estimating extreme quantiles, we consider the true measure of
heterogeneity to be the amount by which the error in the quantile estimates is greater
for the observed region than for a homogeneous region with the same values for N,
the nj, and the regional average L-moment ratios. This error cannot be calculated
for observed data because the underlying frequency distribution is unknown but
can be found for simulated data and can be calculated from Table 4.1. Figure 4.2
summarizes the relationship between the average H value for a simulated region
and the RMSE of quantile estimates for that region relative to a homogeneous
region. In general, the relationship is fairly well defined, showing that H is indeed
a reasonable proxy for the likely error in quantile estimates. The H = 1 level is
reached when the RMSE is 20^-0% higher than for a homogeneous region; H = 2
is reached when the RMSE is 40-80% higher than for a homogeneous region. The
main doubt concerning the H measure is excessive dependence on the number of
sites in the region, particularly when the focus is on estimating quantiles that are
not really extreme. In the "Bimodal" regions, for example, the RMSE relative to
a homogeneous region for the F = 0.1 quantile varies very little as the number
N of sites in the region varies, but the average H value decreases steadily as N
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decreases. This means that H is better at indicating heterogeneity in large regions
but has a tendency to give false indications of homogeneity for small regions. This
effect is less marked at more extreme quantiles.

4.3.5 Notes

The assessment of heterogeneity by comparison of L-moments of observed data
with those of data simulated from a homogeneous region has sometimes been
made informally, using only one or two simulated regions (Hosking, 1990, Fig. 7;
Pearson, 1991a, 1993; Pilon, Adamowski, and Alila, 1991; Pilon and Adamowski,
1992; Wallis, 1993). The use of H with a large number of simulations is a less
subjective variant of this approach.

The value of Ns[m should be chosen to achieve reliable estimates \±y and ay.
From simulations we judge that a value of Afsim = 500 should usually be adequate.
Larger values may be need to resolve H values very close to 1 or 2.

The use of a kappa distribution in the simulations is, as noted above, intended
to avoid too early a commitment to a particular distribution as the parent of the
observed data. This contrasts with homogeneity tests proposed by Acreman and
Sinclair (1986) and Chowdhury et al. (1991), which involve fitting generalized
extreme-value distributions to the data. Using these tests, when the homogeneity
hypothesis is rejected, it remains doubtful whether the region is heterogeneous or
whether it is homogeneous but has some other frequency distribution.

It may not be possible to fit a kappa distribution to the group average L-moments.
This occurs if tf is too large relative to tf. In such cases we recommend that
the generalized logistic distribution, a special case of the kappa distribution with
parameter h equal to —1,  be used for the simulated region.

4.3.6 Alternative measures of dispersion

It is possible to construct heterogeneity measures in which V in Eq. (4.4) is replaced
by other measures of between-site dispersion of sample L-moments. We considered
a measure based on L-CV and L-skewness

V2 = f > { ( ' ( 0 - tR)2 + < # > - ; 3 R /
1 = 1 1 = 1

and a measure based on L-skewness and L-kurtosis

x > { c f - '3R)2 + (4° - '4R)2}1/2/X
1=1 1=1

v3 = x > { c f - '3R)2 + (4° - '4
R)2}1 / 2 /X> •  (4-7)
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V2 and V3 are the weighted average distance from the site to the group weighted
mean on graphs of t versus t?> and of t^ versus £4, respectively. For both real-world
data and artificial simulated regions, H statistics based on V2 and V3 lack power to
discriminate between homogeneous and heterogeneous regions: They rarely yield
H values larger than 2 even for grossly heterogeneous regions. The H statistic based
on V has much better discriminatory power. Similar results have been reported by
Lu(1991).

The measure V is, of course, insensitive to heterogeneity that takes the form of
sites having equal L-CV but different L-skewness, but this form of heterogeneity
has little effect on the accuracy of quantile estimates except very far into the extreme
tails of the distribution and is in any case rare in practice, because, for most kinds
of data, sites with high L-skewness tend to have high L-CV too. Thus we judge
that V is clearly superior to V2 and V3 for the between-site comparisons of sample
L-moment ratios needed by the index-flood procedure.

Some regionalization procedures seek to define regions in which L-skewness
and L-kurtosis are constant while L-CV may vary. These procedures include the
"regional shape estimation" and "hierarchical regions" approaches discussed in
Section 8.1. The measure based on V3 should be an appropriate tool for assessing
the heterogeneity of proposed regions when using these procedures.

4.3.7 An alternative heterogeneity measure

The heterogeneity measure H defined in Eq. (4.5) is constructed like a significance
test of whether all the sites in the region have, after scaling by division by the mean,
identical frequency distributions. A region will be accepted as homogeneous if the
data are consistent, at a suitable level of significance, with the hypothesis that the
at-site population L-CVs are identical. Such a region will be said to be statistically
homogeneous. In contrast, however, what is required for regional frequency analysis
is that the region be operationally homogeneous, that is, that the at-site population
L-CVs, although not necessarily identical, should be sufficiently close to each other
that regional analysis is more accurate when applied to the region as a whole than
when applied separately to two or more subregions.

The difference between statistical homogeneity and operational homogeneity can
be important. For example, when a region has a small number of sites there are only
a small number of at-site sample L-CVs available for use in a significance test, and
the differences between them can be large and yet not be statistically significant.
Thus the region is likely to be accepted as statistically homogeneous even when it
is not operationally homogeneous. Conversely, when a proposed region has many
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Fig. 4.3. Average H* value and relative RMSE of quantile estimates for the simulated
regions of Table 4.1.

sites then although the spread of the population L-CVs may be small enough for the
region to be operationally homogeneous, it is unlikely that the sample L-CVs would
be close enough for the region to be accepted as statistically homogeneous. To over-
come this difficulty, a test must be constructed that is truly sensitive to operational
heterogeneity rather than statistical heterogeneity. One possible approach is to test
the hypothesis that the variation in the at-site population L-CVs is less than some
fixed threshold at which regional and at-site estimation would be equally accurate
and to apply this test at a significance level of 50%, A suitable heterogeneity measure
can be devised; follow the same procedure as given in Subsection 4.3.3 but in place
of H in Eq. (4.5) define

(4.8)

H* is the ratio of the standard deviation of the observed at-site L-CVs to the average
value of the same standard deviation for the simulated kappa regions.

Although H* has a theoretical justification as given above, its practical perfor-
mance is disappointing. It was tested on simulated data in the same way as H, and
results for it are included in Table 4.1. Figure 4.3 compares the average H* value
for a simulated region and the RMSE of quantile estimates for that region relative
to a homogeneous region. Figures 4.2 and 4.3 enable comparison of H and H*.
The relationship between the heterogeneity measure and the accuracy of quantiles
is better defined for H than for //*, so it is preferable to use H.
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4.4 Use of the heterogeneity measure

The heterogeneity measure may be used to assess a proposed region, using the
value of H to judge the degree of heterogeneity. If the region is not acceptably
homogeneous, some redefinition of the region should be considered. The region
could be divided into two or more subregions, some sites could be removed from
the region, or a completely different assignment of sites to regions could be tried.
However, it may be that the appearance of heterogeneity is due to the presence of
a small number of atypical sites in the region. In such cases the site characteristics
for these sites should be carefully examined. It may be possible to reassign these
sites to regions of which they are more typical, but sometimes it may appear that
there is no physical reason why the atypical sites should be different from the
rest of the region. It is then best to let the physical argument take precedence
over the statistical and retain the sites in the originally proposed region. This
approach makes possible the identification of homogeneous regions even when the
homogeneity is masked by sampling variation in the data. For example, a certain
combination of extreme meteorological conditions and consequent extreme events
may be capable of occurring at any of a number of sites in a region but have
actually occurred at only a few of these sites during the period of measurement.
The greatest potential benefits of regionalization can be attained if in such a situation
physical knowledge enables the entire set of sites to be identified as a homogeneous
region. In this case, the at-site data are misleading, being unduly influenced by the
presence or absence of an unusual environmental event, and the regional average
frequency distribution will give the best estimates of the future risk of extreme
events.

The H statistic is constructed like a significance test of the hypothesis that the
region is homogeneous. However, we do not recommend that it be used in this
way. Significance levels obtained from such a test would be accurate only under
special assumptions: that the data are independent both serially and between sites,
and that the true regional distribution is kappa. We need to define a heterogeneity
measure for regions that may not satisfy these assumptions, so we prefer not to use
H a s a significance test. It would be possible to generate simulated data that are
correlated, but this would require much more computing time. A significance test
is of doubtful utility anyway, because even a moderately heterogeneous region can
provide quantile estimates of sufficient accuracy for practical purposes. Thus a test
of exact homogeneity is of little interest.

The criteria H = 1 and H = 2 are somewhat arbitrary, but we believe them to
be useful guidelines. If H were used as a significance test, assuming the V statistic
to be Normally distributed, then the criterion for rejection of the hypothesis of
homogeneity at significance level 10% would be H = 1.28. A criterion of H = 1
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may seem very strict in comparison, but, as noted above, we do not seek to use H in
a significance test. From the simulation results, a region sufficiently heterogeneous
that quantile estimates for it are 2(MK)% less accurate than for a homogeneous
region will on average yield H ^ 1. We regard this amount of heterogeneity as
being on the borderline of whether a worthwhile increase in the accuracy of quantile
estimates could be achieved by redefining the region. For such a region, it is still
likely that regional estimation will yield much more accurate quantile estimates
than at-site estimation, but it is possible that subdividing the region or removing
a few sites from it may reduce its heterogeneity. We therefore regard H = 1 as
the limit at which seeking to redefine the region may be advantageous. Similarly,
we regard H = 2 as a point at which redefining the region, if the available site
characteristics permit it, is very likely to be beneficial.

Negative values of H are sometimes observed. These indicate that there is less
dispersion among the at-site sample L-CV values than would be expected of a
homogeneous region with independent at-site frequency distributions. The most
likely cause is positive correlation between the data values at different sites. If
many large negative values, H < —2  say, are obtained during a regional analysis,
this may be an indication that there is a large amount of cross-correlation between
the sites' frequency distributions or that there is some excessive regularity in the data
that causes the sample L-CVs to be unusually close together. Further examination
of the data would then be warranted.

We emphasize again that the validity of H as a heterogeneity measure is com-
promised if the selection of regions is based on sample L-moments, for then the
same data are being used both to identify regions and to test their homogeneity.
One could, for example, define a region to consist of all sites with a sample L-CV
within a certain small range. Such a region might yield a small value of / / , but
this would reflect only the pattern of noise, or sampling variability, in the data and
have no physical significance. Valid use of H requires that assignment of sites to
regions be based on external site characteristics such as the physical characteristics
or geographical location of the sites.

4.5 Example

We calculate the heterogeneity statistic for the North Cascades data in Table 3.4.
The V measure calculated from the observed data is 0.01044. The group average
L-moments are

;R = 0.1103, ;3R = 0.0279, tf = 0.1366, (4.9)
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and the parameters of the fitted kappa distribution are

§=0.9542, a = 0.1533, k = 0.1236, h = -0.2955. (4.10)

Simulations were made of this kappa region. The V measures for 500 simulated
regions had an average of 0.00948 and a standard deviation of 0.00156. The calcu-
lated heterogeneity measure H is thus (0.01044 - 0.00948)/0.00156 = 0.62, and
the region is acceptably homogeneous.



5

Choice of a frequency distribution

5.1 Choosing a distribution for regional frequency analysis

5.7.7 General framework

In regional frequency analysis a single frequency distribution is fitted to data from
several sites. In general, the region will be slightly heterogeneous, and there will
be no single "true" distribution that applies to each site. The aim is therefore not
to identify a "true" distribution but to find a distribution that will yield accurate
quantile estimates for each site.

The chosen distribution need not be the distribution that gives the closest ap-
proximation to the observed data. Even when a distribution can be found that gives
a close fit to the observed data, there is no guarantee that future values will match
those of the past, particularly when the data arise from a physical process that can
give rise to occasional outlying values far removed from the bulk of the data. As
noted in Section 1.2, it is preferable to use a robust approach based on a distribution
that will yield reasonably accurate quantile estimates even when the true at-site
frequency distributions deviate from the fitted regional frequency distribution.

There may be a particular range of return periods for which quantile estimates
are required. In analyses of extreme events such as floods or droughts, quantile
estimates in one tail of the distribution will be of particular interest. In other
examples, quantiles far into the tails of the distribution may be of little interest.
These considerations may affect the choice of regional frequency distribution. If
only quantiles in the upper tail are of interest, for example, then it need not matter if
a distribution that can take negative values is fitted to data that can only be positive.

5.7.2 Selection of candidate distributions

There are many families of distributions that might be candidates for being fitted to
a regional data set. Their suitability as candidates can be evaluated by considering

73
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their ability to reproduce features of the data that are of particular importance in
modeling. The following properties of a distribution may be of importance in any
given application.

Upper bound of the distribution
Many physical quantities can be thought of as having an upper bound. The bound
may not be known exactly, but some numerical values are so unlikely as to be
physically impossible. For example, windspeeds of 1,000 mi hr"1 (600kmhr~1)
or instantaneous rainfall rates of 20inhr~1 (SOOmmhr"1) would be considered
physically impossible. For this reason it is sometimes argued (e.g., Boughton, 1980;
Laursen, 1983) that only bounded distributions should be used. We maintain that
this argument is misguided. If the aim of an analysis is to estimate quantiles of
return periods up to 100 years, that the estimated quantile at return period 100,000
years is "physically impossible" is of no relevance and should not be any cause for
concern. Indeed, imposing the requirement that the distribution have a physically
realistic upper bound may compromise the accuracy of quantile estimates at the
return periods that are of real interest. When an unbounded distribution is used, the
assumption, usually implicit, may be that the upper bound of the distribution cannot
be estimated with sufficient accuracy to be worth the effort, or that over the range
of return periods of interest in the particular study the true distribution function is
likely to be better approximated by an unbounded distribution than by any easily
parametrizable bounded distribution.

Of course, when it appears that the true distribution has an upper bound that is
closely approached by the observed data, then it is advisable to fit a distribution that
is capable of modeling bounded data. For example, the generalized extreme-value
distribution has an upper bound when its shape parameter k is greater than zero.
When this distribution is fitted to data, a tendency for the data to lie close to an
upper bound will be reflected in an estimated k value greater than zero.

Upper tail of the distribution
In many applications, estimation of the upper tail of the frequency distribution is
of particular interest, yet the amount of data is not sufficient to determine the shape
of the upper tail with any accuracy. The tail weight, the behavior of the probability
density function f(x) as x increases, is important because it determines the rate at
which quantiles increase as the return period is extrapolated beyond the range of
the data. Tail weights of some common distributions are given in Table 5.1. When
there is no reason to assume that only one kind of tail weight is appropriate, it is
advisable to use a set of candidate distributions that cover a range of different tail
weights. The goodness-of-fit statistic described in Section 5.2 provides a means of
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Table 5.1. Upper-tail weights of some common distributions.

Form of f(x)
for large x Distributions

x~A Generalized extreme-value, generalized Pareto,
and generalized logistic distributions with para-
meter k < 0.

x ~ A logx Lognormal distribution with positive skewness.
exp(—JC A), 0 < A < 1 Weibull distribution with parameter X < 1.
xA e~Bx Pearson type III distribution with positive

skewness.
exp(—x) Exponential, Gumbel.
exp(—x A), A > 1 Weibull distribution with parameter X > 1.
Finite upper bound Generalized extreme-value, generalized Pareto,

and generalized logistic distributions with para-
meter k > 0; lognormal and Pearson type III dis-
tributions with negative skewness.

Note: Tail weights are ordered from heaviest to lightest. A and B denote arbitrary positive
constants.

deciding which distributions, and hence which tail weights, are consistent with a
set of homogeneous regional data.

Shape of the body of the distribution
Most distributions used in statistics have a probability density function with a single
peak from which the density declines smoothly in both directions. In some analyses
there may be reason to consider other distributions. For example, annual maximum
streamflow data may contain some values arising from floods caused by snowmelt
and some from rainstorm events. In such cases, when the data are observations of
a phenomenon that may arise from qualitatively different causes, a mixture of two
distributions may be entertained; the regional frequency distribution would be

F(x) = pGx(x) + (1 - p)G2{x\ (5.1)

where G\{x) and G2(x) are the cumulative distribution functions of data arising
from the two distinct causes and p is the proportion of the observations that arise
from the first cause. There is no theoretical reason why such a distribution cannot
be used in a regional L-moment analysis. There may be practical difficulties, how-
ever, insofar as expressions for probability weighted moments and L-moments of



76 Choice of a frequency distribution

mixed distributions tend to be complicated. See, for example, the results for the
"two-component extreme-value distribution" given by Beran, Hosking, and Arnell
(1986).

Lower tail of the distribution
Similar considerations apply to the lower tail of the distribution as to the upper tail;
in many cases it is advisable to consider a range distributions with different tail
weights. If interest centers on the upper tail of the distribution, however, the form
of the lower tail is irrelevant. For example, an exponential distribution may give
a good approximation to the upper-tail quantiles of annual maximum streamflow
data (Damazio and Kelman, 1986), even though the shape of the lower tail of the
distribution bears little resemblance to that of the data.

Lower bound of the distribution
Similar considerations apply to the lower bound of the distribution as to the upper
bound; even if a lower bound exists, it may not be efficient to try to estimate it
explicitly. Unlike the upper bound, however, the lower bound may often be known;
usually it will be known to be zero. If quantiles of interest are close to zero, it may
be worthwhile to require the lower bound of the regional frequency distribution to
be zero. Several distributions, such as the Wakeby, generalized Pareto, and Pearson
type III, retain a convenient form when this requirement is imposed. In some cases,
knowledge that the lower bound is zero is not useful, and better results will be
obtained by fitting a distribution that has a lower bound greater than zero or even a
distribution that has no lower bound. For example, annual precipitation totals are
bounded below by zero, but in most temperate parts of the world values close to
zero are so unlikely that a realistic distribution of annual precipitation totals will
have a lower bound considerably greater than zero.

Exact zero values
Some data, such as precipitation totals, may contain a number of zero values. If
estimates of quantiles in the lower tail of the distribution are important, a distribu-
tion that allows for a nonzero proportion of zero values should be used. Suitable
distributions can be obtained from existing standard distributions. One might, for
example, use a generalized extreme-value distribution adjusted so that the fraction
of the distribution that is negative is replaced by an atom of probability at zero.
Unfortunately, the L-moments of such adjusted distributions tend to be difficult
to work with. Wang (1990a) and Hosking (1995) have given some L-moment
calculations for the related problem of inference from censored distributions.
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Alternatively, a mixed distribution may be used, with the assumed regional
frequency distribution having the form

" W H - ' + u - r t c w . , > a <«>

Here p is the probability of a zero value and G(x) is the cumulative distribution
function of the nonzero values; it may or may not be constrained to have a lower
bound of exactly zero. The p parameter can be estimated by the proportion of
zero values in the data for the region, and the distribution G(x) can be fitted using
the regional L-moments of the nonzero data values. This approach was used by
Guttman, Hosking, and Wallis (1993) and is described in Section 9.1.

Sometimes there are theoretical reasons why a particular family of distributions
is appropriate for a given type of data. Since the work of Gumbel (1958) it has
been argued that data on extreme events such as annual maximum streamflows or
precipitation may be well fitted by extreme-value distributions. For annual maxi-
mum streamflows, for example, the extreme-value approximation is valid when
in each year there are a large number of storm events whose peak streamflows
are independent and identically distributed. In practice, the assumptions under-
lying the extreme-value approximation may not be satisfied. For annual maximum
streamflow data, the number of storm events in a year is rarely large enough to
justify the extreme-value approximation, and the storm event magnitudes, rather
than being identically distributed, tend to vary with the seasons of the year. Though
an extreme-value distribution may be a candidate for describing the data, it should
not be used without comparing its goodness of fit with that of other distributions.

Some thought should be given to the number of unknown parameters in the can-
didate distributions. Distributions with only two parameters yield accurate quantile
estimates when the true distribution resembles the fitted distribution, but estimates
of tail quantiles can be severely biased if the shape of the tail of the true frequency
distribution is not well approximated by the fitted distribution - see Section 7.5.8.
The use of a distribution with more parameters, when these can be estimated
accurately, yields less biased estimates of quantiles in the tails of the distribution.
One of the advantages of regional frequency analysis is that distributions with three
or more parameters can be estimated more reliably than would be possible using
only a single site's data. The use of a Wakeby distribution, with five parameters,
when the sample size at each site is only 20, for example, is perfectly reasonable.
For most applications of regional frequency analysis we feel that distributions with
three to five parameters are appropriate.
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5.1.3 Final choice of a regional frequency distribution

Assessment of the merits of different candidate distributions for a particular appli-
cation will largely be based on how well the distributions fit the available data. In
general, one would not want to use a distribution that is inconsistent with the data.
However, this is not to say that one should invariably choose the distribution that
gives the best fit to the data. The aim of regional frequency analysis is not to fit a
particular data set but to obtain quantile estimates of the distribution from which
future data values will arise. When several distributions fit the data adequately, any
of them is a reasonable choice for use in the final analysis, and the best choice from
among them will be the distribution that is most robust, that is, most capable of
giving good quantile estimates even though future data values may come from a
distribution somewhat different from the fitted distribution.

Several methods are available for testing the goodness of fit of a distribution
to data from a single sample. These include quantile-quantile plots, chi-squared,
Kolmogorov-Smirnov, and other general goodness-of-fit tests and tests based on
moment or L-moment statistics. Some of these methods can be adapted for use in
the regional framework. The fit of a postulated regional frequency distribution to
each site's data can be assessed by goodness-of-fit statistics calculated at each
site, and the resulting statistics then combined into a regional goodness-of-fit
statistic. This is a reasonable approach and has been used by Chowdhury et al.
(1991).

Using L-moments, it is natural to base test statistics on at-site and regional
L-moments and the positions they occupy on an L-moment ratio diagram. Cong
et al. (1993) constructed statistics based on the scatter of the (£3, u) points for
different sites on a L-moment ratio diagram about the 13-14 relations of different
three-parameter distributions. Their aim was to choose the distribution that gives
the best fit to the data in this sense. As noted above, we believe that this should not
be the sole aim of the analysis.

We prefer an alternative approach that works directly with the regional average
L-moment statistics. It is described in the next section.

5.2 A goodness-of-fit measure

5.2.1 Aim

Given a set of sites that constitute a homogeneous region, the aim is to test whether
a given distribution fits the data acceptably closely. A related aim is to choose, from
a number of candidate distributions, the one that gives the best fit to the data.
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Fig. 5.1. Definition sketch for goodness of fit.

5.2.2 Heuristic description

Assume that the region is acceptably close to homogeneous. Choice of a distribution
for regions that are not homogeneous is discussed in Section 5.3. The L-moment
ratios of the sites in a homogeneous region are well summarized by the regional
average; the scatter of the individual sites' L-moment ratios about the regional
average represents no more than sampling variability. In most cases, the distribution
being tested will have location and scale parameters that can be chosen to match the
regional average mean and L-CV. The goodness of fit will therefore be judged by
how well the L-skewness and L-kurtosis of the fitted distribution match the regional
average L-skewness and L-kurtosis of the observed data. Fifth- or higher-order
L-moments could in principle be used too, but we have not found it necessary to
do so.

To obtain a goodness-of-fit measure, we argue as follows. Assume for conve-
nience that the candidate distribution is generalized extreme-value (GEV), which
has three parameters, and that sample L-skewness and L-kurtosis are exactly un-
biased. The GEV distribution fitted by the method of L-moments has L-skewness
equal to the regional average L-skewness. We therefore judge the quality of fit
by the difference between the L-kurtosis r^^ of the fitted GEV distribution and
the regional average L-kurtosis tf. See Figure 5.1. To assess the significance of
this difference, we compare it with the sampling variability of tf. Let o^ denote
the standard deviation of tf, which can be obtained by repeated simulation of a
homogeneous region whose sites have a GEV frequency distribution and record
lengths the same as those of the observed data. Then

Z G E V = (tf - r4
GEV)/a4 (5.3)
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is a goodness-of-fit measure; small values of ZGEV are consistent with the GEV
being the true underlying frequency distribution for the region.

A difficulty with the procedure just described is that a separate set of simulations
must be made for each candidate distribution to obtain the appropriate 04 values.
In practice, it should be sufficient to assume that o\ is the same for each candidate
three-parameter distribution. This is reasonable, because each fitted distribution
has the same L-skewness, and they are therefore likely to resemble each other
to a large extent. Given this assumption, it is then reasonable to assume that the
best-fitting kappa distribution also has a OA, value close to those of the candidate
distributions. Thus o^ can be obtained by repeated simulations of a kappa region.
These simulations can be the ones used in the calculation of the heterogeneity
measure described in Section 4.3.

We have so far taken the sample L-moments t>$ and t\ to be exactly unbiased. This
is a very good approximation for t?> but is not so good for £4 when record lengths
are short (m < 20) or the population L-skewness is large (T3 > 0.4). To overcome
this problem, a bias correction for U is used. Compare the fitted L-kurtosis T G E V

not with the regional average tf itself but with the bias-corrected version tf —  B4

where B4 is the bias in the regional average L-kurtosis for regions with the same
number of sites and the same record lengths as the observed data. This bias can be
obtained from the same simulations as those used to obtain 04.

The foregoing description has dealt exclusively with three-parameter distribu-
tions. Two-parameter distributions can be treated similarly, but problems arise at
the stage corresponding to the estimation of a^. The matter is discussed further in
Subsection 5.2.6.

5.2.3 Formal definition

Suppose that the region has N sites, with site i having record length ni and sample
L-moment ratios t , t%\ and t%\ Denote by tR, tf, and tf the regional average
L-CV, L-skewness, and L-kurtosis, weighted proportionally to the sites' record
length, as in Eq. (4.3).

Assemble a set of candidate three-parameter distributions. Reasonable possi-
bilities include the generalized logistic (GLO), generalized extreme-value (GEV),
generalized Pareto, lognormal, and Pearson type III.

Fit each distribution to the regional average L-moments 1, tR, and tf. Denote
by rflST the L-kurtosis of the fitted distribution, where DIST can be any of GLO,
GEV, etc.

Fit a kappa distribution to the regional average L-moment ratios 1, tR, tf, and tf.
Simulate a large number, iVSim, of realizations of a region with N sites, each

having this kappa distribution as its frequency distribution. The simulated regions
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are homogeneous and have no cross-correlation or serial correlation; sites have
the same record lengths as their real-world counterparts. The fitting of a kappa
distribution and simulation of kappa regions can use the same computations as for
the heterogeneity measure described in Section 4.3. For the mth simulated region,
calculate the regional average L-skewness t^ and L-kurtosis t4

m].
Calculate the bias of tf,

AU

the standard deviation of tf,

1/2

a4 = (M- -v*sim vsim^4
m=l

(5.5)

and, for each distribution, the goodness-of-fit measure

ZDIST = (rDIST _ tR + ^ ) / ( j 4 ( 5 6 )

Declare the fit to be adequate if ZDIST is sufficiently close to zero, a reasonable
criterion being |ZDIST| < 1.64.

5.2.4 Performance

The performance of Z as a goodness-of-fit measure was assessed by means of
Monte Carlo simulation experiments. Data were simulated from homogeneous re-
gions with one of four three-parameter frequency distributions: generalized logistic
(GLO), generalized extreme-value (GEV), lognormal (LN3), or Pearson type III
(PE3). Simulations were made of data from each region; 1000 replications of each
region were simulated. Each of these four distributions was also fitted to each
region's data, and counts were kept of the number of times that each distribution
was accepted as giving an adequate fit to the data, that is, \Z\ < 1.64, and of the
number of times that each distribution was chosen as giving the best fit among the
four fitted distributions in the sense of giving the smallest value of |Z|. Z statistics
were calculated with 7Vsim = 500.

Simulation results are given in Table 5.2. From the construction of Z, the
true distribution of the region should be accepted about 90% of the time. This
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Table 5.2. Simulation results for the goodness of fit measure Z.

r r3

0.10 0.05

0.20 0.20

0.30 0.30

Region

GLO
GEV
LN3
PE3

GLO
GEV
LN3
PE3

GLO
GEV
LN3
PE3

GLO

74
2
7
6

80
34
15
1

86
74
13
0

% Accepted

GEV

3
90
82
85

25
95
90
52

54
95
85
5

LN3

7
82
89
89

16
89
93
71

18
69
95
41

PE3

6
85
89
90

2
53
71
90

0
8

36
93

GLO

91
1
5
4

89
15
4
0

85
36
4
0

% Chosen

GEV

0
61
36
39

10
53
39
6

14
47
35
0

LN3

9
23
43
41

1
20
31
23

1
15
50
14

PE3

0
15
15
15

0
11
26
70

0
0

11
85

Note: Simulations are of homogeneous regions with specified values of L-CV, r, and
L-skewness, 13. Each region has 21 sites and record length 30 at each site. "Region" is
the true distribution used in the simulations. Here, "% Accepted" is the percentage of
the simulations in which a candidate distribution gave an acceptable fit (|Z| < 1.64);
"% Chosen" is the percentage of the simulations in which a distribution was chosen as the
best of the four candidates in the sense of giving the smallest value of | Z |.

is approximately true for all parent distributions except the generalized logistic,
which is accepted less often. It is not clear why this should be so; it may reflect a
tendency for 04 to underestimate the true variance of the regional average L-kurtosis
for generalized logistic regions. The amount by which these numbers exceed the
other entries in the "% Accepted" columns of Table 5.2 measures the ability of Z
to distinguish between different distributions. This is achieved fairly well for the
generalized logistic distribution and, when x$ is relatively high, for the Pearson
type III distribution, but in other cases the distributions are hard to distinguish. This
reflects the similarity of the quantiles of the generalized extreme-value, lognormal,
and Pearson type III distributions when T3 is small. In particular, the lognormal and
Pearson type III distributions both tend to the Normal distribution when T3 tends
to zero and are very similar when T3 = 0.05. This explains the similarity of the
corresponding rows of Table 5.2. The entries in the "% Chosen" columns show how
well the Z statistic can be used to identify the correct distribution from among the
four candidates. Again, this can be achieved particularly well for the generalized
logistic distribution and for the Pearson type III distribution with high 13.
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5.2.5 Notes

The criterion \Z\ < 1.64 is somewhat arbitrary. The Z statistic has the form of a
significance test of goodness of fit and has approximately a standard Normal dis-
tribution under suitable assumptions. The criterion \Z\ < 1.64 then corresponds to
acceptance of the hypothesized distribution at a confidence level of 90%. However,
the assumptions necessary for Z to be standard Normal include two that are unlikely
to be exactly satisfied in practice: that the region be exactly homogeneous and that
it have no intersite dependence. Thus the criterion is a rough indicator of goodness
of fit and is not recommended as a formal test.

The criterion \Z\ < 1.64 is particularly unreliable if serial correlation or cross-
correlation is present in the data. Correlation tends to increase the variability of tf,
and because there is no correlation in the simulated kappa region, the resulting
estimate of o\ is too small and the Z values are too large. Thus a false indication
of poor fit may be given. To overcome this problem, it is possible to generate
simulated data that are correlated, though this would require much more computing
time.

5.2.6 Goodness of fit for two-parameter distributions

A two-parameter distribution with location and scale parameters has fixed T3 and T4.
Testing goodness of fit can be based on comparison of these T3 and T4 values with the
regional average tf and tf. To construct a statistic analogous to Z, we need both the
individual and joint sampling variability of tf and tf, in the form of the covariance
matrix of tf and tf. Three plausible methods of obtaining this covariance matrix
all have disadvantages.

(i) Estimate the covariance matrix by simulation of a kappa region, exactly as
described above for three-parameter distributions. The assumption that o^
and the other terms in the covariance matrix are approximately the same
for this kappa distribution as for the candidate distribution is now suspect,
because the regional averages tf and tf may both be quite different from
those of the candidate distribution. Thus the estimated covariance matrix may
be unreliable.

(ii) Estimate the covariance matrix by simulation of a region whose frequency
distribution is the candidate distribution. This requires more computing time,
because the simulation procedure must be repeated for each candidate two-
parameter distribution.

(iii) Calculate the covariance matrix from asymptotic theory for the distribution
of ti and U from the candidate distribution. The use of asymptotics may be a
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problem, because asymptotic approximations for distributions of L-moments
are not always accurate in small samples (n < 50) - see, for example, Chowd-
hury et al. (1991, Table 1). Furthermore, it is not possible to obtain the asymp-
totic distributions for samples from serially correlated or cross-correlated data.
Thus this approach is limited to situations in which it is adequate to obtain
the covariance matrix of tf and tf for a region that has no serial or intersite
dependence.

None of the foregoing methods is completely satisfactory. Method (ii) is a rea-
sonable choice if sufficient computing time is available. Otherwise, we do not
recommend the use of a goodness-of-fit measure for two-parameter distributions
in regional frequency analysis.

5.3 Use of the goodness-of-fit measure

The procedure for a region that is acceptably homogeneous is as follows. Calculate
Z for all candidate distributions. Flag as "acceptable" all distributions for which
| Z | < 1.64. Calculate growth curves for the acceptable distributions. If these growth
curves are approximately equal, for the scientific purposes of the application under
consideration, then any of the acceptable distributions is adequate. To guard against
the possibility that the region was misspecified, it is safest to choose from among the
acceptable distributions the one that is most robust to such misspecification. If the
growth curves are not approximately equal, there is a problem of scarcity of data;
two models display differences that are statistically insignificant but operationally
important. In this case, in which it has not been possible to confidently identify
the best model, robustness becomes particularly important. Rather than choose a
three-parameter distribution, it may be better to use the four-parameter kappa or
five-parameter Wakeby distributions, which are more robust to misspecification of
the frequency distribution of a homogeneous region - see Section 7.5.8.

It may happen that none of the candidate distributions is accepted by the Z
criterion. This sometimes occurs when the number of sites in the region or the at-site
record lengths are large. In these circumstances, <74 is small and Z can be large even
if the regional average L-skewness and L-kurtosis are fairly close to those of one
of the candidate distributions. If the regional average (tf, tf) point falls between
two distributions (or among three or more distributions) whose growth curves are
approximately equal, for the scientific purposes of the application under consid-
eration, then there is a problem of superabundance of data; two models display
differences that are statistically significant but operationally unimportant. In this
case, it is reasonable to reclassify any of the operationally equivalent distributions
as giving an acceptable fit to the data. Sometimes the regional average point does



5.3 Use of the goodness-of-fit measure 85
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Fig. 5.2. Average L-moments of the North Cascades data (+), with L-skewness-L-kurtosis
relationships for four three-parameter distributions.

not lie between two operationally equivalent distributions. For example, it may lie
above the generalized-logistic line. In these cases, no three-parameter distribution
is acceptable, and a more general distribution such as the kappa or Wakeby should
be used.

If the region is not acceptably homogeneous, there is no reason to suppose
that a single distribution will give a good fit to every site's data. Nonetheless,
fitting a single distribution can still yield much more accurate quantile estimates,
considered on the average over all sites, than fitting separate distributions at each
site - see Chapter 7, and in particular Sections 7.5.3 and 7.5.7 - 7.5.10. The choice of
distribution should be influenced by considerations of robustness. It is particularly
important to use a distribution that is robust to moderate heterogeneity in the
at-site frequency distributions. The kappa and Wakeby distributions are widely
recommendable choices - see Sections 7.5.8-7.5.9.

When the region is heterogeneous, it is possible that a test that makes use of
the at-site L-moments might enable better discrimination between distributions.
The regional average gives a sufficient summary of the data when the region is
homogeneous, but this is no longer the case for a heterogeneous region. However,
for heterogeneous regions we consider it more important that the chosen distribution
be robust to heterogeneity than that it achieve the ultimate quality of fit. We therefore
tend to prefer the Wakeby distribution for heterogeneous regions.

In a large investigation there may be many regions, and the choice of frequency
distribution for one region may affect the others. If one distribution gives an accept-
able fit for all or most of the regions, then it is reasonable to use this distribution
for all regions even though it may not be the best for each region individually.
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5.4 Example

We apply the goodness-of-fit measure to the North Cascades data in Table 3.4. The
regional average L-skewness and L-kurtosis are tf = 0.0279 and tf = 0.1366,
respectively. The position of the regional average relative to the t3-r4 relation-
ships of four candidate three-parameter distributions is shown by the + symbol
on Figure 5.2. The Z statistics for the four candidate distributions are as follows:
generalized logistic, Z G L 0 = 3.46; generalized extreme-value, ZGEV = —2.94;
lognormal, ZLN3 = -1 .51; and Pearson type III, ZPE3 = -1.60. The lognormal
and Pearson type III distributions give acceptably close fits to the regional average
L-moments.



6
Estimation of the frequency distribution

6.1 Estimation for a homogeneous region

After successful use of the methods described in Chapters 3-5, the sites at which
data are available for regional frequency analysis will have been assigned to regions
that are nearly homogeneous, that is, the frequency distributions at the sites in a
region are approximately identical apart from a scale factor, and a probability
distribution will have been chosen for fitting to each region's data. The relationship
between the frequency distributions at different sites is the justification for regional
frequency analysis. It is this relationship that enables more accurate estimates of
the distribution's parameters and quantiles to be obtained by combining the data
from different sites than could be achieved by fitting distributions to each site's data
separately.

Several methods of fitting a distribution to data from a homogeneous region are
possible. To describe them, we recapitulate the notation of Section 1.3. Suppose
that the region has N sites, with site / having sample size rti and observed data Qij,
j = 1 , . . . , m. Let Qt(F), 0 < F < 1, be the quantile function of the frequency
distribution at site /. For a homogeneous region we have

Qi(F) = toq(F), i = l,...,tf, (6.1)

where //,,- is the site-dependent scale factor, the index flood. Let fit be the estimate
of the scale factor at site /. The dimensionless rescaled data are qij = Qij/pit,
j = 1, . . . , n h i —  1 , . . . , N.

The station-year method combines the rescaled data from all sites into a single
sample and fits a distribution by treating the combined sample as a single random
sample. The method is now rarely used, because in many cases it is not appropriate
to treat the rescaled data as a single random sample. When the estimates A; have
different accuracies, as is the case when they are calculated from the at-site data
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and the sites have different record lengths, the rescaled data from different sites
will not be identically distributed.

An approach based on maximum-likelihood estimation treats Eq. (6.1) as a sta-
tistical model that is completely specified by the N scale factors \±[,i = 1 , . . . , N,
and the p unknown parameters of the regional growth curve q(F). These N + p
parameters can be estimated by the method of maximum likelihood, iterative meth-
ods usually being necessary to find the maximum of the likelihood function. This
method has been used by Boes, Heo, and Salas (1989) and Buishand (1989). It can
also be used when the scale factors are not independent parameters but are them-
selves modeled as functions of exogenous variables; that is, /z; = hfe; u;), where z;
is a vector of site characteristics for site / and a? is a vector of unknown parameters.
Examples of the use of this approach include Moore (1987) and Smith (1989).

The index-flood procedure described in Section 1.3 uses summary statistics of
the data at each site and combines them by averaging to form the regional estimates
defined in Eq. (1.5). When the summary statistics are the L-moment ratios of the
at-site data, we call the resulting procedure the "regional L-moment algorithm."
It is fully described in Section 6.2. The index-flood procedure has no theoretical
superiority to the maximum-likelihood approach but is an intuitively reasonable way
of combining the information from different sites. The calculations that it requires
tend to be simpler than those of maximum-likelihood estimation, because they do
not involve the entire set of regional data simultaneously. The regional average
L-moment ratios calculated in the regional L-moment algorithm are themselves
useful as a summary of the salient features of the regional data set.

We regard the index-flood procedure implemented in the regional L-moment
algorithm as a convenient and efficient method of estimating a regional frequency
distribution, and we concentrate on it in the next two chapters. This chapter describes
how the regional L-moment algorithm is used to estimate quantiles of the regional
frequency distribution and how the accuracy of the estimates for a particular data
set can be assessed. Chapter 7 is a more general survey of the accuracy of quantile
estimates obtained by applying the regional L-moment algorithm to data from a
wide range of homogeneous and heterogeneous regions, and includes comparisons
of the accuracy of regional and at-site estimation.

The methods described above assume that there is no dependence between
observations at different sites and no serial dependence between observations at
the same site. Dependence could in principle be built into the statistical model
used in the maximum-likelihood approach, but in practice a suitable dependence
structure would be very complicated both to specify and to estimate. Provided
that dependence is not too strong, as is the case in many realistic situations, the
accuracy of the quantile estimates obtained by each of the methods should not be
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6.2 The regional L-moment algorithm 89

greatly affected. The robustness of the regional L-moment algorithm to dependence
between observations and to the breaking of the other assumptions of the index-flood
procedure, listed in Section 1.3, is among the subjects explored in Chapter 7.

6.2 The regional L-moment algorithm

6.2.1 Aim

The aim is to fit, to the data from the sites in a homogeneous region, a single
frequency distribution (the regional frequency distribution) that describes the dis-
tribution of the observations at each site after scaling by the at-site scaling factor
(index flood). This distribution is then scaled appropriately at each site in order to
estimate quantiles of the at-site frequency distributions.

6.2.2 Heuristic description

The distribution is fitted by the method of L-moments; its parameters are esti-
mated by equating the population L-moments of the distribution to the sample
L-moments calculated from the data. Assuming the region to be homogeneous,
sample L-moment ratios calculated from the rescaled data for different sites can be
combined to give regional average L-moment ratios. To allow for the greater vari-
ability of L-moment ratios in small samples, averages are weighted proportionally
to the sites' record lengths.

For simplicity we assume that the index flood is the mean of the frequency
distribution at each site and that it is estimated by the sample mean of the at-site
data. Then the mean of the rescaled data is 1 for each site, and so the regional
average of these means is 1. Furthermore, for each site the sample L-moment ratios
t and tr, r > 3, are the same whether calculated from the rescaled data {qtj} or
the original data {Qij}. The explicit computation of the rescaled data is therefore
unnecessary.

6.2.3 Formal definition

As above, we assume that the index flood is the mean of the frequency distribution
at each site and that it is estimated at site / by the sample mean of the at-site data.

Suppose that the region has TV sites, with site i having record length n/, sample
mean t\\ and sample L-moment ratios t(l\ t^\ t%\ . . . . Denote by tR, tf, tf,...,
the regional average L-moment ratios, weighted proportionally to the sites' record
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length:

/„,, (6.2)
1 = 1 1 = 1

> ' ' = 3,4,.... (6.3)

Set the regional average mean to 1, that is, if = 1.
Fit the distribution by equating its L-moment ratios A.i, r, T3, T4, . . . , to the

regional average L-moment ratios £*, £R, f*, f*, . . . , calculated above. Denote by
q{.) the quantile function of the fitted regional frequency distribution.

The quantile estimates at site / are obtained by combining the estimates of //;
and q(.). The estimate of the quantile with nonexceedance probability F is

Qi(F) = lfq{F). (6.4)

6.2.4 Variants of the regional L-moment algorithm

Several variants of the basic regional L-moment algorithm may be entertained.
The procedure described in the previous subsection supposes that the index

flood is the mean of the at-site frequency distribution. If instead it is some other
quantity, such as the median or another quantile of the distribution, the fitted regional
frequency distribution should be rescaled so that the index flood of this distribution
is 1. Let q{.) now denote the quantile function of this rescaled distribution, and
let fa be the estimate of the index flood for site /. Quantile estimates are then given
by Eq. (6.4) but with fa replacing £(/}, that is,

Qi(F) = faq(F). (6.5)

The calculation of regional averages by weighting the sites proportionally to
their record lengths is not essential. If the region is exactly homogeneous, then to
a good approximation the variance of t^ is proportional to n~[l, and in this case
weighting the sites proportionally to their record lengths minimizes the variance of
the regional average tf. If the region is heterogeneous, it is possible that weighting
proportionally to record length may give undue influence to sites that have frequency
distributions markedly different from the region as a whole and that also have long
records. For this reason, Jin and Stedinger (1989) preferred to use an unweighted
average. An alternative weighting, giving less weight to the sites with the longest
records, has been suggested by Stedinger, Vogel, and Foufoula-Georgiou (1992).



6.3 Example: Estimation of the regional frequency distribution 91

The L-moment ratios used in the algorithm can be computed using the plotting-
position estimators described in Section 2.8 rather than the "unbiased" estimators.
Use of plotting-position estimators sometimes gives an improvement in the accuracy
of quantile estimates in the extreme upper tail of frequency distributions with high
skewness. An example is given in Section 7.5.2 (see also Hosking and Wallis,
1995). However, as noted in Section 2.8, "unbiased" estimators are superior for
most purposes and we prefer to work with them throughout.

Regional averages can be computed for the L-moments rather than the L-moment
ratios of the rescaled data. In terms of the original data this means that the regional
average L-moments would be defined by

^/»'-  ( 6-6 )

This is the procedure described by Stedinger et al. (1992, Section 18.5.1). This
yields (if)* = 1, and the same value as in Eq. (6.2) for the regional average
L-CV, but is equivalent to calculating the regional average third- and higher-order
L-moment ratios by

Averaging L-moment ratios rather than L-moments is preferable, because it yields
slightly more accurate quantile estimates in almost all of the cases that we have
investigated. An example is given in Section 7.5.1.

As a historical note, some of the variants mentioned above were used in the
earliest applications of probability weighted moments to regional frequency analy-
sis. Wallis (1981) obtained "regionally estimated probability weighted moments"
by using an unweighted average of plotting-position estimators of probability
weighted moments - equivalent to L-moments, not L-moment ratios - calculated
from the rescaled data. Wallis (1982) and Hosking et al. (1985a), using the "regional
GEV/PWM" and "regional WAK/PWM" algorithms, incorporated weighting pro-
portional to record length but still used plotting-position estimators, rather than
"unbiased" estimators, and probability weighted moments, rather than L-moment
ratios, of the rescaled data.

6.3 Example: Estimation of the regional frequency distribution

For the North Cascades data of Table 3.4, the goodness-of-fit analysis in Section 5.4
found that the lognormal and Pearson type III distributions give acceptably close
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Fig. 6.1. Regional quantile function fitted to the North Cascades data.

fits to the regional average L-moments. The regional average mean, L-CV, and
L-skewness are

= 0.1103, tf = 0.0279. (6.8)

The parameters of the fitted distributions, obtained from Eqs. (A.74) and (A.75)
and Eqs. (A.90) and (A.92), are as follows:

lognormal: §=0.9944, a = 0.1952, ^ = -0.0571; (6.9)

Pearson type III: /JL = 1.0000, a = 0.1957, y = 0.1626. (6.10)

The growth curves for these two distributions are almost identical throughout the
range of quantiles from 0.01 to 0.999, so either distribution would be an appropriate
choice for this region. The growth curves are plotted, as though on extreme-value
probability paper, in Figure 6.1; the two curves are indistinguishable.

6.4 Assessment of the accuracy of estimated quantiles

Results obtained by statistical analysis are inherently uncertain, and for the results
to be maximally useful some assessment of the magnitude of uncertainty should
be made. In traditional statistics this is achieved by the construction of confidence
intervals for estimated parameters and quantiles, usually assuming that all of the
statistical model's assumptions are satisfied. In regional frequency analysis using
the regional L-moment algorithm it is similarly possible to construct confidence
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intervals for estimation in homogeneous regions, at least as a large-sample ap-
proximation when sample L-moments may be taken to be Normally distributed.
Analogous results can be obtained for other methods of regional frequency analysis,
but the calculated accuracies often merely reflect the stringency of the assumptions
made by different methods, as Rosbjerg and Madsen (1995) found; when each
method's accuracy is calculated on the basis that the method's assumptions are
satisfied, then methods that make strictest assumptions also claim to give the most
accurate results.

Such confidence intervals are of limited utility in practice, because we can
rarely be sure that the "correct" model was used, that is, in the case of the re-
gional L-moment algorithm, that the data satisfy all of the assumptions, listed in
Section 1.3, that underlie the index-flood procedure. Indeed, one of the strengths
of regional frequency analysis using the regional L-moment algorithm is that it is
useful even when not all of its assumptions are satisfied. A realistic assessment
of the accuracy of estimates should therefore take into account the possibility of
heterogeneity in the region, misspecification of the frequency distribution, and
statistical dependence between observations at different sites, to an extent that is
consistent with the data.

A reasonable approach is to estimate the accuracy of estimated quantiles by
Monte Carlo simulation. The simulations should be matched to the particular
characteristics of the data from which the estimates are calculated. The region used
as the basis for simulation should be chosen to have the same number of sites, record
length at each site, and regional average L-moment ratios as the actual data. As noted
above, it will often be appropriate for the simulated region to include heterogeneity,
misspecification, and intersite dependence or some combination thereof.

The L-moment ratios at the individual sites should be chosen to yield a region
whose heterogeneity is consistent with the heterogeneity measures calculated from
the data. Some preliminary simulations may be needed to establish how much
variation among the at-site L-moment ratios is needed to yield the observed values
of the heterogeneity measures. Some arbitrariness is inevitable here, because many
different patterns of variation in the at-site L-moment ratios may be consistent with
the observed values of the heterogeneity measures.

One important point is that the between-site variation in population L-moment
ratios for the simulated region should always be less than that of the sample
L-moment ratios of the actual data, because sampling variability causes sample
L-moment ratios to be much more widely scattered than the corresponding popu-
lation L-moment ratios. Illustrations are given in the example in Section 6.5 and in
Figure 7.2. In particular, it is incorrect to use the observed sample L-moment ratios
as the population L-moment ratios of the simulated region, because this would yield
a simulated region that has much more heterogeneity than the actual data.
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The frequency distributions at individual sites should be chosen to be consistent
with the goodness-of-fit measures obtained for the data. If several distributions
appear tq fit well, then any of them is a plausible candidate for use in the simulations;
if no distribution fits well, then some flexible distribution such as the Wakeby or
kappa can be used.

If intersite dependence is thought to be a problem, then it can be included in
the simulations by modifying the simulation algorithm. A particularly convenient
form of dependence structure arises from assuming that if each site's frequency
distribution were transformed to the Normal distribution - call this transformation T
- then the joint distribution for all N sites would be multivariate Normal. This is
a realistic dependence structure for at least some kinds of environmental data.
For example, Hosking and Wallis (1987b) found this assumption to be fairly well
supported for British annual maximum streamflow series. Data generation then
involves the following steps: generate the matrix R of intersite correlations; gene-
rate a random vector y having a multivariate Normal distribution with covariance
matrix R; and apply the inverse of transformation T to obtain data with the required
marginal distribution.

A simulation algorithm that implements this procedure is given in Table 6.1.
Step 3.1 of the algorithm shows the modifications required when intersite depen-
dence is incorporated into the simulations.

The correlation matrix R used in simulation of correlated data should be chosen
to be consistent with the correlation patterns in the data. When there is no particular
pattern of correlation among the sites in the region, it is reasonable to take the sites
to be equicorrelated, that is, the correlation between sites / and j is ptj = p for
/ ^ j and the matrix R has the form

R =

1 P P •
p i p . ,
p p 1 .

VP p

• p
. p

• p (6.11)

The quantity p may be estimated by the average cross-correlation of the data at
all pairs of sites. Let Qtk be the data value for site / at time point k. The sample
correlation between sites i and j is given by

(6.12)
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Table 6.1. Algorithm for simulation of the regional L-moment algorithm.

1. Specify N and for each of the N sites its record length nt and the L-moments of its
frequency distribution.

2. Calculate the parameters of the at-site frequency distributions given their L-moment
ratios.

3. For each of M repetitions of the simulation procedure, carry out the following steps.
3.1. Generate sample data for each site. If there is no intersite dependence, this simply

requires the generation of a random sample of size ni from the frequency distribution
for site i, i = 1 , . . . , n. If intersite dependence is included in the simulations, the
following procedure can be used.
3.1.1. Let no = max nt, the largest of the at-site record lengths. For each time point

k = 1 , . . . , no, generate a realization of a random vector ŷ  with elements
yikf i = 1 , . . . , N, that has a multivariate Normal distribution with mean
vector zero and covariance matrix R.

3.1.2. Transform each yik, k = 1 , . . . , nt, i = 1 , . . . , N, to the required marginal
distribution, that is, calculate the data values Q^ —  Qi(<&(ync)), where
Qi is the quantile function for site / and O is the cumulative distribution
function of the standard Normal distribution.

3.2. Apply the regional L-moment algorithm to the sample of regional data. This involves
the following steps:
3.2.1. Calculate at-site L-moment ratios and regional average L-moment ratios;
3.2.2. Fit the chosen distribution;
3.2.3. Calculate estimates of the regional growth curve and at-site quantiles.

3.3. Calculate the relative error of the estimated regional growth curve and at-site
quantiles, and accumulate the sums needed to calculate overall accuracy measures.

4. Calculate overall measures of the accuracy of the estimated quantiles and regional growth
curve.

where

the sums over k extend over all time points for which sites i and j both have data,
and riij is the number of such time points. The average intersite correlation is given
by
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More elaborate correlation structures may be used, if justified by physical rea-
soning about the similarity of different sites. One possibility, used in the simulations
described in Section 7.5.6, is to permit pij to be a function of the distance between
sites / and j . However, the principal effect of intersite dependence, a general increase
in the RMSE of quantile and growth curve estimates, should usually be sufficiently
well captured by the use of equicorrelated data, with correlation matrix of the
form (6.11).

In the simulation procedure, quantile estimates are calculated for various nonex-
ceedance probabilities. At the rath repetition, let the site-/ quantile estimate for
nonexceedance probability F be Q\m\F). The relative error of this estimate is
{Q\m](F) - Qi{F)}/Qt{F). This quantity can be squared and averaged over all M
repetitions to approximate the relative RMSE of the estimators. The relative RMSE
is approximated, for large M, by

Ri(F) =

1/2

(6.15)

A summary of the accuracy of estimated quantiles over all of the sites in the region
is given by the regional average relative RMSE of the estimated quantile,

N

(6.16)

In addition to the overall accuracy measures for quantile estimates, Eqs. (6.15)
and (6.16), analogous quantities can be calculated for the growth curve estimate.
Let the growth curve for site / be qt(F), defined by

Qi(F) = fjLiqi(F). (6.17)

The quantities qt(F) are needed for simulation of heterogeneous regions, whereas
in a homogeneous region each qt(F) is equal to the regional growth curve q(F). At
the rath repetition, let the estimated regional growth curve be g w ( F ) . Accuracy
measures for the estimated growth curve are defined by Eqs. (6.15) and (6.16) but
with Qt(F) and Q\m](F) replaced by qt(F) and q[m](F), respectively. Accuracy
measures for the growth curve are particularly relevant when only the growth curve
estimate is of interest, as is the case when the index flood is estimated by methods
not involving the at-site data or when quantiles are estimated for an ungaged site
(Section 8.4).
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Other useful quantities, particularly when the distribution of estimates is skew,
are the empirical quantiles of the distribution of estimates. These can be obtained
by calculating the ratio of estimated to true values, Qi(F)/Qt(F) for quantiles
and q(F)/qi(F) for the growth curve, averaging these values over the sites in the
region, and accumulating over the different realizations a histogram of the values
taken by the ratio. For example, for a particular nonexceedance probability F it
may be found that 5% of the simulated values of Q(F)/Q(F) lie below some value
L.o5(F) whereas 5% lie above some value U.os(F). Then 90% of the distribution
of Q(F)/Q(F) lies within the interval

(6.18)

and inverting this to express Q in terms of Q gives

(6.19)
Um(F) - — > -  Lo5(F)

Expression (6.19) has the same form as a statistical confidence interval, but can be
validly interpreted as one only if the distribution of Q(F)/Q(F) is independent of
all of the parameters involved in the specification of the statistical model underlying
the index-flood procedure; for the regional L-moment algorithm these parameters
are the at-site means and the regional average L-moment ratios. In practice, indepen-
dence does not hold and confidence statements are at best approximate. Nonetheless,
the interval (6.19) should give a useful indication of the amount of variation between
true and estimated quantities. We sometimes refer to the limits Q(F)/ U.os(F) and
Q(F)/L.05(F) in Eq. (6.19) as the "90% error bounds" for Q(F).

The error bounds given by Eq. (6.19) can be unhelpful in the lower tail of the
distribution. If the fitted distribution can take negative values, it may happen that
L.os(F) is very small, or even negative, leading to a very large or infinite upper
bound in Eq. (6.19). In such cases, RR(F), the regional average relative RMSE of
the estimated quantiles, is a more informative measure of accuracy.

The simulation-based procedure leading to the bounds in Eq. (6.19) is less exact
than the formal construction of confidence intervals but gives a reasonable estimate
of the magnitude of the errors that can reasonably be expected to be present in the
estimated quantiles and growth curve. The accuracy with which the error magnitude
can be estimated depends on the number of repetitions, M, of the simulation
procedure. Even M = 100 gives a useful indication of the magnitude of errors,
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but larger values of M will give more accurate error estimates. It is better to use
M = 1,000 or even M = 10,000 when accurate judgements are required.

6.5 Example: Assessment of accuracy

In Section 6.3 we estimated the regional growth curve for the North Cascades annual
precipitation totals summarized in Table 3.4. We now try to quantify the accuracy
of the estimated regional growth curve. To decide on a suitable region for use
in the simulation procedure, we assess its intersite dependence, at-site frequency
distributions, and heterogeneity.

The region has a considerable amount of intersite dependence; correlations be-
tween sites are mostly between 0.2 and 0.9, with an average of 0.64. The simulation
procedure therefore uses the algorithm of Table 6.1, incorporating intersite depen-
dence. The correlation matrix used is Eq. (6.11), with p = 0.64.

The regional average L-moment ratios are 0.1103 (L-CV), 0.0279 (L-skewness),
and 0.1366 (L-kurtosis). The goodness-of-fit measures calculated in Section 5.4 in-
dicate that the lognormal and Pearson type III distributions are both consistent with
the data. These distributions are very similar when their skewness is low, and it seems
adequate to accept the lognormal as being the distribution for use in the simulations.

The heterogeneity measure Eq. (4.5) for the region is H = 0.62; corresponding
measures based on V2 and V3 defined in Eqs. (4.6) and (4.7) are —1.49 and —2.37,
respectively. These measures indicate no deviation from homogeneity, but it may
be wise to be prepared for a little heterogeneity among the sites' L-CV values,
consistent with the value of H. Simulations of correlated lognormal regions with
record lengths the same as for the North Cascades data show that when at-site
L-CVs vary over a range of 0.025, from 0.0978 to 0.1228, the average H value of
simulated regions is 1.08. We use this range of L-CV in the simulation procedure,
arbitrarily assigning the L-CV values in increasing order to the sites ordered as in
Table 3.4. Note that the range of population L-CV values used in the simulations,
0.025, is considerably less than that of the sample L-CV values, given in Table 3.4,
which have a range of 0.043.

The region used in the simulation procedure therefore contains 19 sites with
record lengths as for the North Cascades data, the sites having lognormal frequency
distributions with L-CV varying linearly from 0.0978 at site 1 to 0.1228 at site 19
and L-skewness 0.0279. 10,000 realizations of this region were made and the
regional L-moment algorithm was used to fit a lognormal distribution to the data
generated at each realization. This is the most computationally burdensome part
of the analysis of the North Cascades data, requiring 240 seconds of CPU time on
an IBM 390 (model 9021) mainframe. The regional average relative RMSE of the
estimated growth curve was calculated from the simulations, and quantiles of the
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Table 6.2. Accuracy measures for estimated growth curve
of the North Cascades data.

F

0.01
0.1
0.5
0.9
0.99
0.999

q(F)

0.569
0.753
0.994
1.254
1.480
1.654

RMSE

0.073
0.028
0.005
0.017
0.033
0.047

Error bounds

0.523
0.731
0.985
1.230
1.418
1.547

0.625
0.776
1.004
1.278
1.540
1.755

Note: Region specification is described in text. Tabulated
values are, for each nonexceedance probability F, the re-
gional average relative RMSE of the estimated growth curve
and the lower and upper 90% error bounds for the estimated
growth curve, defined analogously to Eq. (6.19).
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Fig. 6.2. Regional quantile function fitted to the North Cascades data, with 90% error bounds.

distribution of

N
N - l (6.20)

the regional average of the ratio of the estimated to the true at-site growth curve,
were computed from a histogram accumulated during the simulations. From these
quantiles the 90% error bounds for the growth curve were computed analogously
to Eq. (6.19). The results are given, for selected values of the nonexceedance
probability F, in Table 6.2. Figure 6.2 shows the estimated growth curve, from
Figure 6.1, together with its 90% error bounds.
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Performance of the regional L-moment algorithm

7.1 Introduction

The methods described in Section 6.4 enable the accuracy of the regional L-moment
algorithm to be assessed for a given region. A wider study of the performance of
the regional L-moment algorithm is also valuable, to establish circumstances under
which the utility of the regional L-moment algorithm is particularly high (or low) and
to facilitate comparison with other methods such as single-site frequency analysis.

Assessment of the performance of the regional L-moment algorithm for different
regions can also influence how a given set of data should be analyzed. The regional
L-moment algorithm involves estimation of both the index flood and the growth
curve, and each of these estimators may have bias and variability, as discussed in
Section 2.2. Two tradeoffs between bias and variability of the estimated regional
growth curve are immediately apparent. A region with many sites will have low
variability of its estimated regional growth curve, but the regional growth curve
is likely to have more bias as an estimator of the at-site growth curves, because
exact homogeneity is less likely to hold for a region with many sites than for
one with few. A fitted distribution with few parameters will yield less variability
in the regional growth curve than a distribution with many parameters, but the
distribution with few parameters is less likely to contain a good approximation to
the true regional frequency distribution of the region, and its regional growth curve
is therefore likely to be more biased. Some subjective judgement is required to
achieve a suitable compromise between these conflicting criteria; the heterogeneity
and goodness-of-fit measures described in Chapters 4 and 5 should be helpful.

Errors in quantile estimates obtained from the regional L-moment algorithm can
be identified as arising from several different sources. A theoretical analysis is given
in Section 7.2.

For more detailed results we rely on Monte Carlo simulation of some carefully
chosen artificial regions. The simulation procedure is described in Section 7.3.

100
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Results obtained by simulation are specific to the region used to generate the
simulated data. It therefore requires many simulation experiments to determine
the effects of the many factors that influence the accuracy of quantile estimates.
Our approach has two main parts. In Section 7.4 we investigate the performance
of the regional L-moment algorithm for a few regions whose specifications are
representative of those that might be encountered in typical applications of regional
frequency analysis. In Section 7.5 we explore in some detail the effect of different
factors on the accuracy of the estimated growth curve and quantiles. Factors of
interest include

• variants of the estimation procedure:
regional averaging of r and T3 versus A2/A4 and A.3/A.1;
estimation based on "unbiased" versus plotting-position estimators; and
regional versus at-site frequency analysis;

• aspects of the specification of the region:
number of sites in the region; and
record lengths at each site;

• violations of the assumptions of regional frequency analysis:
inter site dependence;
heterogeneity; and
misspecification of the regional frequency distribution.

The other assumptions of regional frequency analysis listed in Section 1.3, that the
data for any given site should be identically distributed and serially independent,
are not explored as they affect both regional and at-site frequency analyses and do
not affect our main concern, the utility of regional frequency analysis in comparison
with at-site analysis.

Section 7.6 on page 141 summarizes the main conclusions of the simulation
experiments and their consequences for data analysis. Readers not interested in the
fine details of the results may prefer to turn directly to this section.

7.2 Theory

Several components that contribute to the error in quantile estimation with the
regional L-moment algorithm can be identified from theoretical considerations.
Consider the estimation procedure for a region of TV sites that may be heterogeneous
and may also be misspecified in that the "wrong" regional frequency distribution
is fitted. The term "misspecified" is formally defined in this section.

Suppose that the frequency distribution at site / has quantile function Qt(F) =
) . Let qR(F) be the average growth curve, defined so as to give the best
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summary (in some sense) of the at-site growth curves qx(F),..., qN(F). We show
below that a reasonable definition is qR(F) = N/ ^2{l/qi(F)}, the harmonic mean
of the at-site growth curves. In a homogeneous region the at-site growth curves are
identical: qt(F) = qR(F) for all i.

Suppose that the regional growth curve fitted to the data has the form x(F\ 0),
where 0 = [9\ ... 9P]T is a vector of parameters. We say that the frequency
distribution is misspecified if there is no value of 6 for which the functions x(.; 6)
and qR(.) are identical. Let 0$ be the value of 0 that makes x(. ;0) as close as
possible, in some sense, to qR{.). For the regional L-moment algorithm, in which
6 is a vector of L-moment ratios, 0o would be the vector whose elements are
the corresponding L-moment ratios of the distribution whose quantile function is
qR(F).

The index flood at site / is /z;, estimated by fa. Let 0 = \6\ . . . 6P]T be the
estimator of 0, the parameter of the regional growth curve. The estimator of the
at-site quantile of nonexceedance probability F is Qt(F) = (lix(F; 0).

Error in the estimated quantile comes from the variability and bias of the estimator
Qi(F). The mean square error of Qi(F) is

E{Qi(F) - Qi(F)}2 = var{&(F)} + [bias{<2,-(F)}]2, (7.1)

where
blas ts (F)} = E{j2,-(F) - Qi(F)}. (7.2)

The mean square error contains terms arising from the variability and bias of Qt(F).
We can derive approximations to these terms when the quantile estimate is obtained
using the regional L-moment algorithm. The derivation uses asymptotic statistical
approximations and is postponed until subsection 7.2.1. The final result is that the
components of the mean square error of the quantile estimate Qt(F) are given by

var{j2,-(F)} « {x(F;0 0)}2var(Az) + fi}var{x(F;0)}, (7.3)

Waste,-(F)} «  fii{x(F'9e0) ~ qR(F)} + /ja{qR(F) - qt(

d2x{F\0)
(7.4)

Expressions (7.1), (7.3), and (7.4) exhibit the quantile estimate as having variability,
arising from

• variability of the sample mean, var(/ij); and
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• variability of the estimated regional growth curve, var{x (F; 0)}, which, as shown
in the derivation of Eq. (7.3), itself arises from variability of the sample L-moment
ratios;

and bias, arising from

• misspecification of the regional frequency distribution, which leads to the bias
termx(F;00)-qR(F);

• heterogeneity in the region, which leads to the bias term qR(F) —  qt(F); and
• variability of the sample L-moment ratios, the cov(#y,  6k) terms, which induces

bias in the quantile estimate in consequence of the nonlinearity of the regional
growth curve as a function of the L-moment ratios.

The expressions ignore effects arising from

• bias in the sample mean,
• bias in the sample L-moment ratios, and
• covariance between the sample mean and the estimated regional growth curve,

because these are usually negligible in practice - though some cases in which the
last of these components can be significant are noted in Section 7.5.3.

The distinction that we have made between bias due to misspecification and bias
due to heterogeneity is somewhat arbitrary - one might argue that any heterogeneous
region is misspecified, because no single frequency distribution is appropriate for
every site - and depends on the particular definition of the average growth curve
qR(F). In a heterogeneous region the aim of regional frequency analysis must
be to estimate a single regional frequency distribution that does not consistently
over- or under-estimate the quantiles at every site. We therefore think it useful to
distinguish bias due to misspecification, which is the same at each site in the region,
from bias due to heterogeneity, which varies from site to site in such a way that its
average over all the sites in the region is zero. In practice it is often useful to work
with the relative bias of the estimated growth curve, E{x(F; 6) —  qi(F)}/qt(F). It
is then reasonable to say that the best average growth curve for a heterogeneous
region should satisfy the condition that the relative bias of qR(F) as an estimator
of qi(F), averaged over all the sites in the region, should be zero, that is, that
Yli{qR(F) —  qi(F)}/qt(F) — 0. This criterion implies that the average growth
curve should be defined by qR(F) = N/ 5^{l/?i(F)}, the harmonic mean of the
at-site growth curves.

An expression related to Eqs. (7.3) and (7.4), but less detailed, has been given
by Stedinger et al. (1992, Eq. (18.5.3)). More detailed analytical expressions for
the bias and variance of L-moment estimators of the generalized extreme-value
distribution have been given by Lu and Stedinger (1992a,b). These can be used
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to obtain good approximations to the variance of quantile estimates for at-site and
regional frequency analyses when the true and fitted frequency distributions are both
of the generalized extreme-value form (Stedinger and Lu, 1995). Corresponding
results have not been obtained for other distributions, however, so for arbitrary com-
binations of true and fitted distributions, Monte Carlo simulation is our preferred
method of establishing the properties of the regional L-moment algorithm.

7.2.1 Derivation ofEqs. (7.3) and (7.4)

To a first-order asymptotic approximation, assuming ni and the total number of
observations n& = YLj nj t 0 be large, the variance of Qi(F) is given by

; 0O)}2 var(A,0 + 2/jLix(F; 0O) cov{Ai, x(F\ 0)}

^ ) } . (7.5)

Of the three terms on the right side of Eq. (7.5), the first arises from the variability
of the estimator of the index flood. The second term arises from the covariance
between the estimators of the index flood and the regional growth curve and is
generally small; because A* is calculated from only the data for site / whereas
0 uses data from all N sites, it is reasonable to expect the correlation between
them to be of order (nt/n^)1^2. When the nt at each site are approximately equal,
this correlation is of order \/y/~N. The third term on the right side of Eq. (7.5)
comes from the variability of the estimated regional growth curve. It can be further
approximated as

dx(F;6)

j k

3JC(F;0)

* M - a 6 )

where 9j, j — 1,...,/?, are the  elements of 0. This shows how the variability in
the estimated regional growth curve arises from the variability in the estimates Oj,
which in the regional L-moment algorithm are the regional average L-moment
ratios.

The bias of Qt(F) is given by

= qi(F) E(A,- - in) + cov{A/, x(F; 0)}

+fME{x(F;0)-qi(F)}. (7.7)
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The first term in the bias arises from the bias of //* • This is zero for the regional
L-moment algorithm, in which the index flood is the mean of the at-site frequency
distribution and is estimated by the sample mean at site /. As with the variance,
the second term in the bias arises from the covariance between the estimators of
the index flood and the regional growth curve and is generally negligible. The third
term on the right side of Eq. (7.7) comes from the bias of the estimated regional
growth curve, x(F;0). The expectation of x(F\ 0) can be approximated by taking
expectations of the first few terms of a stochastic Taylor-series expansion of x{F\ 0)
about x(F\ 0Q):

dx(F;0)
E(9j -

j k 0=0o

We can now approximate the bias of x{F\ 0) by a sum of four components:

E{x(F; 6) - qi(F)} «  {x(F; 0O) - qR

dx(F;O)

V ) " qt

d6J 0=0o

(7.9)
0=0o

The first term on the right side of Eq. (7.9) is due to misspecification of the regional
frequency distribution. It is the error of x(F; 0Q) as an approximation to the true
regional growth curve qR(F). The second term on the right side of Eq. (7.9) is
due to heterogeneity. It is the difference between the regional and at-site growth
curves. The third term arises from the bias of the estimators 9j, which in the regional
L-moment algorithm are sample L-moment ratios. These statistics have low bias
(see Figure 2.7), and this term is generally negligible. The final term in Eq. (7.9)
is bias that arises from the variability of the sample L-moment ratios through the
nonlinear dependence of x(F; 6) on 6. This nonlinearity is most pronounced for
quantiles in the extreme tail of the distribution; for quantiles in the main body of
the distribution the contribution of this term is generally negligible.
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7.3 Simulation of the regional L-moment algorithm

As noted in Section 1.2, Monte Carlo simulation is an effective tool for establishing
the properties of complex statistical procedures such as the regional L-moment
algorithm. The general procedure starts by defining a region, that is, by specifying
the number of sites in the region and the frequency distributions and record lengths
at each site. Many sets of data are generated from the region, and one or more
estimation methods are applied to each data set. The specification of an estimation
method consists of whether the method involves regional or at-site estimation and
which distribution is fitted by the method. The estimated quantiles and growth curve
are compared with the true values implied by the frequency distributions specified
for each site, and accuracy measures are calculated for the estimators.

The procedure for simulating the regional L-moment algorithm is given in
Table 6.1. In the course of the simulations, quantile estimates are calculated for
various nonexceedance probabilities. At the rath repetition, let the estimated re-
gional growth curve and site-/ quantile estimate for nonexceedance probability F
be q[m](F) and £>|m](F), respectively. Then at site / the relative error of the es-
timated regional growth curve as an estimator of the at-site growth curve qi(F)
is {q[m\F) —  qi(F)}/qi(F), and the relative error of the quantile estimate for
nonexceedance probability F is {Qi (F) —  Qt (F)}/ Qt (F). These quantities can be
averaged over all M repetitions to approximate the bias and RMSE of the estimators.
For the comparisons that we make in this chapter, the numbers are small and it is
convenient to express them as percentages. The relative bias and relative RMSE,
expressed as percentages, of the site-/ quantile estimator are approximated, for
large M, by

1 J2 ^ (F) ~ Qi(F) (7.10)
m=l Q^l

and
1/2

Ri(F) =
m=l Qi(F)

x 100%. (7.11)

To obtain a summary of the performance of an estimation procedure over all of
the sites in the region, we compute the regional average relative bias of the estimated
quantile,

BR(F) =
i=\
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the regional average absolute relative bias of the estimated quantile,

N

(7.13)

and the regional average relative RMSE of the estimated quantile,

N

RR(F) = AT1 ] T Rt(F). (7.14)
i=\

The regional average relative bias, BR(F), measures the tendency of quantile
estimates to be uniformly too high or too low across the whole region. This tendency
is apparent, for example, when a distribution with a heavy upper tail is fitted to a
region in which the true frequency distributions have relatively light upper tails, or
vice versa.

The regional average absolute relative bias, AR(F), measures the tendency of
quantile estimates to be consistently high at some sites and low at others. This
occurs in a heterogeneous region, in which the estimated regional growth curve
tends to overestimate the true at-site growth curve at some sites and to underestimate
it at others. In such cases AR(F) indicates the magnitude of the bias at a typical
site and is more useful than BR(F), in which the contributions of negative and
positive biases may cancel out to give a misleadingly small value of the bias. In a
homogeneous region, however, we would expect the bias to be the same at each
site, and therefore AR(F) and BR(F) to be equal.

The regional average relative RMSE, RR(F), measures the overall deviation of
estimated quantiles from true quantiles. It is the criterion to which we give most
weight in judging whether one estimation procedure is superior to another.

In addition to the overall accuracy measures of quantile estimates, Eqs. (7.12)-
(7.14), we also calculate corresponding quantities for each site's growth curve
estimate. These quantities are defined by Eqs. (7.10)-(7.14) but with Qt(F) and
QM ^ r epia c e c i by qt(F) and q[m] (F), respectively. Comparison of the accuracy of
the estimated growth curve and the estimated quantiles facilitates judgement of the
relative importance of errors in estimating the index flood and errors in estimating
the regional growth curve. Accuracy measures for the growth curve are also relevant
when only the growth curve estimate is of interest, as noted in Section 6.4.

The number of repetitions, M, of the simulation procedure must be large enough
that the bias and RMSE measures Bt(F) and Ri(F) are close to the true bias
and RMSE, E[{&(F) - Qi(F)} / Qt(F)] and (E[{&(F) - Qi(F)}/Qi(F)]2)^2,
respectively. This enables reliable comparisons to be made between the performance
measures (7.10)-(7.14) for different regions. We use M = 10,000, which for the
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representative regions defined in Section 7.4, generally gives an accuracy of 1 or 2
units in the third decimal place for relative RMSE measures and 3 or 4 units in the
third decimal place for relative bias measures; accuracy is less when the relative
RMSE is large, 50% or greater.

In the simulation results presented in the tables and figures in Sections 7.4 and 7.5,
bias and RMSE values are shown as percentages of the true value of the quantile
or growth curve, as noted above. In the figures, RMSE values are plotted on a
logarithmic scale because it is the proportional difference between RMSEs that
yields the most informative comparison of different estimators.

7.4 Simulation results for representative regions

We use four regions as representative examples for illustrating the performance of
the regional L-moment algorithm. Each region has 15 sites with record length 30
at each site. The frequency distributions at the sites are chosen to be representative
of typical applications of regional frequency analysis.

The first two regions are plausible models for moderately to highly skew data
on environmental extremes such as annual maximum instantaneous streamflow
or rainfall. The frequency distribution at each site is a generalized extreme-value
(GEV) distribution. The first region, Region Rl, is homogeneous, with each site
having L-CV 0.25 and L-skewness 0.25, corresponding to a GEV shape parameter
k = —0.121.  The second region, Region R2, is similar to the first but heterogeneous,
with L-CV and L-skewness both varying linearly from 0.20 at site 1 to 0.30 at
site 15. This form of heterogeneity is used because it should be realistic. Regions
will often not be distinct entities but will be constructed from sites whose frequency
distribution span a continuum of shapes. Linear variation of L-moment ratios is then
a plausible form of variation for the sites in a region. In practical applications it will
often be the case that sites with high L-CV also tend to have high L-skewness. For
example, Lu and Stedinger (1992b) found this to be the case for annual maximum
streamflow data.

Simulated samples from Region R2 yield, on average, a value of H — 1.74 for
the heterogeneity measure (4.5), and 0.54 and 0.24 for the corresponding measure
based on V2 and V3 defined in Eqs. (4.6) and (4.7). This amount of heterogeneity
could easily arise from the methods of forming regions described in Chapter 4; the
values of the heterogeneity measures are typical of those encountered in practice
for regions that appear to be on the borderline of heterogeneity but that cannot be di-
vided into physically and geographically meaningful subregions that are acceptably
homogeneous. The L-moment ratios, distribution parameters, and some quantiles
for Region R2 are given in Table 7.1. The quantile functions for sites 1,8, and 15
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Table 7.1. Specification of Region R2.
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Site

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

T

0.2000
0.2071
0.2143
0.2214
0.2286
0.2357
0.2429
0.2500
0.2571
0.2643
0.2714
0.2786
0.2857
0.2929
0.3000

0.2000
0.2071
0.2143
0.2214
0.2286
0.2357
0.2429
0.2500
0.2571
0.2643
0.2714
0.2786
0.2857
0.2929
0.3000

6n

5-

4-
CD

Q
ua

nt
a

CO

2-
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Fig. 7.1. Quantile functions for three sites in Region R2.

are illustrated in Figure 7.1. In Region Rl, of course, each site has parameters and
quantiles the same as those of site 8 in Region R2.

Sample L-moment ratios for the 15 sites in Regions Rl and R2 are shown in
Figure 7.2 for a typical realization of these regions. Sampling variability causes
these sample L-moment ratios to be much more widely scattered than the population
L-moment ratios. The greater spread in the sample L-CV values for the heteroge-
neous Region R2 than in the homogeneous Region Rl is apparent, but the spread
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Fig. 7.2. Sample L-moment ratios for typical realizations of Region Rl (upper graphs) and
Region R2 (lower graphs). Population L-moment ratios for the sites are also shown (+
marks). For Region Rl, all sites have the same population L-moment ratios.

of the L-skewness and L-kurtosis values is very similar for the two regions. This
is consistent with the average values of heterogeneity measures described earlier.
It also explains the limited ability of heterogeneity measures based on L-skewness
and L-kurtosis to identify heterogeneity in a region like Region R2, for which the
between-site variations in L-skewness and L-kurtosis are small compared with the
sampling variability of the sample L-skewness and L-kurtosis statistics.

A regional generalized extreme-value distribution was fitted, using the regional
L-moment algorithm, to data simulated from Regions Rl and R2. Simulation results
are summarized in Table 7.2 and Figure 7.3. Several features characteristic of the
performance of the regional L-moment algorithm are exhibited by these results.
We consider first the results for the homogeneous Region Rl. Quantile estimates
become less and less accurate at larger return periods. There is little bias in the
quantile estimates; because the region is homogeneous and correctly specified, the
only significant source of bias is "nonlinearity bias," the last term in Eq. (7.4). In
addition to this bias, the RMSE of the estimated growth curve contains a contribution
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Table 7.2. Simulation results for Regions Rl andRl.

Quantiles Growth curve

Region

Rl

R2

Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE

F: 0.9

-0.2
0.2
9.2
0.1
3.7

10.2

0.99

-2.0
2.0

11.0
-1.2
10.4
15.7

0.999

-3.9
3.9

14.6
-2.1
16.6
23.0

0.9

-0.2
0.2
1.3
0.1
3.7
4.1

0.99

-2.0
2.0
5.7

-1.2
10.4
12.2

0.999

-3.9
3.9

11.0
-2.2
16.6
20.6

Note: Tabulated values are the regional average relative bias, absolute relative bias, and
relative RMSE of estimated quantiles, expressed as percentages, that is, BR(F), AR(F), and
RR(F) as defined in Eqs. (7.12)-(7.14), and the corresponding quantities for the estimated
growth curve.

from the variability of the estimated growth curve, and the RMSE of estimated
quantiles contains a further contribution from the variability of the estimated index
flood (the at-site sample mean). Variability of the mean is the most important factor
for quantiles in the main body of the distribution: for example, at F = 0.9 in
Table 7.2, including the variability of the mean raises the regional average relative
RMSE from 1.3% to 9.2%. Far into the tail of the distribution, variability of the
estimated growth curve is more important. At F = 0.999 in Table 7.2, including
the variability of the mean now raises the regional average relative RMSE only
from 11.0% to 14.6%.

Turning to the results for Region R2, we see that the main effect of heterogeneity
is to introduce bias into the estimated growth curve, which also adds bias to the
estimated quantiles. This bias is positive at sites where the true quantile is less
than the average for the region and negative where the true quantile is greater
than the regional average. At the extreme sites, 1 and 15, this bias is the dominant
contribution to the RMSE of the estimated quantiles. Averaged over the region
as a whole, its effect is large but not overwhelming; the regional average relative
RMSEs of estimated quantiles are larger for Region R2 than for Region Rl by 11 %
at F = 0.9, 40% at F = 0.99, and 50% at F = 0.999.

Because it is difficult in practice to ensure that the sites used in a particu-
lar application of regional frequency analysis constitute a region that is exactly
homogeneous, the utility of regional frequency analysis depends on whether its
performance is acceptable for moderately heterogeneous regions such as Region R2.
The performance of the regional L-moment algorithm should be acceptable for
many applications. In Region R2, for example, the regional L-moment algorithm
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Fig. 7.3. Simulation results for the sites in Region R2. Plotted values are the relative bias
and relative RMSE of the quantile estimator Qt(F), that is, Bt(F) and Rt(F) as defined in
Eqs. (7.10) and (7.11), for the 15 sites in Region R2.

estimates the F = 0.99 quantile (for annual data, the 100-year event) with RMSE
11 % to 22% of the true value of the quantile. In particular - see Section 7.5.3 - the
regional L-moment algorithm is certainly superior to estimation methods that use
only the at-site data.

Our third and fourth example regions are plausible models for data, such as
annual precipitation totals, that are positive but only slightly skew. The frequency
distribution at each site is a lognormal distribution. Again, the regions form a
homogeneous-heterogeneous pair. Region R3 is homogeneous, with each site
having L-CV r = 0.08 and L-skewness T3 = 0.05, corresponding to a lognormal
shape parameter k = —0.102 and conventional skewness y  =0 .31 . Region R4 is
heterogeneous, with L-CV varying linearly from 0.065 at site 1 to 0.095 at site 15 and
L-skewness varying linearly from 0 at site 1 to 0.1 at site 15. Simulated samples
from this region yield, on average, a value of H = 1.81 for the heterogeneity
measure (4.5). Again, this amount of heterogeneity could easily arise in regions
formed by the methods described in Chapter 4. The L-moment ratios, distribution
parameters, and some quantiles for Region R4 are given in Table 7.3. The quantile
functions for sites 1, 8, and 15 are illustrated in Figure 7.4. In Region R3, each site
has parameters and quantiles the same as those of site 8 in Region R4.
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Table 7.3. Specification of Region R4.
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Site

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

r

0.0650
0.0671
0.0693
0.0714
0.0736
0.0757
0.0779
0.0800
0.0821
0.0843
0.0864
0.0886
0.0907
0.0929
0.0950

0.0000
0.0071
0.0143
0.0214
0.0286
0.0357
0.0429
0.0500
0.0571
0.0643
0.0714
0.0786
0.0857
0.0929
0.1000

nt

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

Lognormal parameters

1.000
0.999
0.998
0.997
0.996
0.995
0.994
0.993
0.992
0.990
0.989
0.987
0.986
0.984
0.983

a

0.115
0.119
0.123
0.127
0.130
0.134
0.138
0.141
0.145
0.148
0.152
0.155
0.159
0.162
0.166

k

0.000
-0.015
-0.029
-0.044
-0.059
-0.073
-0.088
-0.102
-0.117
-0.132
-0.146
-0.161
-0.176
-0.190
-0.205

0.01

0.732
0.727
0.722
0.717
0.713
0.709
0.704
0.701
0.697
0.693
0.689
0.686
0.683
0.680
0.677

Quantiles

0.1

0.852
0.848
0.844
0.840
0.835
0.831
0.827
0.823
0.819
0.815
0.811
0.808
0.804
0.800
0.796

0.9

1.148 ]
1.153 1
1.159 1
1.164 1
1.169 1
1.175 1
1.181 1
1.186 ]
1.192 ]
1.197 1
1.203 ]
1.208
1.214
1.220
1.225
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[.268
[.281
[.294
[.307
[.321
[.335
L.349
L.364
L.379
L.394
L.410
L.426
L.442
L.459
L.476

0.999

1.356
1.375
1.395
1.416
1.437
1.459
1.482
1.506
1.530
1.556
1.582
1.609
1.637
1.667
1.697
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Fig. 7.4. Quantile functions for three sites in Region R4.

A regional lognormal distribution was fitted, using the regional L-moment al-
gorithm, to data simulated from Regions R3 and R4. Simulation results are sum-
marized in Table 7.4 and Figure 7.5. Note that the vertical scales in Figures 7.3
and 7.5 are different.

The results are similar in several respects to those for Regions Rl and R2.
Estimators have rapidly decreasing accuracy as the return period increases. The
relative contributions of errors in estimating the index flood and errors in estimating
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Table 7.4. Simulation results for Regions R3 and R4.

Region

R3

R4

Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE

F: 0.9

0.0
0.0
2.7
0.0
1.8
3.3

Quantiles

0.99

-0.1
0.1
3.0

-0.1
4.1
5.3

0.999

-0.1
0.1
3.7

-0.1
6.0
7.3

0.9

0.0
0.0
0.6
0.0
1.8
1.9

Growth curve

0.99

-0.1
0.1
1.6

-0.1
4.1
4.5

0.999

-0.1
0.1
2.6

-0.1
6.0
6.7

Note: Tabulated values are the regional average relative bias, absolute relative bias, and
relative RMSE of estimated quantiles, that is, BR(F), AR(F), and RR(F) as defined in
Eqs. (7.12)-(7.14), and the corresponding quantities for the estimated growth curve.
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Fig. 7.5. Simulation results for the sites in Region R4. Plotted values are the relative bias
and relative RMSE of the quantile estimator Qt(F), that is, Bt(F) and Ri(F) as defined in
Eqs. (7.10) and (7.11), for the 15 sites in Region R4.

the growth curve are similar to those for Regions Rl and R2. Bias in the estimated
growth curve is the major contribution to RMSE of quantile estimates in the hetero-
geneous region.

Some differences can be observed, however, for Regions R3 and R4 compared
with Regions Rl and R2. All relative RMSE values for Regions R3 and R4 are lower
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than the corresponding values for Regions Rl and R2, as extreme quantiles can be
estimated with much greater accuracy for distributions with low skewness. Bias
in the estimated quantiles and growth curve is entirely negligible even at extreme
return periods, as nonlinearity of the quantile function is much less for distributions
with low skewness. The proportion of the RMSE of estimated quantiles that can be
attributed to bias in the estimated growth curve, that is, to heterogeneity, is some-
what larger for Region R4 than for Region R2, although the average heterogeneity
measures for realizations of these regions are very similar.

Overall, the performance of the regional L-moment algorithm for Regions R3
and R4 is fairly similar to its performance for Regions Rl and R2. We can therefore
expect this performance, and the way in which it is affected by the various factors
considered in the following subsections, to be qualitatively similar for a wide range
of region specifications and frequency distributions.

7.5 Simulation results for effects of different factors

7.5.1 Regional averaging ofL-moments versus L-moment ratios

In Section 6.2 it was noted that some early versions of the index-flood procedure
based on probability weighted moments calculated regional averages of the at-site
L-moments using Eq. (6.6) rather than regional averages of the at-site L-moment
ratios using Eqs. (6.2) and (6.3). Table 7.5 compares the performance of these two
variants of the regional L-moment algorithm for quantile estimation in the four
representative regions defined in Section 7.4. The tabulated values are the region-
ally averaged performance measures (7.12)-(7.14). Differences between the two
variants are small, but the RMSE values for the "average L-moment ratios" variant
are never larger than the corresponding values for the "average L-moments" variant.
We therefore prefer to use the average L-moment ratios variant in all applications
of regional frequency analysis.

7.5.2 "Unbiased" versus plotting-position estimators

The L-moment ratios used in the regional L-moment algorithm can be computed
using the plotting-position estimators described in Section 2.8 rather than the
"unbiased" estimators of at-site L-moment ratios, t and t^l\ Table 7.6 compares
the performance of these two variants of the regional L-moment algorithm for
quantile estimation in the four representative regions defined in Section 7.4. The
plotting position used was pj:n = (j —  0.35)/rc, as recommended for the general-
ized extreme-value distribution by Hosking et al. (1985b). The values tabulated in
Table 7.6 are the regionally averaged performance measures (7.12)-(7.14).
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Table 7.5. Comparison of variants of the regional L-moment algorithm involving regional
averaging ofL-moments versus L-moment ratios.

Region

Rl

R2

R3

R4

Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE

F:

Average L-moment ratios

0.9

-0.2
0.2
9.2
0.1
3.7

10.2
0.0
0.0
2.7
0.0
1.8
3.3

0.99

-2.0
2.0

11.0
-1.2
10.4
15.7
-0.1

0.1
3.0

-0.1
4.1
5.3

0.999

-3.9
3.9

14.6
-2.1
16.6
23.0
-0.1

0.1
3.7

-0.1
6.0
7.3

Average L-moments

0.9

-0.3
0.3
9.2
0.0
3.7

10.2
0.0
0.0
2.7
0.0
1.8
3.3

0.99

-0.8
0.8

11.0
0.5

10.4
16.0
0.0
0.0
3.0
0.2
4.1
5.3

0.999

-0.9
0.9

14.9
2.1

17.0
24.2
0.0
0.0
3.7
0.4
6.0
7.4

Note: Tabulated values are the regional average relative bias, absolute relative bias, and
relative RMSE of estimated quantiles, that is, BR(F), AR(F), and RR(F) as defined in
Eqs. (7.12)-(7.14).

In Regions R1 and R2 the plotting-position estimators perform slightly better than
the "unbiased" estimators. In Regions R3 and R4 they perform considerably worse,
largely on account of their higher bias. (In technical terms, this bias arises from the
third term on the right side of Eq. (7.9), which is not negligible when 6j is a plotting-
position estimator.) These simulation results indicate no clear preference between
"unbiased" and plotting-position estimators. As noted in Section 2.8, "unbiased"
estimators have less bias and are therefore superior for summarizing data samples
and computing the heterogeneity and goodness-of-fit measures defined in Chapters
4 and 5. In the interests of consistency we prefer to use the "unbiased" estimators
for fitting distributions too.

7.5.3 Regional versus at-site estimation

A fundamental comparison for assessing the utility of regional frequency analysis is
that between at-site and regional estimation. The contributions of the major sources
of error in quantile estimation are summarized in Figure 7.6. Because data from
several or many sites are available for estimation of the regional growth curve, its
variability is often much lower than the variability of the growth curve estimated
from at-site data. In a heterogeneous region, however, the regional growth curve is
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Table 7.6. Comparison of variants of the regional L-moment algorithm involving
"unbiased" andplotting-position estimators.

Region

Rl

R2

R3

R4

Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE

F: 0.9

-0.2
0.2
9.2
0.1
3.7

10.2
0.0
0.0
2.7
0.0
1.8
3.3

"Unbiased"

0.99

-2.0
2.0

11.0
-1.2
10.4
15.7
-0.1

0.1
3.0

-0.1
4.1
5.3

0.999

-3.9
3.9

14.6
-2.1
16.6
23.0
-0.1

0.1
3.7

-0.1
6.0
7.3

0.9

0.1
0.1
9.2
0.3
3.7

10.2
1.5
1.5
3.1
1.5
2.1
3.7

PP

0.99

-1.2
1.2

10.7
-0.4
10.4
15.6
3.1
3.1
4.4
3.1
4.8
6.0

0.999

-2.6
2.6

13.9
-0.9
16.7
22.7
4.4
4.4
5.8
4.4
7.0
8.3

Note: Tabulated values are BR(F\ AR(F), and RR(F) as defined in Eqs. (7.12)-(7.14).
Unbiased denotes unbiased estimators; PP denotes plotting-position estimators.

at-site estimation index-flood estimation

variability of estimated mean • variability of estimated at-site
scale factor

variability of estimated —^- • variability of estimated regional
growth curve ] growth curve

bias of estimated regional growth
curve as estimator of at-site
growth curve

Fig. 7.6. Sources of error for at-site and index-flood estimation methods.

biased as an estimator of the at-site growth curve. This is an additional source of error
in quantile estimates, especially for sites that are not typical of the region as a whole.
For regional frequency analysis to be worthwhile the bias due to heterogeneity must
not be so large as to outweigh the reduction in variability of the estimated growth
curve.

Our simulation results compare at-site estimation using the method of L-moments
with regional estimation using the regional L-moment algorithm, for Regions
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Table 7.7. Comparison of regional and at-site estimators.

Region

Rl

R2

R3

R4

Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE

F: 0.9

-0.2
0.2
9.2
0.1
3.7

10.2
0.0
0.0
2.7
0.0
1.8
3.3

Regional

0.99

-2.0
2.0

11.0
-1.2
10.4
15.7
-0.1

0.1
3.0

-0.1
4.1
5.3

0.999

-3.9
3.9

14.6
-2.1
16.6
23.0
-0.1

0.1
3.7

-0.1
6.0
7.3

0.9

-0.8
0.8

11.8
-0.8

0.8
11.8
-0.1

0.1
3.5

-0.1
0.1
3.5

At-site

0.99

0.6
0.6

26.9
0.6
0.6

27.0
0.4
0.4
6.7
0.4
0.4
6.8

0.999

7.8
7.8

56.8
7.7
7.7

57.2
1.2
1.2

11.0
1.2
1.2

11.2

Note: Tabulated values are the regional average relative bias, absolute relative bias and
relative RMSE of estimated quantiles, that is, BR(F), AR(F), and RR(F) as defined in
Eqs. (7.12)-(7.14).

R1-R4. In each case the fitted distribution is the same as the true distribution:
generalized extreme-value in Regions Rl and R2, lognormal in Regions R3 and R4.
Summary results for regional and at-site estimation of quantiles in the upper tail
of the distribution are given in Table 7.7. In every case the RMSE of the regional
estimator is lower than that of the at-site estimator, sometimes by a large amount.
The difference is not great at the F = 0.9 quantile, particularly for the heteroge-
neous regions R2 and R4. At more extreme quantiles, regional estimation provides
a very large reduction in the RMSE of the estimates. This is particularly true in the
high-CV regions Rl and R2. Even in the heterogeneous region R2, the RMSE of
the regional quantile estimator is lower than that of the at-site estimator by 42% at
the F = 0.99 quantile and by 60% at the F = 0.999 quantile.

A more detailed picture of the utility of regional frequency analysis can be
obtained from simulation results for different quantiles and for the individual sites
in a heterogeneous region. A selection of the results is shown in Figures 7.7-7.10.
In each of these diagrams, the vertical scale for RMSE is logarithmic and the
horizontal axis is plotted as though on extreme-value probability paper, that is, it is
linear in —  log(— log F), as in Figures 7.1 and 7.4.

Figure 7.7 shows the bias and RMSE of estimated quantiles for Region Rl. The
same graphs apply to every site in the region, because the region is homogeneous.
The advantage of regional estimation for extreme quantiles, F < 0.1 and F > 0.9,
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is clearly apparent. For some quantiles in the main body of the distribution, 0.1 <
F < 0.7, at-site estimation is more accurate than regional estimation even in this
homogeneous region. This occurs in regions in which the frequency distribution is
fairly skew, and is a consequence of interaction between the estimates of the index
flood and the growth curve; the covariance in the second term on the right side
of Eq. (7.3) is negative and is larger for at-site than for regional estimators of the
distribution parameters.

Figure 7.8 shows corresponding results for three sites in Region R2; site 8 has
L-moment ratios that are the same as the regional average, whereas the extreme
sites, 1 and 15, differ the most from the average. Site 8 benefits most from re-
gional estimation; its RMSE curve is even a little lower than that for Region Rl.
At the extreme sites, particularly site 1, regional estimation gives lower RM-
SEs only for the more extreme quantiles, for which at-site estimators have high
variability.

Figure 7.9 is analogous to Figure 7.7 but shows results for Region R3. The
general pattern is similar to that of Region Rl, except that regional estimation is
advantageous for all quantiles. The magnitudes of bias and RMSE are also much
smaller for this low-CV region than for the high-CV Region Rl.

Figure 7.10 is analogous to Figure 7.8 but shows results for sites 1,8, and 15 in
Region R4. The general pattern is similar to that of Region R2, except that at-site
estimation for site 1 remains preferable to regional estimation out to and beyond
the F = 0.999 quantile. Results not illustrated show that the same is true for sites
2 and 3. Thus although regional estimation may be preferable for the region as
a whole, at-site estimation may still give better performance at individual sites. A
practical consequence is that if one site is of particular interest, care should be taken
to ensure that it is not markedly atypical of the region to which it is assigned.

7.5.4 Number of sites in region

The extent to which regional frequency analysis is preferable to at-site analysis
depends on N9 the number of sites in the region. Homogeneous regions with vary-
ing N were generated in which all sites have the same generalized extreme-value
frequency distribution as in Region Rl and record length 30. Figure 7.11 summa-
rizes simulation results for regional estimation, fitting a generalized extreme-value
distribution with the regional L-moment algorithm, of the quantiles and growth
curve for nonexceedance probabilities F — 0.9, 0.99, and 0.999. Growth curve
estimation using the regional data becomes increasingly accurate as the region size
increases. The rate of decrease in the RMSE is close to the theoretical asymptotic

1/9
rate of nR , where TIR = Y^i ni *s the total number of data points for the region;
because the record lengths are the same at each site, this decay rate is also equivalent
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to N l/2. Both axes on Figure 7.11 have logarithmic scales, so a power-law decay
of RMSE as a function of N would plot as a straight line.

The RMSE of estimated quantiles does not decrease to zero as N increases, even
in a homogeneous region, because estimation of the index flood uses only at-site
data and its accuracy is limited by the record length at the site. As the region size
increases, the relative RMSE of quantile estimates soon levels off at a value that is
essentially equal to the relative RMSE of the estimated index flood. For estimating
the F = 0.99 quantile, for example, even a region with three sites has RMSE only
10% higher than a region with 50 sites. Unless extreme quantiles are to be estimated,
F > 0.999, there is little to be gained by using regions larger than about 20 sites.

Figure 7.12 summarizes simulation results analogous to those of Figure 7.11 but
for heterogeneous regions similar to Region R2. In a region of N sites, each site
has record length 30 and a generalized extreme-value distribution, with L-CV and
L-skewness both varying linearly from 0.20 at site 1 to 0.30 at site N. In this case,
the RMSE of the estimated growth curve does not decrease to zero, because bias due
to heterogeneity of the region remains present even in arbitrarily large regions and
makes a nonvanishing contribution to the RMSE of the estimated growth curve.
Quantile estimates behave similarly to those for homogeneous regions. As the
region size increases, the relative RMSE approaches a limit that now results from a
combination of variability of the index-flood estimator and bias due to heterogeneity.

Analogous simulations were also run for regions similar to Regions R3 and R4
but with different numbers of sites. The results were qualitatively similar to those



7.5 Simulation results for effects of different factors 123

50-

LU
C/)

DC

ive
lat

CD
DC

20-

10-

5-

— Quantile  • o F= 0.999
Growth curve • •  F=0.99

AA F=0.9

n..

• • • • - - .  r

-A —  A-i i"-2-=:a^fci

^ A A A A-A

5 10 20
Number of sites

50

Fig. 7.12. Regional average relative RMSE of estimated quantiles and growth curve for
heterogeneous regions similar to Region R2 but with different numbers of sites. Fitted
distribution: GEV.

shown in Figures 7.11 and 7.12 and are not illustrated separately. The general
conclusion, which remains valid for a wide range of regions, is that unless extreme
quantiles are to be estimated, F > 0.999, there is little to be gained by using regions
larger than about 20 sites.

7.5.5 Record length

Statistical estimators are more accurate when calculated from a large sample of
data. For at-site frequency analysis, the bias and variance of estimated quantiles
and growth curve are approximately proportional to nj"1, and the RMSE of these
estimators is therefore approximately proportional to nj ' .

In regional frequency analysis using the regional L-moment algorithm, the situa-
tion is more complicated. The major components of error in quantile estimates have
different dependencies on sample size. The estimated index flood at site i, based
on data from that site only, has variance approximately proportional to n~[l. The
estimated regional growth curve has variance approximately proportional to n^1,
where WR = J2 ni is the total number of observations available in the region. In
heterogeneous regions, the regional growth curve is biased as an estimator of the
growth curve at any individual site, and this bias is independent of the sample size.

The effect on the regional L-moment algorithm of changing the record length
at each site in a region is illustrated in Table 7.8. The table gives regional average
performance measures of quantile estimators for the representative regions R1-R4,
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Table 7.8. Simulation results for regions with different record lengths.

Region

Rl

R2

R3

R4

Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE

F: 0.9

-0.2
0.2
9.2
0.1
3.7

10.2
0.0
0.0
2.7
0.0
1.8
3.3

ft = 30

0.99

-2.0
2.0

11.0
-1.2
10.4
15.7
-0.1

0.1
3.0

-0.1
4.1
5.3

0.999

-3.9
3.9

14.6
-2.1
16.6
23.0
-0.1

0.1
3.7

-0.1
6.0
7.3

0.9

-0.1
0.1
6.5
0.2
3.7
7.8
0.0
0.0
1.9
0.0
1.7
2.7

ft = 60

0.99

-1.0
1.0
7.8

-0.2
10.4
13.6
0.0
0.0
2.1

-0.1
4.0
4.8

0.999

-2.0
2.0

10.5
-0.2
16.8
20.6
-0.1

0.1
2.6

-0.1
6.0
6.7

Note: Tabulated values are BR(F), AR(F), and RR(F) as defined in Eqs. (7.12)-(7.14).
Record length at each site, n, is 30 or 60.

which have record length nt = 30 at each site, and for regions with the same
frequency distributions as Regions R1-R4 but record length rti — 60 at each site.
In the homogeneous regions, Rl and R3, the pattern of the results is the same as
for at-site analysis; doubling the record length at each site reduces the bias by a
factor of approximately 2 and the RMSE by a factor of approximately \fl. In the
heterogeneous regions, R2 and R4, the patterns are less clear. The regional average
absolute bias is mostly due to heterogeneity in the region and is not affected by
increasing the record lengths. The RMSE of quantile estimators is less when n = 60,
but by a factor of less than y/2.

In heterogeneous regions, the presence of bias that does not vanish with increasing
record lengths means that when record lengths are large, regional estimators can be
less accurate than at-site estimators. This effect is illustrated in Figure 7.13, which
shows the regional average relative RMSE of quantile estimators, both regional
and at-site, in regions with the same frequency distributions as Region R2 but with
different values of n, the record length at each site. For at-site estimators the relative
RMSE decreases steadily, roughly proportionally to the nj / rate suggested by
asymptotic theory. For regional estimators, bias due to heterogeneity imposes a
lower bound below which the relative RMSE of quantile estimators cannot fall.
When n > 40, at-site estimation is more accurate than regional estimation for the
F = 0.9 quantile. Larger record lengths are needed for at-site estimation to be
preferable at more extreme quantiles. This graph is, however, misleading in that
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when record lengths are large, heterogeneity in the region is more easily detected by
the heterogeneity measures defined in Chapter 4. For realizations of Region R2 with
n = 60, for example, the average value of the H statistic in Eq. (4.5) is 3.0, indicating
that such a region is likely to be declared heterogeneous and to be subdivided into
smaller regions, rather than being used itself in regional frequency analysis.

7.5.6 Intersite dependence

Regional frequency analysis assumes that data from different sites are statistically
independent. In practice it is common for observations for the same time point at
different sites to be positively correlated, with the correlation typically being higher
for sites that are close to each other.

From a theoretical viewpoint, the effect of intersite dependence on the regional
L-moment algorithm is to increase the variability of the regional averages (6.2)
and (6.3). This increases the variability of the estimated growth curve, the last term
of Eq. (7.3). It may also affect the bias of estimated quantiles through the last term
of Eq. (7.4), though this effect is small.

Hosking and Wallis (1988) presented results of Monte Carlo simulation exper-
iments designed to assess the effect of intersite dependence. We repeated some
of their experiments for our representative regions. The procedure for generating
correlated data is as given in Table 6.1 and involves specifying a matrix R whose
typical element pij is the correlation between observations made at the same time
point at sites / andj .
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In fact, as is clear from Table 6.1, pij is the correlation between data values that
have been transformed to Normality, rather than of the data themselves. This is a
matter of computational convenience and makes little practical difference for most
moderately skew distributions. For example, for the sites in Regions R1-R4 the
largest difference occurs for the site with highest skewness, site 15 in Region R2. If
Normal variates with correlation 0.2 are transformed so that their distributions are
generalized extreme-value with T3 = 0.3 (corresponding to site 15 in Region R2),
then the correlation of the transformed variates is 0.16; Normal correlations of 0.4,
0.6, and 0.8 transform to generalized extreme-value correlations of 0.34, 0.54, and
0.74, respectively.

To generate the population correlation coefficients, the TV sites were chosen
to be points randomly located, with uniform distribution, in the unit square. The
correlation pij between sites i and j was set to exp(—adtj\ where dtj is the distance
between sites/ and j and a is chosen so that the median of the pij, 1 < i < j < N,is
equal to some specified value pmed- This method is not intended as a formal model
of the variation of correlation with intersite distance, but merely as a means of
achieving a realistic spread of ptj values while ensuring that the correlation matrix
is valid, that is, positive definite. The entire set of correlations is parametrized by
the single value pmed> which determines a typical correlation coefficient and the
total amount of dependence in the region.

Some typical correlation matrices generated by this procedure are shown in
schematic form in Figure 7.14. These are the matrices used in our simulations of
15-site regions with pmed equal to 0.2 or 0.4. The pattern of correlation for pme(j =
0.2 is quite similar to that of the sample correlations of British annual maximum
streamflow data examined by Hosking and Wallis (1987b), suggesting that this
procedure for generating correlation matrices does give realistic results.
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The general effect of intersite dependence is illustrated by the simulation results
for correlated versions of Region R2, shown in Figure 7.15. The bias is little affected
by the presence of intersite dependence, but the RMSE of the estimated quantile
increases steadily at all sites for the more correlated regions. The illustrated results
are for the quantile estimator 2/(0.99), but similar results were obtained for other
quantile estimators and for the estimated growth curve.

The uniformity over different sites of the effect of intersite dependence means that
the effect of intersite dependence can be well summarized, even for heterogeneous
regions, by the regional average relative RMSE of the estimated quantiles and
growth curve. Summary results for Regions R1-R4 are given in Table 7.9. The
steady increase in RMSE values as the amount of correlation in the region increases,
as measured by Anecb is apparent. For very highly dependent heterogeneous regions,
at the less extreme quantiles, the RMSE of the regional estimators is higher than
that of the at-site estimators, for which the corresponding results are the RMSE
rows of Table 7.7. This implies that when data from different sites are highly
correlated, heterogeneity is a major concern; regional frequency analysis should
then be used only if there are strong reasons for believing that homogeneous regions
can be identified. At lower levels of dependence, however, the effect of intersite
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Table 7.9. Simulation results for regions with inter site dependence.

Region

Rl

R2

R3

R4

Aned

0
0.2
0.4
0.6
0.8
0
0.2
0.4
0.6
0.8
0
0.2
0.4
0.6
0.8
0
0.2
0.4
0.6
0.8

F: 0.9

9.2
9.6
9.9

10.4
11.0
10.2
10.5
10.9
11.3
11.8
2.7
2.7
2.8
3.0
3.2
3.3
3.4
3.5
3.6
3.7

Quantiles

0.99

11.0
13.0
15.0
17.8
21.6
15.7
17.3
18.9
21.3
24.7

3.0
3.4
3.9
4.5
5.4
5.3
5.6
5.9
6.3
7.1

0.999

14.6
19.0
23.5
30.3
40.7
23.0
26.4
30.1
36.1
45.6

3.7
4.5
5.3
6.5
8.3
7.3
7.8
8.4
9.3

10.7

0.9

1.3
2.1
2.6
3.2
4.0
4.1
4.4
4.7
5.2
5.7
0.6
0.9
1.2
1.5
1.8
1.9
2.1
2.2
2.4
2.6

Growth curve

0.99

5.7
8.0

10.1
12.8
16.4
12.2
13.7
15.1
17.2
20.2

1.6
2.3
2.9
3.7
4.7
4.5
4.8
5.2
5.7
6.5

0.999

11.0
15.3
19.6
25.9
35.3
20.6
23.7
27.1
32.4
40.9

2.6
3.6
4.6
6.0
7.9
6.7
7.3
7.9
8.9

10.3

Note: Tabulated values are the regional average relative RMSE of estimated quantiles, that
is, RR(F) as defined in Eq. (7.14), and the corresponding quantities for the estimated growth
curve.

dependence is fairly small, particularly for heterogeneous regions. For example,
in regions similar to Region R2 where correlations between different sites do not
typically exceed 0.2, the increase in the RMSE of quantile estimates should not
exceed about 10% at the F = 0.99 quantile and 15% at the F = 0.999 quantile.
This is comparable to the magnitude of the bias due to heterogeneity.

Because the main effect of intersite dependence is to increase the variability
of estimators, it acts similarly to a reduction in the number of sites in the region.
Its effect has sometimes been summarized by calculating an "effective number of
independent sites," that is, the number of sites in a region comparable to the region
of interest, but whose sites have mutually independent frequency distributions, such
that the RMSEs of quantile estimators in the two regions are the same. Analytical
formulas have been proposed for the effective number of sites (e.g., Alexander,
1954; Stedinger, 1983) though they seem to be seriously inaccurate in practice
(Hosking and Wallis, 1988). Alternative methods of estimating an effective number
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of sites have been used by Dales and Reed (1989), Schaefer (1990), and Reed and
Stewart (1994). Our results indicate that no single measure of an effective number
of sites is uniformly applicable. The number depends on whether the region is
homogeneous or heterogeneous, on whether estimation of quantiles or of the growth
curve is being considered, and on which nonexceedance probability is of interest.
For estimating the F = 0.99 quantile, for example, we find the effective number
of independent sites in our representative regions when they are correlated with
Pmed = 0.4 to be about 4 for Region Rl, between 5 and 6 for Region R2, between
4 and 5 for Region R3, and a little over 6 for Region R4.

A final consequence of intersite dependence is that, even in homogeneous regions,
the accuracy with which the growth curve can be estimated does not decrease to
zero as the number of sites in the region increases. After a certain point, the addition
of sites with observations at the same time points as other sites in the region merely
duplicates information already obtained from the other sites. The effect is illustrated
in Figure 7.16 for estimators of the quantile Qi (0.99) and the growth factor qi (0.99)
in regions analogous to Region Rl but with different numbers of sites. The results
for pmed = 0 are the same as those for F = 0.99 in Figure 7.11. The results confirm
that, in regional frequency analysis, little benefit should be expected from using
more than about 20 sites in a region.

We emphasize that these conclusions are valid for the particular dependence
structure used in the simulations; that is, after transforming each site's frequency
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distribution to univariate Normality, the joint distributions at different sites are
multivariate Normal. Different conclusions may be reached if the dependence
structure is more complicated than this. For example, Hosking and Wallis (1988)
simulated some data for which extremely high or low observations were more
highly interdependent than observations of average magnitude and found that esti-
mated quantiles were less accurate than for the "transformed multivariate Normal"
dependence structure. It is, however, not easy to decide which dependence structure
is appropriate for any given set of data.

7.5.7 Heterogeneity

The effect of heterogeneity is to increase the RMSE of the estimated quantiles
and growth curve as a consequence of bias in the estimated growth curve at sites
whose frequency distributions are different from the average for the entire region.
The general pattern is exemplified by the results for Regions R2 and R4, shown in
Tables 7.2 and 7.4 and Figures 7.3 and 7.5.

For a more general assessment of the effect of heterogeneity, we constructed re-
gions analogous to Regions R2 and R4 but with different amounts of heterogeneity.
Regions had 15 sites with record length 30 at each site. Frequency distributions
at each site were specified by their L-CV r and L-skewness T3, which varied
linearly from site 1 to site 15. For regions analogous to Region R2, the frequency
distribution at each site was generalized extreme-value, and site 8, the central site,
had r = 0.25 and T3 = 0.25, the same as the sites in Region Rl. For regions
analogous to Region R4, the frequency distribution at each site was lognormal, and
site 8 had r = 0.08 and T3 = 0.05, the same as the sites in Region R3. Quantiles and
growth curves were estimated by the regional L-moment algorithm, the fitted distri-
bution being correctly specified: generalized extreme-value for regions analogous
to Region R2, lognormal for regions analogous to Region R4. Simulation results
are summarized in Table 7.10 by the regional average relative RMSE of quantile
and growth curve estimators. The table also shows the average value, over 1,000
simulated realizations of each region, of the heterogeneity measure H defined in
Eq. (4.5). As the amount of heterogeneity, measured by the range of r or T3 across
the region, increases, the average value of H and the RMSE of estimated quantiles
and growth curve increase uniformly.

The relative RMSE values in Table 7.10 can be compared with the corresponding
values for at-site estimation. The ratio

RR(F) for at-site estimation
RR(F) for regional estimation
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Table 7.10. Simulation results for heterogeneous regions.

Average

r

.25

.25

.25

.25

.25

.25

.08

.08

.08

.08

.08

.08

.25

.25

.25

.25

.25

.25

.05

.05

.05

.05

.05

.05

Range

r

.00

.05

.10

.15

.20

.25

.00

.01

.02

.03

.04

.05

.00

.05

.10

.15

.20

.25

.000

.033

.067

.100

.133

.167

Dist.

GEV
GEV
GEV
GEV
GEV
GEV
LN3
LN3
LN3
LN3
LN3
LN3

Ave
H

0.00
0.60
1.78
3.41
5.24
7.17
0.00
0.22
0.84
1.78
2.93
4.21

F: 0.9

9.2
9.5

10.2
11.3
12.7
14.3
2.7
2.7
3.0
3.3
3.7
4.2

Quantile

0.99

11.0
12.4
15.7
19.8
24.4
29.4

3.0
3.4
4.3
5.3
6.5
7.7

0.999

14.6
17.2
23.0
30.1
37.9
46.2

3.7
4.3
5.7
7.3
9.1

10.9

Growth curve

0.9

1.3
2.4
4.1
5.9
7.7
9.6
0.6
0.9
1.4
1.9
2.5
3.0

0.99

5.7
7.9

12.2
17.0
22.0
27.3

1.6
2.2
3.3
4.5
5.8
7.1

0.999

11.0
14.2
20.6
28.2
36.3
44.9

2.6
3.4
5.0
6.7
8.6

10.5

Note: All regions have 15 sites and record length 30 at each site. Frequency distributions
have L-CV and L-skewness varying linearly from site 1 to site 15; average and range of
these values are tabulated. "Dist." is the frequency distribution at each site: generalized
extreme-value (GEV) or lognormal (LN3). "Ave. H" is the average value, over simulated
realizations of the region, of the H statistic defined in Eq. (4.5). Tabulated values are
the regional average relative RMSE of estimated quantiles, that is, RR(F) as defined in
Eq. (7.14), and the corresponding quantities for the estimated growth curve.

measures the relative accuracy of the two estimation methods. Values larger than 1
indicate that regional estimation is more accurate. This ratio is plotted as a function
of the heterogeneity measure H for regions analogous to Region R2 in Figure 7.17
and for regions analogous to Region R4 in Figure 7.18. As the amount of hetero-
geneity, as measured by H, increases, the advantage of regional estimation over
at-site estimation decreases. In very heterogeneous regions, as H increases beyond
a certain point, at-site estimation becomes preferable. This point is reached more
rapidly for quantiles in the body of the distribution; for extreme quantiles, regional
estimation remains preferable even when H is large. For regions with low skewness,
analogous to Region R4, at-site estimation becomes preferable at lower values of H.

For the regions in Figures 7.17 and 7.18, regional estimation is more accurate than
at-site estimation for all quantiles with F > 0.9 when the average H value is less
than 2. For the most extreme quantiles, regional estimation remains preferable even
in regions for which the average H value is considerably larger than 2. This may
suggest that the criterion H < 2 proposed in Chapter 4 for declaring a region to be
"definitely heterogeneous" is too strict. However, there are other possibilities than
regional analysis of all sites in a region; it may be possible to subdivide the region
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Fig. 7.17. Ratio of the RMSE of at-site quantile estimators to regional quantile estimators
for heterogeneous regions "analogous to Region R2" (as defined in text). Record length 30
at each site. Fitted distribution: GEV.
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Fig. 7.18. Ratio of the RMSE of at-site quantile estimators to regional quantile estimators
for heterogeneous regions "analogous to Region R4" (as defined in text). Record length 30
at each site. Fitted distribution: lognormal.

into smaller regions or by other means revise the assignment of sites to regions. We
feel that when an H value greater than 2 is observed, these other possibilities merit
investigation.

We have so far considered heterogeneous regions in which L-CV and L-skewness
both vary from site to site. In principle, heterogeneity may arise from differences
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Table 7.11. Simulation results for regions with heterogeneity in x and T3.

Range

r

.10

.15

.00

.10

.20

.00

.10

.00

.30

.10

.00

.20

F:

Quantile

0.9

1.15
1.25
0.97
1.15
1.35
0.98

0.99

1.48
1.47
1.48
1.48
1.68
1.31

ratio

0.999

1.88
1.59
2.60
1.88
1.88
1.91

Relative RMSE

0.9

10.2
11.4
9.7

10.2
12.8
9.4

0.99

15.7
15.6
16.1
15.7
18.5
13.6

0.999

23.0
19.7
30.1
23.0
23.2
23.3

Average

V

1.74
3.43
0.51
1.74
5.30
0.32

v2
0.54
0.88
1.56
0.54
1.39
0.78

H

V3

0.24
0.10
1.32
0.24
0.10
0.66

Note: All regions have 15 sites with generalized extreme-value frequency distributions and
record length 30 at each site. Frequency distributions have L-CV r and L-skewness T3
varying linearly from site 1 to site 15, the range of these values is tabulated, and average
values are r = 0.25 and r3 = 0.25. "Quantile ratio" is the ratio of the quantile at site 15
to that at site 1, that is, Q\s(F)/Q\(F). "Relative RMSE" is the regional average relative
RMSE of estimated quantiles, that is, RR(F) as defined in Eq. (7.14). "Average H" is the
average value, over simulated realizations of the region, of the three H statistics defined in
Eq. (4.5) and based on the heterogeneity measures (4.4), (4.6), and (4.7).

in L-CV, in L-skewness, or in any other feature or combination of features of
the frequency distribution. Though any kind of heterogeneity increases the bias
of the estimated growth curve in regional frequency analysis, different kinds of
heterogeneity have different effects for estimation of any given quantile and may
not be easy to detect in practice.

As an example, we compare the effects of heterogeneity in L-CV alone,
L-skewness alone, and L-CV and L-skewness together. Region R2 is an example of
the last kind, with L-CV and L-skewness both having a range of 0.10 between the
most extreme sites of the region. For this region the growth curve at nonexceedance
probability 0.99, g(0.99), is 48% larger at site 15 than at site 1. To achieve this
ratio of #(0.99) values in a region in which only L-CV varies, the range of L-CV
would need to be 0.15; and to achieve the same ratio in a region in which only
L-skewness varies, the range of L-skewness would need to be 0.30. In each case,
the regions are "analogous to Region R2": 15 sites, generalized extreme-value
frequency distributions at each site, average L-CV and L-skewness both 0.25, and
L-CV or L-skewness varying linearly from site 1 to site 15. Regions were similarly
constructed to achieve, through variations in L-CV or L-skewness alone, equal
quantile ratios for the F = 0.999 quantile. Simulation results for these regions are
summarized in Table 7.11.

In Table 7.11 the bold numbers show that equal quantile ratios for a given quantile
correspond well to equal RMSEs for the estimator of the quantile. However, the
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ease with which heterogeneity can be detected, as measured by the "Average H"
values in Table 7.11, is not consistent across regions that have the same RMSE of
their estimated quantiles. In particular, heterogeneity in L-skewness alone, which
can have a serious effect on the accuracy of estimated quantiles in the extreme
tail of the distribution, is not easily detected even by the heterogeneity measures
based on V2 and V3, which explicitly involve between-site variation in sample
L-skewness statistics. In practice this should not be a serious problem, for it is hard
to imagine circumstances in which L-skewness varies from site to site but L-CV
does not. When heterogeneity in L-CV is sufficient to affect the accuracy of quantile
estimators, there should be a good chance that it can be detected in regions where
the typical record length is 30 or more. However, the general conclusion must be
that no single heterogeneity measure is likely to give a complete picture of the
amount of heterogeneity in a region.

7.5.8 Misspecification of the regional frequency distribution

Misspecification of the frequency distribution limits the accuracy of estimators
of the quantiles and growth curve. A good fit to part of the distribution can be
achieved, but bias is increasingly apparent in estimated quantiles in the tails of the
distribution. This bias affects estimated quantiles at all sites, and is reflected in
the regional average bias measure BR(F) defined in Eq. (7.12); unlike bias due to
heterogeneity, it does not cancel out when averaged across the sites in the region.

Several distributions, some misspecified, were fitted to data simulated from
Region Rl. Regional average performance measures for quantile estimators are
given in Table 7.12.

Results for regional fitting of three-parameter distributions show a consistent
pattern. The three-parameter distributions in Table 7.12- the middle block of rows
- are listed in decreasing order of their L-kurtosis when their L-skewness is 0.25, the
true value for Region Rl. Because the fitted distributions all have the same L-CV
and L-skewness, the distributions with higher L-kurtosis have higher quantiles in
the extreme upper tail of the distribution. This is reflected in the bias values for
estimators of the F = 0.999 quantile; the biases are ordered in the same way as the
distributions' L-kurtosis. For severely misspecified distributions, bias is the main
contributor to the regional average RMSE. This is particularly true of the generalized
Pareto distribution, which has L-kurtosis very different from that of the generalized
extreme-value distribution when T3 = 0.25 (see Figure A.2 in the appendix). For
the other three-parameter distributions, misspecification is important only in the
extreme tail of the distribution, and it has little effect on the RMSE of estimated
quantiles for F < 0.99.
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Table 7.12. Simulation results for different fitted distributions: Region Rl.

Fitted
distribution

Gumbel(AS)
GEV(AS)
Gumbel
G. logistic
GEV
Lognormal
Pearson III
G. Pareto
Kappa
Wakeby

Pars.

2
3
2
3
3
3
3
3
4
5

F

Bias

0.4
-0.8

0.2
-2.5
-0.2

0.6
1.9
4.1

-0.2
0.4

= 0.9

RMSE

12.7
11.8
9.3
9.3
9.2
9.4
9.7

10.5
9.3
9.4

F =

Bias

-10.4
0.6

-10.6
2.1

-2.0
-3.7
-6.9

-12.8
-2.1
-2.5

0.99

RMSE

17.2
26.9
13.6
11.2
11.0
11.0
11.9
16.2
11.3
11.5

F =

Bias

-22.1
7.8

-22.4
16.0
-3.9
-9.6

-18.9
-33.0
-3.5
-8.4

: 0.999

RMSE

25.6
56.8
23.6
22.7
14.6
15.1
21.0
34.4
17.2
18.6

Note: All regions have 15 sites with generalized extreme-value frequency distributions and
record length 30 at each site. Frequency distributions have L-CV r = 0.25 and L-skewness
t3 = 0.25. AS denotes at-site estimation; otherwise estimation is by the regional L-moment
algorithm. "Pars." is the number of distribution parameters that must be estimated. "Bias"
and "RMSE" are the regional average relative bias and RMSE of estimated quantiles, that
is, BR(F) and RR(F) as defined in Eqs. (7.12) and (7.14).

Table 7.12 also illustrates comparisons between fitted distributions with different
numbers of parameters. The Gumbel distribution has two parameters, and estimated
quantiles derived from it tend to have less variability than those of three-parameter
distributions. However, the distribution has fixed L-skewness of 0.1699, less than
the L-skewness of the sites in Region Rl. In consequence, the fitted Gumbel
distribution has large negative bias at extreme quantiles. In practice, the use of a
two-parameter distribution in regional frequency analysis is likely to be beneficial
only if the investigator has complete confidence that the distribution's L-skewness
and L-kurtosis are close to those of the frequency distributions at the sites in the
region.

Distributions with more parameters tend to yield estimated quantiles that are
more variable. This can be seen by comparing the results in Table 7.12 for the
generalized extreme-value and kappa distributions, which have three and four
parameters, respectively. Both distributions are correctly specified for Region Rl
and therefore have low bias, but the RMSEs of estimated quantiles are somewhat
higher for the kappa distribution. The Wakeby distribution is misspecified, but it
has many parameters enabling it to mimic the shape of many other distributions
over a fairly wide range of quantile values. Its performance measures for quantile
estimation are only a little worse than those of the kappa distribution.
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Table 7.13. Simulation results for different fitted distributions: Region R2.

Fitted
distribution

Gumbel(AS)
GEV(AS)
Gumbel
G. logistic
GEV
Lognormal
Pearson III
G. Pareto
Kappa
Wakeby

Pars.

2
3
2
3
3
3
3
3
4
5

Bias

0.5
-0.8

0.4
-2.2

0.1
0.9
2.1
4.4
0.1
0.6

F = 0.

Abs.
bias

0.5
0.8
3.7
4.1
3.7
3.8
4.0
5.0
3.7
3.8

9

RMSE

12.8
11.8
10.3
10.1
10.2
10.4
10.8
11.6
10.3
10.4

Bias

-10.4
0.6

-9.9
2.9

-1.2
-2.9
-6.1

-12.1
-1.3
-1.6

F = 0.99

Abs.
bias

10.4
0.6

12.2
10.8
10.4
10.5
11.0
13.4
10.4
10.3

RMSE

17.4
27.0
15.7
16.2
15.7
15.4
15.4
17.7
15.9
16.0

F

Bias

-21.9
7.7

-20.9
18.1
-2.1
-8.0

-17.4
-31.8

-1.5
-6.5

= 0.999

Abs.
bias ]

21.9
7.7

22.0
23.1
16.6
16.9
19.9
31.8
16.6
16.7

RMSE

25.8
57.2
24.1
29.9
23.0
21.7
23.1
33.8
25.1
25.2

Note: Region specification as in Table 7.1. AS denotes at-site estimation; otherwise es-
timation is by the regional L-moment algorithm. "Bias," "Abs. bias," and "RMSE" are
the regional average relative bias, absolute bias and RMSE of estimated quantiles, that is,
£R(F), AR(F), and RR(F) as defined in Eqs. (7.12)-(7.14).

Results for at-site estimation are also included in Table 7.12, but merely confirm
that at-site estimation is not competitive for homogeneous regions.

Analogous simulation results for the heterogeneous Region R2 are given in
Table 7.13. As before, the effect of heterogeneity is to add a bias to the estimated
quantiles that varies from site to site but cancels out when averaged over the entire
region. This is reflected in the "Bias" columns in Table 7.13, which are little changed
from those of Table 7.12. Heterogeneity increases the regional average absolute bias
and RMSE values.

An important interaction between heterogeneity and misspecification is that in
heterogeneous regions, misspecification has less effect on the RMSE of estimated
quantiles. In a heterogeneous region, no distribution can be correctly specified at
every site, but for Region R2, in which all sites have generalized extreme-value
frequency distributions, the generalized extreme-value distribution and its general-
ization, the kappa distribution, come closest to being correctly specified and have
the lowest bias values. However, the generalized extreme-value distribution does not
have uniformly the lowest RMSE of estimated quantiles; the lognormal distribution
has lower RMSE for F = 0.99 and F = 0.999. This suggests that the lognormal
distribution has robustness properties, in that its performance is competitive even
when it is a clear misspecification of the true distribution. Comparison of the results
in Tables 7.12 and 7.13 for the generalized extreme-value, Gumbel, and Pearson
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type III distributions also shows that the Gumbel and Pearson type III distributions
are more nearly competitive with the generalized extreme-value distribution for
the heterogeneous region, though they retain considerable negative bias in their
estimated quantiles.

7.5.9 Heterogeneity and misspecification

As a wider study of misspecification and robustness, variants of Region R2 were
constructed that had different true frequency distributions. The regions each had
15 sites with record length 30 at each site; L-CV and L-skewness varied linearly
from 0.2 at site 1 to 0.3 at site 15, and each site had a frequency distribution
of the same kind, which could be generalized logistic, generalized extreme-value,
lognormal or Pearson type III. The regional L-moment algorithm was used to fit each
of these four three-parameter distributions, together with the kappa and Wakeby
distributions. At-site estimation using the correctly specified distribution was also
carried out. The regional average performance measures are given in Table 7.14.
The general pattern of the results is similar for each true distribution. When the
fitted distribution is misspecified, having higher or lower L-kurtosis than the true
distribution, positive or negative bias and an increase in RMSE are observed in
the extreme upper quantiles. For these regions the effects are not serious except in
cases of severe misspecification or when quantiles with nonexceedance probability
F > 0.99 are to be estimated; in regions with less heterogeneity or longer at-site
record lengths, bias due to misspecification would be more important. The kappa
and Wakeby distributions generally give estimated quantiles with no severe bias and
RMSEs only a little larger than when the fitted distribution is correctly specified.
They are therefore robust to misspecification and should be a good choice in regions
for which the goodness-of-fit measure described in Chapter 5 does not yield a clear
choice of an appropriate distribution to fit to the data. The lognormal distribution is
more robust than the other three-parameter distributions considered here, though it
gives large biases when fitted to data drawn from a generalized Pareto distribution.
Similar results were obtained for regions in which the frequency distributions have
lower skewness, analogous to Region R4.

From our simulations we judge that the kappa and Wakeby distributions, and
to a lesser extent the lognormal distribution, have good robustness with respect to
misspecification of the frequency distribution. These general conclusions should be
valid for a wide range of regions that have frequency distributions similar to those
in Figures 7.1 or 7.4. Different conclusions may of course apply in other situations,
such as when frequency distributions have bimodal probability density functions
or a significant proportion of exact zero values.
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Table 7.14. Simulation results for different combinations of true and fitted distributions.

Fitted
distribution

At-site
G. logistic
GEV
Lognormal
Pearson III
G. Pareto
Kappa
Wakeby

At-site
G. logistic
GEV
Lognormal
Pearson III
G. Pareto
Kappa
Wakeby

At-site
G. logistic
GEV
Lognormal
Pearson III
G. Pareto
Kappa
Wakeby

GLO

1.1
0.0
2.4
3.1
4.3
6.8
1.3
1.2

-3.2
-1.9
-6.0
-7.5

-10.4
-16.5
-3.2
-2.7

-7.4
-3.8

-20.5
-24.8
-32.1
-AA.5

-9.4
-13.4

True

GEV

-0.8
-2.2

0.1
0.9
2.1
4.4
0.1
0.6

0.6
2.9

-1.2
-2.9
-6.1

-12.1
-1.3
-1.6

7.7
18.1
-2.1
-8.0

-17.4
-31.8

-1.5
-6.5

Bias,
distribution

LN3

-0.5
-3.1
-0.8

0.0
1.3
3.5
0.0
0.4

0.9
5.2
1.0

-0.8
-4.1

-10.1
-0.8
-1.1

4.2
27.1
5.4

-1.1
-11.4
-26.6

-0.9
-4.5

PE3

-2.9
-A.5
-2.2
-1.4
-0.1

2.1
0.0
0.0

6.2
9.5
5.2
3.3

-0.2
-6.3
-0.3
-0.4

4.2
43.8
19.4
11.7
-0.1

-16.9
-0.6
-0.4

GPA

F
-6.3
-6.3
-4.1
-3.3
-1.9

0.1
0.0

-0.2
F

6.2
16.8
12.3
10.2
6.3
0.1
0.6
0.8

F •

27.8
73.6
44.4
34.7
20.0
0.4
1.9
4.3

GLO

= 0.9
12.7
10.7
11.3
11.6
12.2
13.3
11.0
10.9

= 0.99
32.3
16.0
16.3
16.4
16.9
20.6
16.3
16.7

= 0.999
68.1
23.1
27.0
28.4
33.6
45.5
25.3
27.7

True

GEV

11.8
10.1
10.2
10.4
10.8
11.6
10.3
10.4

27.0
16.2
15.7
15.4
15.4
17.7
15.9
16.0

57.2
29.9
23.0
21.7
23.1
33.8
25.1
25.2

RMSE,
distribution

LN3

12.1
10.2
10.1
10.2
10.5
11.2
10.3
10.4

24.1
16.3
15.3
14.9
14.6
16.4
15.3
15.3

39.7
34.1
22.1
19.6
19.4
29.1
22.4
22.7

PE3

12.1
10.5
10.1
10.2
10.3
10.7
10.3
10.4

24.1
17.2
15.4
14.7
13.8
15.0
14.3
14.3

39.7
47.6
26.9
21.0
16.2
20.2
19.2
20.3

GPA

11.3
10.8
10.1
9.9
9.8
9.9

10.0
9.9

23.4
22.2
19.4
18.1
16.3
15.0
15.0
15.1

57.2
76.4
48.4
39.1
27.4
20.2
21.0
22.6

Note: All regions have 15 sites with record length 30 at each site. Frequency distributions
have L-CV r and L-skewness T3 varying linearly from 0.2 at site 1 to 0.3 at site 15 and are
of type generalized logistic (GLO), generalized extreme-value (GEV), lognormal (LN3),
Pearson type III (PE3) or generalized Pareto (GPA). "Bias" and "RMSE" are the regional
average relative bias and RMSE of estimated quantiles, that is, BR(F) and RR(F) as defined
in Eqs. (7.12) and (7.14).

7.5.10 Heterogeneity, misspecification, and intersite dependence

Our simulation experiments have shown that intersite dependence, heterogeneity,
and misspecification of the frequency distribution can significantly degrade the
accuracy of the estimated quantiles and growth curve obtained through the regional
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Fig. 7.19. Regional average relative RMSE of estimated quantiles for Region Rl (at-site
and regional estimation) and variants of Region Rl containing intersite dependence (D),
misspecification (M), heterogeneity (H), and all three (DMH).

L-moment algorithm. The effects of these factors, separately and together, are
illustrated in Figure 7.19.

The base region is Region Rl, homogeneous with a GEV frequency distribution
and no intersite dependence. Figure 7.19 shows simulation results for quantile
estimation for this region using both at-site and regional estimators. Figure 7.19
also shows results for regions with moderate amounts of intersite dependence
(Pmed = 0.2, in the notation of Subsection 7.5.6), misspecification (fitted distribu-
tion generalized logistic), and heterogeneity (region specification as for Region R2,
given in Table 7.1), separately and together. Though each violation of the assump-
tions of the index-flood procedure reduces the accuracy of quantile estimation,
even the combination of all three violations still yields estimated quantiles that are
considerably more accurate than at-site quantile estimates that use the correctly
specified frequency distribution.
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7.5.11 Alternative performance measures

Although the accuracy measures (7.10)-(7.14) are generally useful, other measures
may in some cases be more appropriate. In many environmental applications the
economic loss resulting from underestimation of quantile values is greater than
that resulting from overestimation. Performance measures for quantile estimators
should reflect this. For example, in place of the relative bias and relative RMSE
criteria defined above in Eqs. (7.10)—(7.11), one might use bias and RMSE on a
logarithmic scale:

BLt(F) =

RLi(F) =

M
M-'^iog^

m=\

M

(M y] [iog{ Q

l\F)IQi(F)},

1/2
\m](F)/Qi(F)}]2) .

(7.16)

(7.17)

If the true quantile value is 1.0, then an estimate of 2.0 (too large by a factor of 2)
is penalized by the "relative RMSE" criterion twice as much as an estimate of 0.5
(too small by a factor of 2), but these errors are penalized equally by the "RMSE on
log scale" criterion. When quantile estimates have small relative errors the "relative
error" and "error on log scale" criteria are approximately equal. This can be seen by
expanding log(<2/0 using the Taylor-series expansion log(l + JC) ~ x for small x,
accurate up to a term of order x2. We have

= log

whence it follows that BLt(F) « B t(F) and RLt(F) « Rt(F).
The simulation results presented in the foregoing sections are generally not sen-

sitive to the use of Bt(F) and Rt(F) instead of BLt(F) and RLt(F) as performance
measures, but there are exceptions. When assessing the average performance across
a region of different estimation procedures, differences are apparent when the
regional average bias is substantial. Of the factors explored in our simulations, only
misspecification of the frequency distribution has a major effect on the regional
average bias. As an example, Table 7.15 contains a summary of the results of fitting
different distributions to data simulated from Region R2. These results should be
compared with those in Table 7.13 on page 136, which are for the same simulated
data and the same estimators, but use the "relative error" criteria; Table 7.15 gives
the results using the "error on log scale" criteria. To facilitate the comparison, the
values tabulated in Table 7.15 are expressed as percentages.
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Table 7.15. Simulation results for Region R2, using log-scale performance measures.

Fitted
distribution

Gumbel(AS)
GEV(AS)
Gumbel
G. logistic
GEV
Lognormal
Pearson III
G. Pareto
Kappa
Wakeby

Pars.

2
3
2
3
3
3
3
3
4
5

j

Bias

-0.3
-1.6
-0.1
-2.8
-0.4

0.3
1.6
3.8

-0.4
0.1

F = 0.

Abs.
bias

0.3
1.6
3.8
4.4
3.9
3.8
4.0
4.7
3.9
3.8

9

RMSE

12.5
11.9
10.3
10.4
10.2
10.3
10.5
11.0
10.3
10.3

Bias

-12.2
-2.8

-11.6
1.6

-2.5
-43
-7.6

-14.3
-2.6
-3.0

F = 0.99

Abs.
bias

12.2
2.8

13.8
10.6
10.7
11.0
12.0
15.4
10.7
10.8

RMSE

19.6
25.4
17.5
15.8
16.0
16.1
16.6
20.1
16.3
16.4

F

Bias

-26.7
-3.2

-25.9
13.7
-5.1

-11.1
-21.7
-41.2

-5.0
-10.2

= 0.999

Abs.
bias ]

26.7
3.2

26.8
19.7
17.4
18.9
23.9
41.2
17.4
18.6

RMSE

31.7
44.3
29.3
25.8
23.8
23.8
27.5
44.1
25.7
27.0

Note: Region specification as in Table 7.1. AS denotes at-site estimation; otherwise estima-
tion is by the regional L-moment algorithm. Tabulated values are the log-scale performance
measures BLR(F), ALR(F), and RLR(F), denned analogously to Eqs. (7.12)-(7.14) as
averages of BLt(F), \BLt(F)\, and RLt(F), respectively.

Distributions that have higher L-kurtosis than the true frequency distribution
perform better according to the "error on log scale" criteria than according to
the "relative error" criteria: they tend to yield estimated quantiles that are too
high and which are penalized less by the "error on log scale" criteria. Thus the
generalized logistic distribution performs approximately as well as does the true
generalized extreme-value distribution for fitting to Region R2 according to the
"error on log scale" criteria. Distributions that have lower L-kurtosis than the true
frequency distribution perform correspondingly worse according to the "error on
log scale" criteria: the Gumbel and Pearson type III distributions are no longer
competitive with the best-fitting distributions for Region R2, and the generalized
Pareto distribution performs poorly, just as in Table 7.13.

7.6 Summary of simulation results

Our simulation experiments have explored the performance of the regional
L-moment algorithm under a wide range of conditions. The following general
conclusions seem to be valid for a wide variety of homogeneous and moderately
heterogeneous regions with a range of at-site frequency distributions.
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• Regionalization is valuable. Even in regions with moderate amounts of hetero-
geneity, intersite dependence, and misspecification of the frequency distribution,
regional frequency analysis is more accurate than at-site frequency analysis.

• Regionalization is particularly valuable for estimation of the growth curve and
quantiles far into the tail of the frequency distribution. Error in estimation
of quantiles in the main body of the frequency distribution is dominated by
variability of the estimated index flood, which is not explicitly addressed by
regionalization using an index-flood procedure.

• Errors in quantile estimates, and errors in growth curve estimates for heteroge-
neous regions, decrease fairly slowly as a function of the number of sites in the
region when the number of sites is large. In consequence, there is often little
gain in accuracy from using regions containing more than about 20 sites.

• Longer records make regional estimation less valuable relative to at-site estima-
tion. However, heterogeneity is easier to detect when records are longer. This
suggests that regions should contain fewer sites when at-site record lengths are
large.

• We do not recommend the use of two-parameter distributions such as the Gumbel
in regional frequency analysis. Use of a two-parameter distribution is bene-
ficial only if the investigator has complete confidence that the distribution's
L-skewness and L-kurtosis are close to those of the frequency distributions at
the sites in the region; otherwise large biases in quantile estimates will result.

• Misspecification of the frequency distribution is important only for quantiles
far into the tails of the distribution. In the upper tail, for example, for the
representative regions of Section 7.4, misspecification is important only when
F > 0.99.

• Certain robust distributions, such as the kappa and Wakeby, yield reasonably
accurate estimates over a wide range of at-site frequency distributions for the
region.

• Heterogeneity introduces bias into estimates at sites not typical of the region
as a whole. This bias can easily be the major source of error in the estimated
quantiles and growth curve.

• Intersite dependence increases the variability of estimates but has little effect
on their bias. Small amounts of intersite dependence should not be a concern in
regional estimation.

• At extreme quantiles (F > 0.999) the advantage of regional over at-site estima-
tion is greater. For these quantiles, heterogeneity is less important as a source of
error, whereas misspecification of the frequency distribution is more important.

These conclusions are valid for a range of regions similar to the representative
regions defined in Section 7.4. These regions have frequency distributions that are
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unimodal with L-CV and L-skewness in the range 0 to 0.3. These regions should
be representative of a variety of environmental applications, but we do not claim
that they exhaustively cover the range of applications for which regional frequency
analysis might be considered. Furthermore, some details of the performance of
the regional L-moment algorithm depend on particular choices of the criteria used
to measure the performance of estimators and on the particular specification of
intersite dependence.
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Other topics

8.1 Variants of regionalization

In this monograph we have concentrated on regional frequency analysis using the
index-flood procedure defined in Section 1.3 and the comparison of this method with
at-site estimation. Several other regional frequency analysis procedures have been
proposed; here we briefly describe them. For simplicity we consider them in the con-
text of estimating a frequency distribution parametrized by its mean, its dispersion
divided by its mean (typically L-CV), and one or more shape parameters (typically
L-skewness). The estimators that each regional frequency analysis procedure uses
for the parameters are summarized in Table 8.1. We are concerned with the question
of which data are used in the analysis: at-site, regional, or some combination of the
two. We do not consider the question of which statistical methods to apply to the
data. We believe that methods based on L-moments are the best currently available;
other approaches are reviewed by Cunnane (1988).

At-site estimation
For reference, we note here that at-site estimation involves the use of at-site esti-
mates for all of the parameters of the distribution.

Regional shape estimation
If the mean and dispersion are estimated from at-site statistics, and the shape
parameters are estimated by averaging the at-site shape measures for the sites in a
region, we call the resulting procedure a "regional shape estimation" procedure. It
is intermediate between pure at-site estimation and the index-flood procedure. It is
discussed in more detail in Section 8.2.

144
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Table 8.1. Estimates of distribution parameters used by different variants of regional
frequency analysis.

Variant Mean Dispersion Shape

At-site at-site
Regional shape estimation at-site
Index-flood at-site

Hierarchical regions at-site

Fractional membership at-site

Region of influence at-site

Mapping at-site

Bulletin 17 at-site

at-site at-site
at-site regional average

regional average regional average
regional average regional average
for subregion for full region
weighted average of regional estimates
weighted average of at-site estimates, for
sites in site z's region of influence
estimated function of site characteristics

weighted average of
at-site estimate and
estimated function of
site location

at-site

Index-flood procedure
When the dispersion and shape parameters are both estimated by regional averaging,
while the mean is still estimated from at-site data, the index-flood procedure is
obtained.

Hierarchical regions
The index-flood procedure uses the same region as the basis for estimating both
dispersion and shape parameters. Fiorentino et al. (1987) and Gabriele and Arnell
(1991) proposed a procedure that involved a hierarchy of regions. Relatively large
regions are defined over which the shape parameters are assumed to be constant,
and these regions are subdivided into smaller regions over which the dispersion
parameter is assumed to be constant.

The foregoing procedures have the disadvantage that estimated parameters and
quantiles may change abruptly when passing from one site to a neighboring site
that has been assigned to a different region. Several regionalization procedures aim
for a smooth transition between sites.

Fractional membership
A site may be regarded not as belonging to a particular region but as having fractional
membership in several regions. Parameters or quantiles for the site can then be es-
timated by a weighted average of the corresponding estimates for different regions.
Weights can be obtained by using discriminant analysis to relate the different regions
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to the site characteristics. If the weights are functions of site characteristics and do
not involve the at-site data, estimates can be obtained even at sites where no data are
available. Wiltshire (1986c) proposed this approach for estimation of quantiles at
ungaged sites. It can equally well be used for estimation of distribution parameters
such as r or T3 and for estimation at gaged sites. Acreman and Sinclair (1986) used
a clustering method that explicitly yields weights for the fractional membership of
a gaged site in more than one region.

The use of fractional membership does not enable any relaxation of the criteria
for identifying homogeneous regions. Even though there may be doubt about which
region a site belongs to, the regions themselves should still be homogeneous and
distinct. This is to ensure that the bias and variability of each region's parameter
or quantile estimates, and thence of the final estimator averaged across different
regions, are as small as possible.

When a smooth transition between regions is required, the use of regionaliza-
tion with a fractional membership procedure is attractive. There may, however, be
problems with the derivation of the weights for fractional membership. Discriminant
analysis is usually based on the Normal distribution and may be unreliable if the
site characteristics are incompatible with the Normal distribution. For example, a
site characteristic may take a few discrete values or the regions may occupy areas
of site-characteristic space that are not approximately ellipsoidal. Discriminant
analysis is not invariant to nonlinear transformations of the site characteristics, and
the need for transformation may not be apparent from casual inspection of the
data. It is also more difficult than would be the case with a simpler regionalization
procedure, such as the index-flood procedure, to estimate the accuracy of the final
quantile estimates.

Region of influence
In a fractional-membership procedure the explicit construction of regions is not
necessary, as noted by Acreman and Wiltshire (1989). Instead, each site may
be regarded as a one-site region. Estimation of parameters or quantiles for any
particular site, the "site of interest," can be based on a regional frequency analysis
in which a region is chosen to consist of sites that are expected to have a similar
frequency distribution to that of the site of interest. These sites constitute what Burn
(1990) terms the region of influence for the site of interest.

If a set {z{\ . . . , z$} of site characteristics is available at site /, the separation
of the two sets of site characteristics may be measured by the weighted Euclidean
distance

^ 4 4 M (8.D
U=i )
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From these distances a set of weights r]tj is constructed: r]ij is the relative weight
given to site j in the estimation of the frequency distribution at site /. The sites j
for which rftj > 0 constitute the region of influence for site i. For given /, rjij
should be a decreasing function of d(i, j). It is not necessary to have rjij = r)^ /.
If a parameter or quantile 0 is estimated from the site-y data by 6^\ then the
region-of-influence estimator of 9 for site / is

*(0 _ Ej rnjnj&
R01 " Tn • n- '  ( }

2^j rli,JnJ

where rij is the record length at site j and the sum extends over all sites j that lie
within the region of influence of site /.

The region of influence procedure is also attractive when a smooth transition
between regions is required. It avoids one problem occurring when sites are assigned
to disjoint regions using any of the methods described in Section 4.1, which is that
sites adjacent in site-characteristic space may have very different estimated regional
growth curves if they are assigned to different regions.

However, the region of influence procedure contains three sources of ambiguity.
First, appropriate site characteristics must be defined; like discriminant analysis, the
procedure is not invariant to nonlinear transformations of the site characteristics.
Second, the weights Wk in Eq. (8.1) must be defined. Burn (1990) proposed that the
weight Wk be based on the importance of the site characteristic Zk as an explanatory
variable of the between-site variation of the at-site estimate of the 100-year event,
2(0.99). Cavadias (1990) sketched a similar procedure in which the weights might
be based on canonical correlations between site characteristics and at-site quantile
estimates. These methods depend on at-site estimates of extreme quantiles, which
cannot be reliably estimated (else regional analysis would not be needed in the
first place), so it seems unlikely that they can give dependable results. A more
promising approach would be to use Burn's method but with L-CV rather than
2(0.99) as the quantity whose between-site variation is to be explained by the site
characteristics. This is because L-CV can be more reliably estimated than 2(0.99)
from at-site data, and its between-site variation within a region is closely related to
the accuracy of regional quantile estimates, as noted in Section 7.2. This problem is
analogous to that of deciding appropriate weights to assign to the variables used in
a cluster analysis, as noted in Section 4.1; however, in the circumstances described
in Chapter 4, neither the assessment of homogeneity nor the estimation of quantiles
requires the specification of weights. Third, the weights rjtj in Eq. (8.2) must be
defined. A balance must be struck between including so few sites in the region of
influence that the final estimates have as much variability as at-site estimates, and
including so many sites that bias is induced in the final estimate because some sites

Sebas
Highlight

Sebas
Highlight

Sebas
Highlight
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in the region of influence have frequency distributions markedly different from that
of the site of interest. Some kind of heterogeneity test, analogous to that described
in Section 4.3, would assist in this decision. Zrinji and Burn (1994) used a test of
Chowdhury et al. (1991) for this purpose.

Mapping
When the parameters or quantiles arising from regional frequency analysis are
found to vary smoothly with the typical site characteristics of sites in each region, it
is possible to construct a map or graph that can be used to estimate the parameters
for a site, given its site characteristics. Schaefer (1990) used this approach to model
annual maximum precipitation for sites in Washington State; the CV and skewness
of a fitted generalized extreme-value distribution were graphed as functions of
at-site mean annual precipitation. A similar approach was used by Fill (1994).

Mapping of regional estimates is effective when a smooth relation to site char-
acteristics can be found. Its major disadvantage is shared with the fractional mem-
bership and region-of-influence procedures; it is more difficult than would be the
case with a simpler regionalization procedure, such as the index-flood procedure,
to estimate the accuracy of the final quantile estimates.

A mapping approach can also be used with at-site estimates (e.g., McKerchar and
Pearson, 1990). However, at-site estimates are more variable than regional estimates
and the variation may obscure any smooth relation to site characteristics that may
exist. Models that express quantile estimates as functions of site characteristics
by regression of at-site quantile estimates on site characteristics (e.g., Tasker and
Stedinger, 1986) may also be treated in this category, though their connection with
the methods discussed in the rest of this monograph is tenuous.

Bulletin 17
The procedure recommended in Bulletin 17 of the U.S. Water Resources Council
(1976, 1977, 1981) fits a log-Pearson type III distribution to annual maximum
streamflows at a single site, the skewness of the logarithmically transformed distri-
bution being obtained by combining a data-based estimate with a value read from
a map. The procedure uses regional information insofar as the mapped values are
derived from observed skewness statistics at many sites. The procedure is further
discussed in Section 8.3.

8.2 Regional shape estimation

If the mean and dispersion of the frequency distribution are estimated from at-site
statistics, and the shape parameters are estimated by averaging the at-site shape
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measures for the sites in a region, we call the resulting procedure a regional shape
estimation procedure. It is intermediate between pure at-site estimation and the
index-flood procedure. It has been used in simulation experiments by Lettenmaier
et al. (1987) and Stedinger and Lu (1995). These authors used it to fit a generalized
extreme-value distribution and called it the "GEV-2" or "GEV-2/R" procedure, but
it can of course be used to fit any distribution.

Regional shape estimation could claim to be the optimal procedure for a region in
which the mean and L-CV of the at-site frequency distributions varied from site to
site but the higher-order L-moment ratios were equal at each site. In most real-world
applications this would not be a physically plausible pattern of variation, because if
L-CV varies from site to site, then it is likely that the higher-order L-moment ratios
do too. The justification for regional shape estimation is therefore more plausibly
based on the accuracy with which L-moments of various orders can be estimated. In
a heterogeneous region in which the site-to-site variation in L-CV is large compared
with the sampling variability of the at-site sample L-CV but the site-to-site variation
in L-skewness is small compared with the sampling variability of the at-site sample
L-skewness, it is reasonable to expect that regional shape estimation would provide
estimates of L-CV and L-skewness that are more accurate than those obtained by
either at-site estimation or the index-flood procedure.

The performance of regional shape estimation can be assessed for any specified
region using the simulation procedures of Chapter 7. For the representative regions
defined in Section 7.4 a comparison of the performance of index-flood and regional
shape estimation is given in Table 8.2. In the homogeneous regions Rl and R3,
quantile estimates obtained from the index-flood procedure are considerably more
accurate than those obtained from regional shape estimation. This is to be expected
because the assumptions of the index-flood procedure, more restrictive than those
of regional shape estimation, are satisfied by homogeneous regions. In the heteroge-
neous regions R2 and R4, regional shape estimation has lower absolute bias than the
index-flood procedure and gives more accurate estimates of the most extreme quan-
tiles. The advantage of regional shape estimation over the index-flood procedure
for estimation of extreme upper-tail quantiles is stronger for Region R4, which has
lower L-CV than Region R2. This agrees with the simulation results of Stedinger
and Lu (1995) but conflicts with those of Lettenmaier et al. (1987); as noted by
Stedinger and Lu (1995), the frequency distributions used in the simulations of
Lettenmaier et al. (1987) yielded negative data values with higher frequency than
would be reasonable in most applications of regional frequency analysis. Stedinger
and Lu (1995) also found that the performance of regional shape estimation relative
to that of the index-flood procedure improved as the at-site record lengths increased.
This is to be expected because larger at-site record length enables greater accuracy
in the at-site estimator of L-CV used in regional shape estimation.
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Table 8.2. Comparison of index-flood and regional shape estimators.

Region

Rl

R2

R3

R4

Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE

F: 0.9

-0.2
0.2
9.2
0.1
3.7

10.2
0.0
0.0
2.7
0.0
1.8
3.3

Index flood

0.99

-2.0
2.0

11.0
-1.2
10.4
15.7
-0.1

0.1
3.0

-0.1
4.1
5.3

0.999

-3.9
3.9

14.6
-2.1
16.6
23.0
-0.1

0.1
3.7

-0.1
6.0
7.3

Regional shape

0.9

0.0
0.1

12.6
0.1
0.3

12.7
0.0
0.0
3.4
0.0
0.2
3.4

0.99

-1.6
1.6

16.6
-1.8

3.8
17.1
-0.1

0.1
4.6

-0.2
1.4
4.9

0.999

-3.5
3.5

20.4
-3.5

8.8
22.3
-0.1

0.1
5.7

-0.4
2.6
6.4

Note: Tabulated values are the regional average relative bias, absolute relative bias, and
relative RMSE of estimated quantiles, expressed as percentages, that is, BR(F), AR(F),
and RR(F) as defined in Eqs. (7.12)-(7.14).

In summary, it appears that regional shape estimation may be preferred to the
index-flood procedure if the following conditions are satisfied: there are doubts
about the homogeneity of the region; the main interest is in estimation of quantiles
in the extreme upper tail of the frequency distribution; the regional average L-CV
is fairly low; and at-site record lengths are fairly large but not so large that at-site
estimation of L-skewness is more accurate than regional shape estimation. These
conclusions are based on regions, such as Regions R2 and R4, in which there
is strong association between the population L-CV and L-skewness of the at-site
frequency distributions; in the absence of such an association, the advantage of
regional shape estimation over the index-flood procedure can be considerably less.
It is therefore difficult to identify quantitative conditions under which regional shape
estimation is advantageous.

8.3 The Bulletin 17 estimation procedure

Bulletin 17 of the U.S. Water Resources Council (1976, 1977, 1981) recommends
a frequency analysis procedure for use by U.S. federal agencies. The procedure is
widely used in the United States, Australia, and some other countries. It is described
here for comparison with regional frequency analysis and the index-flood procedure.
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The Bulletin 17 procedure takes the distribution of the quantity of interest Q
to be log-Pearson type III. Estimation is by fitting a Pearson type III distribution
to observations of log10 Q using the method of moments. The first two moments,
mean and standard deviation, are estimated from the at-site data. The skewness
is estimated by a weighted average of the sample skewness and a "generalized
skew coefficient" that is derived from regional information. In the absence of
detailed studies, Plate I of the Bulletin provides a map that depicts the generalized
skew coefficient of annual maximum streamflows in the United States, obtained by
drawing smooth isolines on a map of the sample skewness values based on data
through 1973 at 2,972 gaging stations.

The estimation procedure in its basic form is as follows.

1. Set aside any exact zero values in the data.
2. Transform the data by taking logarithms to base 10.
3. Calculate the (conventional) moments of the transformed data, x, s, and g.
4. Test for the presence of low outliers. These are values less than x —  Kns,

where Kn is a threshold value dependent on the sample size n and tabulated
in the Bulletin. If any low outliers are found, set them aside and recompute the
moments.

5. Read the generalized skew coefficient from the map. Call it gmap.
6. Calculate a weighted average of the sample skewness and map skewness, the

weights being inversely proportional to the estimated mean square errors of the
two estimators. The mean square error of g is computed, from Eq. (6) of the
Bulletin, as a function of g itself and the sample size. The mean square error
of gmap is regarded as a fixed value of 0.302.

7. Estimate the parameters of the Pearson type III distribution from the calculated
moments.

8. If any zero values or low outliers are present, apply a "conditional probability
adjustment" to allow for them. If the quantile function of the Pearson type III
distribution estimated at the previous step is JC(.) and the proportion of zero
values and outliers in the data is /?o, then the "conditional probability adjusted"
estimate of the quantile of nonexceedance probability F is x ( j f ^ J. For three
values of F, these estimates are calculated and are used to calculate "synthetic
statistics," new versions of the moments, which are then used in the method of
moments to estimate the parameters of the final Pearson type III distribution of

The Bulletin 17 procedure is fundamentally an at-site estimation procedure based
on conventional moments of logarithmically transformed data, with two modifica-
tions: an adjustment for low outliers and the inclusion of the regionally estimated
generalized skew coefficient. It can be criticized on several grounds.
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Logarithmic transformation can cause low data values to have undue influence
on estimated quantiles in both the lower and the upper tail of the frequency distri-
bution, as noted in Chapter 1. The use of an adjustment for low outliers attempts to
allow for this, but it could be argued that the outlier adjustment is a complication
that would not have been necessary had the logarithmic transformation not been
used. The criterion used to test whether an observation is an outlier is in any case
arbitrary, being based on an outlier test for samples from the Normal distribution at
a subjectively chosen significance level of 10%. The Bulletin gives no justification
for this choice, beyond saying that it was based on "comparing results" of several
procedures.

The use of a generalized skew coefficient based on a map is a strange choice for
streamflow data. One might expect the skewness of the frequency distribution of
streamflow to have sharp discontinuities as a function of location. Consider a site
downstream of the confluence of two rivers and sites on the two upstream branches.
It is plausible that the shape of the frequency distribution could be very different
at the three sites. There is certainly no reason to believe that skewness should be a
smooth function of location, as implied by the map in Plate I of Bulletin 17.

The use of conventional moments, particularly the skewness, is another ques-
tionable aspect of the method. The skewness of log10 Q for U.S. streamflow data is
typically between —1.2  and +1.2, and near the extremes of this range the bias of the
skewness statistic g can be substantial (Wallis et al., 1974). Parameter estimation
by the method of moments may also be inadequate, because other estimators based
on different moment-like statistics have better efficiency and robustness (Arora and
Singh, 1989).

The main defect of the Bulletin 17 procedure, however, is that it is principally an
at-site procedure and does not make sufficient use of regional information. When
n > 30 and \g\ < 1, the weighted average of g and gmap gives greater weight to the
at-site estimate g. Therefore, except at sites with very short records, the Bulletin 17
procedure makes little use of regional information. In practice, this means that
quantile estimates at different sites obtained by the Bulletin 17 procedure often
differ by amounts too large for physical reasoning to explain.

Comparisons of the Bulletin 17 and index-flood estimation procedures have been
made by Wallis and Wood (1985) and Potter and Lettenmaier (1990). In both papers
the index-flood procedure used regional average probability weighted moments to
fit a generalized extreme-value distribution. Wallis and Wood used artificial data
simulated from the log-Pearson type III distribution for a heterogeneous region with
20 sites; Potter and Lettenmaier used real streamflow data from a 40-site region
in Wisconsin and an 80-site region in New England and estimated the accuracy of
quantile estimates by a resampling procedure similar to the "bootstrap" of Efron
(1982). In each case the RMSE of estimates of extreme quantiles in the upper tail



Regional GEV/PWM
Bulletin 17
Regional GEV/PWM
Bulletin 17
Regional GEV/PWM
Bulletin 17

0.998
0.998
0.99
0.99
0.99
0.99

17.2
35.5
19.6
37.4
18.6
41.7
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Table 8.3. Accuracy of quantile estimates from Bulletin 17 and index-flood procedures.

Source Region Method F RMSE

WW Artificial

PL Wisconsin

PL New England

Note: Results taken from Wallis and Wood (1985), "WW," and Potter and Lettenmaier
(1990), "PL". RMSE is the regional average relative RMSE of estimated quantiles expressed
as a percentage, that is, RR(F) as defined in (7.14).

of the frequency distribution was smaller for the index-flood procedure, by a factor
of about 2. Some example results are given in Table 8.3.

Landwehr, Tasker, and Jarrett (1987) managed to construct two regions in which
Bulletin 17 outperforms the index-flood procedure, but these regions are excessively
heterogeneous. We simulated realizations of their regions, and found that the
average value, over 1,000 realizations of each region, of the heterogeneity mea-
sure H defined in Eq. (4.5) was 8.7 for Region 1A and 10.4 for Region IB. Regional
frequency analysis should not be used in regions as heterogeneous as this, and when
using the methods described in this monograph there is no reason why it need be.
Even the region used by Wallis and Wood (1985) yields an average H of 4.5. We
conclude that, even when applied to a region that is heterogeneous and misspecified,
regional frequency analysis using an index-flood procedure based on probability
weighted moments or L-moments is likely to be overwhelmingly superior to the
Bulletin 17 procedure.

8.4 Quantile estimation at ungaged sites

Estimating the frequency distribution at a site for which no measurements of the
quantity of interest are available is sometimes required. We call such a site an
"ungaged site," using, for convenience, terminology common in the analysis of
streamflow data. Typically some site characteristics for the ungaged site are known.
These must be used to assign the site to a suitable region and to estimate the index
flood, usually the mean of the at-site frequency distribution, at the ungaged site.

Assignment of an ungaged site to a region will often not be a problem. If
the formation of regions was done in accordance with the principles outlined in
Section 4.1, using site characteristics rather than at-site statistics, then the site
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characteristics available at the ungaged site will often suffice to identify the region
to which it should belong. For example, if regions are formed by cluster analysis on
site characteristics using Ward's method, then an ungaged site would most naturally
be assigned to the region whose center is closest, in the space of site characteristics
used in the clustering, to the site characteristics of the ungaged site. Difficulties
arise if the site characteristics used to form regions include some that are derived
from at-site data measurements, as noted on page 55. In this case, the unobserved
site characteristics must be estimated, or a method of assigning sites to regions must
be found that involves only the observed site characteristics.

Estimation of the index flood at an ungaged site may require further modeling. In
some cases, the index flood may vary slowly enough geographically, or over some
space of site characteristics, that it can be mapped and its value for an ungaged site
inferred from contours drawn on the map. When the relation between the index
flood and site characteristics is not so clear, a formal statistical model may be used.
A simple example is a linear regression model relating the index flood /z*, or some
function of it such as log /z;, to a linear combination of site characteristics measured
atsite/,z^°, j = 1, ...,Jk:

7 = 1

The model parameters 6j, j = 0, 1 , . . . , k, and the variance of the error term U{ can
be estimated by fitting the model to sites at which data are available. These sites
need not constitute a homogeneous region, because a model such as Eq. (8.3) may
well provide an adequate approximation for a wider range of sites.

Models of the form (8.3) have been widely used in hydrology to estimate the
mean annual maximum streamflow at ungaged sites. Often the at-site sample mean
is substituted for the population mean /z* in Eq. (8.3) and the model is fitted by the
method of least squares. This may give adequate estimates of the 0j parameters but
can seriously overestimate the error of estimation of /z*. To see this, write the fitted
model as

OJzf + v i , (8.4)
7 = 1

vt = ut +{xt - fit). (8.5)

The error term vi in Eq. (8.4) contains both w*, the error in approximating /z; by
#o + Y;j ®jz^> a nd *i ~ ^i* the sampling error of the at-site mean jc,-. The term
xt —  \ii has variance of /nt, where a? is the variance of the frequency distribution
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at site / and nt is the record length at site /; this may be considerably larger than
the variance of U[. Thus the residual variance from fitting model (8.4), an estimate
of the variance of V(, includes a contribution from the sampling error of the at-site
sample means that causes it to be an overestimate of the variance of M,-, the true
error associated with model (8.3).

A more careful approach to the estimation of model (8.3) seeks to separate the
contributions of model error and sampling error. Stedinger and Tasker (1985, 1986)
have described such an approach, based on generalized least-squares fitting of
model (8.3). Though the calculations are somewhat involved, the results can be
greatly superior to the use of ordinary least-squares regression. We sketch their
method for an application to maximum streamflow data in which the index flood is
the mean annual maximum streamflow, estimated by the at-site sample mean, and
the only site characteristic in the model is the logarithm of the drainage area A of
the gaging site.

The basic model for /x; is

fit = 0 0 + 9i l o g A t + u t , i = l , . . . , N , (8.6)

where the model errors U[ at the N sites are assumed to be independent and
identically distributed with mean zero and variance co2. In terms of the observable
quantity X{ the model becomes

Jet =60 + 61 log At + ut + a , (8.7)

where the sampling errors e\ —  x\ —  /x; have mean zero and covariances

jriij/ininj). (8.8)

Here G\ is the standard deviation of the frequency distribution at site /, pij is the
correlation between the frequency distributions at sites i and j , nt is the record
length at site /, and ntj is the number of concurrent observations at sites / and j .
The quantities ptj and O[ are unknown and must be estimated, but for the moment
we assume them to be known. Model (8.7) can be written in vector form as

x = ZO + \ (8.9)

where x is an N-vector with /th element xt, Z is an Nx2 matrix whose first
column has each element equal to 1 and whose second column has /th element
log At, 0 = [60 #i]T, and v is an Af-vector with mean zero and covariance matrix
G = &>2I+£; here I is the N x N identity matrix and £ is an TV x N matrix with (/, j)
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element Ey. To estimate the unknown parameters 6 and co2, Stedinger and Tasker
(1985) compared ordinary, weighted, and generalized least-squares methods. The
best results were obtained using the generalized least-squares method. If co2 were
known, the minimum-variance unbiased estimator of 6 would be the generalized
least-squares estimator

0 = (ZTG-lZ)-lZTG-lx (8.10)

and would satisfy

E{(x - Z ^ G - ^ x - Z0)} = N-2. (8.11)

In practice co2 is unknown. It can be estimated by an iterative procedure in which
a trial value of co2 is chosen, G and thence 6 in Eq. (8.10) are calculated, and the
quantity

(x - Z ^ G - ^ x - Z0) - (N - 2) (8.12)

is compared with its expected value of zero. The value of co2 for which Eq. (8.12) is
zero is taken as the estimate of co2, and the corresponding value of 6 is the estimate
of0.

There remains the question of estimation of pij and ay. Assuming that intersite
dependence does not vary too much from site to site, Stedinger and Tasker (1985)
suggest that each pij can be estimated by the average intersite correlation calculated
from the various sites' data. This may well be adequate in practice and should be
better than ignoring intersite dependence altogether. More elaborate estimators,
obtained for example by relating ptj to site characteristics using another regression
model, might be considered. For estimation of a,-, Stedinger and Tasker (1985)
found that the simple substitution of the at-site sample standard deviation was not
adequate. They preferred to estimate a; from another regression model, relating a;
to log A( with a multiplicative error:

ot = (0o + 01 log Ai)exp(di), (8.13)

where the errors d[ are independent and Normally distributed with mean —8 2/2
and variance <52; thus E{exp(d;)} = 1. Estimation of model (8.13) involves a
simplified version of the generalized least-squares procedure used for model (8.6);
in particular, intersite dependence is ignored (Stedinger and Tasker, 1985, Ap-
pendix B).
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8.5 Measurement error

In frequency analysis it is normally assumed that the data values provide a true
representation of the underlying values of the quantity of interest. However, in
many applications data are obtained by a physical measurement process that may
be subject to error. Measurement error, if large enough, can cause bias and loss
of accuracy in frequency analysis. The seriousness of the effect, and the kind and
magnitude of errors that may arise, are very dependent on the type of data and
the measurement process. Subject-matter knowledge of the field of application is
essential for an accurate assessment of the significance of measurement error in
any particular analysis.

For the analysis of streamflow data, Potter and Walker (1981, 1985) drew atten-
tion to measurement error and showed that it might lead to overestimation of the
moments of the frequency distribution. Cong and Xu (1987) and Kuczera (1992)
investigated the consequences for at-site frequency analysis and found that the effect
of measurement error on quantile estimates can sometimes be large enough to be
of practical concern, particularly when the coefficient of variation of the frequency
distribution is low.

To illustrate the effects of measurement error, we use a simple model similar to
that of Potter and Walker (1981) and apply it to two of the representative regions
of Section 7.4. Suppose that the actual values of the quantity of interest at site i are
g;y, j = 1 , . . . ,rii, but that the observed values include a multiplicative error that
has a lognormal distribution with mean 1 and variance a2. Thus an observed value
would be

Qij = Qijetj, (8.14)

where log e^ is Normally distributed with mean — ̂  log( 1 +<?<?) and variance log( 1 +
a2). We assume that the errors e^ are independent for all i and j . The actual values
Qij are generated from the frequency distributions of Regions Rl and R2 defined in
Section 7.4. These 15-site regions, one homogeneous and one heterogeneous, have
generalized extreme-value frequency distributions with regional average L-moment
ratios r = 0.25 and T3 = 0.25. The standard deviation of the measurement error, cr€9

is set to 0,0.1 or 0.2, which we refer to as "no error", "10% error", and "20% error",
respectively.

The distribution of the observed values Qij is slightly more skew than that of
the true values Qij. This is illustrated in Figure 8.1 for the case in which Qij
has the generalized extreme-value distribution of Region Rl and Qij includes
20% measurement error. The distribution of Qij has r = 0.267 and 13 = 0.256,
compared with r = 0.25 and T3 = 0.25 for the distribution of Qij. As with the
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Fig. 8.1. Quantile functions for the sites in Region Rl: true values Qtj (solid line), and
observed values Qtj including 20% measurement error (dotted line).

error model of Potter and Walker (1981), the inclusion of measurement error tends
to inflate the L-CV and L-skewness of the observed data and may be expected to
lead to overestimation of the upper-tail quantiles of the frequency distribution.

The performance of regional frequency analysis in the presence of measurement
error was evaluated by simulation, using the procedure described in Section 7.3, with
data generated according to the measurement-error model (8.14). The generalized
extreme-value distribution was fitted by the regional L-moment algorithm. Table 8.4
contains a summary of the results for estimation of the quantiles and growth curve.
Results for the case of no error are of course identical to those in Table 7.2. The
addition of measurement error causes the bias to become increasingly positive and
tends to increase the variability of quantile estimates. The effect is barely perceptible
with 10% measurement error; indeed, in some cases the negative bias present when
there is no measurement error is reduced when the error is 10%, and the resulting
estimates have lower RMSE. With 20% error, however, the estimates are clearly
less accurate than in the absence of measurement error. The effect is more serious
for the homogeneous region; for example, in Region Rl the RMSE of the quantile
estimate 2(0.99) is increased by 23% relative to the case of no measurement error,
whereas in Region R2 the corresponding increase is 15%.

In this example, typical measurement errors would need to be close to 20%
before a significant effect on the accuracy of quantile estimates would be felt. We
emphasize, however, that this is purely an illustrative example; different regions or
different patterns of measurement error could lead to very different results.
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Table 8.4. Simulation results for regions with data subject to measurement error.

Region Error

Rl

Rl

Rl

R2

R2

R2

0

10%

20%

0

10%

20%

Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE

Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE
Bias
Abs. bias
RMSE

F: 0.9

-0.2
0.2
9.2
0.7
0.7
9.5
3.0
3.0

10.8

0.1
3.7

10.2
1.0
3.8

10.6
3.4
4.5

11.9

Quantiles

0.99

-2.0
2.0

11.0
-0.2

0.2
11.2
5.2
5.2

13.5

-1.2
10.4
15.7
0.7

10.4
16.0
6.1

11.6
18.0

0.999

-3.9
3.9

14.6
-1.3

1.3
14.7
6.6
6.6

17.8

-2.1
16.6
23.0
0.5

16.9
23.5

8.7
18.8
26.4

0.9

-0.2
0.2
1.3
0.7
0.7
1.5
3.0
3.0
3.3

0.1
3.7
4.1
1.0
3.8
4.1
3.3
4.5
4.8

Growth curve

0.99

-2.0
2.0
5.7

-0.2
0.2
5.5
5.1
5.1
7.8

-1.2
10.4
12.2
0.6

10.4
12.3
6.1

11.6
13.6

0.999

-3.9
3.9

11.0
-1.4

1.4
10.7
6.5
6.5

13.5

-2.2
16.6
20.6
0.4

16.8
21.0

8.6
18.8
23.3

Note: Tabulated values are the regional average relative bias, absolute relative bias, and
relative RMSE of estimated quantiles, expressed as percentages, that is, BR(F), AR(F), and
RR(F) as defined in Eqs. (7.12)-(7.14), and the corresponding quantities for the estimated
growth curve. "Error" is the standard deviation of the measurement error, ae, expressed as
a percentage.

8.6 Historical information

In addition to a sequence of measurements of the quantity of interest, there may in
some circumstances be additional information about the magnitudes of events that
occurred outside the period of systematic measurement. For example, with annual
maximum streamflow data, in addition to the gaged record there may be information
about large flood events that occurred before the period of continuous gaging. Such
information may be historical, in the form of recollections or records left by human
observers, or paleological, based on botanical or geophysical evidence.

Some difficulties are associated with historical information that do not arise with
the systematic gaged record.

First is the question of deciding exactly what information is present at each site.
For example, consider a set of annual maximum streamflow data (site 01626000
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in the example described in Section 9.2) with a gaged record extending from 1953
to 1991, the measurements ranging from 419 ft3s-1 to 17,500 ft3s-1, and a historic
event of 14,500 ft3 s~l recorded in 1943 that was exceeded twice in the gaged record.
A complete specification of the historical information requires us to identify the
possible maximum streamflow values in all years prior to 1953. How large a flood,
for example, could have occurred in any of the years 1944-52, or in the years up
to 1942, without some information about it having been recorded? It is plausible
that there exists a "threshold of perception" such that only floods that exceeded this
threshold would leave records for posterity (Gerard and Karpuk, 1979). Accurate
specification of historical information requires that this threshold be accurately
estimated throughout a period at least as far back as the earliest historical event and
probably for some time before that.

A second concern is the consistency of historical information across different
sites. The effect on quantile estimates of heterogeneity in a region is likely to be
exacerbated if historical information is concentrated at a few sites that are not typical
of the region as a whole. Historical streamflow information, for example, is most
easily obtained for large or densely populated drainage basins, whose frequency
distributions tend to have relatively low L-CV and L-skewness. If the results are not
to be biased, historical information should be developed for all sites and years back
to the earliest recorded year of historical information. In practice this is rarely done
and historical information is acquired in a haphazard and inconsistent manner.

A third concern is the accuracy of historical data. The methods used to obtain
historical and paleological streamflow data tend to be less accurate than direct
gaging of the flow. Historical events, because they tend to be the most extreme,
are often the most difficult to measure accurately. Thus measurement error can be
a more significant problem when historical information is used than for the gaged
record alone.

Finally, historical and paleological information may date from so far in the past
that the frequency distribution has changed in the intervening period. In some
environmental applications this can limit the utility of information about events
more than 100 or 200 years in the past. Paleoflood data for the southwestern
United States have been used both to fit a single frequency distribution applicable
throughout the last 2,000 years (Kochel et al., 1982) and to identify changes in the
climate during this period (Ely et al., 1993); one must regard these applications as
incompatible.

The incorporation of historical information into frequency analysis using
L-moments is possible for some specifications of historical data. Suppose that
the data available at a site are h "historic" values, assumed to be the h largest in a
period of m years, and n recent values from the period of systematic measurement.
Some of the historic values may be from the systematic record too, so the actual
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number of systematic observations may be greater than n. In the absence of more
detailed information, it is reasonable to suppose that the recent values are a random
sample, drawn without replacement, of the m —  h smallest values in the total period
of m years. Ding and Yang (1988) and Wang (1990b) have derived estimators of
the probability weighted moments of the frequency distribution for this type of
historical data. The use of probability weighted moments and L-moments in related
censored-data problems is discussed by Wang (1990a) and Hosking (1995). The
adaptation of these estimators to regional frequency analysis remains problemat-
ical; in the index-flood procedure, an appropriate way of choosing the weights in
the weighted average (1.5) is difficult to derive. L-moment methods are even less
suitable for dealing with some other specifications of historical information, such
as when the available data are the number of times in a given period that a certain
threshold was exceeded.

For regional frequency analysis using historical information, the method of Jin
and Stedinger (1989) appears to be the best currently available. It fits a regional gen-
eralized extreme-value distribution and combines features of maximum-likelihood
estimation, which has great flexibility in dealing with different specifications of his-
torical information, with the method of L-moments, which gives accurate estimates
of the parameters of the generalized extreme-value distribution.

If accurately specified historical information is available, the accuracy with which
quantiles of the frequency distribution can be estimated can be greatly increased.
This has been documented for single-site frequency analysis by several authors
(e.g., Leese, 1973; Tasker and Thomas, 1978; Cohn and Stedinger, 1987) and by
Jin and Stedinger (1989) for their regional frequency analysis procedure. However,
it is not clear that these ideal conditions can often be attained in practice, because of
the difficulties noted above. In particular, the greater measurement error associated
with historical data has only rarely been taken into account in published assess-
ments of the value of historical information (Cong and Xu, 1987; Kuczera, 1992).
We therefore remain somewhat skeptical about the practical utility of historical
information.
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9.1 U.S. annual precipitation totals

9.1.1 Introduction

In 1989 the U.S. Army Corps of Engineers was charged with the responsibility of
conducting a national study of water management during periods of drought. One of
the results of the study is the National Drought Atlas (Willeke et al., 1995), which
contains analyses of data on monthly precipitation, streamflow, reservoir levels,
and the Palmer Drought Index for over 1,000 measuring sites in the continental
United States. Analysis of the precipitation data used regional frequency analysis
and was based on L-moments. Precipitation data were available as totals, in inches,
for durations of 1, 2, 3, 6, 12, 24, 36 and 60 months starting in each calendar
month January through December. Though regions could in principle have been
defined separately for each combination of duration and starting month, this would
have led to an atlas that would have been excessively large and difficult to use. It
was therefore decided to construct a single set of regions, based on the data for
annual precipitation totals, and to use these regions when fitting regional frequency
distributions to the data for all durations and starting months.

Here we describe the analysis of the data for annual precipitation totals (though
data for other durations and starting months affect some parts of the analysis). The
analysis illustrates the steps involved in a large-scale regional frequency analysis
exercise and shows how some of the commonly occurring problems in regional
frequency analysis may be overcome.

Some of the results in this section can also be found in Guttman (1993) and
Guttman et al. (1993). Detailed tabulations of the final results - quantile estimates
of annual and monthly precipitation for each measuring site - can be found in the
National Drought Atlas (Willeke et al., 1995).

162
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Fig. 9.1. L-moment ratios for the U.S. annual precipitation data.

9.1.2 Data

The data set used for the analysis was taken from the Historical Climatology
Network (Karl et al., 1990). The Historical Climatology Network is a database
containing monthly temperature and precipitation data through 1989 for 1,219
sites in the United States. It was prepared for the U.S. Department of Energy by the
National Climatic Data Center (NCDC). The stations in the network are considered
to be the best long-term records available. The analysis used data from sites that
satisfied the following criteria: record length at least 60 years, not more than 10%
of the monthly values missing, and no more than 12 consecutive months of data
missing. There were 1,123 such sites, with an average record length of 85 years.

The discordancy statistic defined in Chapter 3 was calculated for the entire set
of annual precipitation data, but for a large heterogeneous data set such as this
it is not particularly informative. The data had already undergone quality checks
at NCDC, and there was no reason to expect that gross errors would be present.
The L-CV and L-skewness of the data are shown in Figure 9.1. When applied to
the entire data set, some extremely high values, as high as 17, of the discordancy
statistic D( were observed. These are for sites in the arid southwest of the United
States, for which the L-CV of annual precipitation totals is in the range 0.3-0.4.
These sites are consistent among themselves: that they are discordant with the rest
of the data merely indicates that the frequency distributions at the 1,123 sites are
very heterogeneous.
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9.1.3 Initial formation of regions

Regions were formed by identifying clusters in a space of site characteristics.
Clustering was based on site characteristics only and did not involve at-site statistics
measuring the shape of the frequency distribution of precipitation. This is in ac-
cordance with the discussion in Section 4.1. At-site statistics are used to assess the
homogeneity of the regions that are formed in the clustering procedure, and the
validity of this assessment is compromised if the same data are used both to form
regions and to test their homogeneity.

The site characteristics used were judged to be of importance in defining a site's
precipitation climate. They included indicators of precipitation amounts, indicators
of the distribution of the amounts through the year, and the site's geographic
location. Seven variables were chosen to describe a precipitation climate: site
latitude, site longitude, site elevation, mean annual precipitation, the ratio of the
mean precipitation for the two consecutive months with the lowest mean amount
in the year to that for the two months with the highest mean amount, the beginning
month of the two consecutive months with the highest mean amount in the year, and
the beginning month of the two consecutive months with the lowest mean amount
in the year.

The observed scales of the variables are very different, and standard methods
of cluster analysis are very sensitive to such scale differences. The variables were
therefore transformed so that their ranges were comparable. The location, precipi-
tation amount, and precipitation ratio variables were rescaled so that their values lay
between 0 and 1. The other two variables represent a point along an annual cycle
and were transformed by representing the months by a sine curve with a period
of one year; the range of the transformed variables is from —1  to +1 . Table 9.1
shows the transformations from the seven site characteristics to the variables used
in cluster analysis.

There is some arbitrariness involved in the choice of transformations. A more
detailed analysis might seek to identify site characteristics that are likely to be
particularly important in defining a precipitation climate, and transform these
characteristics so that their range is greater than that of the less important char-
acteristics. The variables representing a point in an annual cycle could be replaced
by two transformed variables, cos(27rX/12) and sin(27rX/12), that correspond to
the coordinates of a point on the unit circle. This would avoid irregularities in the
present transformation, an example being that the cases X = 6 and X = 12 yield
the same Y value. However, a successful clustering was attained using the actual Y
variables of Table 9.1.

Cluster analysis was performed using SAS average linkage and Ward's mini-
mum variance hierarchical clustering software (SAS, 1988). In the average-linkage
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Table 9.1. Transformation of site characteristics.

Site characteristic, X Cluster variable, Y

Latitude (deg) Y = X/90
Longitude (deg) Y = X/150
Elevation (ft) Y = X/10000
Mean annual precipitation (in) Y = X/100
Ratio of minimum average two-month precipitation Y = X

to maximum average two-month precipitation
Beginning month of minimum average two-month Y = sin(27r X/12)

precipitation (Jan.=l,. . . , Dec.=12)
Beginning month of maximum average two-month Y =

precipitation (Jan.=l, . . . , Dec.=12)

method the distance between two clusters is the average Euclidean distance between
two observations, one in each cluster. Clusters with small variance tend to be joined,
and the procedure is biased in favor of producing clusters with equal dispersion in the
space of clustering variables. In Ward's method, the distance between two clusters
is the sum of squares between the two clusters summed over all the variables. The
method tends to join clusters that contain a small number of sites and is strongly
biased in favor of producing clusters containing approximately equal numbers of
sites.

Both clustering methods are based on Euclidean distances and are sensitive
to redundant information that may be contained in the variables as well as to
the scale of the variables being clustered (Fovell and Fovell, 1993). The four
variables describing precipitation characteristics are intended to contain mutually
independent information. The location variables contain information that to some
extent overlaps the information contained in the other four variables. They were
used, however, as proxies for other unmeasured factors that vary smoothly with
location.

The output from the average-linkage and Ward's methods was very similar.
Clusterings in which the 1,123 sites were divided into between 8 and 60 clusters
were initially obtained. The clusters were reviewed to assess whether they were
spatially continuous and physically reasonable. A clustering containing about 40
clusters was selected as the basis for further progress. Its clusters were subjectively
judged to be reasonable in that the areas that they covered could easily be justified
on the basis of the physical processes that control precipitation.

The discordancy and heterogeneity measures D,- and H defined in Eqs. (3.3)
and (4.5) were computed for each region identified by the clustering procedure.
When the computed heterogeneity measure H exceeded 2, indicating that a re-
gion was "definitely heterogeneous", the sites in the region were separated by the
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Initial regions

o Homogeneous, H<2
• Heterogeneous

Fig. 9.2. Precipitation regions, initial version. The symbol at the center of a region indicates
whether the region is homogeneous. Lines radiating from the center end at the locations of
stations in the region.

clustering algorithms into smaller groups. The discordancy measure occasionally
indicated that several neighboring sites in a region were discordant with the rest of
the region. In these cases, a new region was formed containing just the discordant
sites.

These procedures for subdivision of heterogeneous regions continued until no
further progress could be made. At this point there were 109 regions, 82 of which
were "acceptably homogeneous" or only "possibly heterogeneous", with H < 2.
The 27 "definitely heterogeneous" regions were mostly in the western states. The
regions are shown in Figure 9.2.

9.1.4 Refinement of regions

The regions obtained from the automatic clustering procedure were adjusted man-
ually. Inspection of the clusters, taking into account the topography and spatial
patterns of mean annual precipitation in the areas covered by the clusters, suggested
several natural and physically reasonable modifications to the clusters, which re-
sulted in more nearly homogeneous clusters; four sites were deleted from the data
set during this process.
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Final regions
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o Homogeneous, H<2
• Heterogeneous

Fig. 9.3. Precipitation regions, final version. The symbol at the center of a region indicates
whether the region is homogeneous. Lines radiating from the center end at the locations of
stations in the region.

The final set of regions is illustrated in Figure 9.3. The remaining 1,119 sites
were grouped into 111 regions. Of these regions, 108 were loosely categorized as
homogeneous, with heterogeneity measures H < 2; of these 108 regions, 73 were
"acceptably homogeneous", with H < 1, and 35 were "possibly heterogeneous",
with 1 < H < 2. Only 3 regions remained "definitely heterogeneous", with H > 2.
The regions contain between 1 and 48 sites; the median region size is 8 sites and
645 station-years of data; half of the sites are in regions containing at least 13 sites.

The modifications to the regions used all of the techniques listed on page 59. As
an example, we describe the adjustments made to regions in Utah and Colorado.
The regions are mapped in Figure 9.4, which shows both the initial and the final
regions. The adjustments were made manually, taking into account the site charac-
teristics, particularly mean annual precipitation and elevation. Figure 9.5 shows the
initial regions, designated by letters A through H, together with the mean annual
precipitation, in inches, for each of the 44 sites in the eight regions. Three separate
adjustments were made.

First, there were several sites that appeared to be out of place in their assigned
region and to fit better in a neighboring region. These sites were moved into the
regions where they appeared to belong, as indicated by the arrows on Figure 9.5.
Four sites were moved into Region C, one each from regions B, D, E, and G. Each
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Fig. 9.4. Initial and final regions for annual precipitation totals in Utah and Colorado.

of the sites moved is at the periphery of its initial region and has a mean annual
precipitation that is closer to the sites in Region C than to that of the other sites in its
initial region. Data on site elevation and the general orography of the area confirmed
the physical reasonableness of these moves. On similar grounds, one site was moved
from Region B into Region A and one site from Region F into Region E. As a result
of this adjustment, Regions B, D, and F became homogeneous, as indicated by a
value H < 2 for the heterogeneity measure (4.5); Regions C, E, and H remained
heterogeneous and Regions A and G remained homogeneous.

Next, Regions G and H were combined. They each contain sites in the river valleys
surrounding the San Juan and Sangre de Cristo ranges of the Rocky Mountains in
Colorado and New Mexico, and should have similar precipitation climates, because
the elevations and mean annual precipitations of the sites in the two regions overlap.
The combined region is homogeneous (H = 1.5).

Region C, now augmented by four additional sites, was still heterogeneous
(H = 3.1). In this mountainous area of eastern Utah, elevation and mean annual
precipitation are correlated with each other and either one is likely to have a
large influence on the shape of the distribution of precipitation totals. When the
region was divided into two subregions of roughly equal size, according to the site
values of elevation or mean annual precipitation, the subregions were found to be
homogeneous. The final choice was a division based on the criterion of whether
the site's mean annual precipitation was greater than 8 in. Both subregions were
homogeneous (H = 1.3 and H = 1.2).

The only remaining heterogeneous region was Region E (H = 2.9). Not much
can be done about this, because one of its sites has a much lower L-CV of its annual
precipitation totals than any neighboring site and will cause any region to which it
is assigned to be heterogeneous.



9.1 U.S. annual precipitation totals 169

114°W 112° 110° 108° 106° 104°

WYOMING

42°N

NEW MEXICO

0 Miles 100

40°

38°

36°

Fig. 9.5. Modification of the regions for annual precipitation totals in Utah and Colorado.
Letters A through H identify the regions. Lines join the region center to each site in the
region. Small numbers are mean annual precipitation, in inches, for each site. Curved arrows
indicate sites that were moved from one region to another.

Similar procedures were followed to modify heterogeneous regions in other parts
of the United States. In the northwestern states, a few physically reasonable moves
of sites from one region to another achieved homogeneity in all regions except
one. In Nevada, it proved impossible to define homogeneous regions on the basis
of the available site characteristics; the sites in this state were left as a single
very heterogeneous region (H = 73; at-site sample L-CV of annual precipitation
totals varies from 0.15 to 0.28). Sites in southern California were reassigned to
three regions suggested by the local topography: inland desert sites and sites near
the coast north and south of Los Angeles. Sites in four regions in Arizona were
regrouped into two regions according to their mean annual precipitation. The site
at Key West, Florida, initially grouped with sites in Texas, did not fit well there
nor with regions in Florida. It was split off as a single-site region. In Florida, three
regions were combined into one and three sites whose data appeared unreliable,
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according to records obtained from NCDC, were deleted. A heterogeneous region at
the southern end of Lake Michigan was divided according to a geographical split into
eastern and western subregions. In the northeast, one site was deleted because from
NCDC records its data appeared to be unreliable, and some physically reasonable
reassignments of sites from one region to another were made.

Four large homogeneous regions, two in the midwest and two in the southeast,
were each subdivided into two or three smaller regions. Although homogeneous for
calendar-year precipitation totals, the large regions were heterogeneous for some
other starting months and durations. It was also observed that maps of the estimated
quantiles of precipitation amounts showed sharp changes between neighboring
regions that on physical grounds should have similar precipitation climates. A
subjective subdivision of the regions along roughly geographic lines solved both
of these problems. The initial regions contained between 37 and 97 sites; as noted
in Section 7.6, smaller regions are almost equally capable of achieving the benefits
of regional frequency analysis.

The iterative modification of regions involved proposing site moves or subdivi-
sions of a region and seeing whether the proposed changes reduced the value of
the heterogeneity measure H below 2. To some extent this uses the H statistic both
to choose regions and to test their homogeneity, and conflicts with our advice in
Section 4.1 that the same statistics not be used for both purposes. It is difficult to
avoid this conflict completely. To ensure that the final regions had physical utility
and were not merely artifacts of random variation in the data, we always sought to
justify the modification of regions primarily from physical considerations, as in the
Utah-Colorado examples discussed above. It is particularly important to emphasize
that at no stage was a site removed from a region solely because its sample L-moment
ratios were inconsistent with those of the other sites in the region; site reassignments
were made only if they seemed reasonable on climatological and meteorological
grounds.

9.1.5 Choice of distribution

The goodness-of-fit statistic ZDIST defined in Eq. (5.6) was computed for each of
the 108 homogeneous regions for each of five distributions: generalized logistic,
generalized extreme-value, lognormal, Pearson type III, and generalized Pareto. The
number of regions for which each distribution gave an acceptable fit, with | ZDIST | <
1.64, is shown in Table 9.2. The lognormal and Pearson type III distributions are
acceptable most often, in 92 of the homogeneous regions.

Though a distribution could be chosen separately for each region, convenience
of use of a large-scale analysis may suggest that a single distribution be used where
the data support it. A reasonable approach for the annual precipitation data would
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Table 9.2. Goodness of fit for the U.S. annual
precipitation data.

Distribution

Generalized logistic
Generalized extreme-value
Lognormal
Pearson type III
Generalized Pareto

Number
acceptable

15
83
92
92

0

Note: The tabulated quantity is the number of
homogeneous regions for which each of five dis-
tributions gave an acceptable fit to the region's
annual precipitation totals.

be to use the lognormal distribution or the Pearson type III distribution for quantile
estimation in the 92 regions where they both give an acceptable fit. In the other 16
homogeneous regions, for some of which none of the four distributions gave an
acceptable fit, we prefer to use a distribution that will give good quantile estimates
for as wide as possible a range of the true regional frequency distribution. The kappa
and Wakeby distributions are robust to misspecification of the form of the frequency
distribution in regional frequency analysis, as illustrated by the simulation results
in Subsection 7.5.9, and either would be a good choice.

For the three heterogeneous regions, no single distribution is likely to give a good
fit to each site's data, and at-site frequency analysis may be preferred to regional
frequency analysis. However, regional frequency analysis may still be advantageous
for estimation of extreme quantiles, as evidenced by the simulation results in
Subsection 7.5.7 (particularly Figures 7.17 and 7.18). In these circumstances it
is again advisable to use a robust distribution such as the kappa or Wakeby.

The National Drought Atlas used this approach - the analysis is described by
Guttman et al. (1993). Counts were made by duration, region, and starting month
of the number of times a distribution was acceptable. The Pearson type III was
found to be acceptable most often for precipitation totals over all durations. It
was acceptable for about 80% of all combinations of region, duration, and starting
month. The lognormal and generalized extreme-value distributions were acceptable
almost as often as the Pearson type III for durations longer than 6 months. Based
on the counts of acceptable fits, the Pearson type III distribution was chosen for
use in homogeneous regions for which it gave an acceptable fit, and the Wakeby
distribution was used in the other homogeneous regions and in all heterogeneous
regions.



172 Examples

9.1.6 Zero data values

In arid areas, monthly precipitation totals are often exactly zero and distributions fit-
ted to them may take negative values unless the distribution is explicitly constrained
to have a lower bound of zero. Negative quantile values violate the physical lower
bound of zero for precipitation amounts. In the analysis of precipitation data for
the National Drought Atlas, some of the estimated quantiles for regions in arid
areas were negative for durations of three months and less in regions in arid areas.
Although not a concern in our analysis of annual precipitation totals, we mention
the problem here because it may occur with many kinds of data and the solution
used in the National Drought Atlas is of general applicability.

The problem was solved by fitting to the regional data a mixed distribution with
cumulative distribution function

x < 0,
J C > 0 .

Here F(.) is the cumulative distribution function of precipitation amounts, p is
the probability that the precipitation amount is zero, and G(.) is the cumulative
distribution function of the distribution of nonzero precipitation amounts. The
parameter p was estimated by the proportion of zero values in the data for the
region, and the parameters of the distribution G were estimated from the regional
average L-moments of the nonzero data values.

As stated previously, the distribution G was initially chosen to be Pearson type III
in homogeneous regions for which the Pearson type III distribution was accepted by
the goodness of fit criterion and Wakeby otherwise. However, G was constrained to
have a lower bound of zero when this was necessary to obtain nonnegative quantiles
for all the probabilities of interest, the lowest of these being 0.02. When constrained
estimation was necessary, the Wakeby with fixed lower bound § = 0 was fitted.
A Pearson type III distribution with zero lower bound was not used because it has
only two free parameters and rarely gave a good fit to the data. The lognormal and
generalized extreme-value were not reconsidered as suitable distributions because
the Wakeby can mimic the shapes of these distributions. The algorithm that was
used to choose a distribution is shown in Figure 9.6.

9.1.7 Quantile estimates

Estimation of the regional frequency distribution and its quantiles for each region
followed the regional L-moment algorithm described in Section 6.2, the fitted
distribution being Pearson type III or Wakeby as explained above.
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START

Is region homogeneous ?-
I YES N °

Is Pearson type III fit acceptable?
JYES

Fit Pearson type III

NO

Fit Wakeby
i

Proportion of zeroes
in data less than 0.02?

I YES
NO

Estimate of 0.02
quantile less than 0?

Lower bound of fitted
distribution less than 0?

NO JYES YESJ
Fit Wakeby with lower bound

constrained to be zero

NO

END

Fig. 9.6. Algorithm for choosing a distribution when the data contain exact zero values.

As an example of the results, Figure 9.7 shows the regional frequency distribu-
tions for two extreme regions. The regions' locations are indicated by the circles
on Figure 9.8. One region, in central California, has an arid climate; its nine sites
have mean annual precipitation between 6 in and 30 in. The regional frequency
distribution is a Pearson type III distribution with r = 0.198 and T3 = 0.145.
The other region, in Washington state in the northwest, has a mild climate with
relatively little variation in annual precipitation. Its eleven sites have mean annual
precipitation between 38 in and 80 in. The regional frequency distribution is a
Pearson type III distribution with r = 0.095 and 13 = 0.007. Figure 9.7 is plotted
as though on Normal probability paper. Return periods are indicated for events in
both tails of the distribution. A Normal distribution would plot as a straight line on
the graph. The Pearson type III distribution for the northwest Washington region
has very low skewness and closely resembles a Normal distribution, and its plot is
very close to being a straight line.

As a further illustration, Figure 9.8 maps for each region the regional growth
factor g(0.02), the magnitude of the extreme low event with a return period of 50
years. The numbers are expressed as percentages of the mean annual precipitation.
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Fig. 9.7. Regional growth curves for two of the U.S. annual precipitation regions. Locations
of the regions are indicated by the circles in Figure 9.8.

Thus, for example, the circled numeral 44 in central California indicates that, for a
site in this region, an annual precipitation total as small as 44% of the mean annual
precipitation is estimated to occur on average once in 50 years. Except for some
mountainous areas in the western states, the percentages vary smoothly in space.
This would be expected from physical considerations and suggests that the regional
L-moment procedures do indeed capture the effects of the physical processes that
operate in each region.

9.1.8 Accuracy of estimates

Quantile values were assessed by their bias and RMSE. These quantities can-
not be calculated analytically because the regional L-moment quantile estimation
procedure is too complicated. Instead, a Monte Carlo simulation procedure was
used, as described in Section 6.4. Simulated data were generated for a region with
the same number of sites and the same record lengths as the actual region and were
drawn from the distribution that was fitted to the actual regional data. Because
the correlation between sites is substantial, typically between 0.4 and 0.8, the
simulations used correlated data generated by the algorithm described in Table 6.1.
Quantile estimates were calculated for the sites in this simulated region. The sim-
ulation was repeated 500 times. The 500 sets of errors in the simulated quantile
estimates were accumulated and averaged to yield approximations to the bias and
RMSE of the quantile estimates calculated from the actual data.

As an example, Figure 9.9 shows RMSEs of the regional quantile g(0.02) of
the annual precipitation totals; these values may be regarded as the standard errors
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of the estimates mapped in Figure 9.8. The RMSEs are certainly small enough to
enable the quantile estimates to be used with confidence.

9.1.9 Summary

Computation of quantile values for the National Drought Atlas was the first known
large-scale application of regional frequency analysis using L-moments. We judge
it to be a success for the following reasons: homogeneous and physically reason-
able regions were defined for almost all of the study area; the observed patterns
of estimated quantiles obtained from regional frequency analysis generally show
little variation between adjacent regions, and are in good agreement with prior
climatological expectations; and the accuracy of the final quantile estimates, as
measured by the estimated RMSEs, is satisfactorily low.

The analysis also illustrates some of the typical difficulties of regional frequency
analysis. The most important of these is obtaining homogeneous regions, which
required a time-consuming process of detailed inspection of the data and consider-
ation of the factors that define a precipitation climate.

From a climatological point of view, the number of regions resulting from this
study may be considered excessive. Fovell and Fovell (1993), for example, defined
25 climate zones from cluster analysis of monthly average temperature and pre-
cipitation data. A larger number of regions is appropriate for regional frequency
analysis, because geographically compact regions are required to capture local
variations in the distribution of precipitation totals within zones that have generally
similar climates.

9.2 Annual maximum streamflow in central Appalachia

9.2.1 Data

Smith (1992) analysed data on annual maximum streamflow at 104 gaging stations
in the central Appalachia region of the United States. Smith was interested in relating
the first two moments of the at-site frequency distributions to the drainage area of
the basins. We use the same set of sites to illustrate regional frequency analysis when
measurements are available for several site characteristics including one, in this case
drainage basin area, that is known to have a particularly strong influence on the
at-site frequency distribution. Data were obtained from "Hydrodata" CD-ROMs
(Hydrosphere, 1993), which reproduce data from the U.S. Geological Survey's
WATSTORE data files.

The study area includes parts of the Piedmont and Valley and Ridge physiographic
provinces of Virginia and Maryland. Locations of the sites are shown in Figure 9.10.
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Fig. 9.8. Estimated regional growth factor at return period 50 years in the lower tail of
the distribution, g(0.02), expressed as a percentage of the mean. Figures are plotted at the
center of each region. Figures in parentheses indicate that the region is heterogeneous. Lines
radiating from the center end at the locations of stations in the region. Circles identify the
regions whose regional growth curves are given in Figure 9.7.

Drainage areas of the basins cover a very wide range, from 0.3 mi2 to 10,000 mi2.
Elevations of the gaging sites range from 10 ft to 2,000 ft above sea level. In addition
to these variables, the data set contains the gage location (latitude and longitude) and
the magnitude and date of the maximum instantaneous streamflow in each "water
year," running from Oct. 1 through Sep. 30, for some or all of the years 1895-1991.
Some variables that might be expected to influence the frequency distribution, such
as mean annual precipitation over the basin, the underlying geology of the basin,
and the extent to which the basin is forested or urbanized, are not available.

Two gage elevations are missing from the data set, and were estimated from
maps. Some streamflow values, 26 in all, were missing and were ignored. There are
24 data points marked as being "historic values." All but one of these are separated
from the main sequence of the gaged record by one or more missing years. We
suspect that these values are present in the data only because their magnitude is
exceptionally large; therefore their inclusion in the data would prevent the data
from being regarded as a random sample. Accordingly, they were excluded from
the data set. The other historic value occurred at the start of a continuous sequence
of gaged record and was retained. Site 01626000 has an observation in 1943 but
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Fig. 9.9. Estimated RMSE of the regional growth factor at return period 50 years in the lower
tail of the distribution, g(0.02), expressed as a percentage of the mean. Figures are plotted at
the center of each region. Figures in parentheses indicate that the region is heterogeneous.
Lines radiating from the center end at the locations of stations in the region.

no others until a continuous period of gaging started in 1953. The value for 1943 is
unusually high and appears to be a historic value that was not marked as such. We
deleted it from the data set, again because we suspect that it is present only because
its magnitude is exceptionally large.

With these modifications, the data set contains a total of 4,456 streamflow ob-
servations, with sample sizes at the 104 sites varying from 19 to 97. The at-site
sample L-CV ranges from 0.22 to 0.71, and the at-site sample L-skewness ranges
from 0.14 to 0.74, except that one site has the exceptionally low value —0.18.  The
average value for L-CV is 0.42 and for L-skewness is 0.44. These are very high
values, compared for example with those of the annual precipitation total data in
Figure 9.1, and indicate that the frequency distributions are highly skew.

9.2.2 Initial screening of data

The L-CV and L-skewness of the data are shown in Figure 9.11. Treating the entire
set of 104 sites as a single region, the discordancy statistic D; of Eq. (3.3) was
calculated for each site.
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Fig. 9.10. Streamflow gaging stations in central Appalachia.
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Fig. 9.11. L-moment ratios for the Appalachian streamflow data.

One site stands out as being particularly discordant, with D; = 13.5. This is the
site with negative L-skewness. The data for this site, site 01624800, are shown in
Figure 9.12, together with the data for the site's nearest neighbor, site 01626000.
There is good qualitative agreement between the sites: at both, the data values
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01624800 Christians Creek near Fisherville, Va. (DA=70.1)
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Fig. 9.12. Annual maximum flows for site 01624800 and its nearest neighbor. DA denotes
drainage area, in square miles.

for 1968, 1981, and 1988 are among the lowest and those for 1969 and 1986 are
high. To some extent the negative L-skewness at site 01624800 occurs because the
period of gaging included three years that had particularly low maximum flows.
However, there are also physical reasons that may explain the pattern of the data
at this site. The geology of the basin consists of fractured quartzite sandstone
overlying dolomite, resulting in a Karstlike hydrology; the basin is very porous and
flood response to even the most extreme storm events is slow. In consequence, the
frequency distribution of annual maximum flows at the gaging site should be less
skew than at sites with impervious geology and a fast response time to extreme
storms. It is not clear whether this site is geologically so atypical of the rest of the
data that it should be excluded from the analysis. We therefore decided to retain
the site in the data set. As noted below, this makes little difference to the results of
the regional frequency analysis.

Other checks on the data were inconclusive. There are no obvious trends or
changes in level apparent in the data. Some sites have unusually high sample L-CV
and L-skewness, but the data appear to be correct. At the four sites with L-CV greater



180 Examples

© 1OOn

o
CO

T 10H
CO

O
O
O

1-

- • 01667500 Rapidan River near Culpeper, Va. (DA=472)
-o 01665500 Rapidan River near Ruckersville, Va. (DA=114)

1930 1940 1950 1960
Year

1970 1980 1990

Fig. 9.13. Annual maximum flows for two sites on the Rapidan River.

than 0.6, the data contain a single high outlier occurring on Aug. 20, 1969 or June
21, 1972. These dates coincide with hurricanes (Camille and Agnes, respectively)
that passed over or near the study area.

One odd feature of the data concerns two sites on the Rapidan River. Site
01665500 is upstream of site 01667500. A plot of the data for these sites, Figure 9.13,
shows that in one year, 1961, the maximum flow at the upstream site exceeded
that at the downstream site. Although physically possible, such an occurrence is
sufficiently odd that it would be worth checking the validity of the data for that year
at these sites. Lacking easy access to sufficiently detailed data for such a check, we
retained both sites in the data set.

9.2.3 Formation of regions

Treating the entire set of 104 sites as a single region, the heterogeneity statis-
tic (4.5) was evaluated as H = 2.08. The entire set is therefore not far from being
homogeneous, or at worst "possibly heterogeneous". Nonetheless, we emphatically
reject the possibility of performing regional frequency analysis with the entire set
of sites being treated as a single region. The main reason is that the theory and
practice of hydrology imply that the frequency distribution is likely to depend on
the drainage area of the basin. Regional frequency analysis should therefore be
applied only to regions whose basins cover a fairly small range of drainage area.
A further point is that in regional frequency analysis there is little to be gained by
using regions containing more than about 20 sites. A reasonable starting point for
regional frequency analysis would therefore be a subdivision of the set of sites,
according to their drainage areas, into groups of not much more than 20.
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Table 9.3. Summary of initial regions for Appalachian streamflow data.

Region

A
B
C
D

Range
of area

< 10
10-60

60-200
>200

Number
of sites

26
28
27
23

Regional

t

0.423
0.450
0.430
0.387

average

h

0.402
0.472
0.459
0.419

H

2.88
1.70
0.03
0.29

Acceptable fit

GLO GEV
GLO GEV
none
GLO GEV

Note: Regions are defined in terms of drainage area alone. Units of drainage area are
square miles. H is the heterogeneity statistic defined in Eq. (4.5). "Acceptable fit" indicates
which of five distributions gave a value \Z\ < 1.64 for the Z statistic defined in Eq. (5.6).
The five distributions were generalized logistic (GLO), generalized extreme-value (GEV),
lognormal, Pearson type III, and generalized Pareto.

The set of sites was accordingly divided into four groups of approximately equal
size according to the sites' drainage areas. We term these groups Regions A-D. The
discordancy, heterogeneity, and goodness of fit measures described in Chapters 3-5
were applied to each region's data. A summary of the results is contained in
Table 9.3. The heterogeneity measure H indicates that homogeneous regions were
achieved for sites with drainage area greater than 60 mi2 but that the regions contain-
ing the smaller basins were heterogeneous. Other attempts to define homogeneous
regions based on drainage area alone gave similar results.

It appears that, at least for the smaller basins, the frequency distribution of annual
maximum streamflow is determined by more factors than drainage area alone.
Accordingly, more information was introduced into the procedure for forming
regions. The four available site characteristics, drainage basin area, gage eleva-
tion, gage latitude, and gage longitude, were used in a cluster analysis procedure.
Nonlinear transformations were applied to two of the variables: a logarithmic
transformation to drainage basin area and a square root transform to gage elevation.
These transformations give a more symmetric distribution of the values of the site
characteristics at the 104 sites, reducing the likelihood that a few sites will have
site characteristics so far from the other sites that they will always be assigned
to a cluster by themselves, and, in our judgement, give a better correspondence
between differences in site characteristics and the degree of hydrologic dissimilarity
between different basins. All four variables were then standardized by dividing by
the standard deviation of their values at the 104 sites. Finally, the drainage basin
area variable was multiplied by 3 to give it an importance in the clustering procedure
equal to that of the other variables together. The transformed variables used in the
cluster analysis are listed in Table 9.4. The transformation and weighting of the
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Table 9.4. Transformation of site characteristics.

Site characteristic, X Cluster variable, Y

Drainage basin area (mi2) Y = log(X) x 3/s.d.(log X)
Gage elevation (ft) Y = Vx/s.d.(Vx)
Gage latitude (deg) Y = X/s.d.(X)
Gage longitude (deg) Y = X/s.d.(X)

Note: Here s.d.(X) denotes the standard deviation of the
104 values of the site characteristic X.

variables involves subjective decisions whose justification is the physical plausi-
bility of the regions that are ultimately obtained from the clustering procedure.

Cluster analysis was performed using Ward's method. This is an "agglomerative
hierarchical" clustering procedure. Initially each site is a cluster by itself, and
clusters are then merged one by one until all sites belong to a single cluster.
The assignment of sites to clusters can be determined for any number of clusters,
and there is no formal measure of an "optimal" number of clusters. Choice of a
suitable number of clusters is therefore subjective. The number of sites in a cluster
should be large, to obtain the maximum benefit of regionalization, but the range of
drainage areas of the sites in a cluster should not be too large, for otherwise it would
not be reasonable to expect the clusters to be homogeneous. For the Appalachian
streamflow sites we judged that seven clusters would be an appropriate number. The
clusters obtained by Ward's method were adjusted using the A -̂means algorithm of
Hartigan and Wong (1979), which yielded clusters that were a little more compact
in the space of cluster variables.

Figure 9.14 shows the final clusters on a graph whose axes are the transformed
drainage basin area and gage elevation variables. Clusters are numbered 1-7 in
increasing order of average drainage basin area for the sites in the cluster. Region 1
contains three sites with very small drainage area. Regions 2, 4, 5, and 7 span the
range of drainage area from 2 mi2 to 10,000 mi2 and contain mostly low-elevation
sites. Regions 3 and 6 contain mostly high-elevation sites. These distinctions are
not exact, because the remaining variables, latitude and longitude, also affect the
clustering. Their effect can be seen in Figure 9.15, which shows the geographical
location of the sites in each cluster. Regions 2 and 5 lie predominantly to the
northeast and Regions 3 and 6 lie to the west of the study area.

This set of clusters is not completely satisfactory, because we lack data on some
useful site characteristics, such as urbanization. In an urban area, much of the land is
covered by an impervious layer of concrete or asphalt and stream channels are often
artificially constructed and straighter than natural channels. An urban basin's flood
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Fig. 9.14. Drainage basin area and gage elevation for clusters of streamflow gaging stations
in central Appalachia.
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Fig. 9.15. Location of the sites in each cluster of streamflow gaging stations in central
Appalachia. The two circled sites are discussed further in Subsection 9.2.5.

response to storms, and the distribution of its maximum streamflows, is therefore
likely to be different from that of an otherwise comparable basin in a rural area less
affected by man's control of the environment. One difference between urban and
rural basins is in their specific mean annual flood, defined to be the mean annual
maximum streamflow divided by the drainage area of the basin. Figure 9.16 is a plot
of specific mean annual flood for the Appalachian basins, identifying the points that
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Fig. 9.16. Specific mean annual flood for the Appalachian streamflow basins.

correspond to basins in the Baltimore-Washington urban corridor. Most of these
small urban basins have large values of specific mean annual flood compared to
other basins with similar drainage area. One other site also has a large specific mean
annual flood. This site, 02032700, Schenks Branch at Charlottesville, Va., is a small
basin (area 1.3 mi2) in a fairly large city; we regard it too as an urban basin. These
urban basins are mostly in Region 2, with some others in Regions 1 and 4. It may
be worthwhile to form a region containing just the urbanized basins, but we lack
sufficiently precise information on the extent of urbanization in different basins to
be sure of this.

Further adjustments to these clusters may be desirable but would require further
study of the reliability of the data from different gaging sites, detailed knowledge of
local factors that might affect the climate or hydrology of each drainage basin, and
more data on other site characteristics that could be used as the basis for forming
regions. For the purposes of this example, however, we are content to take the
clusters obtained from Ward's method and the K-mcans algorithm as the regions
for use in frequency analysis.

The discordancy, heterogeneity, and goodness-of-fit measures described in Chap-
ters 3-5 were applied to each region's data. Summary statistics for the regions are
contained in Table 9.5. The heterogeneity measure H indicates that homogeneous
regions were achieved in Regions 5-7, containing sites with drainage area greater
than 30 mi2. Regions containing the smaller basins were not so successful but should
still be satisfactory for regional frequency analysis. Regions 2-4 are "possibly
heterogeneous", with H values as high as 1.69, but should yield quantile estimates
more accurate than those obtained from single-site frequency analysis.
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Table 9.5. Summary of final regions for Appalachian streamflow data.

185

Region

1
2
3
4
5
6
6'
7

Range
of area

0.3-1.3
1.9-7.6
3.1-17
5.9-28
25-190
47-380
47-380

290-9600

Number
of sites

3
11
11
16
23
24
23
16

Regional

t

0.348
0.379
0.498
0.450
0.424
0.438
0.442
0.376

average

h

0.331
0.363
0.471
0.430
0.491
0.442
0.455
0.420

H

-0.40
1.65
1.62
1.69
0.24

-0.03
-0.71

0.87

Acceptable fit

GLO GEV LN3 GPA PE3
GLO GEV LN3
GLO GEV LN3
GLO GEV LN3 GPA
none
GLO GEV
GLO GEV
GLO GEV

Note: Regions 1-7 are those obtained by cluster analysis. Region 6' is Region 6 with
site 01624800 excluded. Units of drainage area are square miles. H is the heterogeneity
statistic defined in Eq. (4.5). "Acceptable fit" indicates which of five distributions gave
a value \Z\ < 1.64 for the Z statistic defined in Eq. (5.6). The five distributions were
generalized logistic (GLO), generalized extreme-value (GEV), lognormal (LN3), Pearson
type III (PE3), and generalized Pareto (GPA).

Regions 6 and 7 each contain one discordant site. Region 6 contains the site with
negative L-skewness, site 01624800, for which Dt = 6.9. As discussed previously,
it is not clear whether this site should be deleted from the data set. To do so makes
little difference to the results: Region 6r, defined as consisting of all sites in Region 6
except 01624800, is also homogeneous and its regional average L-moment ratios
are very similar to those of Region 6. However, quantile estimates at the discordant
site itself may be unreliable, and at-site estimation may be preferable there. In
Region 7, site 02041500 has low L-CV, t = 0.23, and Dt = 3.5. Examination of
the data shows no exceptional features, so the site was retained in the data set.

9.2.4 Choice and estimation of the frequency distribution

Figure 9.17 is an L-moment ratio diagram showing the regional average L-skewness
and L-kurtosis of the seven final regions. Consistently with the results in Table 9.5,
most of the points in Figure 9.17 lie close to the generalized extreme-value and
generalized logistic lines. The lognormal distribution, used by Smith (1992), is
acceptable in Regions 1-4, but is rejected for the regions containing large-area
basins. If the use of a single distribution for each region is desired, the generalized
logistic or generalized extreme-value, or a robust distribution such as the kappa or
Wakeby, would be a reasonable choice. Table 9.6 shows the quantiles of the regional
frequency distributions, obtained by fitting generalized extreme-value distributions
to each region's data using the regional L-moment algorithm described in Chapter 6.
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Fig. 9.17. Regional average L-moments for the Appalachian streamflow regions.

Table 9.6. Estimated quantiles for Appalachian streamflow regions.

Region

1
2
3
4
5
6
7

0.01

0.17
0.14
0.03
0.07
0.20
0.11
0.22

0.10

0.37
0.34
0.20
0.25
0.33
0.28
0.37

0.20

0.49
0.45
0.31
0.37
0.42
0.39
0.47

Nonexceedance probability

0.50

0.81
0.78
0.64
0.70
0.69
0.70
0.75

0.80 0.90

1.35 ]
1.35 ]
1.32 ]
1.34 1
1.25 1
1.32 ]
1.30 1

L80
L85
L.99
L.95
L82
1.91
L.80

0.98

3.12
3.39
4.46
4.03
3.98
3.98
3.52

0.99

3.85
4.29
6.15
5.38
5.50
5.34
4.61

0.998

6.09
7.18

12.60
10.18
11.47
10.30
8.45

0.999

7.34
8.88

17.04
13.30
15.69
13.57
10.91

Note: Fitted distribution, generalized extreme-value.

The quantiles for different regions are quite similar in the main body of the distri-
bution; only at the F = 0.98 quantile and beyond do marked differences become
apparent. Regions 1 and 2 have relatively low upper-tail quantiles. Otherwise the
upper-tail quantiles generally increase as the drainage area of the basin decreases,
though Region 4 is an exception to this pattern.

9.2.5 Accuracy of estimation

Error bounds for the estimated regional growth curves were obtained by simulation,
using the method described in Section 6.4. The simulations assumed that the regions
were homogeneous with generalized extreme-value frequency distributions. There
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Fig. 9.18. Estimated regional growth curves, with their 90% error bounds, for Appalachian
streamflow regions 1 and 5.

is no evidence of intersite dependence in Region 1, but intersite dependence is
present in the data for the other regions, the average correlation between sites
varying from 0.30 in Region 2 to 0.67 in Region 5. The simulations for Regions 2-7
therefore included intersite dependence, using the algorithm described in Table 6.1.
Results for Regions 1 and 5, which have the lowest and highest L-skewness of the
six regions, are shown in Figure 9.18. Error bounds are given only for exceedance
probabilities of 0.02 or greater, because for extreme low quantiles the simulated
estimates were sometimes negative and led to unreliable error bounds, as noted in
Section 6.4.

Although the regional growth curves for Regions 1 and 5 are fairly well sepa-
rated, for other regions there is considerable overlap between the error bounds of
the regional growth curves. This suggests that on statistical grounds there is little
justification for treating the regions as distinct and that they might as well be merged
to form larger regions. This argument should be treated with caution, because the
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absence of statistically significant differences between regional growth curves may
merely reflect an insufficiency of data. When the differences between the regional
growth curves are consistent with the physical reasoning that led to the definition
of the regions, there are grounds for belief that these differences are scientifically
significant even though they may not be statistically significant.

9.2.6 A comparison of regional and at-site estimation

The reasoning behind regional frequency analysis is exemplified by a comparison
of frequency analyses for two neighboring sites: site 01582000, Little Falls at Blue
Mount, Md., and site 01583500, Western Run at Western Run, Md. The sites are
circled on Figure 9.15. The gaging sites are 7 mi apart and have similar elevations,
305 ft and 262 ft, respectively; the basins also have similar drainage areas, 52.9 mi2

and 59.8 mi2, respectively. Both sites have gaged records from 1945 to 1991. Annual
maximum streamflow data for the two sites are shown in Figure 9.19. The data for
the two sites are generally of comparable magnitude except in 1972. At both sites in
that year the annual peak was recorded on June 22,1972, coincident with Hurricane
Agnes, but the recorded peak flows, 8,280 ft3s"1 at Blue Mount and 38,000 f^s"1

at Western Run, differ by a factor of 4.6. For the complete data samples, the L-CV
is t = 0.30 at Blue Mount and t = 0.49 at Western Run. Most of the difference
is due to the 1972 data value: without it, the sample L-CVs would be t = 0.28 at
Blue Mount and t = 0.36 at Western Run.

Table 9.7 gives the results of frequency analyses for the two sites. In the at-site
analyses a generalized extreme-value distribution was fitted at each site using the
method of L-moments. The estimated quantiles in the upper tail of the frequency
distribution differ by factors of 1.4, 2.5, and 4.9 at nonexceedance probabilities
F = 0.9, F = 0.99, and F = 0.999, corresponding to return periods of 10, 100,
and 1,000 years. The Bulletin 17 analyses followed the procedure described in
Section 8.3, using a generalized skew coefficient gmap = 0.6. The computation was
performed using the HEC-FFA program (U.S. Army Corps of Engineers, 1992).
The results are very similar to the at-site analysis based on L-moments, except that
the estimates for Western Run at F = 0.998 and F = 0.999 are somewhat lower.
The regional analysis used the regional growth curve of Region 5 in Table 9.6, to
which both sites belong, and estimated the index flood at each site by the sample
mean. Because the ratio of the sample means at the two sites is 1.29, the quantile
estimates differ by this factor at all return periods.

These quantile estimates raise a critical question for frequency estimation of
extreme events. Is the greater flood response of the Western Run basin a systemic
property that can be expected to recur whenever future large storms pass over the
study area, or are the different responses of the two basins a result of unpredictable
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- 01582000 Little Falls at Blue Mount, Md. (DA=52.9)
-o 01583500 Western Run at Western Run, Md. (DA=59.8)

1940 1950 1960 1970
Year

1980 1990

Fig. 9.19. Annual maximum streamflow data for two sites in central Appalachian streamflow
Region 5.

Table 9.7. Estimated quantiles of annual maximum streamflow, in cubic feet per second,
for Blue Mount and Western Run.

Method

Nonexceedance probability

Site

Blue Mount
Western Run
Blue Mount
Western Run
Blue Mount
Western Run

0.9

4660
6430
4680
6740
4960
6390

0.98

7570
15800
7680
15800
10900
14000

0.99

9110
22990
9270
21900
15000
19300

0.998

13600
54100
13800
45100
31300
40300

0.999

16000
78000
16300
60600
42800
55100

At-site

Bulletin 17

Regional

local variations in precipitation intensity and duration, with future storms being
as likely to cause greater runoff in one basin as in the other? At-site analysis is
appropriate if the former explanation is correct, though even so it will be accurate
only if the frequency of extreme events in the observed record matches the long-term
rate of occurrence of such events. We believe, however, that differences so large
as that illustrated in Figure 9.19 can rarely be ascribed with confidence to physical
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differences between such apparently similar basins. Regional frequency analysis is
then the appropriate procedure. By using all available data from a set of physically
similar sites, it will give a better overall estimate of the frequency of extreme events,
thereby improving the accuracy of frequency estimation at every site.

9.2.7 Summary

This analysis of streamfiow data does not pretend to be authoritative; if more data on
site characteristics were available, there would be a better prospect of identifying
local variations in the climate or flood response of the basins in the study area.
However, it illustrates some features that commonly occur in regional frequency
analysis of environmental data.

When one site characteristic is known to have a strong effect on the frequency dis-
tribution, it makes sense to base the formation of regions on that site characteristic.
Drainage area is such a characteristic for streamflow data, though in this example it
became clear that drainage area alone was unable to explain the between-site varia-
tions in the frequency distribution of annual maximum streamflow. Cluster analysis
closely tied to physical reasoning then led to the identification of other sources of
variation between at-site frequency distributions. This approach should be widely
applicable, though the patterns of dependence of the frequency distribution on site
characteristics may be quite different in other parts of the world.

The main conclusion is that successful regional frequency analysis involves
interaction between physical reasoning and statistical assessment of the regions
and their estimated frequency distributions. Close study of the physical reasons
for variation between sites is essential to the successful use of regional frequency
analysis, because it enables reasonable regions to be obtained even when small
samples or irregularities in the data make it difficult to define convincing regions
by statistical methods alone.



Appendix
L-moments for some specific distributions

For each of the distributions listed here we give the form of the probability density
function /(JC), the cumulative distribution function F(JC), and the quantile function
x(F), expressions for the L-moments in terms of the parameters and for the param-
eters in terms of the L-moments. The expressions for the parameters are used to
calculate estimates of the parameters by the method of L-moments.

A.I Uniform distribution

Definition

Parameters (2): a (lower endpoint of the distribution), /3 (upper endpoint).
Range of x: a < x < /?.

fix) = I/O? - a) (A.I)

F(JC) = (x - a)/(/3 - a) (A.2)

x(F) = a + (fi - a)F (A.3)

L-moments

A.1 = \(<x + P) (A.4)

X2 = \{fi - a) (A.5)

r3 = 0 (A.6)

T4 = 0 (A.7)

Parameters

Parameter estimates for the uniform distribution are of little interest in regional
frequency analysis and are therefore omitted.
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A.2 Exponential distribution

Definition

Parameters (2): £ (lower endpoint of the distribution), a (scale).
Range of x: § < x < oo.

fix) = a~l exp{-(x - £)/«}  (A.8)

Fix) = 1 - exp{-(x - £)/«}  (A.9)

jc(F) = £ - a l o g ( l - F ) (A.10)

L-moments

M=§+«  (A.11)

A.2 = \a (A. 12)

T3 = \ (A. 13)

r4 = i (A. 14)

Parameters

If § is known, a is given by a = k\ —  § and the L-moment, moment, and maximum-
likelihood estimators are identical. If § is unknown, the parameters are given by

For estimation based on a single sample these estimates are inefficient, but in re-
gional frequency analysis they can give reasonable estimates of upper-tail quantiles.

A.3 Gumbel (extreme-value type I) distribution

Definition

Parameters (2): £ (location), a (scale).
Range of x: —oo <  x < oo.

/(*) = a~l exp{-(x - £)/<*} exp[-exp{-(* - £)/«}]  (A. 16)

F(x) = exp[- exp{-(x - £)/«}] (A. 17)

= f-alog(-logF) (A. 18)
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L-moments

(A.20)

r3 = 0.1699 = log(9/8)/log2 (A.21)

r4 = 0.1504 = (16 log 2 - 10 log 3)/log 2 (A.22)

Here y is Euler's constant, 0.5772....

Parameters

a = X2/ log 2, £ = Xi - ya (A.23)

A.4 Normal distribution

Definition

Parameters (2): \x (location), a (scale).
Range of x: —oo < x < oo.

(A.24)

(A.25)

JC(F) has no explicit analytical form

Here

* ( J C ) = r (j)(t)dt. (A.26)
i-oo

L-moments

A.i = /i (A.27)

A.2 = 0.5642or = n~1/2a (A.28)

r3 = 0 (A.29)

T4 = 0.1226 = 30;r-1 arctan V2 - 9 (A.30)
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Parameters

A.5 Generalized Pareto distribution

Definition

Parameters (3): § (location), a (scale), k (shape).
Range of x: § < x < £ + a/k if k > 0; § < x < oo if k < 0.

, „ » (-k~l log{l - k(x - $)/a), kj^O
f(x) = a-le-(l~k)y, y=\ BX S/ ' ^ (A.32)

I (x - £)/«  , * = 0
F(JC) = 1 - e~y (A.33)

^ (A.34)
k 0

Special cases: k = 0 is the exponential distribution; k = 1 is the uniform
distribution on the interval § < x < § + a.

L-moments

L-moments are defined for k > —  1.

kl=$+a/(l+k) (A.35)

A.2 = a/{(l+it)(2 + *)} (A.36)

T3 = (1 - *)/(3 + jfe) (A.37)

T4 = (1 - k)(2 - k)/{(3 + k)(4 + k)} (A.38)

The relation between T3 and T4 is given by

T4 = ——  . (A.39)
5 + T3

Parameters

If f is known, the two parameters a and & are given by

k = (ki-$)/k2-2, a = (I + k)(X{ - $). (A.40)
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If £ is unknown, the three parameters are given by

k = (1 - 3r3)/(l + T3), a = (1 + *)(2 + fc)A.2, £ = M - (2 + ^ 2 . (A.41)

A.6 Generalized extreme-value distribution

Definition

Parameters (3): £ (location), a (scale), k (shape).
Range of x: —oo < x < £ + ot/k if £ > 0; —oo < x < oo if k = 0;

£ +a/fc < x < oo if k < 0.

I (* - £)/«,  *: = 0
F(x) = e-'~y (A.43)

/ § + « { l - ( -  log Ffy/k, k^O
x(F) = < (A.44)

i § l ( l F ) k 0

Special cases: k = 0 is the Gumbel distribution; k = 1 is a reverse exponen-
tial distribution; that is, 1 —  F(—x) is the  cumulative distribution function of an
exponential distribution.

Extreme-value distributions are often classified into three types with cumulative
distribution functions as follows:

type I :
type II:

type III:

F(x) = exp(—x~ 8),

F(x) = exp(-\x\8),

—oo  < x <
0 < x < oo

— 00  < X <

oo,

0.

(A.45)
(A.46)

(A.47)

The generalized extreme-value distribution subsumes each of these types, types I,
II, and III corresponding to k = 0, k < 0, and k > 0, respectively. The Weibull
distribution defined by

F{x) = 1 - exp[-{(x - ?)/j8}*], f < x < oo, (A.48)

is a reverse generalized extreme-value distribution with parameters

k = 1/5, a = p/8, $ = £ - p. (A.49)
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L-moments

L-moments are defined for k > —  1.

(A.50)

X2 = a{\ - 2-k)T{\ + k)/k (A.51)

r3 = 2(1 - 3"*)/(l - 2"*) - 3 (A.52)

r4 = {5(1 - 4"*) - 10(1 - 3"*) + 6(1 - 2"*)}/(l - 2"*) (A.53)

Here F(.) denotes the gamma function

rOO

r(jc)= / tx'le"xdt. (A.54)
JO

Parameters

To estimate £, Eq. (A.52) must be solved for fc. No explicit solution is possible, but
the following approximation, given by Hosking et al. (1985b), has accuracy better
than 9 x 10"4 for -0 .5 < r3 < 0.5:

k ^ 7.8590c + 2.9554c2, c = - ^ - . (A.55)
3 + r3 log 3

The other parameters are then given by

ky « =  i . - H - r u + »)/*. (A.56)

A.7 Generalized logistic distribution

Definition

Parameters (3): § (location), a (scale), k (shape).
Range of x: —oc < x < § + a/fc if fc > 0; —oc < JC < oc if k = 0;

§ +a/fc < x < ooif^ < 0.

fix) = e_y2 , y = l Dl ^ ' " ' ' (A.57)

- e~y) (A.58)

, *#0
(A.59)

U-a log{( l -F) /F} , k = 0
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Special cases: k = 0 is the logistic distribution.
This generalization of the logistic distribution differs from others that have been

defined in the literature. It is a reparametrized version of the log-logistic distribution
of Ahmad et al. (1988). The name is chosen to reflect the distribution's similarity
to the generalized Pareto and generalized extreme-value distributions.

L-moments

L-moments are defined for —  1 < k < 1.

A.i =£ +a(l/k-n/ sin kn) (A.60)

A,2 = akn/ sinkn (A.61)

r3 = -k (A.62)

r4 = (1 + 5k2)/6 (A.63)

Parameters
X2sink7t

, £ = M
kn

(A-64)

A.8 Lognormal distribution

Definition

Parameters (3): § (location), a (scale), k (shape).
Range of x: —oo < x < § + a/k if k > 0; —oo < x < oo if k = 0;

§ +a/k < x < ooif k < 0.

/ ( x ) = = = - , 3? = < (A.65)
a V2^ [ (JC - £)/«, ifc = 0

(A.66)

JC(F) has no explicit analytical form

Here O is the cumulative distribution function of the standard Normal distribution,
defined in Eq. (A.26).

Special case: k = 0 is the Normal distribution with parameters § and a.
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The lognormal distribution is usually defined by

F(x) = O[{log(x - O " li}/cr], f < x < oo. (A.67)

Our reparametrization of the lognormal distribution in terms of £, a, and /: is a
small modification of the parametrization of Munro and Wixley (1970). It has
several advantages over the usual parametrization using {i,o, and f:

• within a single distribution it includes both lognormal distributions with positive
skewness and a lower bound (k < 0), and lognormal distributions with negative
skewness and an upper bound (k > 0);

• it includes the Normal distribution as a special case (k = 0) rather than as an
unattainable limit;

• it exhibits the similarity in structure of the lognormal distribution to the gener-
alized Pareto and generalized extreme-value distributions; and

• its parameters are more meaningful and more stable to estimate than are those of
the standard parametrization of the distribution, particularly when the skewness
is close to zero.

In our parametrization, the lognormal distribution is the distribution of a random
variable X that is related to a random variable Z that has a standard Normal
distribution, with mean 0 and variance 1, by

The standard parametrization (A.67) may be obtained from our parametrization by
setting

k = -a, a= ae11, § = f + e11, (A.69)

and results for it may be derived from those below.

L-moments

L-moments are defined for all values of k.

ki=$+a(l- ek2/2)/k (A.70)

A2 = % ek2/2{l - 2<D(-
k
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Table A.I. Coefficients of the approximations (A.72)-(A.74).

T4
0 = 1.2260172 x KT1

Ao = 4.8860251 x 10"1 Co = 1.8756590 x 10"1 Eo = 2.0466534
Ai = 4.4493076 x 10~3 Cx = -2.5352147 x 10~3 E{ = -3.6544371
A2 = 8.8027039 x 10"4 C2 = 2.6995102 x 10"4 E2 = 1.8396733
A3 = 1.1507084 x 10~6 C3 = -1.8446680 x 10~6 E3 = -0.20360244

Bx = 6.4662924 x 10~2 Dx = 8.2325617 x 10~2 Fx = -2.0182173
B2 = 3.3090406 x 10~3 D2 = 4.2681448 x 10~3 F2 = 1.2420401
B3 = 7.4290680 x 10"5 D3 = 1.1653690 x 10~4 F3 = -0.21741801

There are no simple expressions for the L-moment ratios rr, r > 3. They are
functions of k alone and can be computed by numerical integration, as in Hosking
(1996). Alternatively, rational-function approximations can be used. The following
approximations for x3 and T4 have accuracy better than 2 x 10~7 and 5 x 10"7,
respectively, for \k\ < 4, corresponding to |t3| < 0.99 and T4 < 0.98:

7 Ap + Axk2 + A2k4 + A3k6

2 C 0 + Cxk2 + C2k4 + C3k6

The coefficients used in the approximations are given in Table A.I.

Parameters

The shape parameter k is a function of x3 alone. No explicit solution is possible,
but the following approximation has relative accuracy better than 2.5 x 10~6 for
ITT3I < 0.94, corresponding to \k\ < 3:

Eo + E^ + E^ + E^l
k « -T3 4 T ir  - (A.74)

The coefficients used in the approximation are given in Table A.I. The other
parameters are then given by

a = =-, $=Xi--(l-e*'*). (A.75)
1 - 2ft>(-k/y/2) k
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A.9 Pearson type III distribution

Definition

Parameters (3): /x (location), a (scale), y (shape).
If y ^ 0, let a = 4/y2, p = \a \y |, and § = fi - 2cr/y. If y > 0, then the range

of x is § < x < oo and

( A 7 6 )

F(JC) = G (a, ^ 1 ) / r ( a ) . (A.77)

If y = 0, then the distribution is Normal, the range of JC is — oo < x < oo and

f(x) = <p {^-) , F(x) = d) {^-) •  (A.78)

If y < 0, then the range of x is — oo < x <  i- and

(t _x\a-ie-G-

(A.80)

In each case, JC(F) has no explicit analytical form. Here F(.) is the gamma function,
defined in Eq. (A.54), and

a,x) = ta le lchGO

is the incomplete gamma function. The functions (/)(.) and <£(.) are as defined in
Eq. (A.26).

Special cases: y = 2 is the exponential distribution; y = 0 is the Normal dis-
tribution; y = — 2 is the reverse exponential distribution.

The Pearson type III distribution is usually regarded as consisting of just the case
y > 0 given above and is usually parametrized by a, /3, and §. Our parametriza-
tion extends the distribution to include the usual Pearson type III distributions,
with positive skewness and lower bound £, reverse Pearson type III distributions,
with negative skewness and upper bound £, and the Normal distribution, which
is included as a special case of the distribution rather than as the unattainable
limit a -> oo. This enables the Pearson type III distribution to be used when the
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skewness of the observed data may be negative. The parameters /x, a, and y are
the conventional moments of the distribution.

L-moments

Expressions for the distribution's L-moments in terms of its parameters are simpler
when using the standard parameters; to present these results, we therefore use the
standard parametrization, assuming y > 0. The corresponding results for y < 0 are
obtained by changing the signs of A.i, T3, and £ wherever they occur in expressions
(A.82)-(A.89).

L-moments are defined for all values of a, 0 < a < 00.

Ai =t;+ap (A.82)

X2 = n-l/2!3r(a + i ) / 1 » (A.83)

r3 = 6/i/3(a, lot) - 3 (A.84)

Here Ix(p,q) denotes the incomplete beta function ratio

There is no simple expression for T4. Rational-function approximations can be used
to express T3 and 14 approximately as functions of a. The following approximations
are accurate to 10~6. If a > 1,

~2 + A3a~3l + A2a~2 + A3a

^ Co + C\ot~x + C2a~2 + C3a~3

if a < 1,

* 2 a "• - - , (A.88)
F2a2

a + G2a2

T4 1 + Hxct

Coefficients of the approximations are given in Table A.2.

(A.89)



202 Appendix

Table A.2. Coefficients of the approximations
(A.86)-(A.89).

Ao = 3.2573501 x 10"1 Co = 1.2260172 x 10"1

Ax = 1.6869150 x 10"1 Cx = 5.3730130 x 10~2

A2 = 7.8327243 x 10~2 C2 = 4.3384378 x 10"2

A3 = -2.9120539 x 10~3 C3 = 1.1101277 x 10~2

Bx = 4.6697102 x 10"1 Dx = 1.8324466 x 10"1

B2 = 2.4255406 x 10"1 D2 = 2.0166036 x 10"1

Ei = 2.3807576 Gx = 2.1235833
E2 = 1.5931792 G2 = 4.1670213
E3 = 1.1618371 x 10"1 G3 = 3.1925299

Fx = 5.1533299 Hx = 9.0551443
F2 = 7.1425260 H2 = 2.6649995 x 101

F3 = 1.9745056 H3 = 2.6193668 x 101

Parameters

To estimate a, Eq. (A.84) must be solved for a, replacing x3 by \x3\ to enable
a solution to be obtained when r3 is negative. The following approximation has
relative accuracy better than 5 x 10~5 for all values of a. If 0 < |t3| < | , let
z = 37rr3 and use

1+0.2906Z
( )z + 0.1882z2 + 0.0442z3 '

if 5 < |T3 I < 1, let z — 1 — |  T3 j and use

0.36067z - 0.59567z2 + 0.2536U3 , A ft^a ^ (A 91)
1 - 2.7886U + 2.56096z2 - 0.77045z3 ' V ' }

Given a, the parameters of our preferred parametrization may be found from

Y = 2a"1/2sign(r3), a = X27tl/2al/2T{a)/T{a + 5), fi = A.i. (A.92)

A.10 Kappa distribution

Definition

Parameters (4): § (location), a (scale), k, h.
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Range of x: upper bound is £ + a/k if k > 0, oo if k < 0; lower bound is
k 0,and-ooif/i <0and£ > 0.

fix) = a~l{\ - k(x - $)/a}x'k-l{F(x)}l-h (A.93)

F{x) = [1 - h{\ - k(x - $)/a}l/k]l/h (A.94)

The cases h = 0 and £ = 0 are included implicitly as the continuous limits of
(A.93)-(A.95).

Special cases: h = —1  is the generalized logistic distribution; h = 0 is the
generalized extreme-value distribution; h = 1 is the generalized Pareto distribution.
The three-parameter kappa distribution of Mielke and Johnson (1973) is a special
case of the kappa distribution defined here. Its cumulative distribution function

F{x) = {x/b)°{a + (x/b)a6rl/a, x > 0, a,b, 9 > 0, (A.96)

is obtained from Eq. (A.94) by taking £ = b, a = b/(a0), k = —l/(a0),  and
h = -a.

The kappa distribution is a four-parameter distribution that includes as special
cases the generalized logistic, generalized extreme-value, and generalized Pareto
distributions. The most useful range of parameter values is h > —1.  Subject to
this restriction, the L-moments of the distribution cover a large area of the (13, T4)
plane - see Figure A.I. For these reasons it is useful as a general distribution with
which to compare the fit of two- and three-parameter distributions and for use in
simulating artificial data in order to assess the accuracy of statistical methods.

L-moments

L-moments are defined if h > 0 and k > —1,  or if h < 0 and — 1  < k < —l/h.

(A.97)

- g2)/k (A.98)

T3 = (-81 + 3#2 - 2g3)/(gl - g2) (A.99)

r4 = (-Si + 6g2 - 10g3 + 5g4)/(gi - gi\ (A. 100)
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Fig. A.I. L-moment ratio diagram for the kappa distribution. The shaded area shows the
L-skewness and L-kurtosis values attained by the kappa distribution with h > - 1 . Special
cases include the logistic (L), Gumbel (G), exponential (E), generalized logistic (h = -1 ) ,
generalized extreme-value (h = 0), and generalized Pareto (h = +1) distributions.

where

rrg + k)r(r/h) h>0

rT{\+k)T(-k-r/h) , n
(A.101)

Here T(.) is the gamma function, defined in Eq. (A.54).

Parameters

There are no simple expressions for the parameters in terms of the L-moments.
However, Eq. (A.99) and (A.IOO) give r3 and r4 in terms of k and h and can be
solved for k and h given r3 and r4 by Newton-Raphson iteration. An algorithm is
described by Hosking (1996).

A.ll Wakeby distribution

Definition
Parameters (5): £ (location), a, fi, y, 8.
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Range of JC: § < JC < oo if 5 > 0 and y > 0; § < JC < § + ot/p - y/8 if 8 < 0
or y = 0.

F(JC) not explicitly defined

x(F) = l + ^{l _ (l _ F / } - ^{1 - (1 - F)"*} (A.102)
P 5

Special cases: Both a = 0 and y = 0 give the generalized Pareto distribution.
The parametrization of the distribution is somewhat different from that used by

other authors, for example, Landwehr et al. (1978, 1979b). Our parametrization
explicitly exhibits the Wakeby distribution as a generalization of the generalized
Pareto distribution and gives estimates of the a and y parameters that are more
stable under small perturbations of the data.

The distribution is invariant under the transformation a «» p, y «> —8, so
without loss of generality we may assume that P + 8 > 0. Following Hosking
(1986b) and Kotz, Johnson, and Read (1988, pp. 513-514), we assume that the
following stronger conditions are satisfied:

( i ) e i t h e r p + 8 > O o r p = y = 8 = 0',
(ii) if a = 0, then£ = 0; and

(iii) if y = 0, then 8 = 0.

For x(F) to be a valid quantile function we must also impose the conditions

(iv) y > 0; and
(v) a + y > 0.

The Wakeby distribution has been used by hydrologists to model streamflow
data. The following properties of the distribution make it particularly suitable for
applications in the environmental sciences:

• for suitable values of its parameters, the Wakeby distribution can mimic the
shapes of many commonly used skew distributions (e.g., extreme-value, log-
normal, Pearson type III);

• the Wakeby distribution has five parameters, more than most of the common
distributions, and so can attain a wider range of distributional shapes than
can the common distributions - this makes the Wakeby particularly useful for
simulating artificial data for use in studying the robustness, under changes in
distributional form, of methods of data analysis;

• when 8 > 0, the Wakeby distribution has a heavy upper tail and can therefore
give rise to data sets containing occasional high outliers, a phenomenon often
observed in environmental sciences;
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• the Wakeby distribution has a finite lower bound, which is physically reason-
able for many real-world observations; and

• the explicit form of the quantile function,  Eq. (A. 102), makes it easy to simulate
random samples from the Wakeby distribution.

L-moments

L-moments are defined for 8 < 1.

a y
+ ( A - 1 0 4 )P) + (1 - 5)(2 - 8)

aiX-P) y(l+8)
3 (i+p)(2 + p)(3 + P) ( l 5 ) ( 2 5 ) ( 3 5 )

( A . 1 0 6 )

There is no simple expression for rr.

Parameters

Landwehr et al. (1979b) gave an algorithm for parameter estimation using probabil-
ity weighted moments. Hosking (1996) has implemented a variant of this algorithm
that is expressed in terms of L-moments rather than probability weighted moments,
does not impose Landwehr et al.'s arbitrary restriction on the range of the pa-
rameter /?, and fits a generalized Pareto distribution if no Wakeby distribution is
compatible with the given L-moments.

In terms of L-moments, the algorithm gives the following expressions for the
parameters. If § is unknown, let

N\ = 3X2 - 25A.3 + 32X4, Cx =
N2 = -3A2 + 5X3 + 8A4, C2 = -1X2 + 25X3 + 1U - 25A5, (A.107)

2A,4, C3 =
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Table A.3. Polynomial approximations of T4 as a function ofx3.

Ao
M
A2
A3
A4
A5
A6
A7
A8

GPA

0.
0.20196
0.95924

-0.20096
0.04061

GEV

0.10701
0.11090
0.84838

-0.06669
0.00567

-0.04208
0.03763

GLO

0.16667

0.83333

LN3

0.12282

0.77518

0.12279

-0.13638

0.11368

PE3

0.12240

0.30115

0.95812

-0.57488

0.19383

OLB

-0.25

1.25

Note: The tabulated values are the coefficients of the polynomial approximation (A. 115)
for several distributions. Key to distributions: GPA - generalized Pareto, GEV - generalized
extreme-value, GLO - generalized logistic, LN3 - lognormal, and PE3-Pearson type III.
OLB is the overall lower bound of T4 as a function of r3, given by Eq. (2.45).

Then /? and —8  are the roots of the quadratic equation

(N2C3 - N3C2)z2 + (NiC3 - N3Cx)z + (N{C2 - N2Ci) = 0, (A.108)

/3 being the larger of the two roots, and the other parameters are given by

a = (1 + 0)(2 + j8)(3 + )8){(1 + 8)X2 - (3 - 8)\3}/{4(p + «)},  (A.109)

y = - ( 1 - 8)(2 - 8)(3 - 8){(l - fl)\2 - (3 + j8)*3}/{4GB + 5)}, (A.110)

S). (A.lll)

If £ is known, assume without loss of generality that £ = 0 and let

Ni = 4Xi - 1 U 2 + 9A/3, Ci = IOA.1 - 29A2 + 35A3 - I6A4,

Â 2 = - X 2 + 3A3, C2 = -A.2 + 5X3 - 4X4, (A.I 12)

AT3 =X2 + X3, C3 = \2-X4.

Then Ŝ and —8  are the roots of the quadratic equation (A.108), )8 being the larger
of the two roots, and the other parameters are given by

a = (1 + )8)(2 + )8){M - (2 -

y = - ( 1 - 8){2 - 8){ki - (2 + /?)A2}/06 + 5). (A.114)
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A.12 Approximate L-skewness-L-kurtosis relationships

To construct an L-moment ratio diagram such as Figure 2.5, it is convenient to have
simple explicit expressions for T4 in terms of 13 for commonly used probability
distributions. Polynomial approximations of the form

X>3 (A.I 15)
k=0

have been obtained and the coefficients A& are given in Table A.3. For given T3,
the approximations yield values of 14 that are accurate to within 0.0005 over the
range —0.9 < T3 < 0.9, except that for the generalized extreme-value distribution,
0.0005 accuracy is obtained only when —0.6 < 13 < 0.9. For the generalized
Pareto distribution the exact relationship between 13 and 14 given by Eq. (A.39)
can also be used.

A.13 L-moment ratio diagram

Figure A.2 is an L-moment ratio diagram covering the particularly useful range
0 < T3 < 0.5, 0 < T4 < 0.4. It is convenient for plotting sample at-site or regional
average L-moment ratios for comparison with the population values of commonly
used frequency distributions.
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Fig. A.2. L-moment ratio diagram. Two- and three-parameter distributions are shown as
points and lines, respectively. Key to distributions: E-exponential, G - Gumbel, L-logistic,
N - Normal, U - uniform, GLO - generalized logistic, GEV - generalized extreme-value,
GPA - generalized Pareto, LN3 - lognormal, and PE3 - Pearson type III. OLB is the overall
lower bound of T4 as a function of T3, given by Eq. (2.45).
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Index of notation

Numbers in square brackets indicate the page on which the symbol is defined.

br rth probability weighted moment of a data sample [26].
bias(.) Bias of an estimator [16].
Cv Coefficient of variation of a frequency distribution [17].
Cv Coefficient of variation of a data sample [18].
corr(., .) Correlation between two random variables [15].
cov(., .) Covariance of two random variables [15].
Df Discordancy measure for site / in a region [46].
E(.) Expectation of a random variable [14].
F Nonexceedance probability [2].
F(.) Cumulative distribution function [14].
/ ( . ) Probability density function [14].
g Skewness of a data sample [18].
H Heterogeneity measure for regional data [63].
k Kurtosis of a data sample [18]; k is also used as a parameter of several

distributions.
lr rth L-moment of a data sample [27].
P*(.) Shifted Legendre polynomial [20].
Pr[. ] Probability of an event [14].
Q T Quantile of return period T [2].
Qi(.) Quantile function at site / in a region [6].
q (.) Regional growth curve [7].
RMSE(.) Root mean square error of an estimator [16].
s Standard deviation of a data sample [18].
T Transposition of a vector or matrix [46].
t L-CV of a data sample [28].
tr rth L-moment ratio of a data sample [28].
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var(.) Variance of a random variable [15].
Xt.n Random variable: the kth smallest element of a random sample of size n

[21].
x (.) Quantile function [14].
ZD I S T Goodness-of-fit measure for regional data [81].
ar rth probability weighted moment of a frequency distribution [19].
pr rth probability weighted moment of a frequency distribution [19].
r (.) Gamma function [196].
y Skewness of a frequency distribution [17]; Euler's constant [193];

Y is also used as a parameter of the Pearson type III and Wakeby
distributions.

K Kurtosis of a frequency distribution [17].
Xr rth L-moment of a frequency distribution [20, 22].
\x Mean of a frequency distribution [17].
a Standard deviation of a frequency distribution [17].
r L-CV of a frequency distribution [21].
rr rth L-moment ratio of a frequency distribution [20].
<J>(.) Cumulative distribution function of the standard Normal distribution

[193].
</>(.) Probability density function of the standard Normal distribution [ 193].
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bounds, see distribution, bounded
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canonical correlation, 147
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chi-squared test, 78
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cluster analysis, 12, 56, 57, 58-9, 154, 164-6, 182

see also average-link clustering, single-link cluster-
ing, Ward's method

coefficient of variation (CV), 4, 7, 17, 18, 21, 35, 38,
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confidence interval, 43, 92, 97
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discordant sites, treatment of, 48
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factor analysis, 57
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GEV, see distribution, generalized extreme-value
GEV/PWM algorithm, 91
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goodness-of-fit measure, 11, 12, 48, 74, 79, 81, 84-6,

100, 170, 184
GPA, see distribution, generalized Pareto
growth curve, 96, 100, 102, 107

see also regional growth curve
growth factor, 129

see also regional growth factor
Gumbel reduced variate, 32, 39, 42, 92, 99, 109, 113,

158,187

harmonic mean, 102, 103
HCN, see Historical Climatology Network
HEC-FFA, 188

heterogeneity, xiv, 61,64,67-71,93,98,101,103,105,
111,130-4, 137-9, 142

heterogeneity measure, 11, 12, 48, 56, 61, 63, 68-72,
80, 98, 100, 108, 112, 131, 165, 184

heterogeneous regions, treatment of, 59,70,85,166-70
hierarchical regions, 68, 145
Historical Climatology Network, 44, 52, 163
historical information, xiv, 159-61
homogeneous region, 4, 6, 9-10, 11, 48, 54, 59, 61,

70-1,84,87,110, 129
hurricanes, 180, 188

imperial units, 12
index flood, 6-7, 9, 11, 89, 90, 100, 102, 104, 107,

142, 154
index-flood procedure, xiv, 3, 4, 6-7, 8-9, 43, 59, 88,

142,145, 149-50, 152-3, 161
intersite dependence, xiv, 8,71, 83, 88,93, 94, 98, 101,

125-30, 138-9, 142-3, 156, 174, 187
inverse cumulative distribution function, see quantile

function

A'-means algorithm, 182
Kolmogorov-Smirnov test, 78
kurtosis, 6,17, 18, 22, 35-41

L-CV, 21, 28, 35, 38, 45, 56, 60, 61, 63, 79, 80,
147, 149

L-kurtosis, 24, 25, 30, 35-41, 45, 60, 61, 63, 79,
80, 141

L-moment ratio diagram, 25, 26, 30, 78, 185, 208-9
L-moment ratios, 7, 20, 22, 24-6, 149

see also sample L-moment ratios
L-moments, xiv, 3,6,10-2,18,20,21,22,23-6,34^1,

75,76
see also sample L-moments

L-scale, 24
L-skewness, 24, 25, 30, 35-41, 45, 56, 60, 61, 63, 79,

80, 149
L-statistic, 6
latitude, 5, 10, 164, 176, 181
Legendre polynomial, 19, 27
length of record, see record length
likelihood-ratio, 56, 60
linear transformation, 24
location parameter, 7,15, 25
logarithmic transformation, 9, 152
longitude, 5, 10,164, 176, 181
LN3, see distribution, lognormal

maximum likelihood, 43, 60, 88, 161
mean, 7, 17, 24, 30, 34, 89, 102, 144
mean annual precipitation, 54
measurement error, 157-8, 160, 161
method of L-moments, 41
method of moments, 41, 152
metric units, 12
misspecification of the frequency distribution, 84, 93,
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mixture of frequency distributions, 75
moments, xiii, 17, 19, 34-41
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see also sample moments
moments, existence of, 37
Monte Carlo, see simulation

nearest-neighbor clustering, see single-link clustering
negative values, 9, 97, 149
nonexceedance probability, 2, 14
number of sites, 47, 66, 68-9, 100, 101,119-23, 142

order statistics, 21-2
outlier, 6, 30, 45, 47, 55, 180, 205
outlier, low, 9, 151, 152

paleological information, xiv, 159-61
PE3, see distribution, Pearson type III
physical considerations in frequency analysis, 8,10,48,
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plotting-position estimator of L-moments, 31,33-4,91,

101, 115-6
precipitation, 2, 5, 44, 52, 55, 56, 57, 74, 77, 98, 108,

162-75
principal components, 57
probability density function, 14
probability distribution, see distribution
probability paper, extreme-value, 30, 92, 118
probability paper, Normal, 173
probability weighted moments, xiv, 3, 12, 18, 19, 20,

26,75,91, 161
PWMs, see probability weighted moments

quantile, 2,14, 142
quantile function, 2, 6, 12,14, 90
quantile-quantile plot, 78

random sample, 10, 41, 176
random variable, 1, 14, 15
record length, 48, 61, 101, 123-5, 142
reduced variate, see Gumbel reduced variate
region, 1, 5, 9, 54-61
region of influence, 146-8
regional averaging of L-moments, 91, 115
regional frequency analysis, xiii, 1, 2-3, 9-11, 34, 43,

45, 54, 58-9, 73, 77, 78, 87, 92-3, 111, 116-7,
142, 144, 188-90

regional frequency distribution, 7, 10, 89, 100, 172
regional growth curve, 7, 8, 92, 96, 100, 102, 103, 104,

107,123, 142, 186
regional growth factor, 173
regional L-moment algorithm, 10,12,13,66,88,89-90,

91,97,100-8, 141-3, 172
regional PWM algorithm, 3
regional shape estimation, 9, 68, 144, 148-50
regression, 154, 155
relative bias, 16, 103, 106-7
relative RMSE, 16, 66, 96, 97, 106-7, 140
rescaled data, 7
return period, 2, 14, 74
RMSE, see root mean square error
robust, 4, 6, 8, 78, 84, 85, 142
root mean square error (RMSE), 16, 106, 174

sample L-moment ratios, 11,28, 30,45, 63, 80, 89, 93,
103, 105

sample L-moments, 26, 27, 30
sample moments, 6,17, 18
sample moments, algebraic bounds on, xiii, 6, 18, 38
sample size, 2, 30, 39

see also record length
scale parameter, 16, 19, 25
screening of data, 9, 11, 44-5
separation of skewness, xiv
serial dependence, 8, 83, 88
shape parameter, 25, 26, 144
shifted Legendre polynomial, 19
simulation, 4, 28, 63, 79, 81, 93-6, 101, 104, 106-8,

125
single-link clustering, 59
site characteristics, 5, 10, 11, 54, 55, 57-9, 146-8, 153,

154,164, 181, 182
skewness

measure of shape of distribution, 3, 19, 21, 35, 115
moment statistic, 5, 6, 7, 17, 18, 35-41, 151

software, 13
split-sample testing, 4
standard deviation, 17, 18, 35
standard error, 43, 174
station-year method, 87
statistical vs. operational significance, 68-9, 84, 187-8
streamflow, xiii, 4, 5, 8, 56, 152, 160, 162, 205

see also annual maximum streamflow

tail weight, 35, 74
tails of frequency distributions, 2, 4, 22, 38, 74, 76
temperature, 9, 44
threshold of perception, 160
tradeoffs between bias and variability, 100
trends in data, 8, 45, 50

unbiased estimator, 9,16, 18, 26, 27
"unbiased" estimator of L-moment ratios, 34, 101,

115-6
ungaged sites, 11, 55, 153-6
uniqueness of distribution with given L-moments, 24
unweighted average, 46, 48, 90, 91

variance, 15, 17

WAK/PWM algorithm, xiv, 91
Ward's method, 12, 58, 154, 164-5, 182
weighted average, 7,10,48,61,63,68 ,80, 89,90,145,

151, 152, 161
windspeed, 2, 30, 37, 38, 74

zero values, 76-7, 137, 151, 172




