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Preface to the First Edition

Statistics, probability, and reliability are subject areas that are not commonly easy for stu-
dents of civil and environmental engineering. Such difficulties notwithstanding, a greater
emphasis is currently being made on the teaching of these methods throughout institutions
of higher learning. Many professors with whom we have spoken have expressed the need
for a single textbook of sufficient breadth and clarity to cover these topics.

One might ask why it is necessary to write a new book specifically for civil and envi-
ronmental engineers. Firstly, we see a particular importance of statistical and associated
methods in our disciplines. For example, some modes of failure, interactions, probability
distributions, outliers, and spatial relationships that one encounters are unique and require
different approaches. Secondly, colleagues have said that existing books are either old and
outdated or omit particularly important engineering problems, emphasizing instead areas
that may not be directly relevant to the practitioner.

We set ourselves several objectives in writing this book. First, it was necessary to update
much of the older material, which have rightly stood for decades, even centuries. Indeed.
Second, we had to look at the engineer’s structures, waterways, and the like and bring in
as much material as possible for the tasks at hand. We felt an urgent need to modernize,
incorporate new concepts throughout, and reduce or eliminate the impact of some topics.
We aimed to order the material in a logical sequence. In particular we tried to adopt a
writing style and method of presentation that are lively and without overrigorous drudgery.
These had to be accomplished without compromising a deep and thorough treatment of
fundamentals.

The layout of the book is sraightforward, so it can be used to suit one’s personal needs.
We apologize to any readers who think we have strayed from the path of simplicity in
certain parts, such as the associated variables and contagious distributions of Chapter 3
and the order statistics of Chapter 7. One might wish to omit these sections on a first
reading. The introductions to the chapters will be helpful for this purpose.

The explanation of the theory is accompanied by the assumptions made. Definitions are
separately highlighted. In many places we point out the limitations and pitfalls or viola-
tions. There are warnings of possible misuses, misunderstandings, and misinterpretations.
We provide guidance to the proper interpretation of statistical results.

The numerous examples, for which we have for the most part used recorded observa-
tions, will be helpful to beginners as well as to mature students who will consult the text
as a reference. We hope these examples will lead to a better understanding of the material
and design variabilities, a prelude to the making of sound decisions.

Each chapter concludes with extensive homework problems. In many instances, as in
Chapter 1, they are based on real data not used elsewhere in the text. We have not used
cards or dice or coins or black and red balls in any of the problems and examples. Answers
to selected problems are summarized in Appendix D. A detailed manual of solutions is
available.

Computers are continuously becoming cheaper and more powerful. Newer ways of
handling data are being devised. At the inception, we seriously considered the use of
commercial software packages to enhance the scope of the book. However, the problem
of choosing one, from the many suitable packages acted as a deterrent. Our concern was the
serious limitations imposed by utilizing a source that necessitates corresponding purchase

xiv
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Preface to the First Edition xv

by an adopting school or by individual engineers. Besides, the calculations illustrated
in the book can be made using worksheets available as standard software for personal
computers. As an aid, the data in Appendix E will be placed on the Internet.

We have utilized the space saved (from jargon and notation of a particular software,
output, graphs, and tables) to widen the scope, make our explanations more thorough,
and insert additional illustrations and problems. Readers also have an almost all-inclusive
index, a comprehensive glossary of notation, additional mathematical explanations, and
other material in the appendixes. Furthermore, we hope that the extensive, annotated bibli-
ographies at the end of each chapter, numerous citations and tables, will make this a useful
reference source.

The book is written for use by students, practicing engineers, teachers, and researchers in
civil and environmental engineering and applied statistics; female readers will find no hint
of male chauvinism here. It is designed for a one- or two-semester course and is suitable
for final-year undergraduate and first-year graduate students. The text is self-contained for
study by engineers. A background of elementary calculus and matrix algebra is assumed.

ACKNOWLEDGMENTS

We acknowledge with thanks the work of the staff at Publication Services, Inc., in Cham-
paign, IL. Gianfausto Salvadori gave his time generously in reviewing the manuscript and
providing solutions to some homework problems. Thanks are due again to Adri Buishand
for his elaborate and painstaking reviews. Our publisher solicited other reviewers whose
reports were useful. Howard Tillotson and colleagues at the University of Birmingham,
England, provided data and some student problems. Discussions with Tony Lawrance at
lunch in the University Staff House and the example problem he solved at Helsinki Airport
are appreciated. Valuable assistance was provided by Giovanni Solari and Giulio Ballio in
wind and steel engineering, respectively. In addition, Giovanni Vannuchi was consulted
on geotechnical engineering. Research staff and doctoral students at the Politecnico di Mi-
lano helped with the homework problems and the preparation of the index. Dora Tartaglia
worked diligently on revisions to the manuscript. We thank the publishers, companies,
and individuals who gave us permission to use their material, data, and tables; some of the
tables were obtained through our own resources We shall be pleased to have any omissions
brought to our notice. The support and hospitality provided at the Università degli Studi di
Pavia by Luigi Natale and others are acknowledged with thanks. Most importantly, without
the patience and tolerance of our families this book could not have been completed.

N. T. Kottegoda
R. Rosso

Milano, Italy
1 July 1996
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Preface to the Second Edition

Last year a senior European professor, who uses our book, was visiting us in Milano.
When told of the revisions underway he expressed some surprise. “There is nothing to
revise,” he said. But all books need revision sooner or later, especially a multidimensional
one. The equations, examples, problems, figures, tables, references, and footnotes are all
subject to inevitable human fallibilities: typographical errors and errors of fact. Our first
objective was to bring the text as close to the ideal state as possible. The second priority
was to modernize.

In Chapter 10, a new section is added on Markov chain Monte Carlo modeling; this has
popularized Bayesian methods in recent years; there is a full description and case study
on Gibbs sampling. In Chapter 8 on simulation, we include a new section on sensitivity
analysis and uncertainty analysis; a clear and detailed distinction is made between epis-
temic and aleatory uncertainties; their implications in decision-making are discussed. In
Chapter 7 on Frequency Analysis of Extreme Events, natural hazards and flood hydrology
are updated. In Chapter 6 on regression analysis, further considerations have been made on
the diagnostics of regression; there are new discussions on general and generalized linear
models. In Chapter 5 on Model Estimation and Testing we give special importance to the
Anderson-Darling goodness-of-fit test because of its sensitivity to departures in the tail
areas of a probability density function; we make applications to nonnormal distributions
using the same data as in the estimation of parameters. In Chapter 3 a section is added on
the novel method of copulas with particular emphasis on bivariate distributions. We have
revised the problems following Basic Probability Concepts in Chapter 2. Other chapters
are also revised and modernized and the annotated references are updated.

As before, we have kept in mind the scientific method of Claude Bernard, the French
medical researcher of the nineteenth century. This had three essential parts: observation of
phenomena in nature (seen in Appendix E, and in the examples and problems), observation
of experiments (as reported in each chapter), and the theoretical part (clear enough for the
audience in mind, but without over-simplification).

“Nobody trusts a model except the one who originated it; everybody trusts data except
those who record it.” Models and data are subject to uncertainty. There is still a gap
between models and data. We attempt to bridge this gap.

The title of the book has been abridged from Statistics, Probability, and Reliability
for Civil and Environmental Engineers to Applied Statistics for Civil and Environmental
Engineers. The applications and problems pertain almost equally to both disciplines and
all areas are included.

Another aspect we emphasized before was that the calculations illustrated in the book
can be made using worksheets available as standard software for personal computers.
Alternatively, R which is now commonplace can be downloaded free of charge and adopted
to run some of the homework problems, if one so prefers. Our decision not to recommend
the use of particular commercial software packages, by giving details of jargon, notation,
and so on, seems to be justified. We find that a specific version soon become obsolete with
the advent of a new version.

A limited access solutions manual is available with the data from Appendix E on the
Wiley-Blackwell website [www.blackwellpublishing.com/kottegoda].
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Publishing supported us throughout the project. Università degli Studi di Pavia is thanked
for continued hospitality. The help provided by Fabrizio Borsa and Enrico Raiteri in the
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Introduction

As a wide-ranging discipline, statistics concerns numerous procedures for deriving infor-
mation from data that have been affected by chance variations. On the basis of scientific
experiments, one may record and make summaries of observations, quantify variations,
or other changes of significance, and compare data sequences by means of some numbers
or characteristics. The use of statistics in this way is for descriptive purposes. At a more
sophisticated level of analysis and interpretation, one can, for instance, test hypotheses
using the inferential approach developed during the twentieth century. Thus it may be
ascertained, for instance, whether the change of an ingredient affects the properties of
a concrete or whether a particular method of surfacing produces a longer-lasting road;
this approach often includes the estimation by means of observations of the parameters
of a statistical model. Then inferences can be drawn from data and predictions made or
decisions taken. When faced with uncertainty, this last phase is the principal aim of a civil
or environmental engineer acting as an applied statistician.

In all activities, engineers have to cope with possible uncertainties. Observations of soil
pressures, tensile strengths of concrete, yield strengths of steel, traffic densities, rainfalls,
river flows, and pollution loads in streams vary from one case to the next for apparently
unknown reasons or on account of factors that cannot be assessed to any degree of accu-
racy. However, designs need to be completed and structures, highways, water supply, and
sewerage schemes constructed. Sound engineering judgment, in fact, springs from physi-
cal and mathematical theories, but it goes far beyond that. Randomness in nature must be
taken into account. Thus the onus of dealing with the uncertainties lies with the engineer.

The appropriate methods of tackling the uncertainty vary with different circumstances.
The key is often the dispersion that is commonly evidenced in available data sets. Some
phenomena may have negligible or low variability. In such a case, the mean of past observa-
tions may be used as a descriptor, for example, the elastic constant of a steel. Nevertheless,
the consequences of a possible change in the mean should also be considered. Frequently,
the variability in observations is found to be quite substantial. In such situations, an engi-
neer sometimes uses, rather conservatively, a design value such as the peak storm runoff
or the compressive strength of a concrete. Alternatively, it has been the practice to express
the ability of a component in a structure to withstand a specified loading without failure
or a permissible deflection by a so-called factor of safety; this is in effect a blanket to
cover all possible contingencies. However, we envisage some problems here in following
a purely deterministic approach because there are doubts concerning the consistency of
specified strengths, flows, loads, or factors from one case to another. These cannot be
lightly dismissed or easily compounded when the consequences of ignoring variability
are detrimental or, in general, if the decision is sensitive to a particular uncertainty. (Often
there are crucial economic considerations in these matters.) This obstacle strongly sug-
gests that the way forward is by treating statistics and probability as necessary aids in
decision making, thus coping with uncertainty through the engineering process.

Note that statistical methods are in no way intended to replace the physical knowl-
edge and experience of the engineer and his or her skills in experimentation. The engineer
should know how the measurements are made and recorded and how errors may arise from
possible limitations in the equipment. There should be readiness to make changes and im-
provements so that the data-gathering process is as reliable and representative as possible.

1
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On this basis, statistics can be a complementary and a valuable aid to technology. In prudent
hands it can lead to the best practical assessment of what is partially known or uncertain.

The quantification of uncertainty and the assessment of its effects on design and im-
plementation must include concepts and methods of probability, because statistics is built
on the foundation of probability theory. In addition, decision making under risk involves
the use of applied probability. Historically, probability theory arose as a branch of math-
ematics concerned with the analysis of certain games of chance; it consequently found
applications in the measurement and understanding of uncertainty in innumerable natural
phenomena and human activities. The fundamental interrelationship between statistics
and probability is clearly evident in practice. As seen in past decades, there has been an
irreversible change in emphasis from descriptive to inferential statistics. In this respect
we must note that statistical inferences and the risk and reliability of decision making
under uncertainty are evaluated through applied probability, using frequentist or Bayesian
estimation. This applies to the most widely used methods. Alternatives that come under
generalized information theory are now available.

The reliability of a system, structure, or component is the complement of its probability
of failure. Risk and reliability analysis, however, entail many activities. The survival prob-
ability of a system is usually stated in terms of the reliabilities of its components. The
modeling process is an essential part of the analysis, and time can be an important factor.
Also, the risk factor that one computes may be inherent, additional, or composite. All
these points show that reliability design deserves special emphasis.

Methods of reducing data, reviewed in Chapter 1, begin with tabulation and graphical
representation, which are necessary first steps in understanding the uncertainty in data and
the inherent variability. Numerical summaries provide descriptions for further analysis.
Exploratory methods are followed by relationships between data observed in pairs. Thus
the investigation begins. The route is long and diverse, because statistics is the science
and art of experimenting, collecting, analyzing, and making inferences from data. This
opening chapter provides a route map of what is to follow so that one can gain insight
into the numerous tools statistics offers and realizes the variety of problems that can be
tackled. In Chapters 2 and 3, we develop a background in probability theory for coping
with uncertainty in engineering. Using basic concepts, we then discuss the total probability
and Bayes’ theorems and define statistical properties of distributions used for estimation
purposes. Chapter 4 examines various mathematical models of random processes. There
is a wide-ranging discussion of discrete and continuous distributions; joint and derived
types are also given in Chapters 3 and 4; we introduce copulas that can effectively model
joint distributions. Model estimation and testing methods, such as confidence intervals,
hypothesis testing, analysis of variance, probability plotting, and identification of outliers,
are treated in Chapter 5. The estimation and testing are based on the principle that all
suppositions need to be carefully examined in light of experimentation and observation.
Details of regression and multivariate statistical methods are provided in Chapter 6, along
with principal component analysis and associated methods and spatial correlation. Extreme
value analysis applied to floods, droughts, winds, earthquakes, and other natural hazards is
found in Chapter 7; some special types of models are included. Simulation is the subject of
Chapter 8, which comprises the use of simulation in design and for other practical purposes;
also, we discuss sensitivity analysis and uncertainty analysis of the aleatory and epistemic
types. In Chapter 9, risk and reliability analysis and reliability design are developed in
detail. Chapter 10 is devoted to Bayesian and other types of economic decision making,
used when the engineer faces uncertainty; we include here Markov chain Monte Carlo
methods that have recently popularized the Bayesian approach.
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Chapter 1

Preliminary Data Analysis

All natural processes, as well as those devised by humans, are subject to variability.
Civil engineers are aware, for example, that crushing strengths of concrete, soil pressures,
strengths of welds, traffic flow, floods, and pollution loads in streams have wide variations.
These may arise on account of natural changes in properties, differences in interactions
between the ingredients of a material, environmental factors, or other causes. To cope
with uncertainty, the engineer must first obtain and investigate a sample of data, such as
a set of flow data or triaxial test results. The sample is used in applying statistics and
probability at the descriptive stage. For inferential purposes, however, one needs to make
decisions regarding the population from which the sample is drawn. By this we mean the
total or aggregate, which, for most physical processes, is the virtually unlimited universe
of all possible measurements. The main interest of the statistician is in the aggregation;
the individual items provide the hints, clues, and evidence.

A data set comprises a number of measurements of a phenomenon such as the failure
load of a structural component. The quantities measured are termed variables, each of
which may take any one of a specified set of values. Because of its inherent randomness
and hence unpredictability, a phenomenon that an engineer or scientist usually encounters
is referred to as a random variable, a name given to any quantity whose value depends
on chance.1 Random variables are usually denoted by capital letters. These are classified
by the form that their values can possibly take (or are assumed to take). The pattern of
variability is called a distribution. A continuous variable can have any value on a conti-
nuous scale between two limits, such as the volume of water flowing in a river per second
or the amount of daily rainfall measured in some city. A discrete variable, on the contrary,
can only assume countable isolated numbers like integers, such as the number of vehicles
turning left at an intersection, or other distinct values.

Having obtained a sample of data, the first step is its presentation. Consider, for ex-
ample, the modulus of rupture data for a certain type of timber shown in Table E.1.1, in
Appendix E. The initial problem facing the civil engineer is that such an array of data by
itself does not give a clear idea of the underlying characteristics of the stress values in
this natural type of construction material. To extract the salient features and the particular
types of information one needs, one must summarize the data and present them in some
readily comprehensible forms. There are several methods of presentation, organization,
and reduction of data. Graphical methods constitute the first approach.

1.1 GRAPHICAL REPRESENTATION

If “a picture is worth a thousand words,” then graphical techniques provide an excellent
method to visualize the variability and other properties of a set of data. To the powerful
interactive system of one’s brain and eyes, graphical displays provide insight into the form

1 The term will be formally defined in Section 3.1.

3
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and shape of the data and lead to a preliminary concept of the generating process. We
proceed by assembling the data into graphs, scanning the details, and noting the important
characteristics. There are numerous types of graphs. Line and dot diagrams, histograms,
relative frequency polygons, and cumulative frequency curves are given in this section.
Subsequently, exploratory methods, such as stem-and-leaf plots and box diagrams and
graphs depicting a possible association between two variables, are presented in Sections
1.3 and 1.4. We begin with the simple task of counting.

1.1.1 Line diagram or bar chart

The occurrences of a discrete variable can be classified on a line diagram or bar chart.
In this type of graph, the horizontal axis gives the values of the discrete variable and the
occurrences are represented by the heights of vertical lines. The horizontal spread of these
lines and their relative heights indicate the variability and other characteristics of the data.

Example 1.1. Flood occurrences. Consider the annual number of floods of the Magra River
at Calamazza, situated between Pisa and Genoa in northwestern Italy, over a 34-year period,
as shown in Table 1.1.1.

A flood in the river at the point of measurement means the river has risen above a specified
level, beyond which the river poses a threat to lives and property. The data are plotted in
Fig. 1.1.1 as a line diagram.

The data suggest a symmetrical distribution with a midlocation of four floods per year.
In some other river basins, there is a nonlinear decrease in the occurrences for increasing
numbers of floods in a year commencing at zero, showing a negative exponential type of
variation.

1.1.2 Dot diagram

A different type of graph is required to present continuous data. If the data are few (say,
less than 25 items) a dot diagram is a useful visual aid. Consider the possibility that only

Table 1.1.1 Number of flood occurrences per
year from 1939 to 1972 at the gauging station of
Calamazza on the Magra River, between Pisa
and Genoa in northwestern Italya

Number of floods Number of
in a year occurrences

0 0
1 2
2 6
3 7
4 9
5 4
6 1
7 4
8 1
9 0

Total 34

a A flood occurrence is defined as river discharge
exceeding 300 m3/s.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:11

Preliminary Data Analysis 5

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Number of floods

N
um

be
r 

of
 o

cc
ur

re
nc

es

Fig. 1.1.1 Line diagram for flood occurrences in the Magra River at Calamazza between Genoa
and Pisa in northwestern Italy.

the first 15 items of data in Table E.1.1—which shows the modulus of rupture in N/mm2

for 50 mm × 150 mm Swedish redwood and whitewood—are available. The abridged
data are ranked in ascending order and are given in Table 1.1.2 and plotted in Fig. 1.1.2.

The reader can see that the midlocation is close to 40 N/mm2 but the wide spread makes
this location difficult to discern. A larger sample should certainly be helpful.

1.1.3 Histogram

If there are at least, say, 25 observations, one of the most common graphical forms is a
block diagram called the histogram. For this purpose, the data are divided into groups
according to their magnitudes. The horizontal axis of the graph gives the magnitudes.
Blocks are drawn to represent the groups, each of which has a distinct upper and lower
limit. The area of a block is proportional to the number of occurrences in the group.
The variability of the data is shown by the horizontal spread of the blocks, and the most
common values are found in blocks with the largest areas. Other features such as the
symmetry of the data or lack of it are also shown.

The first step is to take into account the range r of the observations, that is, the difference
between the largest and smallest values.

Example 1.2. Timber strength. We go back to the timber strength data given in Table E.1.1.
They are arranged in order of magnitude in Table 1.1.3.

There are n = 165 observations with somewhat high variability, as expected, because
timber is a naturally variable material. Here the range r = 70.22 – 0.00 = 70.22 N/mm2.

To draw a histogram, one divides the range into a number of classes or cells nc. The
number of occurrences in each class is counted and tabulated. These are called frequencies.

Table 1.1.2 The first 15 items of modulus of rupture data measuring
timber strengths in N/mm2, from Table E.1.1 (commencing with the
top row), ranked in increasing order

29.11 29.93 32.02 32.40 33.06 34.12 35.58 39.34
40.53 41.64 45.54 48.37 48.78 50.98 65.35
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Modulus of rupture, N/mm2

Fig. 1.1.2 Dot diagram for a short sample of timber strengths from Table 1.1.3.

The width of the classes is usually made equal to facilitate interpretation. For some work
such as the fitting of a theoretical function to observed frequencies, however, unequal class
widths are used. Care should be exercised in the choice of the number of classes, nc. Too
few will cause an omission of some important features of the data; too many will not give
a clear overall picture because there may be high fluctuations in the frequencies. A rule
of thumb is to make nc = √

n or an integer close to this, but it should be at least 5 and not
greater than 25. Thus, histograms based on fewer than 25 items may not be meaningful.
Sturges (1926) suggested the approximation

nc = 1 + 3.3 log10 n. (1.1.1)

A more theoretically based alternative follows the work of Freedman and Diaconis (1981):2

nc = r n1/3

2 iqr
. (1.1.2)

Here iqr is the interquartile range. To clarify this term, we must define Q2, or the
median. This denotes the middle term of a set of data when the values are arranged in
ascending order, or the average of the two middle terms if n is an even number. The first
or lower quartile, Q1, is the median of the lower half of the data, and likewise the third

Table 1.1.3 Ranked modulus of rupture data for timber strengths in N/mm2, in
ascending order a

0.00 28.00 31.60 34.44 36.84 39.21 41.75 44.30 47.25 53.99
17.98 28.13 32.02 34.49 36.85 39.33 41.78 44.36 47.42 54.04
22.67 28.46 32.03 34.56 36.88 39.34 41.85 44.36 47.61 54.71
22.74 28.69 32.40 34.63 36.92 39.60 42.31 44.51 47.74 55.23
22.75 28.71 32.48 35.03 37.51 39.62 42.47 44.54 47.83 56.60
23.14 28.76 32.68 35.17 37.65 39.77 43.07 44.59 48.37 56.80
23.16 28.83 32.76 35.30 37.69 39.93 43.12 44.78 48.39 57.99
23.19 28.97 33.06 35.43 37.78 39.97 43.26 44.78 48.78 58.34
24.09 28.98 33.14 35.58 38.00 40.20 43.33 45.19 49.57 65.35
24.25 29.11 33.18 35.67 38.05 40.27 43.33 45.54 49.59 65.61
24.84 29.90 33.19 35.88 38.16 40.39 43.41 45.92 49.65 69.07
25.39 29.93 33.47 35.89 38.64 40.53 43.48 45.97 50.91 70.22
25.98 30.02 33.61 36.00 38.71 40.71 43.48 46.01 50.98
26.63 30.05 33.71 36.38 38.81 40.85 43.64 46.33 51.39
27.31 30.33 33.92 36.47 39.05 40.85 43.99 46.50 51.90
27.90 30.53 34.12 36.53 39.15 41.64 44.00 46.86 53.00
27.93 31.33 34.40 36.81 39.20 41.72 44.07 46.99 53.63

a The original data set is given in Table E.1.1; n = 165. The median is underlined.

2 See also Scott (1979).
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Table 1.1.4 Frequency computations for the modulus of rupture data ranked in Table 1.1.3a

Class upper limit Class center Absolute Relative Cumulative relative
(N/mm2) (N/mm2) frequency frequency frequency (%)

5 2.5 1 0.006 0.61
10 7.5 0 0.000 0.61
15 12.5 0 0.000 0.61
20 17.5 1 0.006 1.21
25 22.5 9 0.055 6.67
30 27.5 18 0.109 17.58
35 32.5 26 0.158 33.33
40 37.5 38 0.230 56.36
45 42.5 34 0.206 76.97
50 47.5 20 0.121 89.09
55 52.5 9 0.055 94.55
60 57.5 5 0.030 97.58
65 62.5 0 0.000 97.58
70 67.5 3 0.018 99.39
75 72.5 1 0.006 100.00

a The width of each class is 5 N/mm2 in this example.

or upper quartile, Q3, is the median of the upper half of the data. This definition will be
used throughout.3 Thus,

iqr = Q3 − Q1. (1.1.3)

Example 1.3. Timber strength. For the timber strength data of Table E.1.1, the median,
that is, Q2, is 39.05 N/mm2. Also Q3 and Q1 are 44.57 and 32.91 N/mm2, respectively, and
hence iqr = 11.66 N/mm2. From the simple square-root rule, the number of classes, nc =
12.84. However, by using Eqs. (1.1.1) and (1.1.2), the number of classes are 8.32 and 16.52,
respectively. If these are rounded to 9 and 15 and the range is extended to 72 and 75 N/mm2

for graphical purposes, the equal class widths become 8 and 5 N/mm2, respectively. Let us
use these widths. It is important to specify the class boundaries without ambiguity for the
counting of frequencies; for example, in the first case, these should be from 0 to 7.99, 8.00 to
15.99, and so on. As already mentioned, the vertical axis of a histogram is made to represent
the frequency and the horizontal axis is used as a measurement scale on which the class
boundaries are marked. For each of these class widths, 8 and 5 N/mm2, class boundaries are
made and counting of frequencies is completed using Table 1.1.3; the lowest boundary is
at 0 and the highest boundaries are at 72 and 75 N/mm2, respectively. Table 1.1.4 gives the
absolute and relative frequencies for class widths of 5 N/mm2.

Rectangles are then erected over each of the classes, proportional in area to the class
frequencies. When equal class widths are used, as shown here, the heights of the rectangles
represent the frequencies. Thus, Figs. 1.1.3 and 1.1.4 are obtained.

The information conveyed by the two histograms seems to be similar. The diagrams are
almost symmetrical with a peak in the class below 40 N/mm2 and a steady decrease on either
side. This type of diagram usually brings out any possible imperfections in the data, such as

3 There are alternatives, such as rounding (n + 1)/4 and (n + 1) × (3/4) to the nearest integers to calculate the
locations of Q1 and Q3, respectively. The rounding is upward or downward, respectively, when the numbers fall
exactly between two integers.
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Fig. 1.1.3 Histogram for timber strength data with class width of 8 N/mm2.

the gaps at the ends. Further investigations are required to understand the true nature of the
population. More on these aspects will follow in this and subsequent chapters.

1.1.4 Frequency polygon

A frequency polygon is a useful diagnostic tool to determine the distribution of a variable.
It can be drawn by joining the midpoints of the tops of the rectangles of a histogram after
extending the diagram by one class on both sides. We assume that equal class widths are
used. If the ordinates of a histogram are divided by the total number of observations, then
a relative frequency histogram is obtained. Thus, the ordinates for each class denote the
probabilities bounded by 0 and 1, by which we simply mean the chances of occurrence.
The resulting diagram is called the relative frequency polygon.

Example 1.4. Timber strength. Corresponding to the histogram of Fig. 1.1.4, the values
of class center are computed and a relative frequency polygon is obtained; this is shown in
Fig. 1.1.5.
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Fig. 1.1.4 Histogram for timber strength data with class width of 5 N/mm2.
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Fig. 1.1.5 Relative frequency polygon for timber strength data with class width of 5 N/mm2.

As the number of observations becomes large, the class widths theoretically tend to de-
crease and, in the limiting case of an infinite sample, a relative frequency polygon becomes
a frequency curve. This is in fact a probability curve, which represents a mathematical
probability density function, abbreviated as pdf, of the population.4

1.1.5 Cumulative relative frequency diagram

If a cumulative sum is taken of the relative frequencies step by step from the smallest class
to the largest, then the line joining the ordinates (cumulative relative frequencies) at the
ends of the class boundaries forms a cumulative relative frequency or probability diagram.
On the vertical axis of the graph, this line gives the probabilities of nonexceedance of values
shown on the horizontal axis. In practice, this plot is made by utilizing and displaying every
item of data distinctly, without the necessity of proceeding via a histogram and the restric-
tive categories that it entails. For this purpose, one may simply determine (e.g., from the
ranked data of Table 1.1.3) the number of observations less than or equal to each value and
divide these numbers by the total number of observations. This procedure is adopted here.5

Thus, the probability diagram, as represented by the cumulative relative frequency
diagram, becomes an important practical tool. This diagram yields the median and other
quartiles directly. Also, one can find the 9 values that divide the total frequency into 10
equal parts called deciles and the so-called percentiles, where the pth percentile is the
value that is greater than p percent of the observations. In general, it is possible to obtain
the (n − 1) values that divide the total frequency into n equal parts called the quantiles.
Hence a cumulative frequency polygon is also called a quantile or Q-plot; a Q-plot though
has quantiles on the vertical axis unlike a cumulative frequency diagram.

Example 1.5. Timber strength. Figure 1.1.6 is the cumulative frequency diagram obtained
from the ranked timber strength data of Table 1.1.3 using each item of data as just described.

4 This function is discussed in Chapter 3. One of the first tasks in applying inferential statistics, as presented in
Chapters 4 and 5, will be to estimate the mathematical function from a finite sample and examine its closeness
to the histogram.
5 Further aspects of this subject, as related to probability plots, are described in Chapter 5.
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Fig. 1.1.6 Cumulative relative frequency diagram for timber strength data.

The deciles and percentiles can be abstracted. By convention a vertical probability or
proportionality scale is used rather than one giving percentages (except in duration curves,
discussed shortly). The 90th percentile, for instance, is 51 N/mm2 approximately and the
value 40 N/mm2 has a probability of nonexceedance of approximately 0.56.

If the sample size increases indefinitely, the cumulative relative frequency diagram will
become a distribution curve in the limit. This represents the population by means of a
(mathematical) distribution function, usually called a cumulative distribution function, ab-
breviated to cdf, just as a relative frequency polygon leads to a probability density function.

As a graphical method of ascertaining the distribution of the population, the quantile
plot can be drawn using a modified nonlinear scale for the probabilities, which represents
one of several types of theoretical distributions.6 Also, as shown in Section 1.4, two
distributions can be compared using a Q-Q plot.

1.1.6 Duration curves

For the assessment of water resources and for associated design and planning purposes,
engineers find it useful to draw duration curves. When dealing with flows in rivers, this type
of graph is known as a flow duration curve. It is in effect a cumulative frequency diagram
with specific time scales. The vertical axis can represent, for example, the percentage of
the time a flow is exceeded; and in addition, the number of days per year or season during
which the flow is exceeded (or not) may be given. The volume of flow per day is given on
the horizontal axis. For some purposes, the vertical and horizontal axes are interchanged
as in a Q-plot. One example of a practical use is the scaled area enclosed by the curve,
a horizontal line representing 100% of the time, and a vertical line drawn at a minimum
value of flow, which is desirable to be maintained in the river. This area represents the
estimated supplementary volume of water that should be diverted to the river on an annual
basis to meet such an objective.

Example 1.6. Streamflow duration. Figure 1.1.7 gives the flow duration curve of the Dora
Riparia River in the Alpine region of northern Italy, calculated over a period of 47 years from
the records at Salbertrand gauging station. This figure is drawn using the same procedure

6 This method is demonstrated in Section 5.8.
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Fig. 1.1.7 Flow duration curve of Dora Riparia River at Salbertrand in the Alpine region of Italy.

adopted for a cumulative relative frequency diagram, such as Fig. 1.1.6. For instance, suppose
it is decided to divert a proportion of the discharges above 10 m3/s and below 20 m3/s from the
river. Then the area bounded by the curve and the vertical lines drawn at these discharges, using
the vertical scale on the left-hand side, will give the estimated maximum amount available
for diversion during the year in m3 after multiplication by the number of seconds in a day.
This area is hatched in Fig. 1.1.7. If such a decision were to be implemented over a long-
term basis, it should be essential to use a long series of data and to estimate the distribution
function.

1.1.7 Summary of Section 1.1

In this section we have introduced some of the basic graphical methods. Other procedures
such as stem-and-leaf plots and scatter diagrams are presented in Sections 1.3 and 1.4,
respectively. More advanced plots are introduced in Chapters 5 and 6. In the next section
we discuss associated numerical methods.

1.2 NUMERICAL SUMMARIES OF DATA

Useful graphical procedures for presenting data and extracting knowledge on variabil-
ity and other properties were shown in Section 1.1. There is a complementary method
through which much of the information contained in a data set can be represented eco-
nomically and conveyed or transmitted with greater precision. This method utilizes a set
of characteristic numbers to summarize the data and highlight their main features. These
numerical summaries represent several important properties of the histogram and the rel-
ative frequency polygon. The most important purpose of these descriptive measures is for
statistical inference, a role that graphs cannot fulfill. Basically, there are three distinctive
types: measures of central tendency, of dispersion, and of asymmetry, all of which can
be visualized through the histogram as discussed in Section 1.1. The additional measure
of “peakedness,” that is, the relative height of the peak, requires a large sample for its
estimation and is mainly relevant in the case of symmetric distributions.
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1.2.1 Measures of central tendency

Generally data from many natural systems, as well as those devised by humans, tend to
cluster around some values of variables. A particular value, known as the central value,
can be taken as a representative of the sample. This feature is called central tendency
because the spread seems to take place about a center. The definition of the central value is
flexible, and its magnitude is obtained through one of the measures of its location. There
are three such well-known measures: the mean, the mode, and the median. The choice
depends on the use or application of the central value.

The sample arithmetic mean is estimated from a sample of observations: x1, x2, . . . ,
xn , as

x̄ = 1

n

n∑
i=1

xi . (1.2.1)

If one uses a single number to represent the data, the sample mean seems ideal for the
purpose. After counting, this calculation is the next basic step in statistics. For theoretical
purposes the mean is the most important numerical measure of location. As stated in
Section 1.1, if the sample size increases indefinitely a curve is obtained from a frequency
polygon; the mean is the centroid of the area between this curve and the horizontal axis
and it is thus the balance point of the frequency curve.

The population value of the mean is denoted by μ. We reiterate our definition of popu-
lation with reference to a phenomenon such as that represented by the timber strength data
of Table E.1.1. A population is the aggregate of observations that might result by making
an experiment in a particular manner.

The sample mean has a disadvantage because it may sometimes be affected by un-
expectedly high or low values, called outliers. Such values do not seem to conform to
the distribution of the rest of the data. There may be physical reasons for outliers. Their
presence may be attributed to conditions that have perhaps changed from what were as-
sumed, or because the data are generated by more than one process. On the other hand,
they may arise on account of errors of faulty instrumentation, measurement, observation,
or recording. The engineer must examine any visible outliers and ascertain whether they
are erroneous or whether their inclusion is justifiable. The occurrence of any improbable
value requires careful scrutiny in practice, and this should be followed by rectification or
elimination if there are valid reasons for doing so.

Example 1.7. Timber strength. A case in point is the value of zero in the timber strength
data of Table E.1.1 This value is retained here for comparative purposes. The mean of the
165 items, which is 39.09 N/mm2, becomes 39.33 N/mm2 without the value of zero.

Example 1.8. Concrete test Table E.1.2 is a list of the densities and compressive strengths
at 28 days from the results of 40 concrete cube test records conducted in Barton-on-Trent,
England, during the period 8 July 1991 to 21 September 1992, and arranged in reverse
chronological order.

These have sample means of 2445 kg/m3 and 60.14 N/mm2, respectively. The two numbers
are measures of location representing the density and compressive strength of concrete.

With many discordant values at the extremes, a trimmed mean, such as a 5% trimmed
mean, may be calculated. For this purpose, the data are ranked and the mean is obtained
after ignoring 5% of the observations from each of the two extremities (see Problem 1.16).
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The technique of coding is sometimes used to facilitate calculations when the data
are given to several significant figures but the digits are constant except for the last few.
For example, the densities in Table E.1.2 are higher than 2400 N/mm2 and less than
2500 N/mm2, so that the number 2400 can be subtracted from the densities. The remainders
will retain the essential characteristics of the original set (apart from the enforced shift in
the mean), thus simplifying the arithmetic.

In considering the entire data set, a weighted mean is obtained if the variables of a
sample are multiplied by numbers called weights and then divided by the sum of the
weights. It is used if some variables should contribute more (or less) to the average than
others.

The median is the central value in an ordered set or the average of the two central values
if the number of values, n, is even, as specified in Section 1.1.

Example 1.9. Concrete test. The calculation of the median and other measures of location
will be greatly facilitated if the data are arranged in order of magnitude. For example, the
compressive strengths of concrete given in Table E.1.2 are rewritten in ascending order in
Table 1.2.1.

The median of these data is 60.1 N/mm2, which is the average of 60.0 and 60.2 N/mm2.

The median of the timber strength data of Table 1.1.3 is 39.05 N/mm2, as noted in the
table. The median has an advantage over the mean. It is relatively unaffected by outliers
and is thus often referred to as a resistant measure. For instance, the exclusion of the
zero value in Table 1.1.3 results only in a minor change of the median from 39.05 to
39.10 N/mm2.

One of the countless practical uses of the median is the application of a disinfectant
to many samples of bacteria. Here, one seeks an association between the proportion of
bacteria destroyed and the strength of the disinfectant. The concentration that kills 50% of
the bacteria is the median dose. This is termed LD50 (lethal dose for 50%) and provides
an excellent measure.

The mode is the value that occurs most frequently. Quite often the mode is not unique
because two or more sets of values have equal status. For this reason and for convenience,
the mode is often taken from the histogram or frequency polygon.

Example 1.10. Concrete test. For the ranked compressive strengths of concrete in
Table 1.2.1, the mode is 60.5 N/mm2.

Example 1.11. Timber strength. From Fig. 1.1.4, for example, the mode of the timber
strength data is 37.5 N/mm2, which corresponds to the midpoint of the class with the highest
frequency. However, there is ambiguity in the choice of the class widths as already noted.
On the other hand, in Table 1.1.3 there are nine values in the range 38.64–39.34 N/mm2, and
thus 39 N/mm2 seems a more representative value, but this problem can only be resolved
theoretically.

As the sample size becomes indefinitely large, the modal value will correspond to the
peak of the relative frequency curve on a theoretical basis. The mode may often have
greater practical significance than the mean and the median. It becomes more useful as the
asymmetry of the distribution increases. For instance, if an engineer were to ask a person
who sits habitually on the banks of a river fishing to indicate the mean level of the river,
he or she is inclined to point out the modal level. It is the value most likely to occur and it
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Table 1.2.1 Ordered data of density and compressive strength of
concretea

Compressive strength
Order Density (kg/m3) (N/mm2)

1 2411 49.9
2 2415 50.7
3 2425 52.5
4 2427 53.2
5 2427 53.4
6 2428 54.4
7 2429 54.6
8 2433 55.8
9 2435 56.3

10 2435 56.7
11 2436 56.9
12 2436 57.8
13 2436 57.9
14 2436 58.8
15 2437 58.9
16 2437 59.0
17 2441 59.6
18 2441 59.8
19 2444 59.8
20 2445 60.0
21 2445 60.2
22 2446 60.5
23 2447 60.5
24 2447 60.5
25 2448 60.9
26 2448 60.9
27 2449 61.1
28 2450 61.5
29 2454 61.9
30 2454 63.3
31 2455 63.4
32 2456 64.9
33 2456 64.9
34 2457 65.7
35 2458 67.2
36 2469 67.3
37 2471 68.1
38 2472 68.3
39 2473 68.9
40 2488 69.5

a The original data sets are given in Table E.1.2.

is not affected by exceptionally high or low values. Clearly, the deletion of the zero value
from Table 1.1.3 does not alter the mode, as we have also seen in the case of the median.

These positive attributes of the mode and median notwithstanding, the mean is indis-
pensable for many theoretical purposes. Also in the same class as the sample arithmetic
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mean, there are two other measures of location that are used in special situations. These
are the harmonic and geometric means.

The harmonic mean is the reciprocal of the mean of the reciprocals. Thus the harmonic
mean for a sample of observations, x1, x2, . . . , xn , is defined as

x̄h = 1

1/n[(1/x1) + (1/x2) + · · · + 1/xn)]
. (1.2.2)

It is applied in situations where the reciprocal of a variable is averaged.

Example 1.12. Stream flow velocity. A practical example of the harmonic mean is the
determination of the mean velocity of a stream based on measurements of travel times over a
given reach of the stream using a floating device. For instance, if three velocities are calculated
as 0.20, 0.24, and 0.16 m/s, then the sample harmonic mean is

x̄h = 1

(1/3)[(1/0.20) + (1/0.24) + (1/0.16)]
= 0.19 m/s.

The geometric mean is used in averaging values that represent a rate of change. Here the
variable follows an exponential, that is, a logarithmic law. For a sample of observations,
x1, x2, . . . , xn , the geometric mean is the positive nth root of the product of the n values.
This is the same as the antilog of the mean of the logarithms:

x̄g = (x1x2 . . . xn)1/n = exp

(
1

n

n∑
i=1

In xi

)
=

(
n∏

i=1

x1/n
i

)
. (1.2.3)

Example 1.13. Population growth. Consider the case of populations of towns and cities that
increase geometrically, which means that a future increase is expected that is proportional to
the current population. Such information is invaluable for planning and designing urban water
supplies and sewerage systems. Suppose, for example, that according to a census conducted
in 1970 and again in 1990 the population of a city had increased from 230,000 to 310,000.
An engineer needs to verify, for purposes of design, the per capita consumption of water in
the intermediate period and hence tries to estimate the population in 1980. The central value
to use in this situation is the geometric mean of the two numbers which is

x̄g = (230, 000 × 310, 000)1/2 = 267,021.

(Note that the sample arithmetic mean x̄ = 270,000.)

As we see in Example 1.13, the geometric mean is less than the arithmetic mean.7

1.2.2 Measures of dispersion

Whereas a measure of central tendency is obtained by locating a central or representative
value, a measure of dispersion represents the degree of scatter shown by observations or
the inherent variability in a phenomenon under observation. Dispersion also indicates the
precision of the data. One method of quantification is through an order statistic, that is,
one of ranked data.8 The simplest in the category is the range, which is the difference
between the largest and smallest values, as defined in Section 1.1.

7 This theoretical property is demonstrated in Example 3.10.
8 We shall discuss order statistics formally in Chapter 7; see also Chapter 5.
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Example 1.14. Timber strength. As noted before, the range of the timber strength data of
Table 1.1.3 is 70.22 – 0.00 = 70.22 N/mm2.

Example 1.15. Concrete test. For the compressive strengths of concrete given in Table
E.1.2 and ranked in Table 1.2.1, the range is r = 69.5 − 49.9 = 19.6 N/mm2; the range of
the concrete densities is 2488 – 2411 = 77 kg/m3. These numbers provide a measure of the
spread of the data in each case.

The range, however, is a nondecreasing function of the sample size and thus charac-
terizes the population poorly. Moreover, the range is unduly affected by high and low
values that may be somewhat incompatible with the rest of the data even though they may
not always be classified as outliers. For this reason, the interquartile range, iqr, which is
relatively a resistant measure, is preferable. As defined in Section 1.1, in a ranked set of
data this is the difference between the median of the top half and the median of the bottom
half.

Example 1.16. Concrete test. For the compressive strengths of concrete, the iqr is 6.55
N/mm2.

Example 1.17. Timber strength. The timber strength data in Table 1.1.3 have an iqr of
11.66 and 11.47 N/mm2, respectively, with or without the zero value. A similar and more
general measure is given by the interval between two symmetrical percentiles. For example,
the 90−10 percentile range for the timber strength data is approximately 52 – 28 = 24 N/mm2

from Fig. 1.1.6.

The aforementioned measures of dispersion can be easily obtained. However, their
shortcoming is that, apart from two values or numbers equivalent to them, the vast infor-
mation usually found in a sample of data is ignored. This criticism is not applicable if one
determines the average deviation about some central value, thus including all the obser-
vations. For example, the mean absolute deviation, denoted by d , measures the average
absolute deviation from the sample mean. For a sample of observations, x1, x2, . . . , xn , it
is defined as

d = |x1 − x̄ | + |x2 − x̄ | + · · · + |xn − x̄ |
n

=
n∑

i=1

|xi − x̄ |
n

. (1.2.4)

Example 1.18. Annual rainfall. If the annual rainfalls in a city are 50, 56, 42, 53, and
49 cm over a 5-year period, the absolute deviation with respect to the sample mean of 50 cm
is given by

d = 1

5
(|50 − 50| + |56 − 50| + |42 − 50| + |53 − 50| + |49 − 50|) = 3.6 cm.

This measure of dispersion is easily understood and practically useful. However, it is valid
only if the large and small deviations are as significant as the average deviations. There are
strong theoretical reasons (as seen in Chapters 3, 4, and 5), on the other hand, for using the
sample standard deviation, denoted by s, which is the root mean square deviation about
the mean. Indeed, this is the principal measure of dispersion (although the interquartile
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range is meaningful and expedient). For a sample of observations, x1, x2, . . . , xn it is
defined by

s =
√

1

n
[(x1 − x̄)2 + (x2 − x̄)2 + · · · + (xn − x̄)2] =

√√√√1

n

n∑
i=1

(xi − x̄)2. (1.2.5)

By expanding and summarizing the terms on the extreme right-hand side,

s =
√√√√1

n

(
n∑

i=1

x2
i − 2x̄

n∑
i=1

xi + nx̄2

)
=

√√√√1

n

n∑
i=1

x2
i − x̄2. (1.2.6)

Engineers will recognize that this measure is analogous to the radius of gyration of a
structural cross section. In contrast to the mean absolute deviation, it is highly influenced
by the largest and smallest values. The standard deviation of the population is denoted by
σ . It is common practice to replace the divisor n of Eq. (1.2.5) by (n– 1) and denote the
left-hand side by ŝ. Consequently, the estimate of the standard deviation is, on average,
closer to the population value because it is said to have smaller bias. Therefore, Eq. (1.2.5)
will, on average, give an underestimate of σ except in the rare case in which μ is known.9

The required modification to Eq. (1.2.6) is as follows:

ŝ =
√√√√ 1

n − 1

n∑
i=1

x2
i − n

n − 1
x̄2. (1.2.7)

This reduction in n can be justified by means of the concept of degrees of freedom. It is a
consequence of the fact that the sum of the n deviations (x1 − x̄), (x2 − x̄), . . . , (xn − x̄)
is zero, which follows from Eq. (1.2.1) for the mean. Hence, regardless of the arrangement
of the data, if any (n − 1) terms are specified the remaining term is fixed or known, because

xn − x̄ = −
n−1∑
i=1

(xi − x̄).

It follows from this equation that one degree of freedom is lost in defining the sample
standard deviation. The concept of degrees of freedom was introduced by the English
statistician R. A. Fisher on the analogy of a dynamical system in which the term denotes
the number of independent coordinate values necessary to determine the system.

Example 1.19. Annual rainfall. From the annual rainfall data in Example 1.18 (50, 56, 42,
53, and 49 cm), one can estimate the standard deviation σ by using Eq. (1.2.5), as follows:

ŝ =
√

1

5
[(50 − 50)2 + (56 − 50)2 + (42 − 50)2 + (53 − 50)2 + (49 − 50)2]

=
√

1

5
(02 + 62 + 82 + 32 + 12) =

√
110

5
= 4.69 cm.

An alternative estimate of σ (which is, on average, less biased) is obtained using Eq. (1.2.7)
as follows:

ŝ =
√

110

4
= 5.24 cm.

9 Terms such as bias are discussed formally in Section 5.2. It is shown in Example 5.1 that ŝ2 is unbiased;
however, ŝ is known to have bias, though less than s on average.
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Example 1.20. Timber strength. By using Eq. (1.2.7), the sample standard deviation of
the timber strength data of Table E.1.1 is 9.92 N/mm2 (or 9.46 N/mm2 if the zero value is
excluded).

Example 1.21. Concrete test. By using Eq. (1.2.7), the sample standard deviation for the
density and compressive strength of concrete in Table E.1.2 are 15.99 kg/m3 and 5.02 N/mm2,
respectively.

Dividing the standard deviation by the mean gives the dimensionless measure of dis-
persion called the sample coefficient of variation, v:

v = ŝ

x̄
(1.2.8)

This is usually expressed as a percentage. The coefficient of variation is useful in comparing
different data sets with respect to central location and dispersion.

Example 1.22. Comparison of timber and concrete strength data. From the values of
mean and standard deviation in Examples 1.7 and 1.20, the sample coefficient of variation
of the timber strength data is 25.3% (or 24.0% without the value of zero). Similarly, from
Examples 1.8 and 1.21 the density and compressive strength of concrete data have sample
coefficients of 0.65 and 8.24%, respectively. The higher variation in the timber strength data
is a reflection of the variability of the natural material, whereas the low variation in the density
of the concrete is evidence of a uniform quality in the constituents and a high standard of
workmanship, including care taken in mixing. The variation in the compressive strength
of concrete is higher than that of its density. This can be attributed to random factors that
influence strength, such as some subtle changes in the effectiveness of the concrete that do
not alter its density.

From the square of the sample standard deviation one obtains the sample variance, ŝ2,
which is the mean of the squared deviations from the mean. The population variance is
denoted by σ 2. The variance, like the mean, is important in theoretical distributions.

By squaring Eqs. (1.2.6) and (1.2.7), two estimators of the population variance are found.
Here estimator refers to a method of estimating a constant in a parent population. As in
all the foregoing equations, this term means the random variable of which the estimate is
a realization. An unbiased estimator is obtained from Eq. (1.2.7) because on average (that
is by repeated sampling) the estimator tends to the population variance σ 2. In other words,
the expectation E , which is in effect the average from an infinite number of observations,
of the square of the right-hand side of Eq. (1.2.7) is equal to σ 2.

There are also measures of dispersion pertaining to the mean of the deviations between
the observations. Gini’s mean difference, for example, is a long-standing method.10 This
is given by

g = 2

n (n − 1)

∑
i> j

n∑
j=1

[x(i) − x( j)], (1.2.9)

in which the observations x1, x2, . . . , xn are arranged in ascending order.

10 See, for example, Stuart and Ord (1994, p. 58) for more details of this method originated by the Italian
mathematician, Gini. See also Problem 1.7.
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1.2.3 Measure of asymmetry

Another important property of the histogram or frequency polygon is its shape with respect
to symmetry (on either side of the mode). The sample coefficient of skewness measures
the asymmetry of a set of data about its mean. For a sample of observations, x1, x2, . . . ,
xn , it is defined as

g1 =
∑n

i=1 (xi − x)3

ns3
. (1.2.10)

Division by the cube of the sample standard deviation gives a dimensionless measure.
A histogram is said to have positive skewness if it has a longer tail on the right, which

is toward increasing values, than on the left. In this case the number of values less than the
mean is greater than the number that exceeds the mean. Many natural phenomena tend to
have this property. For a positively skewed histogram,

mode < median < mean.

This inequality is reversed if skewness is negative. A symmetrical histogram suggests zero
skewness.

Example 1.23. Comparison of timber and concrete strength data. The coefficient of
skewness of the timber strength data of Table E.1.1 and the compressive strength data of
Table E.1.2 are 0.15 (or 0.53 after excluding the zero value) and 0.03, respectively. These
indicate a small skewness in the first case and a symmetrical distribution in the second case.

The example indicates that this measure of skewness is sensitive to the tails of the
distribution.

1.2.4 Measure of peakedness

The extent of the relative steepness of ascent in the vicinity and on either side of the
mode in a histogram or frequency polygon is said to be a measure of its peakedness or
tail weight. This is quantified by the dimensionless sample coefficient of kurtosis, which
is defined for a sample of observations, x1, x2, . . . , xn by

g2 =
∑n

i=1 (xi − x)4

ns4
. (1.2.11)

Example 1.24. Comparison of timber and concrete strength data. The kurtosis of the
timber strength data of Table E.1.1 is 4.46 (or 3.57 without the zero value) and that of
the compressive strengths of Table E.1.2 is 2.33. One can easily see from Eq. (1.2.11) that
even a small variation in one of the items of data may influence the kurtosis significantly.
This observation warrants a large sample size, perhaps 200 or greater, for the estimation of
the kurtosis. Small sample sizes, particularly in the second case with n = 40, preclude the
attachment of any special significance to these estimates.

1.2.5 Summary of Section 1.2

Of the numerical summaries listed here, the mean, standard deviation, and coefficient of
skewness are the best representative measures of the histogram or frequency polygon, from
both visual and theoretical aspects. These provide economical measures for summarizing
the information in a data set. Sample estimates for the data we have been discussing here,
including the coefficients of variation and kurtosis, are given in Table 1.2.2.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:11

20 Applied Statistics for Civil and Environmental Engineers

Table 1.2.2 Sample estimates of numerical summaries of the timber strength data of Table 1.1.3
and the concrete strength and density data of Table 1.2.1

Sample Standard Coefficient of Coefficient Coefficient
Data set size Meana deviationa variation (%) of skewness of kurtosis

Estimated by equation 1.2.1 1.2.7 1.2.8 1.2.10 1.2.11

Timber strength—full
sample

165 39.09 9.92 25.3 0.15 4.46

Timber strength without the
zero value

164 39.33 9.46 24.0 0.53 3.57

Compressive strength of
concrete

40 60.14 5.02 8.35 0.03 2.33

Density of concrete 40 2445 15.99 0.65 0.38 3.15

a Units for strength are N/mm2; units for density are kg/m3.

1.3 EXPLORATORY METHODS

Some graphical displays are used when one does not have any specific questions in mind
before examining a data set. These methods were appropriately called exploratory data
analysis by Tukey (1977). Among such procedures the box plot is advantageous, and the
stem-and-leaf plot is also a valuable tool.

1.3.1 Stem-and-leaf plot

The histogram is a highly effective graphical procedure for showing various characteristics
of data as seen in Section 1.1. However, for smaller samples, less than, say, 40 in size,
it may not give a clear indication of the variability and other properties of the data.
The stem-and-leaf plot, which resembles a histogram turned through a right angle, is a
useful procedure in such cases. Its advantage is that the data are grouped without loss
of information because the magnitudes of all the values are presented. Furthermore, its
intrinsic tabular form highlights extreme values and other characteristics that a histogram
may obscure. As in a histogram, the data are initially ranked in ascending order but
a different approach is adopted in finding the number of classes. The class widths are
almost invariably equal. For the increments or class intervals (and hence class widths) one
uses 0.5, 1, or 2 multiplied by a power of 10, which means that the intervals are in units
such as 0.1 or 200 or 10,000, which are more tractable than, say, 0.13 or 140 or 12,000.
The terminology is best explained through the following worked example.

Example 1.25. Concrete test. For the concrete strength data of Table E.1.2, the maximum
and minimum values are 69.5 and 49.9 N/mm2, respectively. As a first choice, the data can
be divided into 21 classes in intervals of 1 N/mm2 with lower boundaries at 49, 50, 51
N/mm2, and so on, up to 69 N/mm2. For the ordered stem-and-leaf plot of Fig. 1.3.1, a
vertical line is drawn with the class boundaries marked in increasing order immediately to
its left.

The boundary values are called the leading digits and, together with the vertical line,
constitute the stem. The trailing digits on the right represent the items of data in increasing
order when read jointly with the leading digits using the indicated units. They are termed
leaves, and their counts are the class frequencies. Thus the digits 49 (stem) and 9 (leaf)
constitute 49.9. It is useful to provide an additional column at the extreme left, as shown
here, giving the cumulative frequencies—called depths—up to each class. This is completed
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1 49 9

2 50 7

2 51  

3 52 5  

5 53 2 4

7 54 4 6

8 55 8  

11 56 3 7 9

13 57 8 9  

15 58 8 9  

19 59 0 6 8 8

(7) 60 0 2 5 5 5 9  9

14 61 1 5 9

11 62  

11 63 3 4

9 64 9 9

7 65 7

6 66  

6 67 2 3

4 68 1 3 9

1 69 5

Fig. 1.3.1 Stem-and-leaf plot for compressive strengths of concrete in Table E.1.2; units for
stem: 1 N/mm2; units for leaves: 0.1 N/mm2.

firstly by starting at the top and totaling downward to the line containing the median for which
the individual frequency is given in parentheses, and secondly by starting at the bottom and
totaling upward to the line containing the median.

The diagram gives all the information in the data, which is its main advantage. Further-
more, the range, median, symmetry, or gaps in the data, frequently occurring values, and
any possible outliers can be highlighted. In this example, a symmetrical distribution is
indicated. The plot may be redrawn with a smaller number of classes, perhaps for greater
clarity, using the guidelines for choosing the intervals stipulated previously. The units of
data in a plot can be rounded to any number of significant figures as necessary. Also, the
number of stems in a plot can be doubled by dividing each stem into two lines. When
1 multiplied by a power of 10 is used as an interval, for example, the first line, which
is denoted by an asterisk (∗), will thus have leaves 0 to 4, and the leaves of the second,
represented by a period (.), will be from 5 to 9. Likewise, one may divide a stem into five
lines. The stem-and-leaf plot is best suited for small to moderate sample sizes, say, less
than 200.
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(N/mm2)

10

20

30

40

50

60

70

80

Strength
excluding 0 value
Timber strength,

of concrete
Compressive strength

17.98

33.10

39.10
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Fig. 1.3.2 Box plots for timber strength and compressive strength of concrete data from Tables
1.1.3 to 1.2.1.

1.3.2 Box plot

Another plot that is highly useful in data presentation is the box plot, which displays the
three quartiles, Q1, Q2, Q3, on a rectangular box aligned either horizontally or vertically.
The box, together with the minimum and maximum values, which are shown at the ends of
lines extended at either side from the box from the midpoints of its extremities, constitute
the box-and-whiskers plot, as it is sometimes called. The numerical signposts are arranged
as follows from top to bottom: minimum, Q1, Q2, Q3, and maximum. Together they
constitute a five-number summary. The minimum and maximum values may be replaced
by the 5th and 95th (or other extreme) percentiles or supplemented by these and additional
extreme values. These plots play an important role in comparing two or more samples.
The width of the box is made proportional to the sample size in such cases, if they are
different.

Example 1.26. Comparison of timber and concrete strength data. Let us use a box plot
to compare the strengths of two representative materials used by civil engineers. Figure 1.3.2
shows the timber strength data ranked in Table 1.1.3, with the zero value excluded, and
the compressive strength of concrete data that were ranked in Table 1.2.1. The box plot of
compressive strengths of concrete shown on the right strongly indicates symmetry in their
distribution. In the case of the timber strength data, the box is less symmetrical. However,
there are clear signs of positive skewness; because the length of the line connecting the highest
value to the box is longer than that connecting the lowest value to the box.

Empirical rules have been devised to detect outliers by means of box plots. As previ-
ously stated, this term signifies an excessive discordance with reference to an assumed
distribution to which the majority of observations belong. One such procedure identifies
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outliers as those values located at distances greater than 1.5 iqr above the third quartile or
less than 1.5 iqr below the first quartile.

Example 1.27. Comparison of timber and concrete strength data. The iqrs for the timber
strength and compressive strength of concrete data are 11.47 and 6.55 N/mm2 and thus the
two critical distances for detecting outliers are 17.21 and 9.83 N/mm2, respectively. These
distances are set out on either from the extremities of the boxes and are shown by thick
horizontal lines in Fig. 1.3.2. By this rule, the concrete data do not have any outliers, whereas
there are four outliers beyond the demarcating line for high outliers in the timber strength
data of Table 1.1.2. These are the values 65.35, 65.61, 69.07, and 70.22 N/mm2. At the other
extremity, there is the zero value that was discarded before the diagram was drawn. When
such an observation is recorded one should verify whether it stems from a faulty calibration
or other source of error; it is clearly an outlier by the method described here.11

1.3.3 Summary of Section 1.3

In general, box plots are helpful in highlighting distributional features, including the range
and many of the properties of a histogram. They provide a valuable means of comparing
data measuring related or similar characteristics. The stem-and-leaf plot is also clearly use-
ful in presenting a set of data as an alternative to the histogram. Both diagrams can be easily
drawn. These are two of the commonly used exploratory graphical methods. Other methods
presented in subsequent chapters include the hanging histogram of Subsection 5.8.5.1.

1.4 DATA OBSERVED IN PAIRS

In the preceding sections, the behavior of one variable was considered. Let us extend this
discussion to the case where simultaneous observations are made of two variables and
a study is made to find an association between the variables. In this section the simple
bivariate case of paired samples is examined, and the types of association between them
are briefly assessed.

1.4.1 Correlation and graphical plots

A specific type of association that is frequently examined is known as correlation (from
co-relation). In usual practice, graphical methods are initially applied; subsequently, nu-
merical summaries provide a quantification and a means of assessment. For example, if
there are n pairs of observations, (x1, y1), (x2, y2), . . . , (xn , yn), of two variables X and Y ,
a preliminary indication of the correlation is obtained through a scatter diagram. In this
plot the coordinates denote the observed pairs of values.

Example 1.28. Concrete test. The scatter diagram of Fig. 1.4.1 represents the concrete data
of Table E.1.2, with the density and compressive strength at 28 days given by the horizontal
and vertical axes, respectively.

At first sight, there is no well-defined relationship between the two sets of observations
although one would expect a density that is higher or lower than average to be associated with
a compressive strength of concrete that is correspondingly higher or lower than its average.

11 More precise methods of systematically detecting outliers (such as those investigated by Kottegoda, 1984)
are discussed in Chapter 5.
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Fig. 1.4.1 Scatter diagram of concrete test data from Table E.1.2.

1.4.2 Covariance and the correlation coefficient

The sample covariance, sX,Y, gives a numerical summary of the linear association between
two quantitative variables X and Y . It is the average of the product of their deviations about
the respective means. Thus,

sX,Y = 1

n

n∑
i=1

(xi − x̄)(yi − ȳ). (1.4.1)

The covariance will be greater when there is a greater direct association between X and Y
with respect to higher than average values and similarly for lower than average values. If
the sample covariance is divided by the sample standard deviations of the two variables,
sX and sY [as in Eq. (1.2.6)], one obtains a dimensionless measure of linear association
called the sample coefficient of correlation,

rX,Y = 1

nsX sY

n∑
i=1

(xi − x̄)(yi − ȳ). (1.4.2)

Substituting for sX and sY , we find

rX,Y =
∑n

i=1 (xi − x)(yi − y)√∑n
i=1 (xi − x)2

∑n
i=1 (yi − y)2

. (1.4.3)

The correlation coefficient is constrained by –1 ≤ rX,Y ≤ 1. Because the association mea-
sured here is defined by Eqs. (1.4.2) and (1.4.3), this result is called the linear coefficient
of correlation or the product-moment correlation coefficient.12

The two limiting values in the preceding constraint are of theoretical interest and are
applicable if all the points of a scatter diagram lie on a straight line of the type

Yi = β0 + βi xi , (1.4.4)

12 Another measure, Spearman’s rank correlation coefficient, is discussed in Chapter 5.
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where β0 and β1 are constants. The constant β1 will be positive for all positive correlations
including the maximum value, rX,Y =1. In the opposite case,β1 will be negative, indicating
negative correlation. That is, a high value of one variable tends to be associated with a
low value of the other; the minimum value, rX,Y = –1, is in this category.

In some cases the scatter diagram may indicate that there is an exponential or other
nonlinear type of relationship between the two variables. In such cases, special procedures
are necessary. For example, one may apply a logarithmic, square root, negative reciprocal,
or other appropriate transformation to one or both variables prior to analysis (as discussed
in Chapter 6).

Example 1.29. Concrete test. The scatter diagram of Fig. 1.4.1 does not show a strong
relationship between the density and the compressive strength. This fact is confirmed by the
correlation coefficient of +0.44 obtained from Eq. (1.4.3). It is possible that the inclusion of
additional variables, such as the results of slump tests, will lead to an improved relationship
for predictive purposes in a multiple regression analysis.

Note that a zero correlation does not show that the variables are independent.
For variables that have no dependence, however, the correlation will not be of any
significance.13

Note that one is only seeking an association between two variables through the correla-
tion coefficient, not a cause and effect relationship. In some cases there are clear reasons
for dependency, as in the case of a force exerted on a steel wire and the consequent in-
crease in its length, or as in rainfall resulting in runoff. Often, however, one cannot reach
such a conclusion when there is strong positive or negative correlation. One may find, for
instance, that two variables are correlated because they are both associated with a third
variable and not because there is a physical relationship between the first two.14

Equations of regression such as Eq. (1.4.4) are generally used to predict Y for a given
value of X without invoking a causal relationship. Accordingly, the given value x is called
the explanatory (nonrandom) variable and Y is the response (random) variable.

Example 1.30. Water quality. Another example of positive or negative correlation is the
association between variables measuring water quality. A case study is taken from the Black-
water River in central England, which is constantly monitored for the control of pollution.
The variables that are measured, among others, are the amounts of dissolved oxygen, DO,
and the biochemical oxygen demand, BOD, in the water. Dissolved oxygen is required for the
respiration of aerobic life forms such as fish. The BOD denotes the amount of oxygen used in
meeting the metabolic needs of aerobic microorganisms in water, whether naturally occurring
or resulting from sewage outflows and other discharges; thus, high values of BOD generally
indicate high levels of pollution. Usually determined in a laboratory after a 5-day incubation
of samples taken from the water, BOD is the most widely used indicator of pollution despite
some shortcomings. Sampling at 38 stations along the river gives the data presented in Table
E.1.3.

13 The significance of small values of correlation and whether they probably indicate zero correlation are
discussed in Chapter 6, in addition to other aspects of regression including the particular notation of Eq. (1.4.4).
The concept of independence is discussed in Chapter 2.
14 An absurdity cited in early literature is the apparent relationship between horse kicks suffered by cavalrymen
and wheat production in Europe. Also, Yule (1926) correlates concurrent time series of the proportion of Church
of England marriages and the standardized mortality rates per 1000 persons with a “nonsense” correlation
coefficient of 0.95; he explains that both variables are highly influenced by a common factor; we now call this
behavior spurious correlation.
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Fig. 1.4.2 Scatter diagram of water quality data from Table E.1.3.

The scatter diagram of the two indicators of water quality data is shown in Fig. 1.4.2.
As expected, it strongly indicates a negative type of correlation with high values of DO

associated with low values of BOD and vice versa. The coefficient of correlation from
Eq. (1.4.3) is −0.90. It suggests that the value of BOD can be estimated from a measure-
ment of the DO. The scatter in the diagram may be partly attributed to some inadequacies
of the BOD test and partly to factors such as temperature and rate of flow, which affect
the DO.

The presence of outliers tends to have a significant effect on the coefficient of correlation.
Consider, for example, the lowest BOD in Fig. 1.4.2, which corresponds to the first pair
of values in Table E.1.3. This may not warrant consideration as an outlier. It can, however,
be due to an incorrect observation or an error in recording. With reference to Example
1.30, it is interesting to note that if one changes the first BOD value of Table E.1.3, from
2.27 to 2.77, the correlation coefficient decreases from –0.90 to –0.92.

1.4.3 Q-Q plots

Quantiles representing two attributes or phenomena that are considered to be associated
may be compared using a Q-Q plot. Here one plots the quantiles of one data set against
the corresponding quantiles of another set as a means of comparing their probability
distributions. One proceeds initially with the ranking and calculation of cumulative relative
frequencies for a quantile plot for each set of data (as a prerequisite to drawing Fig. 1.1.6,
for example). The two quantile plots are then associated graphically by plotting values of
data with equal cumulative relative frequencies. In this type of diagram the limiting case,
in which the distributions differ only with respect to location and scale, is represented by
a straight line. The manner in which the plot departs from linearity indicates other types
of difference between the two distributions.

When one quantile function represents a theoretical distribution, the Q-Q plot becomes
a probability plot. This is a very useful diagram adopted in practice initially by a civil
engineer, R. W. Powell in 1943. The probability plot may be considered to be an extension
of the box plot, because all the quantiles are used in this method of comparing empirical
and theoretical distributions.15

15 Details of this method are given in Section 5.8.
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Fig. 1.4.3 Q-Q plot of concrete test data from Table E.1.2.

Example 1.31. Concrete test. The distributions of the concrete strengths and densities listed
in Table E.1.2 are to be compared using a Q-Q plot. For this purpose the ranked data of Table
1.2.1 are used to obtain the cumulative relative frequencies for each item of data in the
sample of concrete strengths and the sample of concrete densities. Then a Q-Q plot is drawn
by associating data of equal cumulative frequencies. When sample sizes are the same, such
as in the case of the data used here, one can proceed directly to the Q-Q plot; in other cases
one calculates the quantiles of the smaller sample and then interpolates, correspondingly, the
quantiles for the larger sample.

There are apparent similarities in the distributions of strengths and densities, as shown in
Fig. 1.4.3. Although the distributions are not close, they do not seem to be divergent.

1.4.4 Summary of Section 1.4

A brief preliminary introduction is provided here on methods of investigating data observed
in pairs. This is a prelude to the formal presentations in Chapters 3 and 5 and particularly
in Chapter 6 on regression and multivariate analysis.

1.5 SUMMARY FOR CHAPTER 1

In this chapter numerous graphical methods for presenting data sets are introduced. These
include line diagrams, histograms, relative frequency polygons, cumulative relative fre-
quency diagrams, and scatter diagrams. Details of exploratory methods such as stem-and-
leaf plots and box plots are also given.

Many of the numerical summaries for reducing data in this chapter are essential for
the application of statistics and probability in engineering. Among the most important of
these statistics are the mean, standard deviation, and the coefficient of correlation. Several
sets of data are provided here as examples of random variables which engineers encounter.
One needs to interpret these and draw sensible conclusions. The graphical and numerical
methods here are a necessary first step and lead into the probabilistic methods of Chapters
2 and 3 and the verification of mathematical models in subsequent chapters.
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PROBLEMS

1.1. Earthquake records. Measurements of engineering interest have been recorded
during earthquakes in Japan and in other parts of the world since 1800. One
of the critical recordings is of apparent relative density, RDEN. After the com-
mencement of a strong earthquake, a saturated fine, loose sand undergoes vibra-
tory motion and consequently the sand may liquefy without retaining any shear
strength, thus behaving like a dense liquid. This will lead to failures in structures
supported by the liquefied sand. These are often catastrophic. The standard pen-
etration test is used to measure RDEN. Another measurement taken to estimate
the prospect of liquefaction is that of the intensity at which the ground shakes.
This is the peak surface acceleration of the soil during the earthquake, ACCEL.
The data are from J. T. Christian and W. F. Swiger (1975), J. Geotech. Eng. Div.,
Proc. ASCE, 101, GT111, 1135–1150, and are reproduced by permission of the
publisher (ASCE):

RDEN ACCEL RDEN ACCEL RDEN ACCEL
(%) (units of g) (%) (units of g) (%) (units of g)

53 0.219 30 0.138 50 0.313
64 0.219 72 0.422 44 0.224
53 0.146 90 0.556 100 0.231
64 0.146 40 0.447 65 0.334
65 0.684 50 0.547 68 0.419
55 0.611 55 0.204 78 0.352
75 0.591 50 0.170 58 0.363
72 0.522 55 0.170 80 0.291
40 0.258 75 0.192 55 0.314
58 0.250 53 0.292 100 0.377
43 0.283 70 0.299 100 0.434
32 0.419 64 0.292 52 0.350
40 0.123 53 0.225 58 0.334

Note: g denotes acceleration due to gravity (9.81 m/s2).

Compute the sample mean x̄ , standard deviation ŝ, and the coefficient of skewness,
g1, for RDEN and ACCEL. Construct stem-and-leaf plots for each set. Comment on
the distributions. Plot the scatter diagram and calculate the correlation coefficient
r . What conclusions can be reached?

1.2. Flood discharge. Annual maximum flood flows in the Po River at Pontelagoscuro,
Italy, over a 61-year period from 1918 to 1978 are given in the second column
of Table E.7.2. Compute the sample mean x̄ and standard deviation ŝ. Sketch a
histogram and the cumulative relative frequency diagram. Compute the quartiles and
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draw a box-and-whiskers plot. Comment on the distribution. Flood embankments
along the banks of the river can withstand a flow of 5000 m3/s. What is the probability
that this will be exceeded during a 12-month period?

1.3. Flood discharge. The following are the annual maximum flows in m3/s in the
Colorado River at Black Canyon for the 52-year period from 1878 to 1929:

1980 1130 3120 2120 1700 2550 8500 3260 3960 2270
1700 1570 2830 2120 2410 2550 1980 2120 2410 2410
1420 1980 2690 3260 1840 2410 1840 3120 3290 3170
1980 4960 2120 2550 4250 1980 4670 1700 2410 4550
2690 2270 5660 5950 3400 3120 2070 1470 2410 3310
3230 3090

[Adapted from E. J. Gumbel (1954), “Statistical theory of extreme values and some
practical applications,” National Bureau of Standards, Applied Mathematics Series
33, U.S. Govt. Printing Office, Washington, DC.]
Compute the mean x̄ and standard deviation ŝ. Sketch a histogram and the relative
frequency diagram. Compute the quartiles and draw a box-and-whiskers plot. How
does this distribution differ from that of Problem 1.2?

1.4. Welding joints for steel. At the University of Birmingham, England, laboratory
measurements were taken of the horizontal legs x and vertical legs y of numerous
welding joints for steel buildings. The main objective was to make the legs equal to
6 mm. A part of the results is listed below in millimeters.

x = 5.5, 5.0, 5.0, 6.0, 7.0, 5.2, 5.5, 5.5, 6.0, 6.0, 4.5, 6.0, 5.5, 7.7, 7.5, 6.0, 5.6,

5.0, 5.5, 5.5, 6.0, 6.5, 5.5, 5.0, 5.5, 5.5, 6.5, 6.5, 7.0, 5.5, 6.5, 5.5, 6.0,

6.5, 8.5, 5.0, 6.0, 6.5, 5.0, 7.0, 5.0, 5.0, 6.5, 6.5, 6.0, 4.7, 8.0, 7.0, 5.5, 7.0,

6.6, 6.5, 7.0, 6.0, 6.5, 5.0, 7.0, 7.5, 7.0, 7.0

y = 6.5, 6.5, 5.5, 7.5, 6.0, 7.0, 5.0, 8.0, 6.7, 7.8, 5.7, 6.5, 5.5, 8.0, 8.0, 6.3, 6.0,

6.0, 6.0, 5.5, 6.5, 6.0, 6.0, 6.0, 6.0, 6.5, 6.5, 6.0, 6.0, 6.5, 7.5, 7.5, 6.0, 4.5,

7.0, 7.0, 6.0, 4.0, 4.0, 7.0, 7.0, 6.5, 7.0, 5.0, 5.0, 5.7, 5.0, 5.0, 6.0, 7.0, 6.0,

7.0, 6.0, 5.5, 6.0, 4.0, 5.5, 8.0, 7.5, 6.5

The data were provided by Dr A. G. Kamtekar.
Draw a scatter diagram for these data. Draw a line through the ideal point
(x = y = 6 mm) and the origin. Draw two lines through the origin that are sym-
metrical about the first line and envelope all of the points. Comment on the results.
Draw the cumulative sum (cusum) plots,

Cxn =
n∑
i

(xi − μx ) and Cyn =
n∑
i

(yi − μy)

for n = 1, 2, . . . , 60 and μx = μy = 6. Let

dxn = Cxn −
n−1
min
i=1

[Cxi ]

and the critical limit be max(dxn) = 12 mm. Is the critical limit reached? Repeat for
the vertical legs y. [Further details of cusum plots are given by W. H. Woodalland
B. M. Adams (1993), “The statistical design of cusum charts,” Qual. Eng., Vol. 5,
No. 4, pp. 550–570; the associated control chart is the subject of Problem 5.11.]
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1.5. Frost frequency. Excessive frost can be harmful to roads. Frequencies of the number
of days of frost during April in Greenwich, England, over a 65-year period are
given by C. E. Brooks and N. Carruthers (1953), Handbook of Statistical Methods
in Hydrology, H. M. Stationary Office, London, and are listed below:

Days of frost 0 1 2 3 4 5 6 7 8 9 10
Frequency 15 11 5 11 7 6 2 3 2 1 2

Draw a line diagram of the data. Comment on the results. Compute the mean number
of days of frost in April. What is the probability of a frostfree April in a given
year? What change would you expect in the frequency distribution for a month in
midwinter?

1.6. Concrete cube test. From 28-day concrete cube tests made in England in 1990,
the following results of maximum load at failure in kilonewtons and compressive
strength in newtons per square millimeter were obtained:

Maximum load: 950, 972, 981, 895, 908, 995, 646, 987, 940, 937, 846, 947, 827,
961, 935, 956
Compressive strength: 42.25, 43.25, 43.50, 39.25, 40.25, 44.25, 28.75, 44.25, 41.75,
41.75, 38.00, 42.50, 36.75, 42.75, 42.00, 33.50

The data were supplied by Dr J. E. Ash, University of Birmingham, England.
Calculate the means x̄ , standard deviations ŝ, mean absolute deviations d , and

the coefficients of skewness g1. Draw two stem-and-leaf plots of the data. Draw a
scatter diagram and calculate the coefficient of correlation. What conclusions can
be drawn?

1.7. Timber strength. For the timber strength data of Table E.1.1 determine the follow-
ing measures of dispersion:
(a) Interquantile range, iqr
(b) Mean absolute deviation, d
(c) Gini’s mean difference, g
Compare results with the standard deviation ŝ of Table 1.2.2. Repeat these determi-
nations after deleting the zero value. Rank the measures of dispersion in increasing
order of susceptibility to the exclusion of the zero value on the basis of percentage
change.

1.8. Population growth. From past records, the population of an urban area has doubled
every 10 years. Currently, it has a population of 200,000. An engineer needs to make
an estimate of the requirements for water supply during the next 23 years. What
maximum population does one assume for the period?

1.9. Traffic speed. The following is the frequency distribution of travel times of motor-
cars on the M1 motorway from Coventry, England, to M10, St Albans, according
to a survey conducted in England (see Ph.D. thesis of A. W. Evans, University of
Birmingham, England, 1967):

Mean times (min): 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108,113, 118, 123,
128, 133, 138, 143, 148, 153, 158, 163, 168
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Corresponding frequencies: 10, 24, 109, 127, 122, 119, 97, 102, 104, 92, 68, 72,
66, 61, 36, 33, 17, 15, 10, 8, 9, 6, 7, 3
Draw the histogram. Describe the salient features. What is the likely reason for the
twin peaks? What inference can be made from the mean time interval between the
two peaks?

1.10. Average speed. On a certain country road that runs from a coastal town to a village
in the mountains, the average speed of motorcars is 80 km/h uphill and 100 km/h
downhill. What is the average speed for a journey from the town to the village and
back?

1.11. Annual rainfall. Catchment-averaged annual rainfall in the Po River basin of Italy
for the 61-year period from 1918 to 1978 are given in the penultimate column of
Table E.7.2. Draw a stem-and-leaf plot and a box plot of the data. Comment on the
type of distribution.

1.12. Rock test. A contractor engaged in building part of a sewer tunnel claimed that the
rock was harder than described in his contract with a District Council in the United
Kingdom and thus more work was required to construct the tunnel than anticipated.
An independent company made tests to verify the contractor’s claim. Among these
were uniaxial compressive strengths, of which 123 specimens are listed here, in
meganewtons per square meter.

2.40, 22.08, 16.80, 4.80, 21.36, 9.12, 9.36, 3.60, 15.36, 15.60, 6.24, 9.84, 16.08,
30.00, 20.40, 12.96, 19.20, 10.32, 15.84, 62.40, 40.80, 4.80, 7.20, 8.88, 14.40,
14.88, 5.76, 18.72, 12.48, 11.04, 8.64, 19.20, 8.16, 18.96, 8.64, 12.00, 14.88, 17.52,
12.48, 13.44, 9.36, 11.28, 8.88, 15.12, 9.36, 17.28, 26.40, 4.32, 11.28, 7.92, 13.92,
11.76, 9.60, 8.40, 9.84, 27.60, 6.00, 14.40, 8.88, 17.04, 12.48, 9.84, 10.80, 12.24,
12.00, 13.20, 11.28, 11.76, 11.76, 8.00, 9.36, 15.12, 11.52, 16.08, 10.80, 14.64,
8.40, 13.44, 10.56, 9.12, 13.44, 12.72, 13.68, 11.28, 5.52, 11.04, 12.00, 7.20, 8.64,
11.76, 8.64, 7.68, 7.68, 13.92, 6.48, 7.20, 7.92, 9.60, 8.64, 9.12, 12.96, 9.36, 14.64,
9.12, 8.88, 20.40, 17.28, 8.64, 11.76, 7.92, 7.68, 11.04, 12.48, 14.40, 9.84, 9.12,
8.40, 12.00, 4.80, 12.72, 9.60, 8.64, 9.84

Draw histograms using Eqs. (1.1.1) and (1.1.2) for the class widths. What do you no-
tice about the histograms in general? Draw a box-and-whiskers plot. What evidence
is there to support the contractor’s claim?

1.13. Soil erosion. Measurements taken on farmlands of the amounts of soil washed away
by erosion suggest a relationship with flow rates. The following results are taken
from G. R. Foster, W. R. Ostercamp, and L. J. Lane (1982), “Effect of discharge
rate on rill erosion,” Winter 1982 Meeting of the American Society of Agricultural
Engineers:

Flow (L/s) 0.31 0.85 1.26 2.47 3.75
Soil eroded (kg) 0.82 1.95 2.18 3.01 6.07

Draw a plot of the data. Comment on the results.

1.14. Concrete cube test. The following 28-day compressive strengths, in newtons per
square millimeter, were obtained from test results on concrete cubes in England:
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50.5, 45.8, 49.6, 47.7, 54.0, 49.4, 54.1, 53.1, 56.5, 55.2, 52.7, 52.0, 54.2, 55.2, 53.4,
51.0, 53.1, 48.5, 51.0, 58.6, 52.5, 49.5, 51.1, 48.1, 50.2, 49.3, 47.3, 52.9, 52.8, 49.5,
48.8, 53.8, 47.3, 47.7, 52.2, 45.7, 53.4, 48.5, 49.1, 43.3

The data were supplied by Dr J. E. Ash, University of Birmingham, England.
Compare these results with the compressive strengths in Table E.1.2 by drawing

back-to-back stem-and-leaf plots. For this purpose, plot the foregoing results on the
left of the stem with reference to Fig. 1.3.1 and omit the cumulative frequencies.
Comment on the differences in the distributions.

1.15. Water quality. Water quality measurements are taken daily on the River Ouse at
Clapham, England. The concentrations of chlorides and phosphates in solution,
given below in milligrams per liter, are determined over a 30-day period.

Chloride: 64.0, 66.0, 64.0, 62.0, 65.0, 64.0, 64.0, 65.0, 65.0, 67.0, 67.0, 74.0, 69.0,
68.0, 68.0, 69.0, 63.0, 68.0, 66.0, 66.0, 65.0, 64.0, 63.0, 66.0, 55.0, 69.0, 65.0, 61.0,
62.0, 62.0
Phosphate: 1.31, 1.39, 1.59, 1.68, 1.89, 1.98, 1.97, 1.99, 1.98, 2.15, 2.12, 1.90 1.92,
2.00, 1.90, 1.74, 1.81, 1.86, 1.86, 1.65, 1.58, 1.74, 1.89, 1.94, 2.07, 1.58, 1.93, 1.72,
1.73, 1.82

Compare the coefficients of variation v . Draw a scatter diagram and compute the
correlation coefficient r . Comment on the results. Do you see any role in this
association for predictive purposes?

1.16. Timber strength. From the timber strength data of Table 1.1.3, compute the 3%
trimmed mean by omitting 3% of the observations from the highest and the lowest
extremities of the ranked data. Compute the standard deviation ŝ and the coefficients
of skewness g1 and kurtosis g2. Compare with the results for the full sample (as
given in Table 1.2.2).

1.17. Concrete beam. Joist-hanger tests carried out at the University of Birmingham,
England, on concrete beams gave observations of deflections in millimeters and
failure load in kilograms. The following results pertain to 75 mm × 150 mm hangers
on which timber joists rest:

Failure load: 1903, 1665, 1903, 1991, 2229, 1910, 2025, 1991, 1882, 2032, 1896,
1346
Deflection: 0.69, 0.67, 0.80, 0.50, 0.74, 0.78, 0.57, 0.91, 0.54, 0.50, 0.97, 0.62

Determine by drawing a scatter diagram and computing the correlation coefficients
whether there is any association between the two variables. Discuss your results.

1.18. Hurricane frequency. Hurricane damage is of great concern to civil engineers.
The frequencies of hurricanes affecting the east coast of the United States each
year during a period of 69 years are given as follows by H. C. S. Thom (1966),
Some Methods of Climatological Analysis, World Meteorological Organisation,
Geneva:

Number of hurricanes 0 1 2 3 4 5 6 7 8 9
Frequency 1 6 10 16 19 5 7 3 1 1
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Draw a line diagram and comment on its form. Discuss differences or similarities
between this diagram and Fig. 1.1.1.

1.19. Air pollution. On 13 April 1994, the following concentration of pollutants were
recorded at eight stations of the monitoring system for pollution control located in
the downtown area of Milan, Italy:

Station

Aquileia Cenisio Juvara Liguria Marche Senato Verziere Zavattari

NO2 (μg/m3) 130 130 115 120 135 142 90 116
CO (mg/m3) 2.9 4.4 3.6 4.1 3.3 5.7 4.8 7.3

Compare the coefficients of variation v of the pollutants and determine their corre-
lation r .

1.20. Storm rainfall. The analysis of storm data is essential for predicting flood hazards
in urban areas. Annual maximum rainfall depths (in millimeters) recorded at Genoa
University in Italy, for durations varying from 5 minutes to 3 hours, are presented
here for the years 1974–1987.

Duration (min)

Year 5 10 20 30 40 50 60 120 180

1974 12.1 19.5 28.8 30.5 32.4 35.5 38.7 48.0 51.6
1975 10.1 14.9 26.7 31.2 34.7 38.2 40.2 55.0 56.0
1976 17.9 20.0 31.1 37.2 41.1 51.0 55.7 67.1 80.6
1977 20.0 32.6 52.6 72.4 90.1 108.8 118.9 146.5 157.3
1978 5.1 13.6 16.0 21.3 24.1 24.6 25.0 40.7 49.9
1979 20.5 26.1 36.3 46.1 49.3 50.3 55.6 65.2 90.1
1980 10.0 15.7 20.9 25.0 30.5 38.0 40.1 58.0 63.8
1981 12.0 27.9 47.9 56.0 70.0 80.0 89.4 106.9 114.2
1982 10.0 14.4 20.0 23.3 25.1 26.4 27.2 34.3 41.2
1983 10.0 12.1 17.3 19.2 22.1 27.3 32.7 54.4 66.5
1984 20.1 32.8 60.0 65.7 76.1 92.8 105.7 122.3 122.3
1985 7.6 8.1 13.0 16.5 21.6 25.3 25.3 27.0 32.3
1986 8.7 11.7 20.0 22.9 26.1 26.3 27.6 41.1 56.7
1987 24.6 36.7 56.7 73.9 93.9 110.1 128.5 180.8 188.7

Compute the mean x̄ and standard deviation ŝ and coefficient of skewness g1 for
each duration. Are there some regularities in the growth of these statistics with
increasing duration? Comment on the results and the physical relevance to storm
characteristics.

1.21. Carbon dioxide. The records of atmospheric trace gases are used in the study
of global climatic changes. Monthly carbon dioxide concentrations (in parts per
million in volume) recorded at Mount Cimone, Italy, from 1980 to 1988 are given
here.
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Month

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1980 340.87 339.83 342.27 342.51 338.27 335.52 330.14 328.81 331.17 335.03 339.05 340.43
1981 341.47 343.11 342.39 342.51 339.49 335.28 330.77 330.30 333.55 336.80 339.41 343.18
1982 341.70 344.38 345.68 345.70 340.80 336.66 334.65 332.40 335.15 339.26 341.19 345.18
1983 342.38 346.18 345.00 344.24 342.32 338.34 336.03 335.00 336.57 339.86 343.97 345.61
1984 346.32 349.44 351.33 350.50 346.43 344.35 346.29 335.19 337.59 342.26 344.88 346.91
1985 349.92 348.17 350.62 350.61 345.93 341.43 337.67 337.16 339.40 344.07 349.49 347.40
1986 349.41 351.41 352.29 350.75 348.37 342.96 337.22 338.53 340.90 346.28 348.95 350.52
1987 351.94 353.75 354.79 352.61 350.39 347.38 341.64 341.64 342.19 345.60 350.39 352.36
1988 353.13 355.02 354.96 354.51 352.20 346.71 342.60 344.60 343.66 348.99 352.42 353.27

Compute the mean x̄ and standard deviation ŝ for each year (by rows) and for each
month (by columns). Because the temporal evolution of the annual mean indicates
that carbon dioxide increases (probably resulting in global warming), compute the
annual rate of increase. Comment on the results.

1.22. Historical records of earthquake intensity. Catalogo dei terremoti italiani
dall’anno 1000 al 1980 (“Catalog of Italian earthquakes from year 1000 to 1980”)
was edited by D. Postpischl in 1985, and is available through the National Research
Council of Italy. This directory contains all of the available historical information
on earthquakes that occurred in Italy during the past (nearly) 1000 years. It also
includes values of earthquake intensity in terms of the Mercalli–Canconi–Sieber
(MCS) index. The following table gives the values of MCS intensity for the city of
Rome:

MCS intensity

Century 2 3 4 5 6 7 Total

XI 2 2
XII 1 1
XIII 1 1
XIV 0
XV 1 1 1 3
XVI 0
XVII 1 1
XVIII 7 4 2 2 15
XIX 110 125 50 14 1 1 301
XX 3 2 5

Total 113 132 56 22 4 2 329

Draw the line diagram for the whole data and for those recorded in each century.
Compare the data recorded in the eighteenth century with those recorded in the
other centuries.

1.23. Sea waves. Because of scarcity of records, the characteristics of sea waves are
often derived from other climatological data. For the purpose, the SMB method
(named after Sverdrup, Munk, and Bretschneider) is widely used in engineering
practice [see U.S. Army Corps of Engineers (1977), Shore Protection Manual,
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Vol. 1, Coastal Engineering Research Center, Washington, DC]. Liberatore and
Rosso used this model to simulate sea waves in the upper Adriatic Sea [Liberatore,
G., and R. Rosso (1983). “Sulla valutazione stocastica dell’onda di progetto in base
alla ricostruzione dello stato del mare: un esempio di applicazione per l’Adriatico
centro-meridionale,” Giornale del Genio Civile, Vol. 1–3, pp. 3–25]. They investi-
gated two different strategies for model calibration, called “no. 1” and “no. 2” in the
table presented here. The table also includes the observed and the simulated values
of the height of the highest sea wave and of its period for measurements taken from
August 1977 to September 1978.

Simulated values

Measured values Calibration strategy no. 1 Calibration strategy no. 2

Height (m) Period (s) Height (m) Period (s) Height (m) Period (s)

2.26 6.1 1.81 5.4 1.54 5.8
3.10 4.3 2.93 6.8 2.54 6.4
3.22 5.7 3.24 7.2 2.80 6.7
3.84 7.7 3.18 7.1 2.69 6.6
2.56 5.3 2.74 6.6 2.32 6.1
2.74 5.7 3.49 7.4 3.00 6.9
2.28 4.9 2.12 5.8 1.80 5.4
3.88 6.7 5.10 9.0 4.43 8.4
2.49 5.0 2.14 5.8 1.81 5.4
4.22 6.9 4.45 8.8 3.77 7.7
2.01 5.0 2.57 6.4 2.19 5.9
2.77 5.9 2.68 6.5 2.27 6.0
3.61 6.5 3.86 7.8 3.36 7.3
3.51 7.4 4.02 8.0 3.51 7.5
2.52 5.0 3.39 7.3 2.95 6.9
2.12 5.1 2.61 6.5 2.21 6.0
2.73 6.5 2.22 6.0 1.88 5.5
3.30 5.4 4.05 8.0 3.49 7.5

Draw a scatter diagram to compare the observed and simulated values of wave
heights and periods. Compute the correlation coefficients r . Compute the deviations
of the simulated data from the observed data, and find the mean x̄1, standard deviation
ŝ1, and coefficient of variation v of these deviations. Do these results indicate which
of the two investigated strategies provides the better representation of sea waves
from climatological data?

1.24. Surveying. A triangulated network is used to determine the position of three points
in space, denoted by u1 ≡ (x1, y1), u2 ≡ (x2, y2), and u3 ≡ (x3, y3), by measuring
their mutual distances and their distances from two reference points, uA ≡ (xA, yA)
and uB ≡ (xB , yB), as shown in Fig. 1.P1.
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Fig. 1.P1 Survey configuration.

The Cartesian coordinates of the reference points are xA = yA = 0, xB = 92, and
yB = 40 m. The table of the measured distances is given next.

uA uB u1 u2 u3

uA 0 100 50 71 92
uB 100 0 86 70 40
u1 50 86 0 26 99
u2 71 70 26 0 93
u3 92 40 99 93 0

Using appropriate trigonometric methods, find the average location and coefficients
of variation of the coordinates of point u1 ≡ (x1, y1).
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Chapter 2

Basic Probability Concepts

Engineering investigations involving natural phenomena as well as systems devised by
humans exhibit scatter and variability as illustrated in Chapter 1. The resulting uncertainty
that the engineer encounters is a major problem. By using the theory of probability, one
can incorporate this uncertainty into the analysis and thus make rational decisions. The
main focus of this chapter is to define the concept of probability and to discuss some of
the associated axioms and basic properties.

Describing and predicting events in the real world can be approached by constructing
mathematical models to describe practical events. For example, Newton’s second law of
motion states that when an object is subject to a force F it moves with an acceleration a
proportional to F . The mathematical model can be written as F = ma, which expresses
the relationship between the variables F , a, and the mass m. To use this equation to predict
F , the force of a moving object in the gravitational field, as a function of the acceleration
due to gravity, g, one must know the mass m of the object. Although this law (and its
mathematical model) describes the motion of an object, it cannot be proved in a logical
sense, but it can be verified experimentally.

Engineering problems sometimes require more complex models involving differential
equations, the solution of which gives a prediction of specific values of some variables
for known values of other variables. In all such cases, the outcome of an experiment
is completely and precisely determined from the equations of the model, given some
initial configuration of the variables. However, the hypothesis adopted and the set of
differential equations can be affected by uncertainty arising from the natural variability
of the independent variables or the inadequacy of model equations caused by incomplete
knowledge or intractable mathematics.1

The engineer’s use of probability theory is aimed at constructing mathematical models to
describe events in the real world, as in the above case. The engineer must therefore consider
the possibility of the occurrence of events that may influence experimental outcomes and
estimate their likelihood. It might be desirable, for instance, to find a precise law to
describe flood discharges at a given river site. The resulting mathematical model would
be very complex, if it could be formulated at all, for it is not feasible to write a set of
equations capable of predicting the number of times the river flow will exceed a specified
threshold level in a given year. On the other hand, we can construct a probability model
that, although not helpful in predicting the occurrence and magnitude of an individual
flood, is quite useful in dealing with the flood regime characterizing that site. Specifically,
one can postulate a number p, in the range zero to one, which represents the probability
that a flood exceeding a given level occurs in a given year.2 Like Newton’s second law

1 In some cases, the prototype is described by nonlinear differential equations yielding unpredictable dependent
variables because of chaotic behavior. In a chaotic system, given some configuration of elements, the outcome of
any experiment is unpredictable from the equations of the model owing to its sensitivity to the initial conditions;
see Gleick (1987) and Lorenz (1993).
2 A parallel scheme of modeling uncertainty is possible through the fuzzy set theory of Zadeh (1965). This arises
from the generalization of the mathematical concept of an ordinary set (as defined shortly). The application of

38
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of motion, this model is not provable from first principles; but if one observes river flows
over a large number of years, one can ascertain the accuracy of the postulated p.

2.1 RANDOM EVENTS

Before introducing probability theory, let us define the mathematical concept of a random
event and some related concepts such as sample space and event space. We shall also
consider three of the ways in which events in a sample space are related and the use of
Venn diagrams to illustrate relationships.

2.1.1 Sample space and events

Random events can be best described by assuming that an experiment has been performed
and a series of observations taken under uniform conditions, so that there is no bias
toward any particular result. Consider the determination of the strengths of concrete given
in Table E.1.2. Because an individual outcome of this experiment cannot be predicted,
the collection of all possible outcomes must initially be considered. It is convenient to
represent this collection as a set, called the sample space or value space or population
or universe. In a statistical sense, the set consists of events (as formally defined shortly)
representing the phenomenon studied, and the outcomes are the actual values taken. The
sample space is denoted by � and comprises a set of points, called sample points; each of
the points is associated with one or more distinguishable events.

The term space is used to define the total collection of elements that are the results
of an experiment but the term has much wider connotations than outcomes of a physical
experiment. In set theory, space means the collection of all objects of interest in a given
discussion. Use of the term sample arises from the uncertainty associated with the results
of the experiment.

Definition: Sample space. The sample space, denoted by �, is the collection of all possible
events arising from a conceptual experiment or from an operation that involves chance.

Example 2.1. Reservoir storage. The amount of water S stored in a reservoir varies in
time from 0 to c, the active reservoir capacity, owing to the combined effect of inflows and
outflows (see Fig. 2.1.1).

The sample space of the experiment measured as the volume of water in the reservoir at
a given time can be defined as � ≡ {S : 0 ≤ S < c}. This is a set of sample points in the
interval [0, c).

Although � signifies a continuous sample space with an infinite number of points, one
can also use a discrete representation of � by considering a finite number of states.3 How
one defines the discrete sample space depends on the judgement of the engineer. It is

fuzzy logic is based on a membership function with the same range as p. See the exposition by McNeill and
Freiberger (1993). It has, however, aroused controversy among some statisticians and control engineers. Besides,
a subjectively chosen optimization function is sometimes used in calibration; see, for instance, Chang and Chen
(1998). Nevertheless, it has had wide acceptance and many highly successful engineering applications, as in
automobile and other vehicle subsystems, washing machines, and cameras; see also Ross (2004).

Alternatively, Pawlak (1991) proposed a mathematical rough set theory to deal with a specific type of uncer-
tainty; this leads to decision tables that expresse information in the data.
3 A discrete sample space can have an infinite (countable) number of points in a theoretical representation.
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Fig. 2.1.1 Storage in a multipurpose reservoir.

mainly related to the specific problem and the use made of the model and is constrained
by the resolution of the instrument, such as a water level indicator in a reservoir, used in
measurements.

An event is a collection of sample points in the sample space � of an experiment. An
event can consist of a single sample point called a simple or elementary event, or it can be
made up of two or more sample points known as a compound event.

Definition: Event. An event (denoted by a capital letter A) is a subset of the sample space
�.

Example 2.2. Reservoir storage. It is convenient to define reservoir storage S by a sequence
of k states ω1, ω2, . . . , ωk . The sample space is correspondingly given by the set

� ≡ {Ai , with i = 1, 2, . . . , k},
where Ai ≡ {S: (i − 1)c/k ≤ S < ic/k}, i = 1, 2, . . . , k is a set of events.

Consider four states of a reservoir: ωi ≡ {S: (i − 1)c/4 ≤ S < ic/4}, i = 1, . . . , 4, as
shown in Fig. 2.1.2.

The event A defined as A = ω4 ≡ {S: 3c/4 ≤ S < c} is a simple event, because it cor-
responds with a single sample point (for this discretization). On the other hand, the event
B defined as B = ω1 + ω2 ≡ {S: 0 ≤ S < c/2} is a compound event, because it comprises
the collection of two simple events, namely A1 = ω1 ≡ {S: 0 ≤ S < c/4} and A2 = ω2 ≡
{S: c/4 ≤ S < 2c/4}. Other possible events are shown by the pie charts.

Further examples of sample space and events are shown in Figs. 2.1.3 to 2.1.5.
Because an event A is defined as a subset of the sample space �, this subset is contained

in �, that is, A ⊂ �. The complement Ac of an event A consists of all those outcomes of �

that are not included in the event A. This event can be also interpreted as the nonoccurrence
of the event A.

Example 2.3. Reservoir storage. Let � ≡ {S: 0 ≤ S < c} be the continuous sample space
associated with the volume of water stored in a multipurpose reservoir at a certain time.
Because mitigation of the downstream flood hazard is usually one of the objectives for
construction of a reservoir, a portion of its capacity must be left empty at the beginning of
the flood season. Let w < c denote the residual reservoir capacity available for flood control
storage. At the beginning of the flood season, the reservoir manager must investigate the event
A ≡ {S: 0 ≤ S ≤ c − w}, which corresponds to the availability of sufficient flood storage in
the reservoir (see Fig. 2.1.1). The complement of A is the event Ac ≡ {S: c − w < S < c}
which signifies that the reservoir has insufficient residual capacity to meet the flood control
reservation. Both A and Ac are compound events in relation to Fig. 2.1.2.
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Fig. 2.1.2 (a) Reservoir storage as represented by four states, ω1, ω2, ω3, and ω4. (b) The widths
of the rectangles on the extreme right are proportional to the relative frequencies of these states. (c)
The events indicated in the text are represented by rectangles at the center on the right with areas
proportional to the relative frequencies of these events. (d) The pie charts display all possible
events (shaded) and also the empty state (unshaded). For example, A = A4 means that 3c/4
≤ S < c in Example 2.2.

2.1.2 The null event, intersection, and union

There are many ways in which events in a sample space are related. Firstly, two events
A1 and A2 are mutually exclusive or disjoint if the occurrence of one event excludes the
occurrence of the other. This means that none of the points contained in A1 is contained
in A2 and vice versa. Together A1 and A2 constitute the null event, denoted by A1 A2 =
A1 ∩ A2 = Ø. For example, the events A ≡ {S: 3c/4 ≤ S < c} and B ≡ {S: 0 ≤ S < c/2}
in Example 2.2 are mutually exclusive. One can extend the notion to more than two events.
It is also clear that all simple events are mutually exclusive.

Secondly, two events A1 and A2 that are not mutually exclusive have some common
sample points that constitute their intersection. This is denoted by A1 ∩ A2 or A1 A2 (but
A1 ∩ A2 �= Ø). We note, for instance, from Example 2.2 and Fig. 2.1.2 that the intersection
A ∩ Bc is the event {S: 3c/4 ≤ S < c}, that is A4, corresponding to state ω4.

Thirdly, the union of two events A1 and A2 represent their joint occurrence, and it
comprises the event containing all the sample points in A1 and A2. This is denoted by
a ∪ sign between A1 and A2, that is, A1 ∪ A2 or simply A1 + A2. For instance, from
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Fig. 2.1.3 (a) Sketch of a rigid beam of length L loaded with a concentrated load P which is
located at a random distance x from the left joint. (b) Sample space of reactions RA and RB . (c)
Sample space of moments MA and MB . The simple event C corresponds to the location of P
shown in (a). The compound events B1 corresponding to location 0 ≤ x ≤ L/2, and B2, with
L/2 < x ≤ L , are mutually exclusive and collectively exhaustive.

Example 2.2 and Fig. 2.1.2 the union A1 ∪ A2 is the event {S: 0 ≤ S < c/2}, that is, B.
The null event, intersection, and union are three important relationships between events.
Note that the intersection is equivalent to the “and” logical statement or function, whereas
the union is equivalent to “and/or.”

Definition: Mutually exclusive events, intersection, and union. Let A1 and A2 denote
two events of a sample space �.

(1) A1 and A2 are mutually exclusive if the occurrence of one event excludes the other;
A1 and A2 comprise the null set, that is, A1 A2 = A1 ∩ A2 = Ø.

(2) The common points, if any, of two events A1 and A2 constitute the intersection,
denoted by A1 ∩ A2 or A1 A2.

(3) The union of two events A1 and A2 represent their joint or common occurrence. The
combined event is denoted by A1 ∪ A2 or A1 + A2.

The sample space� can be described by using a set of mutually exclusive and collectively
exhaustive events, say, B1, B2, . . . , Bi , . . . . For example, if B = A1 + A2 and D = A3 +
A4, the sample space of the discrete representation of reservoir storage (Example 2.2) can
be given by � = B + D. Since B D = Ø, we can define B and D as a set of mutually
exclusive and collectively exhaustive events.

Further examples of mutually exclusive and collectively exhaustive events are shown
in Figs. 2.1.3 and 2.1.5.
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Fig. 2.1.4 (a) Pumping station and pipelines connecting two tanks. The station has two parallel
pumps P1 and P2 serially connected to a third pump P3. (b) Let Ni = 1 if the i th pump fails, and
Ni = 0 otherwise. The sample space of the experiment to verify system operation has the eight
simple events shown by points in the space (N1, N2, N3). System failure is given by the occurrence
of event B1 ≡ {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. The system is in operation if the
event B2 ≡ {(0, 0, 0), (0, 1, 0), (1, 0, 0)} occurs. The events B1 and B2 are mutually exclusive and
collectively exhaustive.

2.1.3 Venn diagram and event space

A collection of points in a sample space � as shown, for example, in Fig. 2.1.6 is called
a set. Figure 2.1.6 shows a sequence of Venn diagrams (named after an English cleric
and mathematician of the nineteenth century). Such diagrams provide a very useful visual
representation of sets and set operations such as the complement, union, intersection, and
other combinations. Because sample points, sample spaces, and events are sets, one can
use this type of illustration to show the events in a sample space and important relationships
among events.

The collection of all the events associated with an experiment and possible combinations
of the events is defined as the event space, and it is a set denoted by A. This set contains
all possible outcomes of the experiment included in the sample space �, as shown, for
example, by the pie charts of Fig. 2.1.2. If A is an event that has some (nonzero) chance
of occurrence, then Ac, the nonoccurrence of A, has also some chance of occurrence;
therefore, Ac is also a subset of A. Further subsets are denoted by A1 and A2 in the
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Fig. 2.1.5 (a) Two-phase pattern mosaic indicating forested (shaded) and unforested (unshaded)
pixels from a remotely sensed image. This results from areal surveys used in the determination of
land use and cover. (b) Sample space of the experiment of determining the numbers of forested N f

and unforested Nu pixels. The simple event A corresponds to the outcome displayed in (a). (c) The
events B1 ≡ {N f = 0 and Nu = 16} and B2 ≡ {0 < N f ≤ 16 and Nu < 16} are mutually
exclusive and collectively exhaustive.
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Fig. 2.1.6 Venn diagrams representing the sample space and different random events.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:13

Basic Probability Concepts 45

following definition. One can formally define any collection of events A with Properties
1 to 3, given in the following definition, as an algebra of events, which is characterized
by the further property that A also includes the empty set, Ø (Property 5). Moreover, the
intersection of two events, A1 and A2 (which, as noted, is the event consisting of those
outcomes of � that are contained in both A1 and A2) is also an event of A (Property 4).

Definition: Event space. The collection of all possible events associated with a given ex-
periment is defined as the event space and is denoted by A. This space is characterized by the
following properties:

(1) � ∈ A.
(2) If A ∈ A, then Ac ∈ A.
(3) If A1 ∈ A and A2 ∈ A, then A1 + A2 ∈ A.

Also, it follows from the foregoing that

(4) If A1 ∈ A and A2 ∈ A, then A1 A2 ∈ A.
(5) If Ø ∈ A, then Ac ∈ A.

One can see that the concept of event space is more complex than that of sample space.
Whereas � is the set representing all possible outcomes of an experiment, the event space
A is a special set that contains �, as well as the events that can be defined by combining
the outcomes of that experiment. In Example 2.2, for instance, the event space is given by

A ≡ {A1, A2, A3, A4, A1 + A2, A2 + A3, A3 + A4,

A1 + A2 + A3, A2 + A3 + A4, A1 + A2 + A3 + A4, Ø},
as shown in Fig. 2.1.2d using a pie chart representation. Because the algebra of events is
analogous to areas on a plane, Venn diagrams such as those of Fig. 2.1.6 are most helpful
for interpretation.

Example 2.4. Tipping bucket rain gauge. Consider the tipping bucket rain gauge shown
in Fig. 2.1.7.

The experiment has only two possible outcomes: A ≡ {the bucket is connected with switch
a} and B ≡ {the bucket is connected with switch b}. Therefore, the sample space of this
experiment is � ≡ {A, B}. This constitutes the population for this sample space. The events
which can be defined from � are the elementary events A and B, their complements Ac = B
and Bc = A, their union A + B, and its complement (A + B)c. Therefore, one has

A ≡ {A, B, A + B, (A + B)c}.
Both the sample space � = A + B and its complement �c = (A + B)c are events contained
in A.

a b

A

B

A

B

A

B

A

B

B = A c

A = B c

Ω

A + B = Ω

(A + B )  =c c

Fig. 2.1.7 Conceptual diagram of a tipping bucket rain gauge (left) and Venn diagrams (right)
showing the events constituting the event space.
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The union and intersection of events are said to be associative or distributive. The
interiors of rectangles A and B shown in Fig. 2.1.6b and 2.1.6c, respectively, represent
two simple events. The point ω represents an outcome of the event A. The union A + B
and intersection AB are seen in Fig. 2.1.6d and 2.1.6e, respectively. Figure 2.1.6 f and
2.1.6g show events such as Ac B and ABc. Event C , which intersects A and B, is shown
in Fig. 2.1.6h. The compound events of Fig. 2.1.6i and 2.1.6 j are, respectively,

(A + B) + C = A + (B + C), that is, (A ∪ B) ∪ C = A ∪ (B ∪ C)

and

(AB)C = A(BC), that is, (A ∩ B) ∩ C = A ∩ (B ∩ C).

These events are said to be associative, because they involve, respectively, either an addi-
tion or a multiplication of simple events. On the other hand, the compound events

(A + B)C = AC + BC, that is, (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

and

AB + C = (A + C)(B + C), that is, (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C),

presented in Fig. 2.1.6k and 2.1.6l, respectively, are distributive. This is because they
arise from the addition and multiplication of simple events. The rules are equivalent
to those governing the addition and multiplication of numbers, so that the axioms of
conventional algebra apply to operations of sets and events. By using these properties, one
can demonstrate that all the events that can be obtained by these operational rules are sets
of the event space A.

Example 2.5. Reservoir storage. Let � ≡ {S: 0 ≤ S < c} denote the continuous sample
space associated with the volume stored in a reservoir at the end of the dry season. Let A
and B be two events defined as A ≡ {S: 0 ≤ S < c/3} and B ≡ {S: c/4 ≤ S < c/2}. Both
AB ≡ {S: c/4 ≤ S < c/3} and A + B ≡ {S: 0 ≤ S < c/2} are in the event space A, which is
defined as A ≡ {S: x ≤ S < y} with 0 ≤ x ≤ y < c for any pair of x and y in [0, c). Consider
another event of A, say C ≡ {S: c/5 ≤ S < 3c/5}. From the algebra of events it will be
noted that the event (A + B)C = AC + BC corresponds with {S: c/5 ≤ S < c/2}. Also, the
event defined as AB + C = (A + C)(B + C) corresponds with {S: c/5 ≤ S < 3c/5}, which
is equivalent to event C .

Example 2.6. Flood occurrence. Consider the number of floods, N , occurring in a year
at a gauging station given in Table 1.1.1. Since an upper bound to annual flood occurrences
cannot be established on a physical basis, one must assume that the possible outcomes of this
experiment are the positive integer numbers including zero, that is, � ≡ {N : 0 ≤ N < ∞,
with N an integer value}. Let A ≡ {N : N = 0} and B ≡ {N : N > 0}. These two events de-
scribe the nonoccurrence and occurrence, respectively, of at least one destructive flood in a
year and are therefore mutually exclusive and exhaustive. To determine the likelihood with
which the events A and B can occur is a fundamental problem in the assessment of flood risk
at a river site.

Many engineering problems involve data from joint observations. For instance, in Sec-
tion 1.4 concurrent observations of dissolved oxygen and biochemical oxygen demand in
the water were investigated, because these two variables measuring water quality are typi-
cally observed simultaneously when investigating river pollution. Other examples of joint
observations are compressive strength and density of concrete, as seen in Chapter 1;
intensity and duration of storm rainfall at a recording rain gauge; wind speed and
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direction; period and height of sea waves; strength and settlement of a loaded beam;
hourly numbers of cars and trucks in a highway; and the numbers of cars and their average
velocities. All these experiments require a two-dimensional sample space. Depending on
the experiment, this sample space can be either continuous (for example, wind speed and
direction) or discrete (for example, paired numbers of cars and trucks), or it can also be
discrete-continuous (for example, number of cars and the average velocity). Because this
argument can be extended to any dimension, one can introduce a multidimensional sample
space to describe experiments involving several variables.

Example 2.7. Number of rainy days and total rainfall. In a given location storm occur-
rences are random, because meteorological phenomena are such that one cannot predict the
occurrence and intensity over a future time horizon. For irrigation purposes, one is interested
in predicting the number of rainy days in a period of, say, 10 days, and the total amount of
rainfall delivered during that period. The problem can be represented as a random experiment
with sample space

� ≡ {(i, x): i = 0, 1, 2, 3, . . . , 10; and 0 ≤ x},
where i denotes the number of rainy days. In this example x represents the total rainfall
in millimeters in Milan, Italy, during the period September 11–20, in a year as shown in
Fig. 2.1.8.

A sample point of � is given by two numerical values, the first of which indicates the
integer number of rainy days i and the second number represents the total rainfall depth x .
For instance, the farmers of Castle Park, Milan, know that if the number of rainy days is
not less than four and the total rainfall during the period is in excess of 20 mm, irrigation of
grassland is not required. Accordingly, the random event

A ≡ {(i, x): i > 3, and x > 20}
is of interest to them.

The set of all possible events is the event space A, which contains both �, the sure (certain)
event, and Ø = �c, the null (impossible) event. It also contains the complement of A, that is,
the set

Ac ≡ {(i, x): i < 4, and x ≤ 20},
which corresponds to the event that irrigating is needed. Two disjoint or mutually exclusive
events describe two different circumstances, which cannot occur simultaneously. For instance,
it is clear that events

B ≡ {(i, x): 3 ≤ i < 5, and x ≥ 10},
and

C ≡ {(i, x): 1 ≤ i < 3, and 2 ≤ x < 10}
are mutually exclusive. In this case, BC = Ø. Because of Property 3 in the definition of event
space, events such as

A + B ≡ {(i, x): i > 2, and x ≥ 10}
and

B + C ≡ {(i, x): 1 ≤ i < 5, and 2 ≤ x}
are also part of the algebra. Because of Property 4 the same reasoning applies to the set

AB ≡ {(i, x): i = 4, and x > 20},
which describes the occurrence of 4 rainy days with more than 20 mm of rainfall over Milan
during this period.
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Fig. 2.1.8 Sample space and events representing rainy days and total rainfall in Milan during the
period September 11–20. Event B, for example, denotes 3 or 4 rainy days with a total rainfall in
the range 10–40 mm.

Quite often an engineer is interested in the possible outcomes of an experiment given
that some event has occurred; the set of events associated with an event, say, A, can be
considered as a new, reduced sample space. That is, by invoking the condition that event
A has occurred one automatically restricts the sample points to the set representing A. For
example, if an offshore engineer is interested in sea waves exceeding 2 m in height and
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Fig. 2.1.9 Two-dimensional sample space of the paired numbers of cars Nc and trucks Nt that
can be accommodated in a small ferry with a maximum loading capacity of six cars and two
trucks, where one truck is equivalent to three cars. The event B ≡ {(Nc, Nt ):Nc > 0, Nt > 0}
corresponds to the conditional sample space when the ferry carries both cars and trucks. The
maximum load the ferry can take is the equivalent of twelve cars.

direction ranging from 25 to 120◦, the original two-dimensional sample space given by
� ≡ {0◦ ≤ θ ≤ 360◦, h > 0} is reduced to the subset {25◦ ≤ θ ≤ 120◦, h > 2}. Although
the definition of a primary or a conditional sample space is often a matter of convenience,
the notion of conditional sample space is essential in many applications. This concept will
be applied when dealing with conditional probabilities in the next section.

Some examples of two-dimensional and conditional sample space are shown in Figs.
2.1.9 to 2.1.11.

2.1.4 Summary of Section 2.1

The sample space and event space, introduced here, are two of the basic concepts in
probability theory. We also discuss the null event, intersection, and union and show how
Venn diagrams are used.
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Fig. 2.1.10 (a) Average storm intensity, � , and duration, τ , from a record of rainfall rate at a
point in space. (b) Two-dimensional sample space � of the duration and intensity of a storm. The
simple event A corresponds to the outcome displayed in (a). (c) The event B ≡ {(τ, � ): τ� > h}
corresponds to the conditional sample space representing the storms with rainfall depth exceeding
a value of h.
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Fig. 2.1.11 (a) Two-dimensional sample space of the number Nc of cars per minute and the
average velocity Vc on a road, where NcVc ≤ a constant. (b) Conditional sample space with the
constraint that the speed limit V0 is not exceeded, that is, Vc ≤ V0.

2.2 MEASURES OF PROBABILITY

In this section we discuss different aspects of probability. Axioms, the rules of addition and
multiplication and independence are presented. The total probability and Bayes’ theorems
follow.

2.2.1 Interpretations of probability

Probability theory arose as a branch of mathematics dealing with the analysis of certain
games of chance. The classical definition of probability is based on the results of a random
experiment (such as tossing a coin or drawing a card from a pack). If this experiment can
result in n mutually exclusive and equally likely outcomes and if n A of these outcomes
have an attribute A, then the probability of A is the fraction n A/n. For example, if a
card is drawn from an ordinary deck of playing cards, there are 52 possible outcomes
that are mutually exclusive since two or more cards are not drawn simultaneously. If the
deck and game are fair (that is, the pack is well shuffled), these 52 outcomes are equally
likely, which means that the chance of drawing a particular card is the same as that of
any other. For instance, the probability of drawing a diamond is 13/52, or 1/4, because
there are 13 cards of this suit in the pack. The probabilities so determined are called prior
probabilities because, if one states that the probability of obtaining a head in tossing a coin
is 1/2 or drawing an ace from a pack is 1/13, the result is arrived at by purely deductive
reasoning. Such results do not require for verification the tossing of a coin or the drawing
of a card from a deck. On the basis of the assumption that the coin or the pack is fair, the
probabilities are 1/2 and 1/13, respectively.

Example 2.8. Tipping bucket rain gauge. A tipping bucket rain gauge type operates by
means of a pair of buckets (see Fig. 2.1.7). After the rain has been collected through a funnel
at the top, it fills the first bucket, which then overbalances and empties, thereby directing
the flow of water into the second bucket. The alternating motion of the tipping buckets is
transmitted to a recording time device, which provides a measure of the rainfall intensity by
counting the rate of tilting. Because the two buckets are equal in volume, one knows from
prior reasoning that the probability that the water flows into either the left or the right bucket
is 1/2 in any instant. Accordingly, from Example 2.4 one can assume that events A and B
are mutually exclusive, collectively exhaustive, and equally likely, so that prior probabilities
of 1/2 can be assigned to these events.
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Nothing is said in the foregoing discussion regarding the determination of whether or
not a particular coin or deck is fair. If the coin is biased in favor of heads, for example,
the two possible outcomes of tossing that coin are not equally likely. One encounters
other difficulties with the classical approach when trying to answer questions such as the
following: What is the probability that, say, tomorrow will be a rainy day? What is the
probability that a beam will collapse under a given load? What is the probability that a
hurricane will occur in the next year? Notions such as equally likely cannot be used in this
context, as they can be in games of chance. One needs to extend the definition to bring
problems such as these into the framework of the theory.

The most widely applicable notion of probability is called posterior probability or fre-
quency. We need again to refer to an experiment. Let us assume that a series of observations
of a physical process can be made under uniform conditions. An observation is made; the
experiment is repeated under similar conditions, and another observation is taken. After
many repetitions, one comes to realize that there is an uncontrollable haphazard or random
variation. For example, a large number of concrete specimens from the same source are
tested until a state of rupture is reached. As usually happens, the critical load varies from
one test to another, and one inevitably comes to the conclusion that the individual results
are unpredictable; however, the engineer seeks some overall measure of loading capability
to evaluate the safety of a structure built with that concrete. In many cases the observations
fall into certain classes wherein the relative frequencies are quite stable. Therefore, one
can postulate a number p, called the probability of a specified event, and approximate p
by the relative frequency with which the repeated observations correspond with the event.
This can be the relative frequency, for instance, with which the rupture load falls in a
certain range after a large number of tests.

Example 2.9. Timber strength. In the previous chapter 165 timber strength values are
ranked into different classes; in one example these are characterized by a width of 5 N/mm2

(see Fig. 1.1.4 and Table 1.1.4). For example, the likelihood that the modulus of rupture
of this material ranges from 20 to 24.99 N/mm2 can be measured as the relative frequency
of the specimens that were ruptured when loads within this range were applied. We see in
Table 1.1.4 that 9 items of data out of 165 lie in the aforementioned range. Hence, we can
infer that p = 9/165, or 0.055, say, 5.5%. If one is to use this material under a maximum
design strength of 25 N/mm2, it is possible to estimate the reliability of a structure using
this timber as the probability that its modulus of rupture exceeds a value of 25 N/mm2.
Because 154 values equal or exceed 25 N/mm2, the reliability r = 154/165, or 0.933, say,
93.3%.

Both general types of probability (prior and posterior) require an experiment in which
the various outcomes can occur under somewhat uniform conditions. Examples of this are
repeated card drawing for the prior case and repeated load testing for the posterior case.
However, one should bring into the realm of probability theory situations that cannot con-
ceivably fit into the framework of repeated outcomes under somewhat similar conditions.
For example, what is the probability that a freeway or highway system will meet the de-
mands for the next 25 years? Alternatively, what are the probabilities of having different
types of soil and rock below the foundation of a proposed structure? These types of prob-
lems are also a legitimate part of general probability theory and are included in what is
referred to as subjective probability (in contrast to objective methods based on theory or
observation). Here, assigned probabilities are based on experience and personal judge-
ment, and comprise a set of weights. Subjective factors are accounted for to some extent
by the Bayesian approach (which is discussed in Subsection 2.2.7). Although problems
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tend mainly to be solved by the classical approach, there are many situations in which
subjectivity can play a very useful role. In conclusion note that the following axioms of
probability, from which probability theory is developed, can be applied to prior, posterior,
or subjective probabilities.

2.2.2 Probability axioms

The classical axiomatic definition of probability requires the concept of a function, say,
f (·). This is a rule that associates each point from one set of points with one and only one
point from another set. The first collection of points is the domain and the second collection
is the counterdomain. In the case of reservoir storage as given by Examples 2.1, 2.2, and
2.5, for example, the volume of water is usually obtained from measurements of the water
surface elevation h and the computation of surface areas, once the bathymetry of the
reservoir has been established. The values taken by h vary from the dead level (h = hmin)
to that representing the spillway crest (h = hsup). Correspondingly, the effective storage
s varies from 0 to c, the active reservoir capacity. The stage-volume relationship can be
represented as a function s = f (h) where the domain is the set H given by the interval
[hmin, hsup), and the counterdomain is the set S given by the interval [0, c). This is equivalent
to stating that f (·) maps H into S. The mathematical form of this function will depend
on the topography of the basin impounded by the dam.

As defined in Section 2.1, let � denote the sample space of a random experiment and
A the collection of events assumed to be an event space for that experiment. A probability
function Pr[·] is a function with domain A and counterdomain in the interval [0, 1] that
follows the three axioms given shortly. The uncertainty associated with the event space is
measured by mapping any event, say, A, into the interval [0, 1]. Here, Pr[A] is defined as
the chance or probability that event A occurs or the probability of event A. With reference
to �, Pr[A] is the sum of the probabilities of the sample points that constitute A. In practice,
when � contains an infinite number of sample points, probabilities are assigned to areas
(or lengths). Thus A can represent a collection of points associated with a particular event,
as noted in Section 2.1.

Definition: Probability function. A probability function Pr[·] is a function mapping the
event space A of a random experiment into the interval [0, 1] according to the following
axioms:

(i) Pr[A] ≥ 0, for every A ∈ A. (2.2.1)
(ii) Pr[�] = 1. (2.2.2)

(iii) If A1 ∈ A, A2 ∈ A, and A1 A2 = Ø, then Pr[A1 + A2] = Pr[A1] + Pr[A2], (2.2.3)

where � ∈ A denotes the sample space of the experiment, and A, A1, and A2 denote events
that belong to that sample space.

Example 2.10. Reservoir storage. In Example 2.2 the storage S in a reservoir was dis-
cretized into four states, ω1, ω2, ω3, and ω4 (see Fig. 2.1.2). The sample space is therefore
given by the set

� ≡ {A1, A2, A3, A4},
where Ai ≡ ωi ≡ {S: (i − 1)c/4 ≤ S < ic/4} for i = 1, 2, 3, 4. Observations of reservoir
storage are made at the end of each period of operation, say, one year. Suppose that after 36
years of reservoir operation, the following frequencies have been observed: 5, 15, 10, and 6,
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for simple events A1, A2, A3, and A4, respectively. The probabilities, assigned on the basis
of relative frequencies, are

Pr[A1] = 5/36, Pr[A2] = 15/36, Pr[A3] = 10/36, Pr[A4] = 6/36,

which satisfy Axiom i . Since

5/36 + 15/36 + 10/36 + 6/36 = (5 + 15 + 10 + 6)/36 = 1,

Pr[�] = Pr[A1 + A2 + A3 + A4] = 1, so that Axiom ii is also satisfied.
Consider two mutually exclusive events, say, C = A2 ≡ {S: c/4 ≤ S < c/2} and D =

A3 + A4 ≡ {S: c/2 ≤ S < c}. By combining the foregoing frequencies, one can see that event
C occurred 15 times in 36 years, whereas event D occurred 10 + 6 = 16 times during that
period. The associated probabilities are thus Pr[C] = 15/36 and Pr[D] = 16/36, respectively.
Since C + D = A2 + A3 + A4,

Pr[C + D] = Pr[A2 + A3 + A4] = (15 + 10 + 6)/36 = 15/36 + 16/36

= Pr[C] + Pr[D],

which satisfies Axiom iii.

The theory of probability deals logically with the relationships among probability mea-
sures. Because of the deductive character of the theory, one can develop all such relation-
ships entirely from the three axioms described by Eqs. (2.2.1) to (2.2.3).

2.2.3 Addition rule

The third axiom states that the basic addition property of probability can be extended to
any sequence of mutually exclusive events. If A1, A2, . . . , Ak ∈ A, and Ai A j = Ø for any
i �= j , with i, j = 1, 2, . . . , k, then

Pr[A1 + A2 + · · · + Ak] = Pr[A1] + Pr[A2] + · · · + Pr[Ak]. (2.2.4)

From this rule one can derive a number of further properties of probability that can be
used to perform additive operations in the event space, such as union and intersection of
events.

Axiom ii can be applied to an event A and its complement, Ac; A and Ac jointly satisfy the
conditions for exclusive events, thus obtaining Pr[A + Ac] = Pr[A] + Pr[Ac]. But since
A + Ac = �, we also have Pr[A + Ac] = Pr[�] = 1 from Eq. (2.2.2). By combining these
results,

Pr[Ac] = 1 − Pr[A]. (2.2.5)

This states that the probability of the complement of an event is given by the difference
from unity of the probability of that event.

Property: Probability of complement. The probability of the complement Ac of an event
A equals the difference from unity of Pr[A].

This property is useful in evaluating the probability of occurrence of a complementary
event of practical interest from that estimated through relative frequencies or by developing
physical or operational considerations.

Example 2.11. Flood occurrence. Consider the floods that exceed the previously estab-
lished design flood in the outlet reach of the Bisagno River at Genoa, Italy, observed from 1931
to 1995. Records indicate that six floods occurred in the period, namely, in 1945, 1951 (twice),



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:13

54 Applied Statistics for Civil and Environmental Engineers

1953, 1970, and 1992. Let N denote the number of flood occurrences per year. The engineer
is interested in evaluating the likelihood of the occurrence of such a flood in any year. Define
� ≡ {N : N ≥ 0}, and let A ≡ {N : N = 0}. The event representing the occurrence of at least
one flood in a year is Ac ≡ {N : N > 0}. The records indicate that Pr[Ac] = 5/65 = 0.077
and Pr[A] = 1 − 0.077 = 0.923 is the probability that no flood occurs in any year. Thus
Pr[Ac] = 0.077 measures the hydrological risk affecting the river site.

Another important relationship among probabilities is the one linking the union and
intersection of two events A and B that are not necessarily mutually exclusive. As shown
in Fig. 2.1.6 f , A + B = A + Ac B, where A and Ac B are two events that are mutually
exclusive. By using Axiom iii one obtains

Pr[A + B] = Pr[A + Ac B] = Pr[A] + Pr[Ac B].

Because event B is the union of two events, namely, Ac B and AB, Axiom iii also yields

Pr[B] = Pr[Ac B] + Pr[AB].

From this equation we can determine Pr[Ac B] as (Pr[B] − Pr[AB]), which can be substi-
tuted for Pr[Ac B] in the previous equation to give

Pr[A ∪ B] ≡ Pr[A + B] = Pr[A] + Pr[B] − Pr[AB], (2.2.6)

which provides the general addition rule of probability theory. This rule states that the
probability of occurrence of at least one of the events A and B equals the sum of their
individual probabilities reduced by the probability of the joint occurrence of A and B.
Intuitively, the addition rule is correct, because one can see from Fig. 2.1.6d and 2.1.6e
that, to obtain the sample space of the event A + B, one adds the sample spaces of events
A and B and subtracts that of AB.

If A and B are mutually exclusive events, that is, AB = Ø, then Pr[AB] = 0. Hence,
Pr[A ∪ B] ≡ Pr[A + B] = Pr[A] + Pr[B].

Property: Addition rule of probability theory. The probability of the union A + B (that is,
at least one) of two events A and B equals the difference between the sum of the probabilities
of these events and the probability of their intersection. In the case of exclusive events the
probability of the intersection is zero.

Note that Eq. (2.2.6) yields Eq. (2.2.4) for two (or more) events that are mutually exclusive
according to Axiom iii.

Example 2.12. Reservoir storage. Following the material in Example 2.10, let us consider
the complement of event D, that is, the event Dc = {S: 0 ≤ S < c/2} which has probabi-
lity

Pr[Dc] = Pr[A1 + A2] = (5 + 15)/36 = 20/36.

Thus Pr[Dc] = 1 − Pr[D], since Pr[Dc] = 1 − 16/36 = 20/36.
Let E = A2 + A3 ≡ {{S: c/4 ≤ S < 3c/4}, which is not mutually exclusive with events

C and D of Example 2.10. One obtains

Pr[E D] = Pr[E] + Pr[D] − Pr[E + D] = 25/36 + 16/36 − 31/36 = 10/36.

This can be easily verified because the intersection E D is the simple event A3 which has a
relative frequency of 10/36.
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Fig. 2.2.1 Venn diagram showing the events indicated in the text and probabilities of these events
as obtained from relative frequency of timber strength data of Table 1.1.4.

Example 2.13. Timber strength. Consider the timber strength data of Table 1.1.3. Define
the following events (see Fig. 2.2.1):

A ≡ {25 < ηt < 50 N/mm2} and B ≡ {35 < ηt < 60 N/mm2},
where ηt denotes the modulus of rupture of a test sample. Using the relative frequencies to
estimate probabilities, from Table 1.1.4, we write

Pr[A] = (18 + 26 + 38 + 34 + 20)/165 = 136/165 = 0.824,

Pr[B] = (38 + 34 + 20 + 9 + 5)/165 = 106/165 = 0.642.

The intersection event, AB, is given by the common outcomes of A and B, so that AB ≡
{35 < ηt < 50 N/mm2}. Accordingly,

Pr[AB] = (38 + 34 + 20)/165 = 92/165 = 0.557.

The probability of the union event A + B can be computed by Eq. (2.2.6). Thus,

Pr[A + B] = Pr[A] + Pr[B] − Pr[AB] = 0.824 + 0.642 − 0.557 = 0.909.

Since the event A + B is given by the collection of the outcomes of both A and B, that is, A +
B ≡ {25 < ηt < 60 N/mm2}, one can verify this result again from the relative frequencies:

Pr[A + B] = (18 + 26 + 38 + 34 + 20 + 9 + 5)/165 = 150/165 = 0.909.

Therefore the probability that the strengths of the Swedish redwood and whitewood are
between 25 and 60 N/mm2 is more than 90%.

2.2.4 Further properties of probability functions

Some other useful properties can be demonstrated by using the three preceding axioms
with basic aspects of set theory. These properties hold for any probability space.4

4 A probability space is formally defined as the triplet (Pr[·], A, �), where � is the sample space, A is the event
space (defined as an algebra of events), and Pr[·] is a probability function with domain A.
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Property: Probability of null event. The probability of the null (impossible) event is zero;
that is,

Pr[Ø] = 0. (2.2.7)

Property: Probability of a contained event. The probability of an event A that is contained
in another event B does not exceed the probability of B; that is,

Pr[A] ≤ Pr[B], if A ⊂ B. (2.2.8)

Property: Boole’s inequality. The probability of the union of n events does not exceed the
sum of their probabilities; that is,

Pr[A1 + A2 + . . . + An] ≤ Pr[A1] + Pr[A2] + . . . + Pr[An]. (2.2.9)

In certain cases, the inequality of (2.2.8) and Boole’s inequality of (2.2.9) can provide
conservative approximations of the required design probability in the absence of sufficient
knowledge to determine the probability of a design event.

Example 2.14. Dam failure. Two natural events can result in the failure of a dam in an
earthquake-prone area. Firstly, a very high flood, exceeding the design capability of its spill-
way, say, event A, may destroy it. Secondly, a destructive earthquake can cause a structural
collapse, say, event B. Hydrological and seismological consultants estimate that the proba-
bility measures characterizing flood exceedance and earthquake occurrence on a yearly basis
are Pr[A] = a and Pr[B] = b, respectively. The occurrence of one or both events can result
in the failure of the dam. Thus, the probability of failure of the dam is given by

Pr[A + B] = Pr[A] + Pr[B] − Pr[AB].

Only the first two probabilities on the right are known. However, the engineer can assume
that the joint event AB has an extremely low probability, so that Boole’s inequality can be
used to obtain a conservative estimate of the probability of the union, Pr[A + B]. Since

Pr[A + B] ≤ Pr[A] + Pr[B],

the engineer assumes

Pr[A + B] ≈ Pr[A] + Pr[B] = a + b.

If one takes, for example, values of a and b for small dams in seismic areas as 0.02 and 0.01,
respectively,

Pr[A + B] ∼= 0.02 + 0.01 = 0.03.

This indicates a probability of not more than 3% that the dam will collapse in a given year.

2.2.5 Conditional probability and multiplication rule

As already mentioned, many engineering problems require answers to questions concern-
ing the likelihood of the occurrence of some event that is conditional on the occurrence
of one or more other events. For example, a dam has not failed in 100 years and one is
interested in the probability that it will survive for another 100 years. As another example,
one examines the pollutant concentration in 100 bottles of sea water (collected randomly
at a popular resort) of which no more than 5 should exceed an allowable threshold: then
one may need to evaluate the probability that the fourth sample is polluted given that the
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first three samples are not polluted. Alternatively, an engineer may wish to know the prob-
ability that monthly streamflow at a river outlet will exceed 2000 m3/s during April given
that higher values have been observed in each of the last three months. Such questions
can be answered only in the context of conditional probability, a very useful concept in
engineering because all events encountered in practice are conditioned. Another reason
for using conditional probability is that engineers often assess the strength of a structure
through its constituents by measuring a variable associated with the characteristic that
is important. For instance, the density of a compacted soil is tested because it gives an
indication of the strength and stability of an embankment. From the axioms given above,
conditional probability is defined as follows:

Definition: Conditional probability. Let A and B be two events in the sample space, �, of
a random experiment, and let Pr[B] > 0. The conditional probability of event A given that
event B has occurred, denoted by Pr[A|B], is defined by

Pr[A|B] = Pr[AB]/ Pr[B], (2.2.10)

and is undefined for Pr[B] = 0.
Note that the sample space is reduced from � to B and thus one needs to normalize using

divisor Pr[B] [see Axiom ii, Eq. (2.2.2)]. Also, Pr[B] is termed the marginal probability of
event B.

Example 2.15. Concrete test. Consider the n = 40 paired data of densities and compressive
strengths of concrete given in Table E.1.2, as rearranged in Table 2.2.1.

Define the following events:

A ≡ {2440 < λc < 2460 kg/m3} and B ≡ {55 < ηc < 65 N/mm2},
where λc denotes the density of a concrete cube under test, measured in kg/m3, and ηc denotes
the compressive strength of that cube, measured in N/mm2 (see Fig. 2.2.2).

Using relative frequencies, we write

Pr[A] = n A/n = 19/40, and Pr[B] = nB/n = 26/40.

Those experimental outcomes with both density and strength values lying in the ranges just
defined are represented by the intersection event, AB ≡ {2440 < λc < 2460 kg/m3, 55 <

ηc < 65 N/mm2}. Accordingly,

Pr[AB] = n AB/n = 16/40.

The probability that a concrete cube with density from 2440 to 2460 kg/m3 yields a value of
compressive strength in the range 55–65 N/mm2 is

Pr[A|B] = Pr[AB]/ Pr[B] = (16/40)/(26/40) = 16/26.

The same result is obtained directly from the relative frequency approach by observing that
16 of the 26 outcomes with compressive strengths in the range 55–65 N/mm2 have a density
from 2440 to 2460 kg/m3.

Example 2.16. Water distribution. Consider a pipeline for the distribution of a water sup-
ply of an urban area of 200 km2. The city plan is approximately rectangular with dimensions
of 10 by 20 km, and it is uniformly covered by the network shown in Fig. 2.2.3. Pressures
and flow rates are uniform throughout the whole network, so that losses are equally likely to
occur within it. Define the events

A ≡ {a severe water loss occurs in location u ≡ (u1, u2)
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Table 2.2.1 Density, λc, and compressive strength, ηc, at 28 days from examination of 40
concrete cube test records (see Table E.1.2)

Density Compressive strength
(kg/m3) (N/mm2) Aa Ba ABa

2437 60.5 �
2437 60.9 �
2425 59.8 �
2427 53.4
2428 56.9 �
2448 67.3 �
2456 68.9 �
2436 49.9
2435 57.8 �
2446 60.9 � � �
2441 61.9 � � �
2456 67.2 �
2444 64.9 � � �
2447 63.4 � � �
2433 60.5 �
2429 68.1
2435 68.3
2471 65.7
2472 61.5 �
2445 60.0 � � �
2436 59.6 �
2450 60.5 � � �
2454 59.8 � � �
2449 56.7 � � �
2441 57.9 � � �
2457 60.2 � � �
2447 55.8 � � �
2436 53.2
2458 61.1 � � �
2415 50.7
2448 59.0 � � �
2445 63.3 � � �
2436 52.5
2469 54.6
2455 56.3 � � �
2473 64.9 �
2488 69.5
2454 58.9 � � �
2427 54.4
2411 58.8 �
n = 40 n = 40 n A = 19 nB = 26 n AB = 16

a The absolute frequencies of the following events are computed: A = {2440 < λc < 2460 kg/m3},
B = {55 < ηc < 65 N/mm2}, and AB = {2440 < λc < 2460 kg/m3, 55 < ηc < 65 N/mm2}.
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Fig. 2.2.2 Scatter diagram of concrete test data and events for application of the conditional
probability concept.

where 0 < u1 ≤ 6 km, 0 < u2 ≤ 3 km} and

B ≡ {a severe water loss occurs in location v ≡ (v1, v2)

where 4 < v1 ≤ 12 km, 2 < v2 ≤ 6 km}.
Assume that the probability of a loss in a given subarea is proportional to the area. Therefore,
if a loss occurs in the pipe network,

Pr[A] = (6 × 3)/200 = 0.09,

Pr[B] = (12 − 4) × (6 − 2)/200 = (8 × 4)/200 = 0.16.

Suppose that one seeks an answer to the following question: “If a loss occurs in the area
affected by event B, what is the probability of event A?”. It is necessary to know the proportion
of the city area affected by event B within which A also occurs. From Fig. 2.2.3 one observes
that this area is (6 − 4) × (3 − 2) = 2 km2, which must be divided by 32, that is, the area
associated with B, to obtain the conditional probability. Therefore,

Pr[A|B] = 2/32 = 1/16 = 0.0625.
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Fig. 2.2.3 Pipeline network for urban water supply.
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This result can also be obtained by using Eq. (2.2.10) which requires the evaluation of Pr[AB].
If one observes that the total area corresponding to both events taken separately is 48 km2, the
probability of occurrence of either A or B, or both A and B, is Pr[A + B] = 48/200 = 0.24.
By using the addition rule one gets

Pr[AB] = Pr[A] + Pr[B] − Pr[A + B] = 0.09 + 0.16 − 0.24 = 0.01.

Hence

Pr[A|B] = Pr[AB]/ Pr[B] = 0.01/0.16 = 0.0625.

As seen here, the evaluation through a reduced sample space gives the same result as the
application of conditional probability.

We have seen Examples 2.15 and 2.16 that the definition of conditional probability
by Eq. (2.2.10) is compatible with the frequency approach. This result occurs because
Pr[AB] = n AB/nB , and from Eq. (2.2.10)

Pr[A|B] = Pr[AB]/ Pr[B] = (n AB/n)/(nB/n) = n AB/nB,

where nB and n AB denote the numbers of occurrences of events B and AB, respectively,
and n is the total number of events.

In some applications, the probabilities Pr[A] and Pr[A|B], for example, can be estimated
directly, whereas the joint probability Pr[AB] may not be known. This can be obtained
from Eq. (2.2.10) as follows:

Pr[AB] = Pr[A|B] Pr[B] = Pr[B|A] Pr[A]. (2.2.11)

Note that Eq. (2.2.11) can be also used to obtain the conditional probability Pr[A|B] from
Pr[B|A] when the marginal probabilities of events A and B are known, and vice versa.
Because Pr[A|B] ≤ 1 and Pr[B|A] ≤ 1 from Axiom ii, the following inequalities also
hold:

Pr[A|B] ≤ Pr[A]/ Pr[B], Pr[B|A] ≤ Pr[B]/ Pr[A].

Example 2.17. Wall foundation. The foundation of a wall can fail either by excessive
settlement or from bearing capacity. The respective failures are represented by events A and
B, with probabilities Pr[A] = a, and Pr[B] = b. The probability of failure in bearing capacity
given that the foundation displays excessive settlement is Pr[B|A] = βa , say. The probability
of failure of the wall foundation can be evaluated from

Pr[A + B] = Pr[A] + Pr[B] − Pr[AB] = Pr[A] + Pr[B] − Pr[B|A] Pr[A]

= a + b − βaa,

where the addition rule (Eq. 2.2.6) is combined with the concept of conditional probability
(Eq. 2.2.11). For example, if a = 0.005, b = 0.002, and βa = 0.2,

Pr[A + B] = 0.005 + 0.002 − 0.2 × 0.005 = 0.006.

The probability that there is excessive settlement in the foundation but there is no failure
in bearing capacity is

Pr[ABc] = Pr[Bc|A] Pr[A] = (1 − Pr[B|A]) Pr[A] = (1 − βa)a

by using Eqs. (2.2.5) and (2.2.11). For the above values of a and βa ,

Pr[ABc] = (1 − 0.2) × 0.005 = 0.004.
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The conditional probability that the foundation has excessive settlement given that it fails in
bearing capacity is obtained from Eq. (2.2.11) as follows:

Pr[A|B] = Pr[B|A] Pr[A]/ Pr[B] = βaa/b = 0.2 × 0.005/0.002 = 0.5.

Also, βa = Pr[B|A] ≤ b/a = 0.4.

The concept of conditional probability can be extended to any number of events. For
example, for three events, A, B, and C ,

Pr[ABC] = Pr[A|BC] Pr[BC] = Pr[A|BC] Pr[B|C] Pr[C].

In general, the following expansion holds for m events:

Pr[A1 A2 A3 . . . Am] = Pr[A1|A2 A3 . . . Am] Pr[A2|A3 . . . Am] . . . Pr[Am], (2.2.12)

which can be interpreted as the multiplication rule of probability theory. This rule is
primarily useful for experiments defined in terms of stages. Suppose an experiment has m
stages and A j is an event defined at stage j of the experiment; then Pr[A j |A1 . . . A j−1] is
the conditional probability of the event described in terms of the conditional probabilities
of events occurring in stages 1, 2, . . . , j − 1. The multiplication rule becomes simpler
when the events at each stage of the experiment are independent from each other, as
shown next.

2.2.6 Stochastic independence

When the probability of occurrence of an event is not affected by the occurrence of another
event, these two event are (statistically or stochastically) independent. Thus, two events
A and B are said to be independent if either

Pr[A|B] = Pr[A], if Pr[B] > 0, (2.2.13a)

or

Pr[B|A] = Pr[B], if Pr[A] > 0. (2.2.13b)

According to the definition of conditional probability, the independence of A and B as
stated by Eq. (2.2.13) also implies that Eq. (2.2.11) yields

Pr[A ∩ B] ≡ Pr[AB] = Pr[A] Pr[B]. (2.2.14)

The preceding relationship is applicable only if Eq. (2.2.13) holds, and thus it can be used
as an alternative definition of independence. Equation (2.2.14) states that the probability
of the joint occurrence of two independent events equals the product of their marginal
probabilities.

Definition: Independence. Two events defined in a given probability space A are indepen-
dent if either the conditional probability of one event equals its marginal probability, or their
joint probability equals the product of the marginals.

This definition applies to two physical events that are not related in any way, so that the
probability measure of one event is not altered by the occurrence of the other.

Example 2.18. Concrete test. Consider the concurrent data of density λc and compressive
strength ηc of concrete given in Table 2.2.1. For the two events A and B shown in Fig. 2.2.2,

A ≡ {2440 < λc < 2460 kg/m3} and B ≡ {55 < ηc < 65 N/mm2},
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one obtains Pr[A] = 0.475 using relative frequencies, and Pr[B] = 0.65 using relative fre-
quencies. Also, the probability of the joint occurrence,

AB ≡ {2440 < λc < 2460 kg/m3, 55 < ηc < 65 N/mm2}
is Pr[AB] = 0.40. From Eq. (2.2.11)

Pr[A|B] = Pr[AB]/ Pr[B] = 0.615.

Clearly, Pr[A|B] differs significantly from Pr[A], so independence between events A and B
does not hold. Therefore, the engineer cannot assume that density and compressive strength
are independent. The absence of independence is also evident when comparing the value of the
product of the marginal probabilities, Pr[A] Pr[B] = .309, with that of the joint probability,
Pr[AB] = .40.

For independent events, the joint probability in the addition rule of Eq. (2.2.6) is sub-
stituted by the product of the marginal probabilities, giving the following important rule:

Pr[A + B] = Pr[A] + Pr[B] − Pr[A] Pr[B].

From this one can determine the probability of the union (sum) of two (or more) events
from the knowledge of the marginal (individual) probabilities of these events.

One can prove independence of two events only by obtaining Pr[A], Pr[B], and Pr[AB]
and then by demonstrating that either Eq. (2.2.13) or Eq. (2.2.14) holds. Engineers, who
normally rely on their knowledge of physical situations to determine whether two particular
events are independent, should adopt this procedure wherever possible to enhance the
scientific arguments.

Example 2.19. Dam reliability. Consider again the problem of the failure of a dam (see
Example 2.14) caused by the occurrence of either a flood exceeding the design capacity of the
spillway (event A) or a destructive earthquake producing the structural collapse of the dam
(event B). Let Pr[A] = a and Pr[B] = b denote the respective probabilities of occurrence in a
year. If the two events are statistically independent, their joint probability equals the product
of their marginals, that is,

Pr[AB] = Pr[A] Pr[B] = ab.

Accordingly, the risk of failure of the dam in a year is given by

Pr[A + B] = Pr[A] + Pr[B] − Pr[AB] = a + b − ab.

If we assume typical values for a and b for small dams of 0.02 and 0.01, respectively, the risk
of failure in a year is

Pr[A + B] = a + b − ab = 0.02 + 0.01 − 0.02 × 0.01 = 0.0298.

Note that this result is very close to that (.03) obtained by using Boole’s inequality (see
Example 2.14). When rare events with small marginal probabilities are considered, their
joint probability generally plays a minor role, so that its effect can often be neglected in risk
assessment.

One can see from Fig. 2.1.6g that the sample space for this experiment is given by four
elementary events, namely,

� ≡ {AB, ABc, Ac B, Ac Bc},
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whereas the failure event is represented by A + B = (AB) ∪ (ABc) ∪ (Ac B). Therefore, the
probability of survival of the dam in any year can be measured as

Pr[Ac Bc] = 1 − Pr[A + B] = 1 − (a + b − ab),

which is defined as the reliability in a year. For a = 0.02 and b = 0.01,

Pr[Ac Bc] = 1 − (a + b − ab) = 1 − (.02 + 0.01 − 0.01 × 0.02) = 0.9702,

which means a chance of more than 97% that the dam will survive in a year. However, the
designer is mainly interested in evaluating the system reliability during its lifetime, say, m
years, and must therefore consider failure probability after i = 1, 2, . . . , m years from the
construction of the dam. The survival probability after the first year is again Pr[Ac Bc]. The
experiment is repeated in subsequent years. The survival probability after the second year is
given by Pr[(Ac Bc)1 ∩ (Ac Bc)2] which can be written as

Pr[(Ac Bc)1(Ac Bc)2] = Pr[(Ac Bc)1] Pr[(Ac Bc)2|(Ac Bc)1].

where subscripts denote years. Because floods and earthquakes occurring in a year can be
assumed to be independent of those occurring in another year, the conditional probability on
the right-hand side can be simply written as Pr[(Ac Bc)2|(Ac Bc)1] = Pr[(Ac Bc)2]. We also
assume that the survival probability in any one year is the same as that in any other year. The
survival probability after the second year is therefore

Pr[(Ac Bc)1(Ac Bc)2] = Pr[(Ac Bc)1] Pr[(Ac Bc)2] = { Pr[Ac Bc]}2

= [1 − (a + b − ab)]2.

By using the same procedure, the m-year survival probability can be evaluated as

Pr[(Ac Bc)1(Ac Bc)2 . . . (Ac Bc)m] = { Pr[Ac Bc]}m = [1 − (a + b − ab)]m,

which can be taken as a reliability measure of the system, assuming constant probabilities of
failure. For a design lifetime of m = 50 years,

Pr[(Ac Bc)1(Ac Bc)2 . . . (Ac Bc)50] = 0.970250 = 0.2203,

which means a design reliability of 22%. The design risk will be given by the complementary
probability, which means that there is a design risk of 78% of dam failure within the design
lifetime of 50 years.

The risk of failure in the i th year of dam operation is given by the probability that either an
overtopping flood or a destructive earthquake or both will occur exactly in that year without
any previous occurrence. This is given by

Pr[(Ac Bc)1(Ac Bc)2 . . . (Ac Bc)i−1(A + B)i ]

= (Pr[Ac Bc])i−1 Pr[(A + B)i |(Ac Bc)i−1] = (Pr[Ac Bc])i−1 Pr[A + B]

= [1 − (a + b − ab)]i−1(a + b − ab),

which is simply the design reliability rescaled by the elementary risk of failure. (Details of this
geometric distribution with parameter (a + b − ab) are given in Section 4.1.) For instance,
the risk of dam failure during the tenth year of operation will be

Pr[(Ac Bc)1(Ac Bc)2 . . . (Ac Bc)9(AB)10] = 0.97029 × 0.0298 = 0.0227.

Figure 2.2.4 gives reliabilities for varying design periods, say, m, and probabilities of first-time
failure during the mth year of dam operation.

Equation (2.2.14) can be extended to any number of stochastically independent random
events, so that it can be viewed as the multiplication rule in the independent case.
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Fig. 2.2.4 Dam survival probability (m-year design reliability) and probability of failure in the
mth year of operation (risk of failure for the first time).

Example 2.20. Water distribution. Consider again the pipe network for water distribution
shown in Fig. 2.2.3. Since takeoff occurs at grid nodes, what is the probability that a node
remains isolated, that is, all pipes connected to it become ineffective? Assuming that pipe
failures are independent events, one obtains

Pr[nodek remains isolated] =
∏

pik,

where the product is extended to all the i th adjacent nodes that are joined with any node k.
Nodes w , y, and x , for example, are connected to four, three, and two pipes, respectively. The
pipes have been fabricated from one material by a single manufacturer and installed during
the same period. Therefore, one can assume that the probability of an individual pipe failure
is constant, say, pik = p, for any pair of connected joint nodes i and k. Therefore,

Pr[node w remains isolated] = paw pcw pew pyw = p4,

Pr[node y remains isolated] = pxy p f y pwy = p3,

and

Pr[node x remains isolated] = pcx pyx = p2.

More generally, the probability that a node remains isolated is pl , with l denoting the number
of pipes connected with that node. Because p ≤ 1, the risk that a node remains isolated
decreases geometrically with increasing l.

Probability models dealing with independent events are very frequent in engineering
practice, where they are applied to civil and environmental problems. Destructive floods,
catastrophic earthquakes, hurricanes, and other geophysical hazards occur as a temporal
sequence of independent events. The failure of power plants, building structures, water
treatment facilities, and other systems constructed by humans can often be studied by ana-
lyzing the failures of different elementary components that are independent of each other.
The multiplication rule for independent events allows one to determine the probability of
a complex event (such as the occurrence of a flood exceeding the design capability of a
dam spillway in a time horizon of 10 years, or the failure of a redundant pumping station)
by multiplying the individual probabilities of simple events.
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Fig. 2.2.5 Venn diagram for the theorem of total probability. Events Bi , i = 1, . . . , n, are
mutually exclusive and exhaustive, and some of them intersect A.

2.2.7 Total probability and Bayes’ theorems

Sometimes the probability of an event A cannot be determined directly. However, its
occurrence is accompanied by the occurrence of other events Bi , i = 1, 2, . . . , n, such
that the probability of A will depend on which of the events Bi has occurred. In such a
case, the probability of A will be an expected probability, that is, the average probability
weighted by those of Bi . This problem can be approached by using the theorem of total
probability, which can be derived by the definition of conditional probability.

Consider a set of mutually exclusive, collectively exhaustive events, Bi , where i =
1, 2, . . . , n. This statement means that Bi B j = Ø, the null event, for any i �= j with
i, j = 1, 2, . . . , n, and that B1 + · · · + Bn = �, the sample space. The probability of
another event A can be given by using this set as follows (see Fig. 2.2.5):

Pr[A] = Pr[AB1] + Pr[AB2] + · · · + Pr[ABn] =
n∑

i=1

Pr[ABi ].

Expanding each term in the sum using Eq. (2.2.11), we write

Pr[A] =
n∑

i=1

Pr[A|Bi ] Pr[Bi ]. (2.2.15)

This expression is known as the theorem of total probability.

Property: Total probability theorem. If Bi , where i = 1, 2, . . . , n is a set of mutually
exclusive, collectively exhaustive events, the probability of an event A that occurs concurrently
with the Bi , equals the sum of the products of the conditional probability of A given Bi , and
the marginal probability of Bi .

Example 2.21. Timber strength. Consider the timber strength data of Table 1.1.3 and the
frequency distribution given in Table 1.1.4. The sample space can be represented by the
foregoing mutually exclusive, collectively exhaustive events (see Fig. 2.2.6).

B1 ≡ {0 ≤ ηt < 25 N/mm2},
B2 ≡ {25 ≤ ηt < 45 N/mm2},
B3 ≡ {45 ≤ ηt < 65 N/mm2}

and

B4 ≡ {ηt ≥ 65 N/mm2},
with ηt denoting the modulus of rupture in N/mm2. Probabilities of these events are computed
from relative frequencies as follows:

Pr[B1] = (nB1/n) = 11/165,



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:13

66 Applied Statistics for Civil and Environmental Engineers

0 25 45 65

Modulus of rupture (N/mm2)

B1 B2 B3 B4

A

40 50

B1 B2 B3

B4

A
(a)

(b)

Fig. 2.2.6 (a) Events for application of the theorem of total probability to timber strengths. (b)
Venn diagram in which areas are proportional to probabilities.

Pr[B2] = (nB2/n) = 116/165,

Pr[B3] = (nB3/n) = 34/165,

and

Pr[B4] = (nB4/n) = 4/165,

where

Pr[B1 + B2 + B3 + B4] = (11 + 116 + 34 + 4)/165 = 1.

Suppose an engineer is interested in estimating the probability that the modulus of rupture
ranges from 40 to 50 N/mm2, that is, the event

A ≡ {40 ≤ ηt < 50 N/mm2},
Since

Pr[A|B1] = Pr[AB1]/ Pr[B1] = (n AB1/n)/(nB1/n) = (0/165)/(11/165) = 0,

Pr[A|B2] = Pr[AB2]/ Pr[B2] = (n AB2/n)/(nB2/n) = (34/165)/(116/165) = 34/116,

Pr[A|B3] = Pr[AB3]/ Pr[B3] = (n AB3/n)/(nB3/n) = (20/165)/(34/165) = 20/34,

and

Pr[A|B4] = Pr[AB4]/ Pr[B4] = (n AB4/n)/(nB4/n) = (0/165)/(4/165) = 0,

the theorem of total probability gives

Pr[A] = Pr[A|B1] Pr[B1] + Pr[A|B2] Pr[B2] + Pr[A|B3] Pr[B3] + Pr[A|B4] Pr[B4]

= 0 + (34/116) × (116/165) + (20/34) × (34/165) + 0 = (34 + 20)/165 = 54/165.

This can be verified, in this particular example, because the same result is found by considering
the relative frequency in the range 40–50 N/mm2.
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Fig. 2.2.7 (a) Layout of the water supply system. (b) Venn diagram showing the events involved
in the occurrence of a water shortage (event S, shaded).

In some practical cases, when there are concurrent events A and Bi where i = 1, 2, . . .,
it is easier to evaluate the terms in the sum (that is, the conditional probabilities) by using
Eq. (2.2.15) than by estimating Pr[A].

Example 2.22. Water shortage. Water supply to a city located in the northern Mediter-
ranean area relies on both groundwater and surface water. The collection of surface water is
provided by run-of-river draft (directly from rivers) and also reservoir storage in the Apen-
nine mountains surrounding the city; in addition, wells collect groundwater from the coastal
aquifer (see Fig. 2.2.7).

The operation of the system is influenced by regional droughts, which occur randomly
with an annual frequency of 20%. When a regional drought occurs, there is a 40% chance
that extremely low flows will occur in mountain streams. The drought and low flows can
cause a water shortage in the city with a probability of 0.3 due to lack of available water from
either of the sources (event A). When extremely low flows occur in mountain streams without
affecting water availability, there is also a 25% chance that groundwater in the coastal aquifer
is polluted by brackish water (event B). When extremely low flows in mountain streams do
not occur in a dry year, there is also a 10% chance that reservoir storage will not be sufficient
to meet target release (event C).

We assume that the occurrence of one of the events A, or B, or C result in a water shortage
in the city. Our problem is to estimate the probability that a water shortage occurs in a year.
The preceding information is summarized by the following events:

S ≡ {occurrence of water shortage in the city},
D ≡ {occurrence of a regional drought}, Pr[D] = 0.2,

L ≡ {occurrence of extremely low flows in mountain streams}, Pr[L|D] = 0.4,

A ≡ {water shortage caused by occurrence of extremely low flows in mountain
streams under drought conditions}, Pr[A|DL] = 0.3,

B ≡ {water shortage caused by brackish groundwater when drought and
extremely low flows occur in mountains but these do not cause water
shortage}, Pr[S|DLAc] = 0.25,

and

C ≡ {water shortage caused by inadequate reservoir storage when drought
conditions occur but extremely low flows do not occur in mountain streams},
Pr[S|DLc] = 0.10.
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The events DL , DLc, Dc L , and Dc Lc, shown in Fig. 2.2.7b, are mutually exclusive and
collectively exhaustive. From Eq. (2.2.11), then,

Pr[DL] = Pr[L|D] Pr[D] = 0.40 × 0.20 = 0.08

and

Pr[DLc] = Pr[Lc|D] Pr[D] = (1 − 0.40) × 0.20 = 0.12.

Also, one can assume that

Pr[Dc L] = 0 and Pr[Lc|Dc] = 1.

Hence

Pr[Dc Lc] = Pr[Lc|Dc] Pr[Dc] = 1 × (1 − 0.20) = 0.80.

By using the theorem of total probability [Eq. (2.2.15)], one can estimate the probability
of failure as follows:

Pr[S] = Pr[S|DL] Pr[DL] + Pr[S|DLc] Pr[DLc]

+ Pr[S|Dc L] Pr[Dc L] + Pr[S|Dc Lc] Pr[Dc Lc],

where

Pr[S|DL] = Pr[S|DL A] Pr[A|DL] + Pr[S|DL Ac] Pr[Ac|DL]

= 1 × 0.3 + 0.25 × (1 − 0.3) = 0.475,

which can also be obtained from Eq. (2.2.15) by making S conditional to DL throughout. It
is assumed that

Pr[S|Dc L] = Pr[S|Dc Lc] = 0,

because a water shortage occurs only when a regional drought occurs. Thus,

Pr[S] = 0.475 × 0.08 + 0.10 × 0.12 + 0 × 0 + 0 × 0.80 = 0.05.

That is, there is a 5% chance that a water shortage occurs in the city in any year.

An important extension of the total probability theorem [Eq. (2.2.15)] concerns the
revision of the probability of an event, say, B j , consequent to the occurrence of an event
A. From Eq. (2.2.10), the conditional probability

Pr[B j |A] = Pr[B j A]/ Pr[A];

also from Eq. (2.2.11) the joint probability

Pr[B j A] = Pr[A|B j ] Pr[B j ].

From the foregoing two equations,

Pr[B j |A] = Pr[A|B j ] Pr[B j ]/ Pr[A].

If one expands Pr[A] using the theorem of total probability, the right-hand side of Eq.
(2.2.15) is substituted for Pr[A] in the above equation, thus obtaining

Pr[B j |A] = Pr[A|B j ] Pr[B j ]∑n
i=1 Pr[A|Bi ] Pr[Bi ]

. (2.2.16)



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:13

Basic Probability Concepts 69

This theorem is attributed to Thomas Bayes, an English cleric and philosopher of the
eighteenth century.5

Example 2.23. Water quality. Consider concurrent data of DO and BOD recorded at 38
sites on the Blackwater River, England, in Table E.1.3. Owing to similarities in water uses,
one can assume that the observations are from the same population. The means of the data
are 7.5 and 3.2 mg/L, respectively. Define the following mutually exclusive and collectively
exhaustive events:

B1 ≡ {DO ≤ 7.5 mg/L, BOD > 3.2 mg/L},
B2 ≡ {DO > 7.5 mg/L, BOD > 3.2 mg/L},
B3 ≡ {DO > 7.5 mg/L, BOD ≤ 3.2 mg/L},
B4 ≡ {DO ≤ 7.5 mg/L, BOD ≤ 3.2 mg/L}.

These are given in Fig. 2.2.8. By using relative frequencies,

Pr[B1] = 17/38 = 0.447,

Pr[B2] = 0/38 = 0.00,

Pr[B3] = 19/38 = 0.50,

Pr[B4] = 2/38 = 0.05.

The standard deviations are 1.0 and 0.5 mg/L, respectively. Let A be the event defined by
concurrent values of DO and BOD within the range (mean – standard deviation) to (mean +
standard deviation), that is,

A ≡ {6.5 < DO < 8.5 mg/L; 2.7 < BOD < 3.7 mg/L}.
The conditional probabilities of event A given that Bi occurs are

Pr[A|B1] = 7/17 = 0.41,

Pr[A|B2] is undefined because Pr[B2] = 0,

Pr[A|B3] = 11/19 = 0.58,

Pr[A|B4] = 1/2 = 0.50.

From the theorem of total probability [Eq. (2.2.15)],

Pr[A] = Pr[A|B1] Pr[B1] + Pr[A|B2] Pr[B2] + Pr[A|B3] Pr[B3] + Pr[A|B4] Pr[B4],

that is,

Pr[A] = (7/17)(17/38) + (undefined)(0) + (11/19)(19/38) + (1/2)(2/38)

= (7/38) + (11/38) + (1/38) = 19/38 = 0.50,

which means that the monitored values of DO and BOD have a 50% chance of lying in the
previously defined range.

From Bayes’ theorem [(Eq. 2.2.16)],

Pr[B1|A] = Pr[A|B1] Pr[B1]∑n
i=1 Pr[A|Bi ] Pr[Bi ]

= (7/17)(17/38

19/38
= 7

19
= 0.37,

5 However, Stigler (1983), writing in the style of Agatha Christie, states that the odds in favor of Nicholas
Saunderson (the blind professor who succeeded Newton’s successor at Cambridge University) as the originator
of the theorem are 3 to 1, which touches on Damon Runyan’s limit to probability in life. So where should Hercule
Poirot’s finger finally point in this whodunit? Readers of Stigler (1983) will note the Laplacian indifference
(vagueness) in the author’s prior opinion.
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Fig. 2.2.8 Scatter diagram of water quality data and events in application of Bayes’ theorem.

which means that, if the monitored values of DO and BOD lie in the previously defined range,
there is a 37% chance that DO does not exceed its sample mean and BOD does exceed its
sample mean. Using Bayes’ theorem, one also obtains

Pr[B2|A] = 0,

Pr[B3|A] = 0.58,

Pr[B4|A] = 0.05.

As in the case of the theorem of total probability, Bayes’ theorem is particularly useful
for experiments carried out in stages. This has a potentially important role in engineering
applications because it provides a method for continuously incorporating new information
with previous data. The additional data may come, for example, from borehole results or
tests on concrete cubes. By updating the prior probabilities, the engineer can assess the
likelihood of design events by incorporating the additional information given by condi-
tioned posterior probabilities.

If one defines as state the unknown quantification of the population and considering
that some sample of observations is available, Bayes’ theorem can be written as

Pr[state|sample] = Pr[sample|state] Pr[state]∑
all states Pr[sample|state] Pr[state]

.

In practice, an engineer often has prior knowledge of the occurrences of different states of
a population (the so-called factors of information). In addition, there is frequently access
to data from which one can estimate the likelihood of a measurable quantity or sample of
data, given the true state of the population. By means of Bayes’ theorem, one can then
estimate the conditional probability of a given state of that population after a sample has
been observed.
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Table 2.2.2 Likelihood that the seismic recorder (showing the conditional probability of
depths to bedrock) indicates state Bi given that the true state is Bj

True state, Bj

j = 1 j = 2 j = 3 j = 4
Measured state, Bi h ≤ 5 m 5 m < h ≤ 10 m 10 m < h ≤ 15 m h > 15 m

i = 1 h ≤ 5 m 0.90 0.05 0.03 0.02
i = 2 5 m < h ≤ 10 m 0.07 0.88 0.10 0.06
i = 3 10 m < h ≤ 15 m 0.03 0.05 0.81 0.12
i = 4 h > 15 m 0.00 0.02 0.06 0.80

Sum 1.00 1.00 1.00 1.00

Example 2.24. Imperfect testing of bedrock depth. An engineer designing a foundation
for a tall structure needs to know the depth h of soil above bedrock at the site. For preliminary
design purposes, the depth is divided into four states: B1 = {h ≤ 5m}, B2 = {5 m < h ≤
10 m}, B3 = {10 m < h ≤ 15 m}, and B4 = {h > 15 m}. The engineer then consults a local
geologist who, from a knowledge of the geology of that area, assigns prior probabilities to
the four states as follows:

Pr[B1] = 0.60, Pr[B2] = 0.20, Pr[B3] = 0.15, and Pr[B4] = 0.05.

For measuring the depth to bedrock, a seismic recorder is used which is subject to some
error. From previous experience the geologist estimates the conditional probabilities that the
instrument indicates a particular state out of four states (the sum of the probabilities of which
is 1.0) for each of four actual states of nature. The likelihoods are given in Table 2.2.2.

The reading of the instrument is h = 7 m, which is henceforth referred to as sample no. 1.
This corresponds with state B2. The posterior probabilities of the actual states of nature are
evaluated from Eq. (2.2.16) as follows:

Pr[Bk |sample no.1] = Pr[sample no. 1|Bk] Pr[Bk]∑4
i=1 Pr[sample no. 1|Bi ] Pr[Bi ]

,

where

4∑
i=1

Pr[{5 m < h ≤ 10 m}|Bi ] Pr[Bi ] = .07×.060 + .88×.20 + .10 × .15 + .06×.05

= .236.

Accordingly,

Pr[B1|sample no. 1] = .07 × .60

.236
= .178,

Pr[B2|sample no. 1] = .88 × .20

.236
= .746,

Pr[B3|sample no. 1] = .10 × .15

.236
= .063,

and

Pr[B4|sample no. 1] = .06 × .05

.236
= .013.

The sum of the preceding quantities is unity.
Because there is still a chance of about 25% that the true state may not be B2, a second

test is made and the reading is 8 m. Thus sample no. 2 also indicates state B2.
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Using the foregoing posterior probabilities (after sample no. 1) as revised prior probabilities
for the site, we find again posterior probabilities (after sample no. 2), as follows:

4∑
i=1

Pr[{5 m < h < 10 m}|Bi ] Pr[Bi ]

= 0.07 × 0.178 + 0.88 × 0.746 + 0.10 × 0.063 + 0.06 × 0.013 = 0.675.

With S.1,2 denoting samples 1 and 2, therefore,

Pr[B1|S.1,2] = 0.07 × 0.178

0.675
= 0.018,

Pr[B2|S.1,2] = 0.88 × 0.746

0.675
= 0.972,

Pr[B3|S.1,2] = 0.10 × 0.063

0.675
= 0.009,

and

Pr[B4|S.1,2] = .06 × .013

0.675
= .001.

The sum of these probabilities is unity. It is now evident that the chance that the true state is
not B2 is very small. The engineer may therefore proceed on the assumption that the depth
to rock is in the range 5–10 m.

We note that if the likelihoods of indicating correctly a state of nature by the instrument are
smaller than the values of 0.90, 0.88, 0.81, and 0.80 given in Table 2.2.2, then the posterior
probabilities will also be low. Such results are usually applicable to a cheaper type of testing
procedure or experimentation. Furthermore, if sample no. 2 is quite different from sample
no. 1 then some ambiguity will arise and tests will need to be repeated.

We are not sure, of course, what the true state of nature is; but good instrumentation with
the help of Bayes’ theorem, as shown here, should provide more realistic probabilities of
individual states.

2.2.8 Summary of Section 2.2

Prior, posterior, and subjective probabilities were discussed here, and the axioms of proba-
bility introduced. Rules were specified for addition and multiplication of probabilities, and
conditional probability was defined. Total probability and Bayes’ theorem were presented
with applications.

2.3 SUMMARY FOR CHAPTER 2

An event is a collection of outcomes or sample points in the sample space of an experi-
ment that results in a set of observations. The sample space comprises an exclusive and
exhaustive set of events, and all possible combinations are given by the event space. The
axioms presented here governing complementary, null, union, and intersection events are
a prelude to the introduction of probability. The theory of probability provides a deductive
framework for evaluating the probabilities of different types of events. Probabilities can
be interpreted as prior or posterior. A prior probability can be estimated from relative
frequencies of observed events; but if it is assigned from one’s experience or judgement
it is called subjective. The operational rules of probability theory, which provide the basis
for the relationships among probabilities of different events, are derived from three sim-
ple axioms and the notion of a probability function. These have led to the laws governing
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conditional probability, stochastic independence, the addition rule, the multiplication rule,
the theorem of total probability, and Bayes’ theorem.

Many engineers follow the probabilistic approach, perhaps intuitively at times. The
purpose of this chapter which concluded with Bayes’ theorem is to provide a rigorous
foundation to the methods of sampling and experimentation. As stated in Chapter 1,
however, we must emphasize the importance of the quality and extent of the available data
because an engineer must appreciate that the significance of the results depends on the
data from which the probabilities are estimated.
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PROBLEMS

2.1. Football stadium balcony. A civil engineer is asked to assess the reliability of
a balcony overlooking a football stadium. The maximum number of people who
can be accommodated in the balcony is 20. The weight of an individual can be
approximately 50, 75, or 100 kg.
(a) Sketch the sample space.
(b) Show the following events involving numbers of people and their weights at

any time:

A ≡ {there are more than 16 people in the balcony},
B ≡ {the total weight of people in the balcony is 1500 kg},
C ≡ {there are more than 15 people of the maximum weight}.

2.2. Reservoir inflows. A reservoir impounds water from a stream X and receives water
Y deviated via a tunnel from an adjoining catchment. The annual inflow from source
X can be approximated to 1 or 2 or 3 units of 106 m3, and that from source Y is 2 or
3 or 4 units of 106 m3. On appropriate Venn diagrams show the following events:
(a) A ≡ {source X is less than 3 units}.
(b) B ≡ {source Y is more than 2 units}.
(c) A + B.
(d) AB.

2.3. Sequential construction. The sequence of construction of a structure involves two
phases. Initially, the foundation is built, then work commences on the superstructure.
The completion of the foundation can take 4 or 5 months, which are equally likely
to be needed. The superstructure requires 5, 6, or 7 months to be completed, with
equal likelihood for each period. The time of completion of the superstructure is
independent of that taken to complete the foundation. List the possible combinations
of times for the completion of the project and determine the associated probabilities.

2.4. Dam spillway. An engineer is designing a spillway for a dam. The evaluation of
maximum flow data is based on a short period of recordkeeping. The critical flow
rates and their probabilities are estimated from, A, discharge measurements, B,
rainfall observations, and C , combination of flow discharge and rainfall data, as
follows:

Event A from flow data: 8,000 to 12,000 m3/s, Pr[A] = 0.5.

Event B from rainfall data: 10,000 to 15,000 m3/s, Pr[B] = 0.6.

Event C = A + B: 8,000 to 15,000 m3/s, Pr[C] = 0.9.

(a) Sketch the foregoing events.
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(b) Show on the sketch AB, AC, and Ac + Bc.
(c) Determine the probabilities Pr[AB] and Pr[Ac + Bc].
(d) Determine the conditional probabilities Pr[A|B] and Pr[B|A].

2.5. Wind direction and intensity. Strong winds in a particular area come uniformly
from any direction from north, θ = 0◦, to east, θ = 90◦. Wind speed V is also
variable, and it can exceed 50 km/h with a probability of 0.04, and 100 km/h with
a probability of 0.01.
(a) Sketch the sample space for wind speed and direction.
(b) Sketch the following events: A ≡ {V > 50 km/h}, B ≡ {50 < V <

100 km/h}, AB, A + B, C ≡ {30 < θ < 60◦}, AC , and BC .
(c) Find Pr[B] and Pr[BC] assuming that wind speed and direction are stochasti-

cally independent.

2.6. Irrigation water supply. A dam is designed to supply water to three separate
irrigation schemes, I1, I2, and I3. The demand for the first scheme I1 is 0 or 1 or 2
m3/s, whereas that for I2 and I3 is 0 or 2 or 4 m3/s in each case.
(a) Sketch the sample space for I1, I2, and I3 separately, and for I1, I2, and I3

jointly.
(b) Show the following events:� A ≡ {I1 > 1 m3/s};� B ≡ {I2 ≥ 2 m3/s};� C ≡ {I3 < 4 m3/s};� Ac; AB ; A + B; (A + B)c; ABc; AC ; AcC ; BcC ; BcCc; (where feasible).

(c) Assuming that the demands from the three schemes are independent of each
other, and that all possible demands are equally likely to occur, find the proba-
bility that the total water demand exceeds 5 m3/s.

2.7. Port occupancy. An experiment consists of counting the number of ships in a small
harbor on a particular day and estimating the total tonnage. The maximum number
of vessels permitted at a given time in the port is six, while each vessel can have a
tonnage from 5,000 to 25,000. Only the total number of ships and the total tonnage
is recorded.
(a) Sketch the sample space for this experiment.
(b) Indicate on the diagram the regions corresponding to the following events:� A ≡ {the number of ships is less than 5};� B ≡ {the total tonnage is less less than 35, 000};� C ≡ {three ships each of maximum tonnage are present};� A + B; AB; Ac + Bc; Ac Bc; AC ; AcC (where feasible).

2.8. Simply supported beam. A load of 200 kg is placed on a simply supported beam
of length 6 m. If R1 and R2 denote the reactions at the left and right supports,
respectively, R1 + R2 = 200 kg for any location of the load.
(a) Define and sketch the sample space for this experiment.
(b) Sketch on the diagram the following events:� A ≡ {the load is located at 1 m from support 1};� B ≡ {the load is located between 2 and 4 m from support 1};� C ≡ {the load is located between 3 and 5 m from support 1};
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(c) If the load can vary from 100 to 400 kg, define and sketch the new sample
space. Sketch on this diagram the following events:� D ≡ {a load heavier than 100 kg is located at 2 to 4 m from support 1};� E ≡ {a load heavier than 200 kg is located at 3 to 5 m from support 1};� D + E ; DE ; and DEc (where feasible).

2.9. Storm rainfall. Analysis of the data of Problem 1.20 indicates that the estimated
probability of a storm resulting in more than 40 mm of rainfall in 1 hour is about
.5. Using relative frequencies, compute the probability that in any year the same
rainfall intensity is exceeded over a duration of (a) 20 minutes, and of (b) 3 hours.

If the annual 30-minute and 1-hour rainfalls refer to the same storm events, what
is the conditional probability that the intensity does not decrease from 60 mm/h or
more during the first 30 minutes by more than 25% during a 1 hour period?

2.10. Hydropower. Run-of-river hydroelectrical plants convert the natural potential en-
ergy of surface water in a stream into electrical energy. The plant capacities depend
on natural river flow, which generally varies during the year according to season and
precipitation regime. Assume that the design flow of a given power station, say, Q D ,
is the natural flow, which is exceeded during 274 days in a year on average. At other
times, when the river flow is lower than the design flow, the plant is nevertheless
capable of producing some power if the flow is not lower than Q0. Moreover, during
floods it is not possible to convey water to the plant due to sedimentation, which
occurs when the natural river flow Q exceeds Q1.
(a) If Pr[Q < Q0] = 0.1 and Pr[Q > Q1] = 0.05, for how many days in a year

will the plant be incapable of supplying electric energy?
(b) What is the probability that the plant works at full capacity?
(c) What is the probability that the plant fulfills its minimum target? Note that

Q0 < Q D < Q1.

2.11. Reservoir operational policy. Consider the water storage S in a reservoir as de-
scribed in Example 2.1 and Fig. 2.1.1. The manager must release in a year an amount
of water R that depends on the amount of the annual inflow I , the storage S at the
beginning of that year, and the demand d in that year. The manager follows the
following “normal operational policy” for water releases:

R = d, if d ≤ I + S < d + c,
R = I + S, if I + S < d,

R = I + S − c, if I + S ≥ d + c,

with c denoting the effective storage capacity of the reservoir. If Pr[d ≤ I + S ≤
d + c] = 0.6, Pr[I + S < d] = 0.1, and Pr[I + S > d + c] = 0.3, find the proba-
bility that the demand is satisfied.

2.12. Industrial park utilities. Consider the design requirements of water supply and
wastewater removal systems in a new industrial park, which consists of five inde-
pendent buildings. Assume that the water demand S of each of the five industrial
buldings can be 10 or 15 units, whereas the required wastewater removal capacity R
can be 8, 10, or 15 units. After some interviews with potential clients, the designer
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has estimated that the combined requirements of the two systems are likely to occur
with the following probabilities at the i th site:

R = 15 R = 10 R = 8

S = 10 0.00 0.25 0.15
S = 15 0.20 0.35 0.05

Stochastic independence can also be assumed among the requirements of different
buildings.
(a) What is the probability that the total water demand exceeds 60 units?
(b) What is the probability that the total wastewater removal capacity exceeds 50

units?

2.13. Construction scheduling. Consider the sequential construction scheme of Problem
2.3, and assume that both the foundation and the superstructure can be completed at
three different rates, say, a, b, or c. These rates modify the probability of completion
of each phase of construction as shown in the table given here. Also, monthly costs
vary for the different rates.

Probability of time of completion
Cost per month

Phase Rate at rate ($) 4 months 5 months 6 months 7 months

Foundation a 30,000 0.3 0.7 0 0
Foundation b 36,000 0.5 0.5 0 0
Foundation c 42,000 0.3 0.7 0 0
Superstructure a 25,000 0 0.1 0.4 0.5
Superstructure b 40,000 0 0.3 0.3 0.3
Superstructure c 50,000 0 0.5 0.3 0.2

In addition, if the construction is not completed in 11 months, the contractor must
pay a penalty of $300,000 per month.
(a) Compute the expected cost of foundation performed at rate a as the summation

for all times of completion of the product between the total cost (the product
of the number of required months and the cost per month) and probability.

(b) Compute all expected costs.
(c) Compute the total expected penalty for each possible strategy of completion of

the whole structure.
(d) Determine the best strategy by minimizing the sum of total expected cost and

penalty.

2.14. Research project ranking. A committee consisting of three independent referees
(R1, R2, and R3) is to rank four different research project applications (A, B, C , and
D). Each referee ranks the four projects as 3 (for the best), 2, 1, and 0, and then the
assigned ranks for each project are summed. Assume that the referees are unable to
discriminate between projects so that the rankings are randomly assigned. What is
the probability that project A will receive a total score of 4?

2.15. Probabilities of reservoir storage. Consider the water storage S in a reservoir
described by a sequence of four states ω1, ω2, ω3, ω4, where each state describes
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water volumes ranging from 0 to c/4, from c/4 to 2c/4, and so on (see Example
2.10 and Fig. 2.1.2). The reservoir manager is interested in the simple events given
by Ai,k ≡ {(i − 1)c/4 ≤ S < ic/4} for i = 1, 2, 3, 4 and annual time periods k =
1, 2, 3, . . ..

The manager has estimated the following conditional probabilities:
Pr[A j,k+1|Ai,k] = 1/2 for j = i , and Pr[A j,k+1|Ai,k] = 1/6 for j �= i . What is the
transition probability matrix pi j from the i th to the j th state after one step?
What is the probability that state 1 occurs in the third operational period, given that
the reservoir was in state 4 in the first period?

2.16. Pumping station. Two pumps operate in parallel to provide water supply of a village
located in a recreational area. Water demand is subject to considerable weekly and
seasonal fluctuations. Each unit has a capacity so that it can supply the demand 80%
of the time in case the other unit fails. The probability of failure of each unit is 10%,
whereas the probability that both units fail is 3%. What is the probability that the
village demand will be satisfied?

2.17. Analysis of reservoir lifetime. A reservoir is designed for an area with high ero-
sional rates. The engineer is interested in determining the lifetime of the reservoir,
which can come to an end either because the impounding dam can be destroyed by
a flood exceeding the spillway capacity or because excessive sedimentation results
in a severe loss in reservoir capacity. It is necessary to determine the probability
that the structure will come to an end of its useful life in each of the years af-
ter construction. One can assume a constant probability q that in any year a flow
exceeding the spillway capacity can occur, and an exponentially increasing prob-
ability pi that reservoir sedimentation can occur in the i th year after construction,
given that no significant sedimentation has occurred prior to the i th year, that is,
pi = 1 − exp(−βi), with β > 0.

Denote by An the event associated with a destructive flood occurring in the nth
year after construction and by Bn that associated with excessive sedimentation.
(a) What is the probability that the system will survive for n years, that is

Pr
[(

Ac
1 Bc

1

) (
Ac

2 Bc
2

)
. . .

(
Ac

n Bc
n

)]
?

(b) What is the probability that the system will come to an end in the nth year,
where Sn denotes survival up to the nth year,

Pr[(An + Bn)|Sn−1] Pr[Sn−1]?

(c) Compute the foregoing probabilities for q = 0.01, β = 0.002, and n = 25.

2.18. Highway system. To reach Grenoble, France, from Turin, Italy, one can follow
either of two routes. The first directly connects Turin and Grenoble, whereas the
second passes through Chambery, France. During extreme weather conditions in
winter, travel between Turin and Grenoble is not always possible because some parts
of the highway may not be open to traffic. Denote with A, B, and C the events that
highways from Turin to Grenoble, Turin to Chambery, and Chambery to Grenoble
are open, respectively. In anticipation of driving from Turin to Grenoble, a traveler
listens to the next day’s weather forecast. If snow is forecast for the next day over
the southern Alps, one can assume (on the basis of past records) that Pr[A] = 0.6,
Pr[B] = 0.7, Pr[C] = 0.4, Pr[C |B] = 0.5, and Pr[A|BC] = 0.4.
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(a) What is the probability that the traveler will be able to reach Grenoble from
Turin?

(b) What is the probability that the traveler will be able to drive from Turin to
Grenoble by way of Chambery?

(c) Which route should be taken in order to maximize his chance to reach Grenoble?

2.19. Wastewater treatment. The wastewater from an industrial plant requires treat-
ment before disposal in the sea. This process consists of three sequential stages.
For simplicity, define these stages as primary, secondary, and tertiary treatments,
respectively. The result for each stage can be rated as unsatisfactory, incomplete,
and satisfactory. Denote with Ak the event that the kth stage of the treatment process
is unsatisfactory, with Bk the event that it is incomplete, and with Ck the event that
it is satisfactory. The associated probabilities are given in the following table:

Pr[Ak] Pr[Bk] Pr[Ck]

k = 1 0.1 0.3 0.6
k = 2 0.2 0.3 0.5
k = 3 0.1 0.5 0.4

Further, assume that the three stages of the process are stochastically independent.
If the satisfactory overall treatment requires that none of the three stages is unsat-
isfactory and at least two of these stages are satisfactory, what is the probability of
this event?

2.20. Earthquake occurrence and intensity. Because of the uncertainties associated
with the occurrence and intensity of earthquakes, one must consider earthquakes
occurring in a given location as random phenomena. MCS intensity is a measure
based on earthquake impact on the landscape, buildings, and population. In Problem
1.22 records of earthquake intensity in terms of MCS index are given for a period
of about 1000 years in Rome, Italy. They are ranked from 2 to 7 for increasing
intensities. In ten centuries 329 earthquakes were reported in the study area, and in
only two centuries there were no occurrences. Calculate a frequency-based estimate
of the probability that at least one earthquake is likely to occur in a century. What
is the probability that a recorded earthquake is of intensity 7?

2.21. Air pollution control. The air pollution in Milan, Italy, is mainly caused by indus-
trial, automobile, and heating emissions. A newly elected local government wishes
to control these three sources of pollution within a period of 4 years. The chances of
successfully controlling these sources are 80, 70, and 50%, respectively. The gov-
ernment assumes that if only one of these three sources is successfully controlled,
the probability of bringing air pollution below the acceptable level would be 50%
only, but this probability increases to 80% if two of them are successfully con-
trolled. The government also assumes stochastic independence among controlling
industrial, heating, and automobile exhausts. What is the probability that two of the
sources of air pollution will be successfully controlled in Milan during the 4-year
period?

2.22. Imperfect concrete testing. An existing reinforced concrete building must be tested
for possible obsolescence. Based on professional judgement, the engineer classifies
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concrete quality as either 35–39.9, 40–44.9, 45–49.9, or 50–60 N/mm2 based on
a 28-day test of compressive strength of concrete cubes. The relative likelihoods
assigned to these four states are 0.2, 0.3, 0.4, and 0.1, respectively. Concrete cores
are to be cut and tested to help ascertain the true state, although the engineer knows
that results from test scores are not conclusive. Therefore, conditional probabilities
are estimated to account for the uncertainties involved in examining the cores. These
probabilities describe the likelihood that the value of core strength indicated predicts
a given unknown state. For example, if the true state is 35–39.9 N/mm2, there is a
70% chance that the tested core strength also lies between 35 and 39.9 N/mm2, but
there is a 20% chance that it will lie between 40 and 44.9 N/mm2, and a 10% chance
that it lies in the range 45–49.9 N/mm2. The conditional probabilities are tabulated
next:

State

x1 x2 x3 x4

Core strength 35–39.9 N/mm2 40–44.9 N/mm2 45–49.9 N/mm2 50–60 N/mm2

y1: 35–39.9 N/mm2 0.7 0.2 0.1 0.0
y2: 40–44.9 N/mm2 0.2 0.6 0.2 0.1
y3: 45–49.9 N/mm2 0.1 0.1 0.6 0.2
y4: 50–60 N/mm2 0.0 0.1 0.1 0.7

If the engineer takes three subsequent cores, and the laboratory tests yield z(1) =
41, z(2) = 49, and z(3) = 44 N/mm2, respectively, what are the posterior probabilities
of the four states at the end of the experiment? The required posterior probability
is given by Pr[state xi |samplez(3) = y2].

2.23. Highway pavement. Before any 250-m length of a pavement is accepted by the
State Highway Department, the thickness of a 30 cm is monitored by an ultrasonics
instrument to verify compliance to specification. Each section is rejected if the
measured thickness is less than 10 cm; otherwise, the entire section is accepted.
From past experience, the State Highway engineer knows that 85% of all sections
constructed by the contractor comply with specifications. However, the reliability of
ultrasonic thickness testing is only 75%, so that there is a 25% chance of erroneous
conclusions based on the determination of thickness with ultrasonics.
(a) What is the probability that a poorly constructed section is accepted on the basis

of the ultrasonics test?
(b) What is the probability that if a section is well constructed, it will be rejected

on the basis of the ultrasonics test?

2.24. Remote sensing of inundated areas. Two independent satellite-borne sensors are
used to determine the extension of inundated areas after a flood. Sensor A has a
reliability of 70%, that is, the probability of detecting a pixel (picture element)
whose characteristics reflect inundation is 0.7, whereas sensor B has a reliability of
90%. Also, the probability of both sensors detecting a pixel is 0.65.
(a) Find the probability that a pixel reflecting inundation is detected, that is, it is

detected by at least one of the two sensors.
(b) Determine the probability that a pixel reflecting flooding is detected by only

one sensor.
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2.25. Runoff production. Characterization of the soils of a small catchment includes 40%
of well-drained sand and gravel (type A hydrologic soil group), 35% of fine-textured
soils (type C hydrologic soil group), and 25% of clay soils (type D hydrologic soil
group). Type A and type D terrains have been contoured and are covered with
small grains in poor condition, 60% of type C terrains is covered by pasture in fair
condition, and the remaining type C terrain is sparsely forested land without forest
litter. The engineer evaluates runoff production using the Soil Conservation Service
procedure (see Soil Conservation Service (1983), “Section 4: Hydrology.”). This
procedure gives surface runoff R as

R = (P − 0.2S)2/(P + 0.8S),

where P is the rainfall depth of the design storm, and S is the maximum soil potential
retention, which is given by

S = 25.4(1000/CN − 10),

where CN is a dimensionless parameter known as the “Curve Number.” The values
of CN range from 0 to 100 depending on the joint categories of “hydrologic soil
group,” and “land use” according to the table below. R, P , and S are measured in
millimeters per unit area.

Values of CN obtained by matching hydrologic soil group with land use

Hydrologic soil group

Land use A B C D

Straight row crops in poor condition 72 81 88 91
Contoured row crops in poor condition 70 79 84 88
Contoured row crops in good condition 65 75 82 86
Contoured small grain in poor condition 63 74 82 85
Pasture in fair condition 49 69 79 84
Wood and forestland with thin stand, poor cover, no mulch 45 66 77 83
Woods protected from grazing with adequate brush coverage 30 55 70 77
Commercial and business areas (85% impervious) 89 92 94 95

(a) Determine the expected surface runoff caused by a heavy storm resulting in
120 mm of rainfall per unit area.

A new commercial and business area is planned (85% impervious). The site
includes 40% of type A terrains but 60% of this is pastureland. The engineer
has two alternatives: (1) designing a large culvert to carry runoff excess due
to urbanization, or (2) improving the hydrologic conditions of the surrounding
forestland (for example, by protecting woods from grazing and providing ade-
quate brush coverage) so that the expected runoff from the catchment does not
change. The design storm is 120 mm.

(b) Determine the expected excess runoff due to urbanization.
(c) Evaluate the feasibility of the second alternative under (a).

2.26. Universal soil loss equation. In the United States the prediction of upland erosion
amounts is frequently made by the universal soil loss equation (USLE) developed
by the U.S.D.A. Agricultural Research Service in cooperation with U.S.D.A. Soil
Conservation Service and certain experimental stations (see Soil Conservation
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Service (1983), “Section 3: Sedimentation.”). The USLE gives the annual soil loss
due to erosion in kilograms per square meter per year, say, A, as

A = cR × K × L × S × C × P,

where c is a constant, R denotes the rainfall factor, K the soil erodibility factor, L
the slope length factor, S the slope gradient factor, C the crop-management factor,
and P the erosion control practice factor. The engineer must analyze the effects
of crop management on the annual soil loss in a small forested catchment. From
previous computations c = 1, R = 185, K = 0.38, LS = 1.4, and P = 1. The values
of C vary from 0.0005 to 0.009 depending on the joint variation of the percentage of
area covered by the canopy of trees and undergrowth C1 and of the percentage of
area covered by litter, C2, as shown in the table below:

Values of the crop management factor, C

C1 = 100–90·1% 90–70·1% 70–40%

C2 = 100–70.1% 0.0005 0.0008 0.0010
70–40.1% 0.0020 0.0030 0.0040
40–20% 0.0030 0.0060 0.0090

(a) Assuming that all the foregoing categories of crop management are equally
likely, compute the probability that A exceeds 0.3 kg/m2 per year.

(b) Assuming that the catchment is partitioned as in the foregoing table into nine
subcatchments equal in area, each having a different crop management, compute
the expected annual soil loss from the catchment.

(c) What is the minimum number of subcatchments where crop management must
be improved in order to reduce the expected annual soil loss from the catchment
to a value lower than 0.2?
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Chapter 3

Random Variables and Their Properties

The objective of this chapter is to introduce fundamental theoretical concepts of random
variables and probability distributions. This presentation will establish the necessary link
between statistics and probability. First, random variables are formally defined. Then
discrete and continuous types are treated separately, followed by a description of their
properties and use. The mean, variance, skewness, and other descriptors of sample data,
introduced in Chapter 1, are defined for random variables. We describe moment-generating
functions and illustrate their applications with numerous examples. Methods of estimation
such as moments, probability weighted moments, L moments, and maximum likelihood
are considered, then concepts of entropy, jackknife, and bootstrap.

Multiple random variables are treated extensively. The derivations of joint probability
distributions of discrete and continuous variables, with conditional and marginal functions
and covariance, are covered. In the section on associated random variables are included
properties of derived variables and contagious distributions. We also provide a brief in-
troduction to the related subject of copulas.

Specific types of discrete and continuous models of importance in civil and environ-
mental engineering are elaborated and classified in Chapters 4 and 7. A few of these—such
as the binomial, Poisson, gamma, and normal types—are used in some of the examples in
this chapter to clarify various aspects of the theory.

3.1 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

The concept of random variables is central to probability theory and its applications. This
was introduced and discussed in Chapters 1 and 2. The presentation in this section is more
formal. In particular, the specification of a random variable by a probability distribution
is described.

3.1.1 Random variables

A variable, such as the strength of a concrete or any other material or physical quantity,
whose value is uncertain or unpredictable or nondeterministic is called a random variable
or a variate if its distribution is known. A random variable may assume some value, the
magnitude of which depends on a particular occurrence or outcome (usually noted by
an observation or measurement) of an experiment in which tests are made and records
maintained.1 Each outcome of a random variable, or each simple event defined with respect
to the sample space, corresponds to a numerical value of the random variable; whether
these values differ or not from one event to another is unimportant for this definition. A
random variable can be formally viewed as a function defined on the sample space of an

1 These range from modern Darwinism and management science to quantum mechanics and engineering.

83
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experiment such that there is a numerical value of the random variable corresponding to
each possible outcome; that is, there is a probability associated with each occurrence in
the sample space.2 In contrast to a simple event, a compound event may be associated
with more than one value of the random variable. As previously noted, an uppercase letter
denotes a random variable, and the corresponding lowercase letter represents the value that
it assumes. For example, one may refer to the number of floods in a year or the number of
vehicles passing an intersection during a given period as X ; then x = 5, say, is a particular
value that the random variable X may take.

3.1.2 Probability mass function

A random variable can be statistically specified by its distribution or probability law. That
is, the probability distribution of the random variable is specified using a mathematical
function. The variable can be of the discrete or continuous type. In the discrete case the
variable can only assume at most a countable set of isolated values, as already stated, such
as positive integers (the type of discrete variable with which one is usually concerned).
Then the mathematical function is called a probability mass function, abbreviated pmf,
which is defined as

pX (x) = Pr[X = x]. (3.1.1)

Definition: Probability mass function, pmf. The pmf of a discrete random variable X
gives the point probabilities of the values taken by X .

The axioms of probability (noted in Chapter 2) are applicable here. These are as follows:

0 ≤ pX (x) ≤ 1, for all possible x, (3.1.2a)

pX (x) = 0, for all unrealizable x, (3.1.2b)∑
pX (x) = 1, which is summed over all possible x . (3.1.2c)

If in a particular case one is certain that the outcome is c, for example,

pX (c) = Pr[X = c] = 1 (3.1.2d)

and for mutually exclusive outcomes, x1, x2, . . . , xn ,

pX (x1 + x2 + · · · + xn) = pX (x1) + pX (x2) + · · · + pX (xn). (3.1.2e)

Example 3.1. Flood occurrences. The number of floods recorded per year at a gauging
station in Italy is given in Table 1.1.1. For this data, the pmf is as follows:

pX (0) = .00; pX (1) = 2/34 = .06; pX (2) = 6/34 = .18;
pX (3) = 7/34 = .20; pX (4) = 9/34 = .26; pX (5) = 4/34 = .12;
pX (6) = 1/34 = .03; pX (7) = 4/34 = .12; pX (8) = 1/34 = .03;
pX (x) = .00 for x > 8.

Figure 3.1.1 shows a plot of the pmf.3

2 More formally, a real random variable is a measurable function denoted by X or X (·) having its domain in the
sample space � and its counterdomain in subsets of the real line; see also Feller (1968).
3 It is identical to the line diagram of Fig. 1.1.1 except that the vertical axis denotes the probabilities of the
corresponding values on the horizontal axis.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:15

Random Variables and Their Properties 85

0.3

0.2

0.1

0.0

0 1 2 3 4 5 6 7 8 9

x

p X
 (
x)

Fig. 3.1.1 Probability mass function of flood occurrences X per year at the gauging station of
Calamazza on the Magra River between Pisa and Genoa, Italy, for the period 1939–1972. A flood
occurrence is a discharge in excess of 300 m3/s.

3.1.3 Cumulative distribution function of a discrete random variable

For a discrete or continuous random variable, the cumulative distribution function, ab-
breviated as cdf and denoted by FX (x), is the probability of nonexceedance of x ; this is
sometimes referred to as the distribution function. That is,

FX (x) = Pr[X ≤ x]. (3.1.3a)

We note that Fx (x) is a monotonic function, which, by definition, increases for increasing
values of X and, as previously defined,

0 ≤ FX (x) ≤ 1, for all possible x . (3.1.3b)

Definition and properties: Cumulative distribution function, cdf. For a discrete or con-
tinuous random variable X the cdf is the probability of nonexceedance of the value x . The
cdf is a monotonic (nondecreasing) continuous function that is bounded by 0 and 1. In the
discrete case it is obtained by summing over values of the pmf.

In the case of a discrete random variable, FX (x) is the sum of the probabilities of all
possible values of X that are less than or equal to the argument x . That is,

FX (x) =
∑
Xk≤x

pX (xk). (3.1.4)

This is summed over all possible Xk less than or equal to x .

Example 3.2. Flood occurrences. Returning to the example of the flood occurrences per
year at a gauging station in Italy given in Table 1.1.1 with pmf shown in Example 3.1, we
find the cdf is as follows:

FX (0) = 0.00; FX (1) = 0.06; FX (2) = 0.24; FX (3) = 0.44;
FX (4) = 0.70; FX (5) = 0.82; FX (6) = 0.85; FX (7) = 0.97;
FX (8) = 1.0; FX (x) = 1.00, for x > 8.

Figure 3.1.2 shows the cdf of the flood occurrences.4

Example 3.3. Maximum potential soil absorption capacity. The absorption capacity of
a portion of terrain can be described through its curve number. The curve number takes

4 This is, of course, different from Fig. 1.1.6 which is for a continuous variable. For the discrete variable
represented here, the graph takes the form of a step function.
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Fig. 3.1.2 Cumulative distribution function of flood occurrences X per year at the gauging
station of Calamazza on the Magra River between Pisa and Genoa, Italy, for the period 1939–1972.

integer values in the range 1–100 and depends on soil properties and land use.5 As a first
approximation, values taken by the random variable CN in a region may be assumed to be
equally likely (that is to say, uniformly distributed) with pmf:

PCN(cn) = 1/100, for 1 ≤ cn ≤ 100.

The corresponding cdf is given by

FCN(cn) =
cn∑

i=1

1

100
= cn

100
, for 1 ≤ cn ≤ 100;

FCN(cn) = 0, for cn < 1;

FCN(cn) = 1, for c ≥ 100.

For example, FCN(25) = Pr[cn ≤ 25] = .25. The pmf and cdf are shown in Fig. 3.1.3a.
This is a step function that appears to be a curve because of numerous steps. The maximum

potential soil absorption capacity S is related to the CN as follows:

S = 25.4[(1000/CN) − 10],

where S is measured in millimeters. Accordingly, S can take a value from 0 to 25,146 mm.
For example, S = 762 mm for CN = 25, and pS(762) = 0.01. The corresponding cdf of S
is given by the sum of the probabilities of those outcomes of CN that yield a value of S less
than or equal to 762 mm. This corresponds to CN ≥ 25. Hence,

FS(s) =
100∑

i=cn

1

100
=

100∑
i= 25,400

s+254

1

100
= 1 − 254

s + 254
,

for 0 ≤ s ≤ 25,146 mm.

FS(s) = 0, for s < 0; FS(s) = 1, for s > 25,146.

This cdf is shown in Fig. 3.1.3b.
This is also a step function. The log scale allows a clearer definition for high and low values

of S.
It is often convenient to consider S as a continuous random variable that can take any real

value from 0 to 25,146 mm.

3.1.4 Probability density function

A continuous variable can take any value within two limits, determined by physical or
theoretical means; such a value can in theory be specified using an unlimited number of

5 See Problem 2.25.
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Fig. 3.1.3 (a) Probability density function and cumulative distribution function of equally likely
values of curve number, CN. (b) Cumulative distribution function of maximum soil potential
retention S as obtained from equally likely values of the curve number.

decimal places but is limited in practice by the accuracy of the measuring device used,
such as a flow gauge or weighing device. The probability law for a continuous random
variable is specified by a probability density function, abbreviated pdf, which represents the
limiting case if the relative frequency polygon is applied to a sample of infinite size and the
class widths tend to zero.6 Thus, the pdf denoted by fX (x) is a nonnegative mathematical
function that in its graphical representation usually takes the form of a continuous curve
over a range of values that the random variable can possibly take. As implied by its
definition, fX (x) is not dimensionless and hence by itself does not represent a probability;
it merely denotes an intensity of probability or a probability rate.7 However, the area under
the curve between limits, such as x1 and x2, with a nonzero range gives the probability
that the random variable X lies in the interval x1 to x2; occurrences over two or more
nonoverlapping intervals are mutually exclusive events. The physical analogue to this is
a unit vertical force which is continuously and (in general) nonuniformly distributed over
a horizontal structural component and denoted by fX (x); here the area under the curve
between the points gives the fraction of the force acting between the points. Thus,

fX (x) ≥ 0 (3.1.5a)

6 A relative frequency polygon is shown in Fig. 1.1.5.
7 This is analogous to the statement that density = mass/volume.
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and

Pr[x1 ≤ X ≤ x2] =
x2∫

x1

fX (x)dx ≤ 1. (3.1.5b)

If xa and xb denote the lowest and highest values, respectively, that X can possibly take
(which means of course that the pdf is zero outside these limits) then the integral in
Eq. (3.1.5b), applied over these limits, will be equivalent to the maximum probability of
1. In other words, the area under the pdf between these limits is 1. In the case of some
distributions these extreme limits are at negative and positive infinity, denoted by −∞
and +∞, respectively. This convention for symbolizing the complete range of a random
variable is adopted in the general case. That is,

+∞∫
−∞

fX (x)dx = 1. (3.1.5c)

A quantity used in indexing a pdf is termed as parameter. For example, if fX (x) =
λ exp(−λx), λ is a parameter. As λ takes positive values over an infinite range, the collec-
tion of pdfs is called a parametric family of pdfs.

3.1.5 Cumulative distribution function of a continuous random variable

For continuous random variables, Eq. (3.1.3) is also applicable for describing the cumula-
tive distribution function or cdf, FX (x). Thus, FX (x) is the probability of nonexceedance
and is the range 0–1. However, the summation in Eq. (3.1.4) for the pmf corresponds to
an integral in the case of the pdf; and hence the relationship between the cdf and the pdf
becomes

FX (x) =
x∫

−∞
fX (z)dz. (3.1.6a)

It also directly follows that

dF X (x)

dx
= fX (x). (3.1.6b)

Example 3.4. Maximum potential soil absorption capacity. Consider the problem of de-
termining the distribution of maximum potential soil absorption capacity S from the curve
number (see Example 3.3). Because it is often assumed that S can take any real value from 0
to 25,146 mm, one can derive the pdf of S by using (3.1.6b) as follows:

fS(s) = dF S(s)

ds
= d

ds

(
1 − 254

s + 254

)
= 254

(s + 254)2
, for 0 < s ≤ 25, 146,

fS(s) = 0, elsewhere,

where fS(s) is measured in units of (mm)−1.

Definition and properties: Probability density function (pdf) and cumulative distribu-
tion function (cdf) of a continuous random variable. A probability density function is
defined as

fX (x) ≥ 0, for all x, and

+∞∫
−∞

fX (x)dx = 1.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:15

Random Variables and Their Properties 89

For a continuous random variable X , the cdf is obtained by the integral

FX (x) =
x∫

−∞

fX (z)dz. (3.1.7)

In general, for a continuous random variable, the pdf can be discontinuous but the cdf is
continuous.

Example 3.5. Timber strength. For an application of the pdf and the cdf, consider the
timber strength data of Table E.1.1. To verify some of the properties given above, we may
simplify the pdf as follows:

fX (x) = x

1400
, for 0 ≤ x ≤ 40;

= 70 − x

1050
, for 40 ≤ x ≤ 70;

= 0, for x ≤ 0 and x ≥ 70.

The units of X and fX (x) are N/mm2 and mm2/N, respectively. The function is shown in
Fig. 3.1.4a. Clearly, Eq. (3.1.5a) applies to the function just given. One can easily verify
graphically or by integration that Eq. (3.1.5c) is also applicable. The probability that X lies in
the interval 30–60 N/mm2 is given by the shaded area which is .631. This can also be found
by substituting the foregoing function with the given limits in Eq. (3.1.5b). This calculation
is equivalent to using Eq. (3.1.6a) as follows:

Pr[30 ≤ X ≤ 60] = FX (60) − FX (30) = .952 − .321 = .631.

The cdf obtained by integration of the pdf is shown in Fig. 3.1.4b.
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Fig. 3.1.4 Data on modulus of rupture of timber from Table E.1.1: (a) probability density
function in which the shaded area represents the probability that X is in the interval 30–60 N/mm2

and (b) cumulative distribution function.
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Fig. 3.1.5 Probability density function and cumulative distribution function of exponentially
distributed earthquake intensities X , with λ = 0.2.
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The pmf or pdf and the cdf of a random variable provide the probability model that
describes a process that is subject to uncertainty. As already mentioned, the probability
model of a random system is often developed in the form of a parametric function; this
function and the values taken by the parameters come from the random mechanism that
governs the system behavior. Practical expediency, however, demands the estimation of
parameters through experimentation and observations.

Example 3.6. Earthquake intensity. For another application of the pdf and cdf, consider
the occurrence of earthquakes in a region for which the cdf can be simplified to the exponential
distribution

FX (x) = 1 − e−λx ,

where λ is a parameter and the random variable X is the magnitude of an earthquake in the
region in the range 0 ≤ x ≤ + ∞. From Eq. (3.1.6b), the pdf is given by

fX (x) = λe−λx .

It is estimated that λ is 0.2. Equation (3.1.5a) is clearly applicable and it is easy to show by
integration the validity of Eq. (3.1.5c) in this case. The probability of an earthquake exceeding
10 units, for example, is given by

Pr[X ≥ 10] = 1 − FX (10) = e−2 = .135.

The pdf and cdf are shown in Fig. 3.1.5.

3.1.6 Summary of Section 3.1

In this section we have introduced the basic concept of random variables, probability mass
and density functions, and cumulative distribution functions. Estimation of parameters
follows in the next section.

3.2 DESCRIPTORS OF RANDOM VARIABLES

Numerical measures such as the mean, standard deviation, and coefficient of skewness of
a data set, which characterize the central location, dispersion, and asymmetry of its his-
togram, were described in Chapter 1. The measures are sample estimates of the statistical
properties of the phenomenon studied. Correspondingly, there are also similar measures
of the random variables of which the sample is a realization. These are descriptors of its
probability mass function, pmf, or the probability density function, pdf, in the case of a
discrete or continuous variable, respectively. The descriptors summarize some important
features of the behavior of random variables and are directly relevant for engineering
applications. This set of features comprises expectations of the function, usually called
population measures, in the form of some weighted averages of functions of the random
variable. The pdf or the pmf provides the weights. Also, the constants or parameters of the
cdf are shown to be related to one or more of the population measures such as the mean,
standard deviation, and coefficient of skewness.

3.2.1 Expectation and other population measures

3.2.1.1 Mean or expected value
The sample arithmetic mean of a set of data is simply the average of the observed data
(as noted in Chapter 1). By analogy, the centroid is the center of mass of a solid body.
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Corresponding to this geometrical definition is the statistical expected value E[X ] of a
random variable X . The expected value is the average value that is weighted according to
the probability distribution. It is often called the population mean and is denoted by μX .
In the discrete case, the pmf gives the weighted average as

μX = E[X ] =
∑
all xi

xi pX (xi ). (3.2.1)

Example 3.7. Flood exceedances. Consider the simple case where the variable can only
take a value of 0 or 1. This stuation can represent the occurrence of a flood at a particular
site on a river, where the event 1 is the exceedance of a specified flow in the river. Let the
probability of such an occurrence be p. The event 0 is the complementary event and has a
probability of occurrence of (1 − p). The probabilities of the two events are given by the
Bernoulli distribution

pX (x j ) = Pr[X = x j ] = px j (1 − p)1−x j , for x j = 0, 1.

Hence

μX = E[X ] = 0p0(1 − p)1 + 1p1(1 − p)0 = p.

This gives the required expectation.

If X is a continuous random variable its pdf is used to give

μX = E[X ] =
+∞∫

−∞
x fX (x)dx . (3.2.2)

In general, the difference between a sample mean and the population mean tends to be
small for large sample sizes greater than, say, 30 in the case of symmetrical distributions.
The mean is the most useful single number in engineering applications for theoretical,
comparative, and other purposes. It is an important measure of the central tendency of the
random variable and is well-suited to represent the phenomenon studied.

Example 3.8. Timber strength. For an example of the computation of the population mean,
consider the triangular distribution introduced in Example 3.5 to be a first approximation to
the timber strength data of Table E.1.1. From Eq. (3.2.2)

μX = E[X ] =
40∫

0

x2

1400
dx +

70∫
40

70x − x2

1050
dx = 403

4200
+ 703 − 402 × 70

2100
+ 403 − 703

3150

= 15.24 + 110.00 − 88.57 = 36.67 N/mm2.

The difference between this and the sample arithmetic mean of 39.09 N/mm2 given in
Table 1.2.2 is expected because the distribution we assumed is not a close approximation
to the relative frequencies of the timber strength data.

It would be interesting to compare the median u, which has a probability of nonexceedance
of 0.5. This calculation is carried out as follows:

FX (u) = 0.5 =
u∫

0

xdx

1400
= u2

2800
.

Hence, u = 37.42 N/mm2 (which can be compared with the sample median of 39.05 under-
lined in Table 1.1.3). For the assumed distribution, the mode is at 40 N/mm2. The distribution
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is asymmetrical with a longer left tail indicating negative skewness. Thus, there is compliance
with the condition

mean < median < mode,

which is applicable in the case of negative skewness.8

Example 3.9. Earthquake intensity. The mean strength of earthquakes in a region can
be found following the procedure in Example 3.6 where the cdf was approximated by the
exponential distribution

FX (x) = 1 − e−λx ,

with the constant λ = 0.2. Then from Eq. (3.2.2)

μX = E[X ] =
∞∫

0

xλe−λx dx .

Integrating by parts, we have

μX = E[X ] = [−xe−λx ]∞0 +
∞∫

0

e−λx dx = 0 + 1

λ
= 1

λ
,

where the zero term on the right-hand side is obtained through l’Hospital’s rule. Thus, μ = 5.
The median, u, has cdf

FX (u) = 1 − e−λu = 0.5.

Hence,

u = − ln(0.5)

λ
= − ln(0.5)

0.2
= 3.47.

With its mode at zero, the distribution has no left tail, which indicates positive skewness.
Thus, as expected, the condition

mode < median < mean

(applicable if skewness is positive) is satisfied.

3.2.1.2 Expectation operator
The mathematical expectation (that is, mean value) of a function of X , such as g(x), can
be obtained by substituting g(X ) for X on the left-hand side of Eq. (3.2.1) or (3.2.2) and
g(x) for x before the weighting function on the right-hand side. [Indeed, Y = g(X ) is a
random variable.] Thus for a discrete variable,

E[g(X )] =
∑
all xi

g(xi )pX (xi ). (3.2.3)

Correspondingly, for a continuous variable,

E[g(X )] =
+∞∫

−∞
g(x) fX (x)dx . (3.2.4)

This is applicable only if the integral is absolutely convergent; that is, if g(x) is replaced
by its absolute value, the expectation is finite.

8 As stipulated in Section 1.2.
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Definition and properties: Expectation, E[·]. Let X be a random variable and g(x) a
function of X . The expectation of the function g(x) is given by

E[g(X )] =
∑
all xi

g(xi )pX (xi )

if X is a discrete variable with mass points xi and

E[g(X )] =
+∞∫

−∞

g(x) fX (x)dx,

if X is a continuous variable with pdf fX (x), provided that the series and the integral are
absolutely convergent. If h(x) = x , the expectation is the mean of the variable. The following
properties hold:

E[a] = a, for a constant a;

E[ah(X )] = aE[h(X )], for a constant a;

E[ah1(X ) + bh2(X )] = aE[h1(X )] + bE[h2(X )], for two constants a and b;

E[h1(X )] ≥ E[h2(X )] if h1(X ) ≥ h2(X ), for two functions h1(x) and h2(x).

Chebyshev inequality9

Pr[h(X ) ≥ m] ≤ m−1 E[h(X )], for every m > 0 and h(x) ≥ 0.

Jensen inequality. E[h(X )] ≥ h(E[X ]), if h(x) is a convex function; that is, a function
represented by a bowl-shaped curve (which appears as if it can hold water). Alternatively,
it can be said to be concave upward. The companion (reversed) inequality is applied for a
concave function.10

Example 3.10. Jensen inequality applied to the arithmetic and geometric means. Let
X be a random variable with sample realization X1, X2, . . . , Xn which are positive numbers.
Then h(X ) = log(X ) is a concave function.

The geometric mean is given by11

X̄g = (X1 × X2 × · · · × Xn)1/n

and hence

log
(
X̄g

) = 1

n

n∑
i=1

log(Xi ).

The arithmetic mean is given by

X̄ = 1

n
(X1 + X2 + · · · + Xn),

from which

log(X̄ ) = log

[
1

n
(X1 + X2 + · · · + Xn)

]
.

Because of the concavity of the log function h(·), we apply the companion Jensen inequality:

E[h(X )] ≤ h[E[X ]].

That is, [mean of the logarithm of X ] ≤ logarithm [mean of X ]. It is seen from the above that
is log(X̄g) ≤ log(X̄ ). Hence, [geometric mean] < [arithmetic mean].

9 The second e in Chebyshev is pronounced as an o and is stressed as are Gorbachev and Kruschev. This is
sometimes referred to as the Bienaymé-Chebyshev inequality.
10 Proofs of the foregoing properties are given in Appendix A, Sections A1 and A2.
11 See Eq. (1.2.3).
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3.2.1.3 Moments
As stated before, the average or expectation of a function of a random variable X can be
found by weighting the function by its density or mass function. This procedure is called
the method of moments. It constitutes a family of averages of the random variable, which
serve as numerical descriptors of the behavior of the random variable. Accordingly, it is a
standard practice to summarize a pdf or pmf by its moments. In general, μ∗

r is called the
moment of order r about the point a and is defined for a discrete variable by

μ∗
r = E[(X − a)r ] =

∑
all xi

(xi − a)r pX (xi ), (3.2.5)

where r denotes a positive integer. The r th-order moment about the origin, that is, for
a = 0, is called a absolute, crude, or raw moment. Here it will be simply called a moment
and denoted by μ′

r . The first moment is the mean,

μX = μ
′
1 = E[X ] =

∑
all xi

xi pX (xi ). (3.2.6)

As an analog from civil engineering, consider a rigid beam subject to a system of loads.
The mean is equivalent to the distance from a given axis to the point of application of the
equilibrant of the system of discrete vertical forces acting on the beam.

When a in Eq. (3.2.5) is the mean μX , the moment of order r is written without the
superscript (asterisk) as

μr = E[(X − μX )r ] =
∑
all xi

(xi − μX )r pX (xi ). (3.2.7)

These moments are called central moments [although, strictly speaking, the term central
is applicable only when a is the median, that is, if F(a) = 0.5]. As shown shortly, μ2

denotes the variance; also μ1 is the mean deviation.
In the case of a discrete variable with values spaced at unit intervals, a useful concept

is that of factorial moments. The factorial moment of order r is defined as

μ
′
(r ) =

∑
all xi

x (r )
i pX (xi ), (3.2.8)

where

x (r )
i = xi (xi − 1)(xi − 2) · · · (xi − r + 1). (3.2.9)

and, as before, r is a positive integer.
In the case of a continuous variable, the moments are written as

μ∗
r = E[(X − a)r ] =

+∞∫
−∞

(x − a)r fX (x)dx (3.2.10)

and

μr = E[(X − μX )r ] =
+∞∫

−∞
(x − μX )r fX (x)dx, (3.2.11)
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respectively. Analogously (as noted in Chapter 1), the mean μX is the centroid of the unit
area between the pdf and the horizontal axis. By the same token, the variance given by μ2

corresponds to the moment of inertia about the vertical axis through the centroid.

3.2.1.4 Variance, standard deviation, and coefficient of variation
As previously emphasized, the main characteristic of a random phenomenon is its vari-
ability. This may be high in some cases and low in others. It follows from Eq. (3.2.11)
that the variance can be written as

Var[X ] ≡ σ 2
X = E[(X − E[X ])2] = E[X2 − 2X E[X ] + (E[X ])2]

= E[X2] − 2E[X ]E[X ] + (E[X ])2 = E[X2] − (E[X ])2. (3.2.12)

This result shows that the variance is equal to the difference between the mean of the
squares and the square of the means.

Example 3.11. Reliability bounds using Chebyshev inequality. Let the squared deviation
of a random variable X from its mean μX be represented by h(X ) = (X − μX )2,

E[h(X )] = E[(X − μX )2] = σ 2
x .

Let m = k2σ 2
x . Then by using Chebyshev inequality,

Pr
[
(X − μX )2 ≥ k2σ 2

x

]
≤ 1/k2, for k ≥ 1.

It follows that

Pr[|X − μX | < kσX ] = Pr[−kσX < X − μX < kσX ] ≥ 1 − 1/k2,

which can be written as

Pr[μX − kσX < X < μX + kσX ] ≥ 1 − 1/k2.

This expression states that the probability that X falls within kσX units of μX is greater than or
equal to 1 − 1/k2. For k = 2, the lower bound to the probability is 3/4, and for k = 3 it is 8/9.
Using this rule, one can establish operational bounds without specifying the probability law
of the investigated system. For example, consider a supply system subject to a random load
or demand with known mean and standard deviation. An engineer who designs the capacity
of this system in order to satisfy any demand ranging within two standard deviations of the
mean (k = 2) does so with the knowledge that the reliability of this system will not be less
than 75%. However, as we shall see in subsequent chapters, a higher reliability is obtained
by making further assumptions—for example, that the pdf of the variable is known.

Example 3.12. Flood occurrence. For the Bernoulli probability that the flow of a river
exceeds a given magnitude at a particular site, as specified in Example 3.7,

PX (xi ) = Pr[X = xi ] = px j (1 − p)1−x j , for xi = 0, 1

can be used. If we take the second moment about the origin, then from Eq. (3.2.5)

E[X 2] = 02 p0(1 − p)1 + 12 p1(1 − p)0 = p.

Let p = 0.1. Since μX = p, it follows from Eq. (3.2.12) that the variance is given by

Var[X ] ≡ σ 2
X = p − p2 = p(1 − p) = 0.09.

The standard deviation σX is defined as the positive square root of the variance. It is
measured in the same units as the variable and is therefore more practically meaningful
as a measure of dispersion than the variance, because it can be compared directly with the
mean.
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Example 3.13. Timber strength. For an example of the variance of a continuous variable,
consider the timber strength data of Table E.1.1. The simplified triangular distribution in
Examples 3.5 and 3.8 is assumed. From Eq. (3.2.10), with a = 0,

E[X 2] =
40∫

0

x3

1400
dx +

70∫
40

70x2 − x3

1050
dx

= 404

5600
+ 704 − 403 × 70

3150
+ 404 − 704

4200
= 1550.

By substituting E[X ] = 36.67 N/mm2 as obtained in Example 3.8, then from Eq. (3.2.12)
we can write,

Var[X ] ≡ σ 2
X = E[X 2] − (E[X ])2 = 1550 − 1344.69 = 205.31 N2/mm4.

Hence, σX = 14.33 N/mm2.

The coefficient of variation VX = σX/μX provides a relative measure of disper-
sion that is dimensionless. It is sometimes given as a percentage. Figure 3.2.1a and
Figure 3.2.1b show schematically the pmfs and cdfs, respectively, of three discrete vari-
ables with different coefficients of variation.

Figure 3.2.2a and Figure 3.2.2b show the same effects on the pdfs and cdfs, respectively,
of three continuous variables.

x

p X
 (x

)

V
2V

4V

(a)

(b) 0.0
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0.4

0.6

0.8

1.0

x

F
X

 (x
)

V

2V
4V

Fig. 3.2.1 Schematic diagrams of the (a) probability mass functions and (b) the
cumulative distribution functions of three discrete variables X with different coefficients
of variation V .
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Fig. 3.2.2 Schematic diagrams of (a) symmetrical probability density functions and (b)
cumulative distribution functions of three continuous variables X with different coefficients of
variation V .

Example 3.14. Earthquake intensity. Another application to a continuous variate is the
case of earthquakes in a region. Proceeding as in Example 3.9 for the evaluation of E[X ]
(that is, integrating by parts and using l’Hospital’s rule), we write

E[X 2] =
∞∫

0

λx2e−λx dx = [
x2e−λx

]0

∞ +
∞∫

0

2xe−λx dx = 0 + 2

λ2
= 2

λ2
.

By substituting μX = E[X ] = 1/λ in Eq. (3.2.12),

Var[X ] ≡ σ 2
X = E[X 2] − (E[X ])2 = 2

λ2
− 1

λ2
= 1

λ2
.

3.2.1.5 Coefficient of skewness and coefficient of kurtosis
The coefficient of skewness γ1 of a random variable is estimated by g1 which is a measure
of the asymmetry of a set of data about the mean. By using moments of order three and
two about the mean, γ1 is defined as follows:

γ1 = μ3√
μ3

2

= E[(X − E[X ])3]√
{E[(X − E[X ])2]}3

= E[X3] − 3E[X2]E[X ] + 2(E[X ])3

(E[X2] − (E[X ])2)3/2
. (3.2.13)

The numerator is the central moment of order three and the denominator is the cube of the
standard deviation. Also, the terms in the numerator on the right are obtained by expansion,
taking expectations and regrouping as in Eq. (3.2.12).

For a probability distribution symmetrical about μX the third central moment E[(X −
μX )3] = 0. If the values of X greater than μX are more widely dispersed than those that
are less than μX , the third moment is positive, and the pmf or pdf has its dominant tail
on the right. In this case the probability distribution is said to be positively skewed (as
discussed in Section 1.2). On the other hand, for E[(X − μX )3] < 0 we have a negatively
skewed probability distribution with the dominant tail on the left. Since the denominator
of Eq. (3.2.13) is nonnegative, γ1 has the same sign of E[(X − μX )3], so that it is used
as a dimensionless measure of the degree of skewness of a probability distribution (see
Fig. 3.2.3a and 3.2.3b).

The coefficient of kurtosis γ2 of a random variable as estimated by g2 is a measure of the
“peakedness” of a histogram. In the case of a symmetric distribution, the quantity (γ2 − 3)
is sometimes referred to as the coefficient of excess (as a relative measure of kurtosis,
considering that γ2 = 3 for the normal distribution).
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Fig. 3.2.3 Schematic diagrams of (a) the probability density functions and (b) the cumulative
distribution functions of three continuous variables X with coefficients of skewness, γ1 = 1, 0,
and −1.

By following a procedure similar to that in Eq. (3.2.13) and using moments of order
four and two about the mean, γ2 is defined by

γ2 = μ4

μ2
2

= E[(X − E[X ])4]

{E[X − (E[X ])2}2

= E[X4] − 4E[X3]E[X ] + 6E[X2](E[X ])2 − 3(E[X ])4

{E[X2] − (E[X ])2}2
.

(3.2.14)

Example 3.15. Earthquake intensity. Consider the case of earthquakes in a region intro-
duced in Example 3.6. Proceeding as in the evaluation of E[X ] and E[X 2] in Examples 3.9
and 3.14 (integrating by parts and using l’Hospital’s rule), one obtains for any integer r

E[Xr ] =
∞∫

0

λxr e−λx dx = �(r + 1)

λr
,

where �(r + 1) = r ! for integer r . This result can be used in Eq. (3.2.13) to obtain

γ1 = E[X 3] − 3E[X 2]E[X ] + 2(E[X ])3

{E[X 2] − (E[X ])2}3/2
= �(4)λ−3 − 3�(3)λ−3 + 2λ−3

{�(3)λ−2 − λ−2}3/2

= (6 − 6 + 2)λ−3

(2 − 1)λ−3
= 2.

This result means that the exponential distribution is positively skewed, as shown in Fig. 3.1.5,
and γ1 = 2 for any λ > 0. Similarly, from Eq. (3.2.14),

γ2 = E[X 4] − 4E[X 3]E[X ] + 6E[X 2](E[X ])2 − 3(E[X ])4

{E[X 2] − (E[X ])2}2

= �(5)λ−4 − 4�(4)λ−4 + 6�(3)λ−4 − 3λ−4

{�(3)λ−2 − λ−2}2
= (24 − 4 × 6 + 6 × 2 − 3)λ−4

(2 − 1)2λ−4
= 9.

3.2.1.6 Quantiles
Many engineering problems require solutions to the probability of a load exceeding a
specified design level or the probability of a system designed to work within a tar-
get range. To address such problems, one needs to solve the so-called inverse prob-
lem, that is, to determine the value of a random variable that is exceeded with a given
probability.
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If we denote by q the required probability level, the qth quantile is the smallest number
ξ satisfying the inequality

FX (ξ ) ≥ q, (3.2.15)

and it is denoted as ξq . For a continuous random variable the equality holds, so that the
quantile can be defined as the smallest number ξ satisfying FX (ξ ) = q , and the quantile is
the value of X which is exceeded with a probability (1 − q). According to this definition,
the median is the 0.5th quantile, that is, ξ0.5.

Definition and properties: Quantile, ξq . The qth quantile of a random variable X is defined
as the smallest number ξ satisfying the inequality FX (ξ ) ≥ q, with FX (x) denoting the cdf of
X . For a continuous variable the equality holds, so that ξq is the value of X with a probability
of nonexceedance equal to q.

Example 3.16. Earthquake intensity. The mean strength of earthquakes in a region, as
noted in Example 3.6, has cdf

FX (x) = 1 − e−λx .

To determine the intensity of an earthquake which is exceeded with a probability of say,
0.1, we write the qth quantile, with λ = 0.2, as

q = 1 − Pr[X > x] = 1 − 0.1 = 0.9.

Hence using Eq. 3.2.15 with the equality sign, we write

ξq = ξ0.9 = −(1/λ) ln(1 − q) = −5 ln(0.1) = 11.5.

3.2.2 Generating functions

A generating function is a convenient way for compactly summarizing the information
contained in a sequence, such as the moments of the sequence. Alternatively, the function
can directly generate the probabilities of a discrete sequence. The function, which is
usually of a quantity t , is expanded as a power series to give, for instance, the values of
the moments as the coefficients. These functions have been used in theoretical statistics
and probability for more than 250 years.

3.2.2.1 Moment-generating function
The moments of a pmf or pdf play an important role in theoretical and applied statistics.
In fact, if all the relevant moments are known and finite, the mass or density can be
determined.

It is possible in the case of some distributions to define a function, appropriately called
the moment-generating function, mgf, existing in some neighborhood, say, −ε < t < ε

of the origin,

MX (t) = E[et X ] (3.2.16)

that, when expanded in powers of t about zero as a Maclaurin’s series, will provide the
moments of the distribution as coefficients in the expansion. Thus,

MX (t) = E[et X ] = E

[
1+ Xt + 1

2!
(Xt)2+ · · ·

]
= 1+ μ1t + 1

2!
μ2t2 + · · · . (3.2.17)

The quantity t is a dummy value used merely to convey the information in the sequence.
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Alternatively, a more direct approach can be taken. It follows from Eq. (3.2.16) that for
discrete distributions

MX (t) =
∑

etx j pX (x j ), summed for all possible x j , (3.2.18)

and for continuous types,

MX (t) =
∞∫

−∞
etx fX (x)dx . (3.2.19)

In general, if a random variable has an associated moment-generating function, then MX (t)
is continuously differentiable in some neighborhood of the origin, and the moment of order
m about the origin is thus generated from Eq. (3.2.16) by taking the mth derivative with
respect to t and evaluating the derivative at t = 0. For this purpose we use Eqs. (3.2.11)
and (3.2.17). That is,

d MX (0)

dt
=

⎡⎣ ∞∫
−∞

xext fX (x)dx

⎤⎦
t=0

=
∞∫

−∞
x fX (x)dx = E[X ], (3.2.20a)

d2 MX (0)

dt2
=

∞∫
−∞

x2 fX (x)dx = E[X2], (3.2.20b)

and in general,

dm MX (0)

dtm
=

∞∫
−∞

xm fX (x)dx = E[Xm]. (3.2.20c)

Definition and properties: Moment-generating function, or mgf. The mgf of a random
variable X is defined as E[et X ]. If the mgf exists, its mth derivative at the origin (t = 0) is
the mth-order central moment of X .

Example 3.17. Earthquake intensity. Returning to the occurrences of earthquakes (intro-
duced in Example 3.6), we find from Eq. (3.2.19) that for the exponential distribution,

MX (t) =
∞∫

0

etxλe−λx dx = λ

λ − t

for t < λ. Hence, from Eq. (3.2.20a) the mean is evaluated as

μX = E[X ] = λ

(λ − t)2

∣∣∣
t=0

= 1

λ
.

Also, from Eq. (3.2.20b),

E[X 2] = 2λ

(λ − t)3

∣∣∣∣
t=0

= 2

λ2
.

Therefore, the variance is given by

Var[X ] ≡ σ 2
X = E[X 2] − (E[X ])2 = 1

λ2
.

These results conform with those given in Examples 3.9 and 3.14.

If X and Y are two random variables with pdfs fX (x) and fY (y), respectively, and
their moment generating functions MX (t) and MY (t) exist and are equal for all t in some
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interval (−h < t < h), then the two cumulative distribution functions FX (x) and FY (y)
are equal. This property can be useful in many applications. For example, suppose that we
find that a random variable X has a mgf given by λ/(λ − t), we conclude that the pdf of X
is fX (x) = λe−λx for x ≥ 0. This property is also applicable to other generating functions
discussed here.

3.2.2.2 Factorial moment-generating function
In some discrete distributions, it is convenient to apply the factorial moment-generating
function, which is defined by E[t X ]. The difference from an ordinary moment-generating
function is that t = 1 is the condition of interest, as shown shortly, and not t = 0, which
is used for the mgf.

Definition and properties: The factorial moment-generating function. The factorial mgf
of a random variable X is defined as E[t X ]. If this function exists, its mth derivative at unity
(t = 1) is the mth-order factorial moment of X .

Example 3.18. Earthquake occurrence. Let X denote the number of occurrences of earth-
quakes in a given region in a year. A probability model that can be used for the purpose of
describing such occurrences is given by the Poisson distribution:

pX (x) = vx e−v

x!
, where x = 0, 1, 2, . . . , v > 0.

This has the factorial mgf

E[t X ] =
∞∑

x=0

t x v x e−v

x!
= e−v

∞∑
x=0

(vt)x

x!
= e−v evt = ev(t−1).

The first and second derivatives taken at t = 1 are

d

dt
E[t X ]t=1 = v

and

d2

dt2
E[t X ]t=1 = v2ev(t−1)|t=1 = v2.

Also, the first and second derivatives at t = 1 of E[t X ] are

d

dt
E[t X ] = E[Xt X−1]t=1 = E[X ]

and

d2

dt2
E[t X ]t=1 = E[X (X − 1)t X−2]t=1 = E[X 2] − E[X ].

Hence, by equating terms,

E[X ] = v,

E[X 2] − E[X ] = v2,

and

Var[X ] ≡ σ 2
X = E[X 2] − (E[X ])2 = v2 + v − v2 = v .

3.2.2.3 Cumulants
As a set of descriptive constants, the moments are useful for measuring the properties
of a distribution and specifying it. In addition, there is another set of constants called
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cumulants or semi-invariants, which are preferable for theoretical purposes; these arise
from the cumulant-generating function which is the logarithm of the mgf. Details of this
set, which can be obtained by a procedure similar to that used to derive Eq. (3.2.17), are
given, for example, by Stuart and Ord (1994, Chapter 3).

3.2.2.4 Characteristic function
The characteristic function of a random variable X is an alternative auxiliary function that
is useful in many cases when the mgf does not provide estimates of moments directly. It
is defined as

φX (t) = E[eitx ] = MX (i t) (3.2.21)

where i = √ − 1. The substitution of it for t is the modification to the moment-generating
function of Eq. (3.2.16) necessary to transform it to a characteristic function. Likewise,
Eqs. (3.2.17) to (3.2.19) can be converted by substituting it for t .

Example 3.19. Timber strength. Consider the gamma distribution specified by the pdf,

fX (x) = λr

�(r )
e−λx xr−1,

where 0 < x < +∞; λ > 0; r > 0. For example, this pdf can be used to model the distribution
of the timber strength data of Table E.1.1 more closely than that assumed in Example 3.5.
The characteristic function for this type is given by

φX (t) = λr

�(r )

∞∫
0

ex(−λ+i t)xr−1dx,

where, by definition,
∫ ∞

0 e−z zr−1dz = �(r ) = (r − 1)! for integer r . Hence, substituting z =
x(λ − i t), we find that

φX (t) = λr

(λ − i t)r�(r )

∞∫
0

e−z zr−1dz =
(

1 − it

λ

)−r

.

Thus, by Maclaurin’s series expansion [as in Eq. (3.2.17)],

φX (t) = 1 + r
i t

λ
+ r (r + 1)

2!

(
i t

λ

)2

+ r (r + 1)(r + 2)

3!

(
i t

λ

)3

+ · · · .

From the derivatives at t = 0 corresponding to Eq. (3.2.20a) and (3.2.20b)

μX = E[X ] = 1

i

dφX (0)

dt
= r

λ
,

and

E[X 2] = 1

i2

d2φX (0)

dt2
= r (r + 1)

λ2
.

Similarly,

E[X 3] = r (r + 1)(r + 2)

λ3
,

and so on. Thus,

Var[X ] ≡ σ 2
X = E[X 2] − (E[X ])2 = r

λ2
.

The coefficients of skewness and kurtosis can be obtained using Eqs. (3.2.13) and (3.2.14).
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3.2.3 Estimation of parameters

An engineer applies statistics to seek relevant information from a given sample of data.
The procedure leads to conclusions regarding a population, which includes all possible
observations of the process or phenomenon, and is called statistical inference. In this
section, methods of parameter estimation called point estimation are introduced.12

One assumes for this purpose that the distribution of the population is known. However,
the values of the parameters of the distribution have to be estimated from a sample of data,
that is, a subset of the population. One also assumes that the sample is random.

In this context the term bias is related to an estimator, which is a method of obtaining the
value of a parameter from a sample.13 Different estimators are presented in this section.
We begin with the method of moments, the most commonly used method; subsequently
the probability weighted, L-moment, maximum likelihood, entropy, jackknife, bootstrap,
and other methods are discussed.

3.2.3.1 Method of moments
The method of moments is a long-established procedure for finding point estimators.
When fitting a parametric distribution to a set of data by this method, we equate the
sample moments to those of the fitted distribution in order to estimate the parameters.
This can be demonstrated by the following example:

Example 3.20. Timber strength. The mean, x̄ , and the standard deviation, ŝ, of the sample
data of timber strength are given in Table E.1.1. It was assumed in Example 3.19 that these
data are distributed according to the following gamma distribution, with pdf

fX (x) = λr

�(r )
e−λx xr−1.

Also,

E[X ] = r

λ
and Var[X ] = r

λ2
.

Therefore, substituting sample estimates x̄ and ŝ2 for the mean and variance, respectively,
one can obtain the following estimates of the parameters of the gamma pdf:

r̂ = x̄2

ŝ2
and λ̂ = x̄

ŝ2
.

If the timber strength data is modeled using this distribution, the statistics of Table 1.2.2 (for
the full sample) give a mean of 39.09 N/mm2 and a standard deviation of 9.92 N/mm2, so that
we obtain r̂ = 15.5, and λ̂ = 0.40 N/mm2. The curve of the theoretical cdf of timber strength
is compared with the cumulative relative frequency curve in Fig. 3.2.4.

In general, the numerical values of sample moments can differ greatly from those of
the probability distribution from which the sample is generated. This difference occurs
particularly when the sample size n is small, say, n < 30, and if third and higher moments
are considered when, say, n < 100.

On the positive side, this method gives estimates that are easily obtained in most cases.
They are also said to be consistent, where a consistent estimator is one which converges in
probability as the sample size increases to the true value of the parameter (and, as already

12 The associated methods of interval estimation, in which an unknown parameter is located (with a given
assurance) within the range of two numbers, and hypothesis testing are shown in Chapter 5.
13 More about this follows in Chapter 5.
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Fig. 3.2.4 Gamma cdf of modulus of rupture X of timber compared with the cumulative relative
frequency curve of observed data.

stated, an estimator is a method of estimating a parameter of the parent population). How-
ever, methods based on moments are not always satisfactory. Firstly, the estimates may
be biased in some cases; that is, if an average is taken of the estimates of the parameter
from a large number of samples of the same size, say, n, the average will probably not
converge to the value of the parameter. Note that, if an estimator has one of the properties
of consistency and unbiasedness, the other property is not necessarily implied. Secondly,
the estimator may sometimes be inefficient where an efficient estimator has the smallest
variance among all possible estimators (that is, if one compares the variances of the esti-
mates of the parameter obtained, for each estimator, from a large number of samples of size
n). Furthermore, an efficient estimator is consistent and unbiased.14 These shortcomings
notwithstanding, the method of moments has survived as an effective tool and is widely
used. Besides, it can be used when other methods are intractable.

3.2.3.2 Method of probability weighted and L-moments
Probability weighted moments (pwms) are expectations of functions of the quantiles
and probabilities of nonexceedance of a random variable X where E[X ] exists. Unlike
conventional moments, however, they do not have a physical connotation.15

Probability weighted moments characterize a distribution as in the case of conventional
moments, but are expected to be less prone to adverse sampling effects. These pwms
belong to the class of L estimators, which are linear functions (signified by the L) of
an ordered sample.16 This approach has had a long history in statistics. Two associated
procedures are the trimmed mean and interquantile range, discussed in Chapter 1.

This method is best suited for the estimation of parameters of a distribution, the inverse
form of which can be written in a closed form. The pwms are defined as

Mi jk = E[Xi {Fx (x)} j {1 − Fx (x)}k] =
1∫

0

{x(F)}i F j (1 − F)kdF, (3.2.22)

14 A detailed description of these and other desirable properties is given in Chapter 5, with numerous examples.
15 The subject was introduced by Greenwood et al. (1979).
16 David and Nagaraja (2003) provide an extensive treatment on the theoretical aspects of order statistics which
are statistics of ranked data. More about L moments follows in this section.
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where x(F) is the quantile or inverse cumulative distribution function of X .
Equation (3.2.22) with j = k = 0 gives the moments of order i about zero in the con-
ventional sense. In the application of pwms it is often convenient to assume i = 1 and
either k = 0 or j = 0. Then the first m sample pwms (that is, for j = 0, 1, . . . , m, or
k = 0, 1, . . . , m evaluated by associating empirical probabilities with each item of data in
a sample), as shown in the following example, are equated to the first m population pwms
obtained from Eq. (3.2.22).

Example 3.21. Extreme storm data. Consider the following distribution which is useful
in modeling extreme values such as flood discharges, earthquake intensities, wind loads, sea
waves, and so on. If X is an extreme value variate, the cdf is given by

FX (x) = exp

[
− exp

(
− x − b

α

)]
.

The quantile function can be expressed explicitly as follows:

x(F) = b − α ln[−ln q],

where α and b are parameters and q ≡ FX (x). By integrating Eq. (3.2.22) for i = 1 and k = 0
after substituting for x(F),

M j = M1 j0 = b

1 + j
+ α [ln(1 + j) + ne]

(1 + j)
,

where ne ≈ 0.57721 denotes Euler’s number. Hence, the two parameters are estimated from

α = 2M1 − M0

ln 2
, and b = M0 − neα.

The probability weighted moments are estimated for j = 0, 1 from the sample data x(i), i =
1, . . . , n (arranged in increasing order of magnitude) as follows:

M j =
∑

i

p j
i

x(i)

n
,

where the probabilities, pi , are called plotting positions.17

It has been found that the following plotting position18:

pi = i − 0.35

n

provides a close approximation for this distribution.
To analyze storm data recorded by the gauging station located on the campus of Genoa

University, we apply the EV1 distribution to the annual maximum storm depth observed for
a 3-hour duration, which are listed in the table under Problem 1.20. The ordered data values
are given in Table 3.2.1 jointly with their plotting positions and basic statistics.

Note that M0 is equal to the mean, so that its estimate x = 83.7 mm. To estimate M1, one
calculates the product between each sampling value and its plotting position; the summation
of all the products is then divided by n = 14 to obtain M1 = 54.6 mm. Thus,

α̃ = 2M1 − M0

ln 2
= 2 × 54.6 − 83.7

ln 2
= 36.8 mm,

b̃ = M0 − neα = 83.7 − 0.5772 × 36.8 = 62.4 mm.

The probability distribution is plotted in Fig. 3.2.5.

17 These are used in probability plots (as introduced in Chapter 1) for assigning probabilities to ranked data. The
plotting position is the probability of nonexceedance at which the xi should be plotted after ranking in ascending
order. We shall return to probability plotting in Section 5.8. and in Chapter 7.
18 See Hosking (1990), this reference also considers L moments, discussed in the next subsection.
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Table 3.2.1 Ordered data of maximum storm depth x(i) observed in a
3-hour duration at Genoa Universitya

Order, i x(i) (mm) pi Pi x(i) (mm)

1 32.3 0.046 1.500
2 41.2 0.118 4.856
3 49.9 0.189 9.445
4 51.6 0.261 13.453
5 56.0 0.332 18.600
6 56.7 0.404 22.883
7 63.8 0.475 30.305
8 66.5 0.546 36.338
9 80.6 0.618 49.799

10 90.1 0.689 62.105
11 114.2 0.761 86.874
12 122.3 0.832 101.771
13 157.3 0.904 142.132
14 188.7 0.975 183.983

a The corresponding plotting positions, pi , and the product pi x(i) are given in order
to use the probability weighted moments method for evaluating the EV1 distribution.

3.2.3.3 L moments
L moments are summarizing functions of pwms and of the locations, scales, and other
properties of a distribution and can thus be used for estimation. The first L moment
estimator is the mean,

L1 = E[X ]. (3.2.23a)

Let X (i |n) be the i th largest observation in a sample of size n. Then the second, third, and
fourth L moments are defined as

L2 = E[X (2|2) − X (1|2)]/2, (3.2.23b)

L3 = E[X (3|3) − 2X (2|3) + X (1|3)]/3, (3.2.23c)
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Method of pwms

Fig. 3.2.5 Theoretical distribution of 3-hour annual maximum storm intensity in Genoa, Italy,
compared with the cumulative relative frequency curve of observed data using the probability of ex-
ceedance, Pr[X > x] = 1 − FX (x). Two methods of evaluating the probability distribution are used.
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and

L4 = E[X (4|4) − 3X (3|4) + 3X (2|4) − X (1|4)]/4. (3.2.23d)

Samples estimators of L moments are linear combinations (hence the name L moments)
of the ranked observations; and thus they do not involve squaring, cubing, and so on, of
the observations, which one must do for the moment estimators of variance, skewness,
and kurtosis. As a result, the L moment estimators of the dimensionless coefficients of
variation, skewness, and kurtosis, L2/L1, L3/L2, and L4/L2, are much less variable than
their conventional counterparts and are nearly normal in distribution.19

For any distribution, the L moments can be given in terms of the probability weighted
moments (pwms)

L1 = M0, (3.2.24a)

L2 = 2M1 − M0, (3.2.24b)

L3 = 6M2 − 6M1 + M0, (3.2.24c)

and

L4 = 20M3 − 30M2 + 12M1 − M0. (3.2.24d)

3.2.3.4 Maximum likelihood procedure
The maximum likelihood, or ML, procedure is an alternative to the method of moments.
As a means of finding an estimator, statisticians often give it preference. For a random
variable X with a known pdf, fX (x), and observed values x1, x2, . . . , xn , in a random
sample of size n, the likelihood function of θ , where θ represents the vector of unknown
parameters, is defined as

L(θ ) =
n∏

i=1

fX (xi | θ ). (3.2.25)

The objective is to maximize L(θ ) for the given data set. This is easily done by taking m
partial derivatives of L(θ ), where m is the number of parameters, and equating them to
zero. We then find the maximum likelihood (ML) estimators of the parameter set θ from
the solutions of the equations. In this way the greatest probability is given to the observed
set of events, provided that we know the true form of the probability distribution.

Definition and properties: Maximum likelihood estimator. The parameter set θ̃ for which
L(θ̃ ) takes a maximum given a sample x1, x2, . . . , xn is a maximum likelihood estimator set.

Example 3.22. Flood occurrence. Consider the following Bernoulli pmf specified in Ex-
ample 3.7, where x is a discrete variable and p is a parameter, to model flood occurrences.

PX (x j ) = Pr[X = x j ] = px j (1 − p)1−x j , for x j = 0, 1.

If there are n trials or outcomes,

L(p) =
n∏

j=1

px j (1 − p)1−x j , where x j = 0, 1.

19 L moments can also be easily interpreted in terms of order statistics. The subject is discussed further in
Subsection 7.2.5.
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We find that L(p) is positive and that the value of p which maximizes it is the same value
which maximizes ln L(p). The latter is more convenient in such cases and also when applied
to a pdf with an exponential term. Thus,

ln L(p) =
n∑

j=1

x j ln p +
(

n −
n∑

j=1

x j

)
ln(1 − p)

and

d ln L(p)

dp
=

∑n
j=1 x j

p
− n − ∑n

j=1 x j

(1 − p)
.

Hence by equating the foregoing equation to zero, the estimate of the parameter is obtained
as

p̃ =
∑n

j=1 x j

n
.

Example 3.23. Compressive strength of concrete. Assume the distribution of compressive
strengths of Table 1.2.1 can be represented by using the following normal pdf:

fY (y) = 1√
2πb

exp

[
−1

2

(
y − a

b

)2
]

,

where a and b are unknown parameters, and b is positive. We seek here the ML estima-
tors of these unknown parameters. If we denote by y1, y2, . . . , yn the n observed values of
compressive strength, with n = 40, the ML function of Eq. (3.2.25) is given by

L (a, b) =
(

1√
2πb

)n

exp

[
− 1

2b2

n∑
i=1

(yi − a)2

]
.

By introducing the log-likelihood function as in the previous example,

ln L (a, b) = −n ln
√

2π − n ln b − 1

2b2

n∑
i=1

(yi − a)2.

We set the partial derivatives equal to zero:

∂ ln L

∂a
= 1

b2

n∑
i=1

(yi − a) = 0 and
∂ ln L

∂b
= −n

b
+ 1

b3

n∑
i=1

(yi − a)2 = 0.

Hence,

ã = 1

n

n∑
i=1

yi = ȳ and b̃ =
√

1

n

n∑
i=1

(yi − ȳ)2 = s.

Thus, for the normal distribution, the ML estimators of parameters a and b are the sample
mean and the sampling standard deviation, respectively. It is easy to show that the same
result is obtained by the method of moments. From Table 1.2.2 ȳ = 60.14 N/mm2 and s =
5.02 N/mm2. The distribution is compared with the cumulative relative frequency curve in
Fig. 3.2.6.

The maximum likelihood estimator is consistent and is the method favored by statis-
ticians. On the other hand, large samples are necessary before the estimator becomes
unbiased. Additionally, this estimator does not have a low variance in comparison
with others. Furthermore, there are estimation problems because maximum likelihood
solutions do not exist in some cases and may often require numerical solutions in
others.
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Fig. 3.2.6 Maximum likelihood fitted distribution of compressive strength of concrete Y
compared with the cumulative relative frequency curve of observed data.

3.2.3.5 Bayesian estimation
The Bayesian approach is a generalization of the ML method. For this purpose, the likeli-
hood function is multiplied by a prior pdf, which is estimated on a physical basis (that is,
on the engineer’s knowledge of the process) or from previous experiments. The product
is then divided by a normalizing constant to satisfy the requirement for the resulting pdf.
Accordingly, we can obtain the resulting distribution for a particular sample and prior
density; the result is known as the posterior distribution.20

3.2.3.6 Least squares methods
Least squares procedures can be applied in several ways. For example, if the inverse form
of a distribution can be written so that a linear relationship is obtained between a function
of the variable and a function of the cdf, then a least-squares fit can give estimates of two
parameters.21

3.2.3.7 Entropy
A physically based concept used in estimation is that of entropy which was coined around
1850 and originates from the second law of thermodynamics. The term implies a trans-
formation and was first applied to work transformed into heat. Boltzmann (1894) de-
rived the continuous form of entropy from kinetic theory applied to gases, an expres-
sion known as the Boltzmann H function. In general, entropy is a measure of some
property of a system or process that has inherent uncertainty. With the notation al-
ready used, this takes the following summary form in the case of a continuous random
variable:

H (x) = −
∞∫

−∞
fX (x) ln fX (x)dx . (3.2.26)

20 See, for example, Smith and Naylor (1987). If the prior pdf is uniform, then the Bayesian and ML methods
will give the same results. Details of the method are found in Chapter 10.
21 See Example 4.25. There are additional procedures based on quantiles and order statistics [see, for example,
Stuart and Ord (1991, Chapter 19)].
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For a discrete random variable

H (x) = −
∑
allx j

pX (x j ) ln pX (x j ). (3.2.27)

Definition and properties: Entropy function, H(x). The entropy function gives the degree
of randomness affecting a random variable X , and it is defined as the summation (or the
integral) of the product between the pmf (or pdf) and its logarithm extended to all sample
points of the sample space. More formally, entropy is defined as the logarithm of the number
of quantum states accessible to a system.

Jaynes (1957) introduced the principle of maximum entropy in statistical mechanics.
The term currently signifies uncertainty or randomness as in the original definition of
Boltzmann; this is often equivalent to disorder, ignorance, or lack of knowledge. The
concept has found numerous applications in science and engineering, particularly in in-
formation and communication theory.22 More subjectively, it has been used in statistical
analysis in order to obtain the form of the probability law and estimates of parameters by
maximizing the entropy function, as shown in the following examples23:

Example 3.24. Density of concrete. Consider the distribution of the density of concrete
given in Table E.1.2 and ordered in Table 1.2.1, denoted by X . Let the only stipulation be that
a ≤ X ≤ b, where a and b are the lower and upper bounds, respectively. The problem is to
maximize H (x) in Eq. (3.2.26) subject to the constraint that is applicable to all distributions,
Eq. (3.1.5c),

b∫
a

fX (x)dx = 1.

The solution is found directly by the method of Lagrange multipliers. Denoting fX (x) by f
and using λ as a constant multiplier, one must find f from the sum of partial derivatives:

− ∂

∂ f
( f ln f ) + λ

∂

∂ f
( f ) = 0.

Thus, −1 − ln f + λ = 0. That is, f = eλ−1, which is a constant. This represents the
following distribution:

fX (x) = 1

b − a
, where a ≤ x ≤ b.

This conclusion is expected when one has insufficient prior knowledge of the distribution.

Example 3.25. Entropy and uncertainty. As a matter of particular interest in this context,
the entropy for the distribution derived in Example 3.24 is found from Eq. (3.2.26) to be

H (x) = −
b∫

a

1

b − a
ln

1

b − a
dx = ln(b − a).

When the difference between a and b increases, the entropy, that is, the uncertainty, becomes
larger. With regulated and controlled methods of workmanship (as in the case of the properties
of concrete cited in Examples 3.23 and 3.24), the entropy is minimized in applications of this
type.

22 Note the pioneering work in the theory of communications by Shannon (1948).
23 See also Sonuga (1972) and Harrop-Williams (1983).
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Table 3.2.2 Jackknife estimates of the coefficients of skewness and kurtosis of the timber
and concrete data of Tables 1.1.3 and 1.2.1

Data set Coefficient of skewnessa Coefficient of kurtosisa

Timber strength (full sample) 0.13 (0.15) 4.73 (4.46)
Compressive strength of concrete 0.01 (0.03) 2.42 (2.33)
Density of concrete 0.47 (0.38) 3.79 (3.15)

a Values within parentheses are from Table 1.2.2.

3.2.3.8 Jackknife and bootstrap
It was shown in Section 1.2 that a simple bias correction can be applied to the variance by
using the divisor (n − 1). In the case of other estimators, the correction can be complicated
or even unknown. For the general case, Quenouille (1956) suggested an original method
of adjusting for bias that John W. Tukey (whose work on exploratory data analysis was
discussed in Chapter 1) termed the jackknife, which means a “useful tool” by implication.24

Definition: If t (i)
n−1 is the estimator of a parameter based on a sample of size (n − 1) obtained

by omitting the i th observation, the jackknife estimator is given by

J = ntn − (n − 1)

n

n∑
i=1

t (i)
n−1, (3.2.28)

where tn is the estimator based on the full sample size n.

The bias in the jackknife estimator is not more than 1/n2, if an estimator of the same
parameter based on the complete sample of size n has a bias of the order of 1/n.

Example 3.26. Timber and concrete data. The coefficients of skewness and kurtosis of
the timber and concrete data of Tables E.1.1 and E.1.2, respectively, are given with other
statistics in Table 1.2.2. The skewness and kurtosis of the data were also estimated using the
jackknife method of Eq. (3.2.28). These are given in Table 3.2.2.

It is interesting to compare the coefficient of skewness of the timber strengths. Whereas in
Table 1.2.2, the sample data without the zero value has a skewness of 0.53 compared to that
of 0.15 for the full sample, the jackknife estimate of 0.13 (using the full sample) is close to
the original estimate from the full sample.

In place of the jackknife which uses n subsample of size n − 1, Efron (1979) proposed a
bootstrap method (originating from the expression “lifting oneself by one’s bootstraps”).
This method of resampling and averaging uses all possible subsamples of size m, where 1 <

m < n and n is the original sample size. For applications, a shorter number of subsamples
is suggested: of the order of n ln(n). The method is expected to give less biased estimates
than the jackknife.25

The jackknife and bootstrap methods are closely related to the unbiased “U” statistics
originated by Paul Hamos in 1946 and followed by some authors.26

24 Miller (1974) provides a mathematical review.
25 See discussion on confidence limits by Press et al. (1992, pp. 686–688) and the example by Zucchini and
Adamson (1988).
26 See, for example, Randles and Wolfe (1979). The jackknife also provides approximate confidence limits, a
subject that is a part of Chapter 5.
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3.2.3.9 Kernel-based methods of estimation
In recent years there has been a renewed interest in kernel-based nonparametric methods
of estimation.27 Given a random sample Xi , i = 1, 2, . . . , n with continuous univariate
pdf f (·), the kernel estimator is defined as

f̂ (x, h) = 1

nh

n∑
i=1

k

(
x − Xi

h

)
,

where h is the window or bandwidth or smoothing parameter, and k is the kernel function.
The optimal size of h is similar to that of the class width in a histogram. As in other methods
of application of windows, it may cause under- or oversmoothing. With increasing n the
estimator tends to converge in probability to the true pdf. The advantage of the method, as
already stated, is its nonparametric nature. Also, by spreading the influence of each data
point over its neighborhood and by taking each contribution in the summation, it allows the
data to play a direct role in the estimation of the distribution. Accordingly, this approach
can uncover special features in the data which conventional methods do not reveal.28

3.2.4 Summary of Section 3.2

In this section applications of the theory of random variables are presented. Expecta-
tion, variance, and other properties are shown. The relationships with moments are given.
Demonstrations are made, for both continuous and discrete random variables, on the use
the moment-generating function, the factorial moment-generating function, and the char-
acteristic function. The concept of quantiles is needed to solve the inverse problem, which
is of particular interest in engineering design. Classical methods of estimation—moments
and maximum likelihood—are given together with introductions to alternative procedures
such as probability weighted-moments, maximum entropy, the jackknife and bootstrap,
and kernel-based methods of estimation. The advantages and possible limitations of these
procedures are discussed.

3.3 MULTIPLE RANDOM VARIABLES

Up to this point we have considered members of a population represented by a single
random variable. Univariate distributions are used to describe them. Their properties have
been examined in Section 3.2. These concepts can be generalized to include populations
with two or more variables that occur simultaneously. The variables are viewed jointly, and
their distributions are of the multivariate type, which reduces to the bivariate case when
there are only two variables. Thus treated, their probability laws are described by joint
probability mass or density functions for discrete or continuous variables, respectively. An
example of a continuous bivariate distribution is provided by the average rainfall over a
catchment area above a flow-measuring station on a river and the volume of water passing
the station during corresponding intervals of time. If one considers, in addition, other
variables such as catchment saturation and groundwater flows, the distribution becomes a
multivariate type with several variables.

27 There are nonparametric in the sense that less rigid assumptions are made about the underlying distribution.
28 See, for example, Silverman (1986). Kernel smoothing dates back to the work of M. Rosenblatt and E. Parzen
and is often referred to as the Rosenblatt-Parzen estimator. On selecting a data-based bandwidth, see Sheather
and Jones (1991); also, Granovsky and Muller (1991) review various aspects of kernel choice.
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3.3.1 Joint probability distributions of discrete variables

3.3.1.1 Joint probability mass function
Let us consider the joint probability mass function, pmf, for the bivariate case. For two
discrete variables X and Y, the bivariate pmf is given by the intersection probability

pX,Y (x, y) = Pr[(X = x) ∩ (Y = y)]. (3.3.1)

As in the univariate case it is also a condition that∑
all xi

∑
all y j

pX,Y (xi , x j ) = 1. (3.3.2)

A graphical representation of this function requires a three-dimensional form in which the
two horizontal axes represent the two random variables and the pmf is measured vertically.
The joint cumulative distribution function cdf is given by

FX,Y (x, y) = Pr[(X ≤ x) ∩ (Y ≤ y)] =
∑
xi ≤x

∑
y j ≤y

pX,Y (xi , y j ). (3.3.3)

One can easily extend Eqs. (3.3.1) and (3.3.3) to multivariate cases by introducing addi-
tional variables W , Z , and so on. In general, if X1, X2, . . . , Xk are random variables defined
on the same probability space, then (X1, X2, . . . , Xk) is defined as a k-dimensional discrete
random variable if it can take values only at a countable number of points (x1, x2, . . . , xk).
One also says that the variables (X1, X2, . . . , Xk) are joint discrete random variables.

Definition: Joint probability mass function, pmf. The joint pmf of a k-dimensional ran-
dom variable (X1, X2, . . . , Xk) is defined as the intersection probability of the k-tuple of
events (X1 = x1), (X2 = x2), . . . , (Xk = xk) if (x1, x2, . . . , xk) are points in the k-dimensional
sample space of this variable, and 0 otherwise.

Example 3.27. Wind measurements. As an example of the application of Eq. (3.3.1),
consider a case in which high-intensity winds occur in a particular area. Such winds are
liable to cause damage to buildings and other structures: The number of days annually that
these winds occur has been observed in the recent past using a precise measuring device.
These occurrences have also been recorded over a longer period of time with a less accurate
instrument. As a first step to possible statistical calibration, it is necessary to estimate the
joint pmf of the two instruments. The exceedance of some critical wind velocities is of
interest to engineers, and this exercise is an aid to planning structural designs in the area.
Table 3.3.1 gives the joint pmf of winds greater than 60 km/h with the discrete variables X
and Y representing the precisely and less accurately measured number of days, respectively,
with such high-intensity winds.

Table 3.3.1 Joint pmf of days of high-intensity winds measured
accurately, X , and less accurately, Y , at a particular site

Y = 0 Y = 1 Y = 2 Y = 3 pX (x)a

X = 0 0.2910 0.0600 0.0000 0.0000 0.3510
X = 1 0.0400 0.3580 0.0100 0.0000 0.4080
X = 2 0.0100 0.0250 0.1135 0.0300 0.1785
X = 3 0.0005 0.0015 0.0100 0.0505 0.0625

pY (y)a 0.3415 0.4445 0.1335 0.0805 � = 1.0000

a The entries in the last column and bottom row are the respective
marginal probabilities.
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The marginal pwms of X and Y are given in the extreme right-hand and bottom rows, re-
spectively, of Table 3.3.1. The accuracy of the second instrument, the results from which
are in doubt relative to the first, which is an accurate measuring device, can be repre-
sented by the probability P[A], say, that the readings are the same in all cases. This is
given by

Pr[A] =
∑
all xi

pX,Y (xi , xi ) = pX,Y (0, 0) + pX,Y (1, 1) + pX,Y (2, 2) + pX,Y (3, 3)

= 0.2910 + 0.3580 + 0.1135 + 0.0505 = 0.813.

3.3.1.2 Conditional probability mass function
If the value of one variable, such as Y is known (or fixed), say, for Y = y j , and each of
the joint probabilities pX,Y (x, y j ), defined for all possible X with Y = y j , are divided by
the sum of these joint probabilities, then one obtains a set of probabilities with the pmf
of pX |Y (x | y) of X given Y , which is called a conditional probability mass function.29

Thus, if Y is known or given (that is, it has occurred or is occurring elsewhere), then the
conditional distribution of X is

pX |Y (x |y j ) ≡ Pr[X = x | Y = y j ] = Pr[(X = x) ∩ (Y = y j )]

Pr[Y = y j ]

= pX,Y (x, y j )∑
all xi

pX,Y (xi , y j )
= pX,Y (x, y j )

pY (y j )
, for all j, (3.3.4)

where the vertical lines on the left denote (as in Chapter 2) “given that” or “conditional
to.” It is conventional that the conditional pmf is zero when the denominator in Eq. (3.3.4)
is zero. Also, as in the univariate case, each conditional probability is in the range 0–1,
and their sum over all possible values of the variable is equal to unity:

0 ≤ pX |Y (x | y j ) ≤ 1, for all j, (3.3.5a)∑
all xi

pX |Y (xi | y j ) = 1, for all j. (3.3.5b)

Example 3.28. Wind measurements. In Table 3.3.1, if Y = 1, for example, the joint prob-
abilities of interest are denoted by pX,Y (x, 1) and are given by 0.0600, 0.3580, 0.0250, and
0.0015 for x = 0, 1, 2, and 3, respectively. If each of these values is divided by their sum,
0.4445, the conditional pmf, pX |Y (x | 1), is correspondingly given by 0.1350, 0.8054, 0.0562,
and 0.0034, for x = 0, 1, 2, and 3, respectively, the sum of which is 1.0.

3.3.1.3 Marginal probability mass function
If all other variables are disregarded apart from a single variable of interest, then one can
obtain the marginal pmf of that variable from the joint probabilities in the discrete case
(as demonstrated in Example 3.27). The concept can easily be followed when the joint
probabilities are bivariate by applying the theorem of total probability.30 As a consequence,
one obtains the marginal pmf by summing for each value of the variable of interest the

29 This follows directly from the definition given by Eq. (2.2.10).
30 See Eq. (2.2.15).
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joint probabilities for all possible values of the other variable. For example, the marginal
pmf of X (when Y is disregarded) is as follows:

pX (x) ≡ Pr[X = x] =
∑
all y j

Pr[X = x | Y = y j ]Pr[Y = y j ] =
∑
all y j

pX,Y (x, y j ).

(3.3.6)

Similarly, the marginal pmf of Y (when X is disregarded) can be defined. Also, one can
obtain the cdf of X from the marginal pmf of X as follows:

FX (x) ≡ Pr[X ≤ x] =
∑
xi ≤x

∑
all y j

pX,Y (xi , y j ). (3.3.7)

Returning to the conditional pmf, we note that the denominator in Eq. (3.3.4) is the
marginal probability of Y evaluated at a specified value. The term marginal is used because
the marginal pmf is obtained by summing the entries (as in Table 3.3.1) horizontally or
vertically, depending on whether the marginal pmf is for X or Y , respectively, and writing
the sums in the margins as shown.

Example 3.29. Wind measurements. As an example, consider the case X = 0 in
Table 3.3.1,

pX (0) ≡ Pr[X = 0] =
3∑

y=0

pX,Y (0, y) = 0.2910 + 0.0600 + 0.0000 + 0.0000 = 0.3510.

One can easily verify that the sum of all the other marginal probabilities, which is equivalent
Pr[X > 0], is 0.6490. The marginal pmfs of X and Y are shown in Fig. 3.3.1a and 3.3.1b,
respectively.
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Fig. 3.3.1 Marginal probability mass function of number of days X per year of high-intensity
winds recorded by (a) the more accurate instrument, and (b) the less accurate instrument, as
summarized in Table 3.3.1.
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3.3.1.4 Other conditional probability concepts for discrete variates
The preceding concepts can be extended to form other conditional probability distributions
such as the probability distribution of X when Y is not less than y. This is given in general
terms as

pX |Y≥y ≡ Pr[X = x | Y ≥ y] =

∑
y j ≥y

pX,Y (x, y j )∑
y j ≥y

pY (y j )
. (3.3.8)

Example 3.30. Wind measurements. By summing columns 2, 3, and 4 in Table 3.3.1,∑
y j ≥1 pY (y j ) = 0.6585. Also, the terms of

∑
y j ≥1 pX,Y (x, y j ) are 0.0600, 0.3680, 0.1685,

and 0.0620 for X = 0, 1, 2 and 3 respectively, obtained by summing each row over columns
2, 3, and 4. Thus, the conditional probabilities pX |Y (x | y ≥ 1) are obtained from Eq. (3.4.8) as
0.0911, 0.5588, 0.2559, and 0.0942 for X = 0, 1, 2. and 3 respectively. [Clearly, the conditions
given by Eq. (3.3.5) are satisfied.] This result shows, for instance, that there is a probability
of about 0.91 that on one or more days per year the winds exceed 60 km/h at the site when
the less accurate instrument records at least one occurrence for the year. The conditional pmf
is shown in Fig. 3.3.2.
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Fig. 3.3.2 Conditional probability mass function of number of days X per year of high-intensity
winds when the less accurate instrument records Y ≥ 1 such events (see Table 3.3.1).

Engineers are aware that nearly all events that they observe are conditional to the
occurrences of other events, as previously mentioned. Thus, conditional probabilities
may be more easily obtained in practice than joint pmfs. Therefore, it will possibly be
more convenient to compute the joint pmf using a conditional pmf and the corresponding
marginal pmf as follows31:

pX,Y (x, y) = pX |Y (x | y)pY (y) = pY |X (y | x)pX (x). (3.3.9)

Example 3.31. Remote sensing of inundated areas. A satellite-borne sensor is used to
determine the area of inundation after a flood by detecting the number of pixels reflecting
flooding. This sensor has a chance, in percent, of 100p, to detect an inundated pixel. Because
the outcome of the experiment is either a success or failure in detecting an inundated pixel,
we can apply the two-random-variable probability model. Accordingly, the conditional pmf
that M pixels are detected when N pixels are inundated is given by the binomial distribution

pM |N (n, m) = n!

(n − m)!m!
pm(1 − p)n−m =

(
n
m

)
pm(1 − p)n−m .

31 This is analogous to Eq. (2.2.11).
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In addition it is assumed that the distribution of the number N of inundated pixels is given
by the Poisson distribution (as in Example 3.18),

pN (n) = νne−ν

n!
.

Therefore, from Eq. (3.3.9)

pM,N (n, m) = vne−v

n!

n!

(n − m)!m!
pm(1 − p)n−m = vne−v

(n − m)!m!
pm(1 − p)n−m,

which is the joint probability that there are n inundated pixels and that m of these pixels are
detected by the sensor. If �a is the unit area of each pixel, the risk that an inundated area A
larger that k�a remains undetected by the sensor is given by

Pr[A > k�a] = Pr[K > k] = 1 − FK (k) = 1 −
k∑

m=0

∞∑
n=m

νne−ν

(n − m)!m!
pm(1 − p)n−m .

3.3.1.5 Independent discrete random variables
If the events (X = x) and (Y = y) are statistically independent,

pX |Y (x | y) = pX (x) and pY |X (y | x) = pY (y).

From Eq. (3.3.9), therefore,32

pX,Y (x, y) = pX (x)pY (y). (3.3.10)

Example 3.32. Autoroute traffic. The number X of vehicles that can travel a multilane
autoroute in an hour is x1 or x2 < x1, where x2 depends on the probability p that one lane is
closed for maintenance. Let the random variables Y1 and Y2 represent the numbers of vehicles
per hour during the peak hours commencing at 4 and 5 p.m., respectively. Also, let A represent
the failure of the system to meet the peak demands.

We write A in terms Y1 and Y2,

Pr[A] = 1 − Pr[Y1 ≤ X, Y2 ≤ X ],

that is, the complementary probability.33 By using the conditional probability concept and
considering the possible closure of one lane between 4 and 6 p.m., this expression can be
expanded as

Pr[A] = 1 − {Pr[Y1 ≤ x1, Y2 ≤ x1 | X = x1]Pr[X = x1]

+ Pr[Y1 ≤ x2, Y2 ≤ x2 | X = x2]Pr[X = x2]}
= 1 − [FY1,Y2|X (x1, x1, x1)pX (x1) + FY1,Y2|X (x2, x2, x2)pX (x2)].

The autoroute capacity X is assumed to be independent of the Yi s, thus

Pr[A] = 1 − {Pr[Y1 ≤ x1, Y2 ≤ x1]Pr[X = x1] + Pr[Y1 ≤ x2, Y2 ≤ x2]Pr[X = x2]

= 1 − [FY1,Y2 (x1, x1)pX (x1) + FY1,Y2 (x2, x2)pX (x2)].

If we assume that the Yi s are (1) independent, that is,

FY1,Y2 (x1, x1) = Pr[Y1 ≤ x1, Y2 ≤ x1] = Pr[Y1 ≤ x1]Pr[Y2 ≤ x1] = FY1 (x1)FY2 (x1),

and (2) identically distributed,

FY1,Y2 (x1, x1) = [FY (x1)]2 and FY1,Y2 (x2, x2) = [FY (x2)]2,

32 The result corresponds with Eq. (2.2.14).
33 See Eq. (2.2.5).
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then

Pr[A] = 1 − {[FY (x1)]2 pX (x1) + [FY (x2)]2 pX (x2)}.
Since pX (x2) = p and pX (x1) = (1 − p), we obtain

Pr[A] = 1 − {(1 − p)[FY (x1)]2 + p[FY (x2)]2}.
The distribution of Y is assumed to be

FY (y) =
y∑

k=0

vke−v

k!

(as in Example 3.31 for the numbers of inundated pixels). We can then write

Pr[A] = 1 − (1 − p)

(
x1∑

k=0

vke−v

k!

)2

− p

(
x2∑

k=0

vke−v

k!

)2

.

This approach can be used to determine the failure of a system that is subject to a succes-
sion of n random demands (for example, extreme winds, flows, sea waves, and so on). If
X1, X2, . . . , Xn are n independent random demands with a common cdf, FX (x), the failure
probability is given by

Pr[A] = 1 −
∑
all x

[FY (x)]n pX (x),

where pX (x) is the pdf of the capacity of the system.

3.3.2 Joint probability distributions of continuous variables

3.3.2.1 Joint pdf and cdf for continuous x and y
In the case of jointly distributed continuous random variables X and Y , the probability
distribution is described by the joint probability density function fX,Y (x, y), which is anal-
ogous to the bivariate pmf for discrete variables. Probabilities are defined by integration
of the joint pdf over the region of interest in the sample space:

Pr[(x1 ≤ X ≤ x2) ∩ (y1 ≤ Y ≤ y2)] =
x2∫

x1

y2∫
y1

fX,Y (x, y)dydx . (3.3.11)

Graphically, this represents the volume under the joint pdf, fX,Y (x, y) over the region of
interest as shown schematically in Fig. 3.3.3.
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Fig. 3.3.3 Schematic diagram of bivariate pdf represented by heights of a curved surface in the
given ranges of the variables.
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The joint pdf has the following properties:

fX,Y (x, y) ≥ 0, (3.3.12a)
+∞∫

−∞

+∞∫
−∞

fX,Y (x, y) dx dy = 1. (3.3.12b)

Also, the joint cumulative distribution function, cdf, which is analogous to Eq. (3.3.3) for
the discrete case and is subject to the same conditions, is defined by

FX,Y (x, y) ≡ Pr[(−∞ ≤ X ≤ x) ∩ (−∞ ≤ Y ≤ y)] =
x∫

−∞

y∫
−∞

fX,Y (u, v) du dv .

(3.3.13a)

This concept can be extended to any number of random variables. In general, if
X1, X2, . . . , Xk are variables defined on the same probability space, then (X1, X2, . . . , Xk)
is a k-dimensional continuous random variable if and only if there exists a function
fX1,X2,...,Xk (x1, x2, . . . , xk) ≥ 0 such that

FX1,X2,...,Xk (x1, x2, . . . , xk) ≡ Pr[(X1 ≤ x1) ∩ (X2 ≤ x2) ∩ · · · ∩ (Xk ≤ xk)]

=
x1∫

−∞

x2∫
−∞

. . .

xk∫
−∞

fX1,X2,...,Xk (u1, u2, . . . , uk)du1du2, . . . , duk . (3.3.13b)

where (x1, x2, . . . , xk) is a k-tuple of points in the sample space. We also say that the
variates (X1, X2, . . . , Xk) are jointly continuous random variables.

Definition: Joint cumulative distribution function, cdf. The joint cdf of a k-dimensional
random variable (X1, X2, . . . , Xk) is defined as the intersection probability of the k-tuple
of events (X1 ≤ x1), (X2 ≤ x2), . . . , (Xk ≤ xk) where (x1, x2, . . . , xk) are points in the
k-dimensional sample space of this multidimensional variable.

The following partial derivative, which replaces the derivative in the univariate case for
the relationship between the pdf and cdf, should exist:

fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y). (3.3.14a)

Note that the cdf is a differentiable function in x and y. In general, we have

fX1,X2,...,Xk (x1, x2, . . . , xk) = ∂k

∂x1∂x2 · ∂xk
FX1,X2,...,Xk (x1, x2, . . . , xk). (3.3.14b)

Example 3.33. Storm intensity and duration. A storm event occurring at a point in space
is characterized by two variables, namely, the duration X of the storm, and its intensity Y ,
which is defined as the average rainfall rate. The variables X and Y are taken to be distributed
as follows, with parameters a and b,

FX (x) = 1 − e−ax , x ≥ 0, a > 0; FY (y) = 1 − e−by, y ≥ 0, b > 0.

It is assumed that the joint cdf of X and Y is given by the exponential bivariate distribution.34

Thus

FX,Y (x, y) = 1 − e−ax − e−by + e−ax−by−cxy,

34 See Gumbel (1960) and Bacchi et al. (1987).
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with c denoting a parameter describing the joint variability of the two variates. Since a > 0
and b > 0, let us find the possible values that c can take.

To search for the lower bound for c, we note that for all bivariate distributions, FX,Y (x, y) ≤
FX (x), because the joint probability Pr[X ≤ x, Y ≤ y] cannot exceed Pr[X ≤ x] indepen-
dently of the value taken by Y . The inequality

FX,Y (x, y) = 1 − e−ax − e−by + e−ax−by−cxy ≤ 1 − e−ax = FX (x)

yields

−x(a + cy) ≤ 0.

Since x and y are always nonnegative, the latter inequality holds if and only if a + cy ≥ 0.
To search for the upper bound for c, we need to determine the joint pdf. By using

Eq. (3.3.14a), the joint pdf of X and Y can be found by differentiating the cdf once for
x , and then for y. Since

∂ F

∂x
= ∂(1 − e−ax − e−by + e−ax−by−cxy)

∂x
= ae−ax − (a + cy)e−ax−by−cxy,

fX,Y (x, y) = ∂2 F

∂x∂y
= ∂(ae−ax − (a + cy)e−ax−by−cxy)

∂y

= [(a + cy)(b + cx) − c]e−ax−by−cxy .

For x = y = 0, the joint pdf at the origin is fX,Y (0, 0) = ab − c. Because the pdf is a nonneg-
ative function, the inequality (ab − c) ≥ 0 must hold; hence, the upper bound of parameter c
is c ≤ ab. Therefore, the bivariate exponential distribution is defined for 0 ≤ c ≤ ab.

Note that c is related to the degree of correlation between X and Y . This joint distribution
is capable of representing the existing negative correlation between the duration and the
associated intensity of a storm.35

3.3.2.2 Conditional probability density function
By assuming that the relationship for discrete variables used in Eq. (3.3.4) holds for
continuous variables,36 the conditional density function of Y given X is written as

fY |X (y | x) = fX,Y (x, y)

fX (x)
. (3.3.15)

Hence,

fX,Y (x, y) = fY |X (y | x) fX (x) = fX | Y (x | y) fY (y). (3.3.16)

Example 3.34. Storm intensity and duration. In Example 3.33, the duration X of a storm
and its average intensity Y are assumed to be jointly distributed variates with bivariate expo-
nential pdf

fX,Y (x, y) = [(a + cy)(b + cx) − c]e−ax−by−cxy .

where a > 0, b > 0, and 0 ≤ c ≤ 1 are three parameters to be evaluated from rainfall data.
From the data collected at the rain gauge located at the City Hall of Milan, Italy, the values
of a = 0.05 h−1, b = 1.2 h/mm, and c = 0.06 mm−1 were estimated. For the design of a
drainage system, let us find the conditional probability that a storm lasting X = 6 hours will
exceed an average intensity of Y = 2 mm/h.

35 See Bacchi et al. (1994).
36 See Stuart and Ord (1994).
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Since the conditional pdf of the storm intensity for a given duration is

fY |X (y | x) = fX,Y (x, y)

fX (x)
= [(a + cy)(b + cx) − c]e−ax−by−cxy

ae−ax

= a−1[(a + cy)(b + cx) − c]e−y(b+cx),

the conditional cdf is

FY |X (y | x) =
y∫

0

a−1[(a + cu)(b + cx) − c]e−(b+cx)udu = 1 − a + cy

a
e−(b+cx)y,

which yields

Pr[Y > 2 | X = 6] = 1 − FY |X (2 | 6) = 1 − 1 + 0.05 + 0.06 × 2

0.05
e−(1.2+0.06×6)2 = 0.15.

3.3.2.3 Independent continuous random variables
If the events X = x and Y = y are stochastically independent, then fX |Y (x | y) = fX (x)
and fY |X (y | x) = fY (y). From Eq. (3.3.15), therefore,37

fX,Y (x, y) = fX (x) fY (y). (3.3.17)

The assumption of independence and its justification is important because one needs to
simplify the application of probability to engineering problems when several variables are
involved, a situation which is encountered frequently.

Example 3.35. Storm intensity and duration. Returning to Example 3.33, let us take both
the duration X of a storm and its average intensity Y as exponentially distributed variates
with parameter a and b, respectively. If one neglects the joint variability of X and Y , the joint
pdf is given by

fX,Y (x, y) = fX (x) fY (y) = ae−ax be−by = ab e−ax−by .

This pdf is that of the bivariate exponential distribution used in Example 3.33 with c = 0.

3.3.2.4 Marginal probability density function
Extension of the total probability theorem gives38

fX (x) =
∞∫

−∞
fX |Y (x |y) fY (y)dy =

∞∫
−∞

fX,Y (x, y)dy (3.3.18a)

and

fY (y) =
∞∫

−∞
fY |X (y|x) fX (x)dx =

∞∫
−∞

fX,Y (x, y)dx . (3.3.18b)

Example 3.36. Storm intensity and duration. In Example 3.33, the duration X of a storm
and its average intensity Y are assumed to have a joint bivariate exponential distribution
with pdf

fX,Y (x, y) = [(a + cy)(b + cx) − c]e−ax−by−cxy .

37 See Eqs. (2.2.13a,b) and (2.2.14).
38 See Eq. (2.2.15).
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From Eq. (3.3.18a) therefore

fX (x) =
∞∫

0

fX,Y (x, y)dy =
∞∫

0

[(a + cy)(b + cx) − c]e−ax−by−cxydy = ae−ax ,

and from Eq. (3.3.18b)

fY (y) =
∞∫

0

fX,Y (x, y)dx =
∞∫

0

[(a + cy)(b + cx) − c]e−ax−by−cxydx = be−by .

This expression confirms the initial assumptions made in Example 3.33 regarding the marginal
distributions.

Example 3.37. Density and compressive strength of concrete. As a further application of
the joint pdf for continuous variables, of interest to a civil engineer, consider the densities and
compressive strengths of concrete given in Table E.1.2 and ranked in Table 1.2.1. For these
data, the bivariate histogram is shown in Fig. 3.3.4.
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Fig. 3.3.4 Bivariate histogram of compressive strength Y and density X of concrete from
Table 1.2.1.

Let us assume that the density X has a uniform marginal distribution and the compressive
strength Y has a triangular marginal distribution. The bivariate distribution is written as

fX,Y (x, y) = 1

2000

y − 40

20
, for 2400 ≤ x ≤ 2500 and 40 ≤ y ≤ 60,

= 1

2000

(
1 − y − 60

20

)
, for 2400 ≤ x ≤ 2500 and 60 ≤ y ≤ 80,

= 0, elsewhere,

and is shown in Fig. 3.3.5.
From Eq. (3.3.18b), the marginal distribution of Y is

fY (y) =
2500∫

2400

1

2000

y − 40

20
dx = 0.05

y − 40

20
, for 40 ≤ y ≤ 60;

=
2500∫

2400

1

2000

(
1 − y − 60

20

)
dx = 0.05

(
1 − y − 60

20

)
, for 60 ≤ y ≤ 80;

= 0, elsewhere.
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Fig. 3.3.5 Assumed bivariate pdf of compressive strength Y and density X of concrete from
Table 1.2.1.

The marginal distribution of X is more easily obtained as follows from Eq. (3.3.18a):

fX (x) = 1

100
, for 2400 ≤ x ≤ 2500;

= 0, elsewhere.

The marginal distributions of X and Y are shown in Fig. 3.3.6a and 3.3.6b, respectively.
The conditional distribution of Y given X is

fY |X (y | x) = fY,X (y, x)

fX (x)
= 100

2000

y − 40

20
= 0.05

y − 40

20
, for 40 ≤ y ≤ 60;

= 100

2000

(
1 − y − 60

20

)
= 0.05

(
1 − y − 60

20

)
, for 60 ≤ y ≤ 80.

= 0, elsewhere.

This result is the same as the marginal distribution of Y , because X has a uniform distribution
and thus the joint distribution is not a function of X . We see that the information from the
simplified probability densities has not altered an engineer’s knowledge of the distribution of
the compressive strengths.

3.3.2.5 Joint distributions involving more than two variables
The foregoing concepts can easily be extended to three or more variables. When there are
three variables involved, for example, Eq. (3.3.14b) is replaced by

fX,Y,Z (x, y, z) = ∂3

∂x∂y∂z
FX,Y,Z (x, y, z) (3.3.19)
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Fig. 3.3.6 Marginal pdfs of (a) the compressive strength of concrete Y and of (b) the density of
concrete X approximated from Table 1.2.1.
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to give the partial derivatives representing the joint pdfs. Also, conditional pdfs
[Eq. (3.3.15)] are written as

fX |Y,Z (x | y, z) = fX,Y,Z (x, y, z)

fY,Z (y, z)
(3.3.20)

in the simple case, and in the joint case as

fX,Y |Z (x, y|z) = fX,Y,Z (x, y, z)

fZ (z)
. (3.3.21)

If events X = x , Y = y, and Z = z, for example, are independent, the right-hand side
Eq. (3.2.20) will be simply fX (x). Furthermore, it easily follows that conditional pdfs
become marginal pdfs in the simple case [Eq. (3.2.20)], and in the joint case Eq. (3.3.21)
becomes a corresponding joint pdf.

3.3.3 Properties of multiple variables

In Section 3.2 the fundamental properties and measures of a random variable were in-
troduced. These properties are also applicable to each compenent of a multidimensional
variable. Moreover, some additional properties and measures can be introduced to describe
the joint variability of two or more components of a multiple variable. These properties
are determined by using the concept of expectation.

3.3.3.1 Covariance and correlation
The expectation operator introduced in Subsection 3.2.1 for a single variable can be
extended to two or more variables. For example, the expectation of a linear combination
of two variables is given by

E[a X1 + bX2] = aE[X1] + bE[X2], (3.3.22)

for any constants a and b. This result follows from the linearity property of the expectations
operation and can be applied to more than two variables.

The variance of the sum of two random variables is given by the sum of terms repre-
senting the variance of each of the variables and a third term representing their covariance:

Var[a X1 + bX2] = a2Var[X1] + b2Var[X2] + 2abCov[X1, X2]. (3.3.23)

In the case of three or more variables, there will be terms representing the covariances of
pairs of all the variables plus the variances of each variable. Also,

Cov[X1, X2] = E[(X1 − E[X1])(X2 − E[X2])] = E[X1 X2] − E[X1]E[X2].

(3.3.24)

and

E[X1 X2] =
+∞∫

−∞

+∞∫
−∞

x1x2 fX1,X2 (x1, x2) dx1 dx2. (3.3.25)

Definition: Covariance, Cov[X1, X2]. The covariance of two random variables is defined
as the expectation of the product between the respective deviations from their mean.
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If X1 and X2 are independent,

E[X1 X2] =
+∞∫

−∞

+∞∫
−∞

x1 fX1 (x1)x2 fX2 (x2) dx1 dx2

=
⎡⎣ +∞∫

−∞
x1 fX1 (x1) dx1

⎤⎦ ⎡⎣ +∞∫
−∞

x2 fX2 (x2) dx2

⎤⎦ = E[X1]E[X2]. (3.3.26)

Hence if X1 and X2 are independent,

Var[a X1 + bX2] = a2Var[X1] + b2Var[X2], because Cov[X1, X2] = 0.

It is important to note that if the condition Cov[X1, X2] = 0 is shown to be true, it does
not necessarily follow that X1 and X2 are independent. It is only when either Eq. (3.3.10)
or Eq. (3.3.17) holds are X1 and X2 independent.

Example 3.38. Storm intensity and duration. In Example 3.35 the joint density function
of independently distributed storm duration X and intensity Y was found to be

fX,Y (x, y) = fX (x) fY (y) = ae−ax be−by = ab e−ax−by,

where a−1 is the mean of X , and b−1 is that of Y . Using Eq. (3.3.25) one gets

E[XY ] =
∞∫

0

∞∫
0

xy fX,Y (x, y)dxdy =
∞∫

0

∞∫
0

xyab e−ax−bydxdy = 1

ab
,

which yields

Cov[X, Y ] = E[XY ] − E[X ]E[Y ] = 1

ab
− 1

a

1

b
= 0.

This confirms that there is no covariance between the two variables X and Y which are
assumed to be independent.

It can be seen from Eq. (3.3.24) that Cov[X1, X2] is large and positive when X1 and X2

tend to be both large, or both small, with respect to their means. On the other hand, if when
one variable is large and the other tends to be small, the covariance is large and negative.
Furthermore, if there is no relationship between the two variables, the covariance does not
exist. Thus, Cov[X1, X2] is a measure of the linear interrelationship between X1 and X2.

The coefficient of linear correlation ρ is the normalized covariance between two vari-
ables, say, X1 and X2:

ρ = Cov[X1, X2]

σX1σX2

. (3.3.27)

It can be shown that39

−1 ≤ ρ ≤ +1.

Example 3.39. Water supply. Two neighboring communities need extra water, for indus-
trial and other purposes, beyond that normally delivered from surface sources. These supple-
mentary supplies are made available by pumping from wells having a maximum total output

39 See, for example, Popoulis (2001). For purposes of estimation from given data, the corresponding sample
correlation coefficient is given by Eq. (1.4.3).
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of two units per day; each unit is equivalent to 106 L. On account of unforeseen demands,
which fluctuate from day to day, the pumped water to the two communities, X and Y , say,
are treated as random variables with equal marginal pdfs. The bivariate pdf is given by

fX,Y (x, y) = 3

4
(2 − x − y), for 0 ≤ x, y ≤ 2

as estimated from a joint histogram of observed data. After this function is verified initially
for its validity as a pdf, it is of interest to determine the corrrelation ρ between X and Y .

The bivariate pdf is defined only within the triangular space bounded by the x and y
axes (because supplies are positive by definition) and the straight line x + y = 2 × 106 as
stipulated. This is shown in Fig. 3.3.7.
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0 1 2
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0
6
 L

/d
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y
)

Fig. 3.3.7 Region of definition of bivariate pdf for supplementary water supplies X and Y to two
regions.

A double integral is applied to the bivariate pdf with the first variable X bounded by 0
and 2. On account of the given constraint, the second variable Y should be bounded by 0 and
(2 − x). Hence,

x=2∫
x=0

y=2−x∫
y=0

3

4
(2 − x − y)dydx = 3

8

2∫
0

(2 − x)2dx = 3

8

[
4x − 2x2 + x3

3

]2

0

= 1.

This proves that the volume represented by the pdf with form and limits as specified is unity
[as in Eq. (3.3.12b)]. The bivariate pdf is shown in Fig. 3.3.8.

It is a linear function bounded by four planes. These are the horizontal plane on which the
two axes lie, the two vertical planes passing through the axes (considering only the positive
quadrant) and an inclined plane with the highest elevation at 3/2 units above the origin
(corresponding to the maximum pdf of this magnitude) and sloping linearly to zero elevation
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Fig. 3.3.8 Bivariate pdf for supplementary water supplies X and Y to two regions.
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along the straight line x + y = 2 on the horizontal plane as shown in Figs. 3.3.7 and 3.3.8.
(It is easy to verify geometrically that the enclosed volume is unity.)

The marginal pdf of X is given by

fX (x) = 3

4

2−x∫
0

(2 − x − y)dy = 3

8
(2 − x)2, for 0 ≤ x < 2,

= 0, elsewhere.

Likewise, the marginal pdf of Y is

fY (y) = 3

8
(2 − y)2, for 0 ≤ y < 2,

= 0, elsewhere.

From Eq. (3.2.2)

E[X ] =
∞∫

−∞

x fX (x)dx =
2∫

0

3

8
x(2 − x)2dx = 3

8

[
2x2 − 4x3

3
+ x4

4

]2

0

= 1

2
= E[Y ]

and

E[X 2] =
∞∫

−∞

x2 fX (x)dx =
2∫

0

3

8
x2(2 − x)2dx

= 3

8

[
4x3

3
− x4 + x5

5

]2

0

= 2

5
= E[Y 2].

From Eq. (3.3.25)

E[XY ] =
x=2∫

x=0

x

y=2−x∫
y=0

3

4
y(2 − x − y)dydx =

2∫
0

1

8
x(2 − x)3dx

= 1

8

[
4x2 − 4x3 + 3x4

2
− x5

5

]2

0

= 1

5
.

From Eq. (3.3.24)

Cov[X, Y ] =
(

1

5

)
−

(
1

2

) (
1

2

)
= − 1

20
.

From Eq. (3.2.12)

Var[X ] = Var[Y ] =
(

2

5

)
−

(
1

2

)2

= 3

20
,

and from Eq. (3.3.27) the coefficient of linear correlation is

ρ = (−1/20)

(
√

3/20
√

3/20)
= −1

3
.

On the basis of the assumed model, this shows that there is negative correlation between the
excess water supplies to the two communities. This is a consequence of the constraint of the
total maximum output from the wells supplying the communities.

3.3.3.2 Joint moment-generating function
Similar to the way in which one specifies the moment-generating function of a random
variable [see Eq. (3.2.16)], one can define the joint moment-generating function of a
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multiple variable X1, X2, . . . , Xn as

MX1,...,Xk (t1, . . . , tk) = E

[
exp

(
k∑

i=1

ti Xi

)]
. (3.3.28)

Thus the r th moment of Xi can be determined by differentiating the joint moment-
generating function r times with respect to ti and then evaluating the derivative with
ti = 0. Also, the mixed moments of Xi and X j , say, E[Xr

i Xs
j ], can be generated from the

joint mgf by differentiating r times with respect to ti and s times with respect to t j , and
then letting ti = t j = 0.

If X and Y are statistically independent,

MX,Y (t1, t2) = E[et1 X+t2Y ] = E[et1 X ]E[et2Y ] = MX (t1)MY (t2), (3.3.29)

and it can be shown that if the joint mgf of two variables equals the product of their
individual mgfs, the two variables are statistically independent.

Example 3.40. Storm intensity and duration. From Example 3.38 the joint density func-
tion of independently distributed duration X of a storm and average intensity Y is given
by

fX,Y (x, y) = abe−ax−by .

This is shown in Fig. 3.3.9 for particular values of parameters.
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Fig. 3.3.9 Joint pdf of storm intensity Y and storm duration X . The values taken by the
parameters are those given in Example 3.34 (a = 0.05 h−1, b = 1.2 h/mm, c = 0.06 mm−1).

The joint mgf of X and Y is given by

MX,Y (t1, t2) = E[et1 X+t2 X ] = ab

(a − t1)(b − t2)
,

which equals the product of the mgfs of the two variables with means 1/a and 1/b, respectively
(see Example 3.17 for the derivation of the univariate mgf).

3.3.3.3 Conditional expectation
Similar to the way in which one specifies the expectation or mean of a random variable
[see Eqs. (3.2.1) and (3.2.2)], one can define the conditional expectation following the
concepts of conditional distributions already introduced in this chapter.
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If X and Y are discrete random variables with a bivariate pmf pX,Y (x, y), the conditional
mean of X for a given value of Y and vice versa are defined, respectively, as follows:

E[X | Y = y j ] =
∑
all i

xi pX |Y (xi | y j ) (3.3.30)

and

E[Y | X = xi ] =
∑
all j

y j pY |X (y j | xi ). (3.3.31)

Example 3.41. Wind measurements. Returning to the data in Table 3.3.1 regarding joint
probabilities of the occurrences of specified high winds per year recorded by two measuring
devices, consider the case when the less accurate measuring device with output represented
by the random variable Y records a value of zero. The joint probabilities are 0.2910, 0.0400,
0.0100, and 0.0005 when the random variable X , which corresponds to the accurate measuring
device, takes values of 0, 1, 2, and 3, respectively. Dividing these by the marginal distribution
pY (0) = 0.3415, one obtains the conditional distributions, pX |Y (x | 0), 0.8521, 0.1171, 0.0293,
and 0.0015 for X = 0, 1, 2, and 3, respectively. Hence, from Eq. (3.3.30)

E[X | Y = 0] = 0 × 0.8521 + 1 × 0.1171 + 2 × 0.0293 + 3 × 0.0015 = 0.1802.

For the case Y = 3, the conditional distributions pX |Y (x |3) are 0.0000, 0.0000, 0.3727, and
0.6273, respectively. Then

E[X | Y = 3] = 0 × 0.0000 + 1 × 0.0000 + 2 × 0.3727 + 3 × 0.6273 = 2.6273.

These two numbers are the mean (or expected) values of the true number of specified winds
when the less accurate instrument records 0 and 3 occurrences, respectively, per year at the
measuring station. The conditional distributions and expectations of X for all values of Y are
given in Table 3.3.2.

The last row gives marginal probabilities of Y given X , obtained from Table 3.3.1 and used
in the preceding calculations.

If X and Y are statistically independent, it follows from Eq. (3.3.10) that the two con-
ditional expectations of Eqs. (3.3.30) and (3.3.31) reduce to E[X ] and E[Y ], respectively.

Table 3.3.2 Conditional distributions and
expectations, evaluated from Table 3.3.1, of the number
of occurrences of specified winds per year X given
numbers Y recorded by a less accurate instrument

Y = 0 Y = 1 Y = 2 Y = 3

X = 0 0.8521 0.1350 0.0000 0.0000
X = 1 0.1171 0.8054 0.0749 0.0000
X = 2 0.0293 0.0562 0.8502 0.3727
X = 3 0.0015 0.0034 0.0749 0.6273

� 1.0000 1.0000 1.0000 1.0000

E[X |Y = y] 0.1802 0.9280 2.0000 2.6273

pY (y)a 0.3415 0.4445 0.1335 0.0805

a The last row gives marginal probabilities of Y given X ,
obtained from Table 3.3.1.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:15

130 Applied Statistics for Civil and Environmental Engineers

This result is also obtained in determining the expectation of the conditional expectation,
for example, of the random variable E[X | Y ]:

E[E[X | Y ]] =
∑
all y j

E[X | Y = y j ]pY (y j ) (3.3.32a)

[where, unlike in Eq. (3.3.4), Y does not take a single fixed value]. From Eq. (3.3.30),

E[E[X | Y ]] =
∑
all y j

∑
all xi

xi pX |Y (xi | y j )pY (y j ), (3.3.32b)

and from Eqs. (3.3.4), (3.4.6), and (3.2.1)

E[E[X | Y ]] =
∑
all xi

xi pX (xi ) = E[X ]. (3.3.32c)

Thus, from Eq. (3.3.32a) and (3.3.32c) one can also state that

E[X ] =
∑
all y j

E[X | Y = y j ]pY (y j ). (3.3.33)

(This expression is simply a further application of the total probability theorem of
Chapter 2.)

Example 3.42. Wind measurements. From Table 3.3.2,

E[X ] = 0.1802 × 0.3415 + 0.9280 × 0.4445 + 2 × 0.1335

+ 2.6273 × 0.0805 = 0.9525.

This is the expected (that is mean) number of specified winds per year at the recording station.

Turning now to the continuous case, the conditional expectation of X given that Y = y
is

E[X | Y = y] =
+∞∫

−∞
x fX |Y (x | y)dx . (3.3.34)

Also, it follows from Eq. (3.3.33) that

E[X ] =
+∞∫

−∞
E[X | Y = y] fY (y)dy. (3.3.35)

Example 3.43. Density and compressive strength of concrete. Consider again the den-
sities and compressive strengths of concrete given in Table 1.2.1 and the assumed model
of Example 3.37. The expected value of Y for a value of X in the range 2400–2500 kg/m3

is obtained using Eq. (3.3.24) by substituting the conditional distribution of Y given X of
Example 3.37 as follows:

E[Y | X = x] =
60∫

40

0.05y
y − 40

20
dy +

80∫
60

0.05y
80 − y

20
dy

= 0.0025

[
y3

3
− 20y2

]60

40

+ 0.0025

[
40y2 − y3

3
−

]80

60

= 26.67 + 33.33 = 60 N/mm2.
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Also, the (unconditional) mean value of Y is obtained as follows using the marginal pdf of
X , which is uniform in the range 2400–2500 kg/m3 and equal to 0.01, and zero elsewhere as
shown in Fig. 3.3.6b:

E[Y ] =
2500∫

2400

60

100
dx = 60 N/mm2.

This result of course is expected if one assumes that the marginal distribution for Y is triangular
in the range 40–80 with peak at 60 N/mm2 and is zero elsewhere. Although a simplified
distribution was adopted here, the result is only marginally different from the sample mean,
which is 60.14 N/mm2, as given in Table 1.2.2.

Example 3.44. Storm intensity and duration. Returning to Example 3.34, the conditional
expectation of storm intensity Y for a given duration X of the storm is obtained [from
Eq. (3.3.34)] as

E[Y | X = x] =
∞∫

0

y

a
[(a + cy)(b + cx) − c]e−y(b+cx)dy = b + cx + c/a

(b + cx)2
.

(We may write d = b + cx and solve the integral as in Examples 3.9 and 3.14.)
We note that the conditional expectation of storm intensity decreases with increasing

duration of the storm.
Similarly, we obtain the conditional moment of second order of Y as a function of x :

E[Y 2 | X = x] =
∞∫

0

y2

a
[(a + cy)(b + cx) − c]e−y(b+cx)dy =2(b + cx + 2c/a)

(b + cx)3
,

which gives the conditional variance

Var[Y | X = x] = 1

(b + cx)2
+ c(2ab + 2acx − c)

a2(b + cx)4
.

The corresponding conditional standard deviation is

σY |X=x =
√

Var[Y | X = x] = 1

(b + cx)

√
1 + c(2ab + 2acx − c)

a2(b + cx)2
,

which decreases less rapidly than the conditional expectation for increasing duration. There-
fore, the variability of the conditional storm intensity increases with increasing storm dura-
tions. The conditional mean and standard deviation of the storm intensity Y are shown as a
function of storm duration X in Fig. 3.3.10 with the values of parameters of Example 3.34.
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Fig. 3.3.10 Conditional mean and standard deviation of storm intensity Y as related to the
duration of the storm X . The values taken by the parameters are those given in Example 3.34
(a = 0.05 h−1, b = 1.2 h/mm, c = 0.06 mm−1).



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:15

132 Applied Statistics for Civil and Environmental Engineers

By using the properties of expectation, some further properties of the conditional ex-
pectation can be obtained. For instance, Eq. (3.3.32c) states that the mean of a variable X
is the expectation or mean of the conditional mean of X , that is,

E[X ] = E[E[X | Y ]]. (3.3.36)

More generally,

E[g(X )] = E[E[g(X ) | Y ]]. (3.3.37)

where g(·) is a function with argument X , and the conditional expectation E[g(X ) | Y ] is
generally a function of Y . The conditional variance of X given Y = y is defined as

Var[X | Y ] = E[X2 | Y ] − E2[X | Y ] (3.3.38)

and application of Eq. (3.3.37) to E[Var[X | Y ]] gives

E[Var[X | Y ]] = E[E[X2 | Y ]] − E[E2[X | Y ]]

= E[X2] − E2[X ] − E[E2[X | Y ]] + E2[X ]

= Var[X ] − E[E2[X | Y ]] + E2[E[X | Y ]]

= Var[X ] − Var[E[X | Y ]].

Hence,

Var[X ] = E[Var[X | Y ]] + Var[E[X | Y ]]. (3.3.39)

Accordingly, the variance of X is the expectation or mean of the conditional variance of
X , augmented by the variance of the conditional mean of X . If two variables X and Y
are independent, and the conditional mean E[X | Y ] = μX does not depend on Y , then
E[Var[X | Y ]] = Var[X ].

3.3.4 Summary of Section 3.3

Following the discussion of random variables and the univariate applications in
Sections 3.1 and 3.2, the basic concepts of probability mass and density functions for
multiple random variables are introduced here. Joint cumulative distribution functions
and some important properties of multiple variables are also discussed.

3.4 ASSOCIATED RANDOM VARIABLES AND PROBABILITIES

Engineers are often concerned with functional relationships that exist between variables
so that if the value of one variable is observed then the value of another can be predicted.
Such relationships are widely sought and applied in hydraulics, soil mechanics, strength
of materials, and other branches of civil and environmental engineering. Consider the
case of two variables X and Y . Initially one establishes the form of association between
X and Y ; then, given the distribution or probability law that governs X , one determines
the distribution of Y by a procedure given in this section. Furthermore, if another variable
Z has a relationship with X and Y , it is possible to derive the distribution of Z , unless the
calculus becomes intractable. These concepts can be extended to the case where several
variables are involved.
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3.4.1 Functions of a random variable

One can obtain the pmf or pdf for a function of a random variable X by applying a
transformation technique. The transformation is usually obtained readily in the case of
discrete variables. For example, let the random variable X with pmf pX (x) be transformed
such that Y = g(X ). It is necessary to find the inverse function of Y which may be written
as

X = g−1(Y ) = h(Y ), (3.4.1)

corresponding to

Y = g(X ). (3.4.2)

Then the pmf of Y , pY (y), is given by

pY (y) = pX [h(y)], (3.4.3)

where h(y) denotes the inverse function such as x = h(y) if y = g(x). In order to apply
the transformation, there should be one-to-one correspondence between X and Y , for
example, when y = 1 + 9x but not when y = sin x , in which case more than one value
of X will give the same value of Y . In other words [if we leave out the often difficult
and involved cases of multiple roots of y = g(x)], it is required that h(Y ) is a monotonic
increasing or decreasing function of the variable X .

Example 3.45. Flood occurrence. An example of this is the application of the geometric
distribution:

pX (x) = p(1 − p)x−1, for x = 1, 2, 3, . . . ; 0 ≤ p ≤ 1,

to the occurrences of a design flood at the site of a cofferdam which is to be constructed to
protect the work on a large dam across a river. The design flood causes failure of the cofferdam
and has a probability of occurrence of p in any year. The foregoing distribution gives the
probability that failure will occur in year x and not before. Suppose that because of concern
regarding possible failure, the cofferdam originally constructed has been strengthened, so
that it may not fail for a much longer period of years. The improvements are such that it is
now appropriate to use the function Y = 3X for the purpose of predicting failure.

The inverse function is X = Y/3 and the pdf for Y is given by

pY (y) = p(1 − p)[(y/3)−1], for y = 3, 6, 9, . . . ; 0 ≤ p ≤ 1;

pY (y) = 0, elsewhere.

Comparing pX (x) = p(1 − p)x−1 and pY (y) = p(1 − p)[(y/3)−1], we see that the probabil-
ities of failure under the old scheme X after 1, 2, 3, and 4 years, for example, is equivalent to
the probabilities of failure after 3, 6, 9, and 12 years, respectively, under the new scheme Y .

For continuous variables, the transformation from the pdf of X to that of Y involves
firstly the substitution of the inverse function of Y solved for X [Eq. (3.4.1)] in the pdf of
X , a procedure similar to that adopted in the discrete case [as in Eq. (3.4.3)]. Secondly, the
pdf of X so defined should be multiplied by the absolute value of the first derivative of the
inverse function, say, h(y). This first derivative is called the Jacobian of the transformation
and it is denoted by J . Thus,

fY (y) =
∣∣∣∣dx

dy

∣∣∣∣ fX [h(y)] =
∣∣∣∣dh(y)

dy

∣∣∣∣ fX [h(y)] = |J | fX [h(y)]. (3.4.4)
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Multiplication by the absolute J term ensures that fY (y) integrates to unity, a requirement
for any pdf, as already noted; this is evident by rearranging the left and middle terms of
Eq. (3.4.4) and integrating.

Property: The probability density function (pdf) of a derived variable by one-to-one
transformation. Let X be a random variable with continuous pdf, fX (x). The pdf of the
random variable Y defined by the one-to-one transformation Y = g(X ) is given by

fY (y) =
∣∣∣∣∣dh(y)

dy

∣∣∣∣∣ fX [h(y)] = |J | fX [h(y)],

where h(y) denotes the inverse function such as x = h(y) if y = g(x). This property requires
that the Jacobian of the transformation is nonzero.

For example, if Y = m X + c, the inverse function is X = (Y − c)/m, from which
dx/dy = 1/m. Hence,

fY (y) =
∣∣∣∣ 1

m

∣∣∣∣ fX

(
y − c

m

)
. (3.4.5)

Example 3.46. Bacterial growth. Consider the population of bacteria, C , in a small lake.
Under ideal conditions, the population increases exponentially with time T , commencing
with an initial population c0 as

C = c0eλT ,

whereλ > 0 is the growth rate. However, because of the uncertain effects of various extraneous
factors, the time T allowed for the increase in the bacterial population is a random variable
with distribution function FT (t), where t ≥ 0. Thus the bacteria immediately prior to flushing
has a population with distribution function FC (c) given by

FC (c) = Pr[c0eλT ≤ c] = Pr

[
λT ≤ ln

c

c0

]
= FT

(
1

λ
ln

c

c0

)
,

where c ≥ c0. Thus,

t = 1

λ
ln

c

c0
,

and the first derivative of the inverse function is

dt

dc
= 1

λc
.

Therefore, from Eq. (3.4.4),

fC (c) = 1

λc
fT

(
1

λ
ln

c

c0

)
,

where c ≥ c0. Now if fT (t) is known, then fC (c) can be found from the foregoing equation.
For example, if T is exponentially distributed with pdf

fT (t) = ae−at ,

with a > 0, one gets

fC (c) = 1

λc
ae−[(a/λ)(ln(c/c0)] = a

λc

(
c0

c

)a/λ

= θcθ
0

cθ+1
,
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where θ = a/λ > 0, and c ≥ c0. The cdf of C is given by40

FC (c) = 1 −
(

c0

c

)θ

,

with θ > 0 and c ≥ c0.

3.4.2 Functions of two or more variables

3.4.2.1 Sum and difference of two or more variables
Scientists and engineers often encounter more than one random variable in relation to a
particular problem, and therefore they seek a function of two or more variables. In the
case of two variables X and Y , consider the case Z = X + Y .

FZ (z) = Pr[Z ≤ z] = Pr[X + Y ≤ z]

= Pr[Y ≤ Z − X ] =
∞∫

−∞

z−x∫
−∞

fXY (x, y) dydx (3.4.6)

⇒ fZ (z) = ∂

∂z
FZ (z) =

+∞∫
−∞

fXY (x, z − x) dx =
+∞∫

−∞
fXY (z − y, y) dy (3.4.7)

If X and Y are independent, it follows from Eq. (3.3.17) that,

fZ (z) =
∞∫

−∞
fX (z − y) fY (y)dy. (3.4.8)

We can see from Eqs. (3.4.7) and (3.4.8) that the variables X and Y are interchangeable.
Equation (3.4.8) in its general form is sometimes known as the convolution integral.

Example 3.47. Ferry and train transportation. Consider the case where pedestrians
reaching a ferry station have to await the arrival of a ferry. After traveling in the ferry,
they must remain at a railway station until a train arrives. Circumstances are such that the
times in hours, X and Y , spent by passengers awaiting ferries and trains, respectively, are
random variables. Let us assume that for the particular short segments traversed, the travel
times in the two modes of transport are constant. The pdfs are given respectively by

fX (x) = 0.7e−0.7x and fY (y) = 0.5e−0.5y .

If we also assume that the arrivals of the ferries and trains are independent, the pdf of the total
time spent by a passenger in awaiting transport, Z = X + Y , is obtained from Eq. (3.4.8) as
follows:

fZ (z) =
∞∫

0

fX (z − y)0.5e−0.5ydy,

zero being the lower limit of integration because negative times are not possible. Also, the
argument (z − y) of fX cannot be negative; and thus because the variate is Y , the upper limit

40 This is the Pareto distribution.
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of integration becomes z. Hence,

fZ (z) =
z∫

0

0.7e−0.7(z−y)0.5e−0.5ydy = 0.35e−0.7z

z∫
0

e−0.2ydy

= 0.35

0.7 − 0.5
(e−0.5z − e−0.7z) = 1.75(e−0.5z − e−0.7z),

which gives the pdf of the total time Z in hours spent by a foot passenger at the ferry and
train stations. Figure 3.4.1 gives the pdfs of X , Y , and Z .
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Fig. 3.4.1 Probability density functions of waiting time in hours for ferries, X ; trains, Y ; and
cumulative for ferry plus train, Z = X + Y .

If one considers the case of the difference between two variables, say, W = X − Y , the
marginal pdf of W is found using the same arguments, thus obtaining

fW (w) =
∞∫

−∞
fW,Y (w, y)dy =

∞∫
−∞

fX,Y (w + y, y)dy. (3.4.9)

This yields, for independent X and Y ,

fW (w) =
∞∫

−∞
fX (w + y) fY (y)dy. (3.4.10)

3.4.2.2 Maximum and minimum of two or more variables
In many applications the engineer is concerned with the maximum or the minimum of
a certain number of variables. In the case of n variables, say, X1, X2, . . . , Xn , define
Y = max[X1, X2, . . . , Xn]. The cdf of Y will be given by the joint probability that each
variable Xi is less or equal to y, that is,

Pr[Y ≤ y] = Pr[X1 ≤ y, X2 ≤ y, . . . , Xn ≤ y] = FX1,X2,...,Xn (y, y, . . . , y)

If X1, X2, . . . , Xn are independent of each other, this probability is equal to the product
of the individual probabilities, so that

FY (y) =
n∏

k=1

Pr[Xk ≤ y] =
n∏

k=1

FXk (y), (3.4.11)
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which becomes

FY (y) =
n∏

k=1

FXk (y) = [FX (y)]n (3.4.12)

for FX1 (·) = · · · . . . = FXn (·) = FX (·); that is, the n variables have a common probability
distribution. The corresponding pdf is found by differentiating Eq. (3.4.12), thus obtaining

fY (y) = d

dy
FY (y) = n[FX (y)]n−1 fX (y). (3.4.13)

The same procedure can be used to derive the probability distribution of the minimum,
say, Z = min[X1, X2, . . . , Xn]. If the n variables X1, X2, . . . , Xn are independent of each
other,

FZ (z) = 1 −
n∏

k=1

Pr[Xk > z] = 1 −
n∏

k=1

[1 − FXk (z)], (3.4.14)

which becomes

FZ (z) = 1 −
n∏

k=1

[1 − FXk (z)] = 1 − [1 − FX (z)]n, (3.4.15)

for FX1 (·) = · · · = FXn (·) = FX (·); that is, the n variables have a common probability
distribution. The corresponding pdf is given by

fZ (z) = d

dz
FZ (z) = n[1 − FX (z)]n−1 fX (z). (3.4.16)

Example 3.48. Earthquake intensity. In Example 3.6, and subsequently, the pdf of earth-
quake intensity in a region was assumed to be exponentially distributed as follows:

fX (x) = λe−λt ,

with λ = 0.2. If five earthquakes are observed in a century, let us find the probability distri-
bution of earthquakes of the maximum intensity.

If one assumes that the intensities of the earthquakes are independent of each other,
Eq. (3.4.12) yields

FY (y) = [FX (y)]n = (1 − e−0.2y)5,

and from Eq. (3.4.13)

fY (y) = n[FX (y)]n−1 fX (y) = 5(1 − e−0.2y)4e−0.2y .

Also, from Eq. (3.4.15) the minimum earthquake intensity Z has the cdf

FZ (z) = 1 − [1 − FX (z)]n = 1 − (e−0.2y)5 = 1 − e−y .

This expression has the same type of distribution as the intensity X with parameter nλ =
5 × 0.2 = 1.

3.4.2.3 Product and quotient of two random variables
Some engineering problems require the product or the quotient of random variables be
evaluated. For example, the safety factor Z of a system with random capacity, subject to
a random load Y , is defined as the ratio between capacity and load, that is, Z = X/Y . If
benefit and costs are random variables, the benefit-to-cost ratio is also a random variable
with its distribution depending on the joint distribution of cost and benefit. If X is the
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demand of the system and Y is the cost per unit demand, the project engineer needs
to evaluate the total cost as Z = XY . The same occurs if X is a variable measured in
the laboratory or in the field and Y is the multiplicative error associated with such a
measurement.

In the case of two variables X and Y , the probability distribution of Z = XY is deter-
mined by observing that Pr[Z ≤ z] can be obtained by integrating the two dimensional pdf
of X and Y for those values of the product xy that are less than or equal to z. This means
that fX,Y (x, y) must be integrated over the shaded region shown in Fig. 3.4.2 between the
curves and the two axes. Thus,
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Fig. 3.4.2 Region for integration of the joint pdf of X and Y to obtain the cdf of Z = XY .

FZ (z) = Pr[Z ≤ z] =
∫∫

xy≤z

fX,Y (x, y) dxdy

=
0∫

−∞

⎡⎢⎣ +∞∫
z/x

fX,Y (x, y)dy

⎤⎥⎦ dx +
+∞∫
0

⎡⎣ z/x∫
−∞

fX,Y (x, y)dy

⎤⎦ dx

and if t = xy,

FZ (z) =
0∫

−∞

⎡⎣ +∞∫
z

fX,Y

(
x,

t

x

)
dt

x

⎤⎦ dx +
+∞∫
0

⎡⎣ z∫
−∞

fX,Y

(
x,

t

x

)
dt

x

⎤⎦ dx

=
z∫

−∞

⎡⎣ +∞∫
−∞

1

|x | fX,Y

(
x,

t

x

)
dx

⎤⎦ dt,
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which can be differentiated with respect to z to get

fZ (z) =
+∞∫

−∞

1

|x | fX,Y

(
x,

z

x

)
dx =

+∞∫
−∞

1

|y| fX,Y

(
z

y
, y

)
dy. (3.4.17)

If X and Y are independent, the product of their marginals can be substituted for the
bivariate pdf, thus obtaining

fZ (z) =
+∞∫

−∞

1

|x | fX (x) fY

(
z

x

)
dx =

+∞∫
−∞

1

|y| fX

(
z

y

)
fY (y)dy. (3.4.18)

Example 3.49. Storm intensity and duration. In Example 3.40 it was assumed that the
duration X of a storm and its average intensity Y are independent variates with joint pdf

fX,Y (x, y) = fX (x) fY (y) = ae−ax be−by = abe−ax−by .

Let us determine the probability distribution of the total amount of rainfall delivered in a
storm. Define rainfall depth as Z = XY .

Using Eq. (3.4.18) one gets

FZ (z) =
z∫

−∞

+∞∫
−∞

1

|y| fX,Y

(
ζ

y
, y

)
dydζ

=
z∫

0

+∞∫
0

ab

y
e−[(aζ/y)+by]dydζ = 1 − 2

√
abzK1(2

√
abz),

where K1(ξ ) is a modified Bessel function with argument ξ of the first order.41

Using the same arguments, one can derive the pdf of the quotient W = X/Y of two random
variables X and Y . This is given by

fW (w) =
+∞∫

−∞
|y| fX,Y (wy, y)dy. (3.4.19)

which yields, for independent X and Y ,

fW (w) =
∞∫

−∞
|y| fX (wy) fY (y)dy. (3.4.20)

Figure 3.4.3 shows, for example, the pdf of the product and quotient of two independent
random variables, X and Y , uniformly distributed on 0–1.

3.4.2.4 Transformation of two variables
The procedures for the transformation of single variables given by Eqs. (3.4.1) to (3.4.5)
can be applied to two variables (and similarly extended to three or more variables with
joint pdfs). Let fX1,X2 (x1, x2) represent the bivariate pdf of X1 and X2.

Given a random variable Y , the distribution of which one is interested in, where Y =
g1(X1, X2), a new random variable Z = g2(X1, X2) is introduced in order to solve the

41 See Eagleson (1978) and Abramowitz and Stegun (1964).
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Fig. 3.4.3 The pdf of the product Z and quotient W of two uniform (0, 1) variates. The dotted
line shows the common pdf of X and Y .

problem. This step is taken so that both Y and Z define a one-to-one transformation
between (x1, x2) and (y, z), thus making it possible to define the inverse functions of x1

and x2 without ambiguity. We then proceed as follows:

(1) Convert the limits for X1 and X2 to corresponding limits for the variables Y and Z .
(2) Solve the inverse functions x1 = h1(y, z), and x2 = h2(y, z).

(3a) If the variables are discrete, the bivariate distribution of the transformed variables
is

pY,Z (y, z) = pX1,X2 (h1(y, z), h2(y, z)). (3.4.21)

The pmf of Y is the marginal pmf of Y from the foregoing bivariate pmf and is
obtained using Eq. (3.3.6).

(3b) If the variables are continuous, the following partial derivatives should exist in a
continuous form:

∂x1

∂y
,
∂x1

∂z
,
∂x2

∂y
, and

∂x2

∂z
.

The bivariate pdf of Y and Z denoted by fY,Z (y, z) is given by

fY,Z (y, z) = |J | fX1,X2 [h1(y, z), h2(y, z)] (3.4.22)

where J �= 0 is the Jacobian corresponding to Eq. (3.4.4). Whereas in Eq. (3.4.4)
only two variables were involved and the J term is the derivative, in Eq. (3.4.22)
it becomes the determinant of partial derivatives:

J =

∣∣∣∣∣∣∣∣
∂x1

∂y

∂x1

∂z
∂x2

∂y

∂x2

∂z

∣∣∣∣∣∣∣∣ . (3.4.23)

Note that the variables in the numerators in the first and second rows (and likewise
for more than two variables) of J correspond, respectively, to the original variables in
fX1,X2(x1, x2). Likewise the variables in the denominators of the first and second columns
correspond, respectively, to the new variables Y and Z . As in Eq. (3.4.4) the absolute value
of the Jacobian term is used in Eq. (3.4.22).

To obtain the distribution of Y , one obtains its marginal distribution by integrating out
Z in Eq. (3.4.22) following the procedure of Eq. (3.3.18). This procedure can be extended,
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Table 3.4.1 Bivariate pmf of the output per day in
numbers completed, X1, and X2, by two types of pile
drivers

X2 = 0 X2 = 1 X2 = 2 pX1 (x)

X1 = 0 0.05 0.10 0.15 0.30
X1 = 1 0.10 0.15 0.25 0.50
X1 = 2 0.01 0.08 0.11 0.20

PX2 (x) 0.16 0.33 0.51 � = 1.00

as follows, to n × k-dimensional problems involving an n-dimensional random variable
which is function of k variates. The case k = n is sufficient for discussion.42

Property: General one-to-one transformation. Let X1, . . . , Xk be a multiple random
variable with continuous pdf fX1,...Xk (x1, . . . , xk). The pdf of the multiple random vari-
able Y1, . . . , Yn defined by a set of one-to-one transformations Yi = gi (X1, . . . , Xk) for
i = 1, . . . , k is given by

fY1,...,Yn (y1, . . . , yn) = |J | fX1,...,Xk [h1(y1, . . . , yn), . . . , hki (y1, . . . , yn)],

where x1 = h1i (y1, . . . , yn), . . . , xk = hki (y1, . . . , yn) denote the inverse transformations,
and

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1

∂y1

∂x1

∂y2
. . .

∂x1

∂yn

∂x2

∂y1

∂x2

∂y2
. . .

∂x2

∂yn

...
...

. . .
...

∂xk

∂y1

∂xk

∂y2
...

∂xk

∂yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
the Jacobian of the transformation, provided that the partial derivatives in J are continuous,
and the determinant |J | is nonzero.

In a discrete case where the joint probabilities are evaluated numerically (from observed
data rather than by theoretical means), the marginal pmf can be obtained directly as in the
following example:

Example 3.50. Pile drivers. An engineer uses two types of pile drivers, the first of which
produces X1 piles a day. The second, an older version that is still indispensable, can complete
X2 units during the same period of time. Mechanical, site, soil, and climatic conditions are
such that X1 and X2 are random variables. The bivariate distribution of X1 and X2, each of
which are in the range 0–2, is estimated as given in Table 3.4.1.

Three units of the first type are obtained to be used with the available unit of the second
type. Consequently, the engineer is interested in the distribution of the random variable
Y = 3X1 + X2. The marginal pmf of Y can be evaluated from Table 3.4.1 within the sample
space of Y , that is (0, 1, 2, 3, 4, 5, 6, 7, 8) obtained for all possible combinations of X1 and
X2. Table 3.4.2 gives the required marginal distribution.

42 Papoulis (2001).
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Table 3.4.2 The marginal pmf of
Y = 3X1 + X2 from the output per day X1

and X2 by two types of pile drivers

Y X1 X2 pY (y)

0 0 0 0.05
1 0 1 0.10
2 0 2 0.15
3 1 0 0.10
4 1 1 0.15
5 1 2 0.25
6 2 0 0.01
7 2 1 0.08
8 2 2 0.11

� = 1.00

In the continuous case, Eqs. (3.4.22) and (3.4.23) are applied as shown in the following
example:

Example 3.51. Project costs and benefits. The benefits X1 and costs X2 of a particular
scheme are treated as random variables on account of numerous factors considered to be un-
predictable. From some trial calculations based on past projects, it is possible to approximate
the joint pdf as follows, that is, by the bivariate negative exponential distribution:

fX1,X2 (x1, x2) = e−(x1+x2).

The engineer is interested in the benefit-to-cost ratio X1/X2. Introducing two random variables
Y and Z , let y = x1/x2 and z = x1 + x2; the supplementary equations are chosen to simplify
the inverse functions while maintaining one-to-one correspondence between the two sets
of variables, as already discussed. Hence the inverse relationships, as functions of y and z,
are x1 = zy(1 + y)−1 and x2 = z(1 + y)−1. Thus, from the foregoing bivariate pdf and from
Eq. (3.4.22),

fY,Z (y, z) = |J | fX1,X2 (zy(1 + y)−1, z(1 + y)−1) = |J |e−z .

The four partial derivatives required for the Jacobian of Eq. (3.4.23) are

∂x1

∂y
= z(1 + y)−2;

∂x1

∂z
= y(1 + y)−1;

∂x2

∂y
= −z(1 + y)−2;

∂x2

∂z
= (1 + y)−1.

Substituting these results in Eq. (3.4.23), the determinant of the 2 × 2 matrix simplifies to

|J | = z(1 + y)−2.

Hence, the bivariate pdf of Y and Z is given by

fY,Z (y, z) = e−z z(1 + y)−2.

The marginal pdf of Y , which is the benefit-to-cost ratio, is given by

fY (y) =
∞∫

0

ze−z(1 + y)−2dz =
∞∫

0

fY Z (y, z)dz = (1 + y)−2, for y ≥ 0,

= 0, elsewhere.

The lower limit of integration is zero because the variables cannot take negative values. The
foregoing result is obtained after integrating by parts and applying l’Hospital’s rule. (We can
also solve this without Jacobians.)
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3.4.3 Properties of derived variables

3.4.3.1 Expectation and moments of derived variables
A random variable that is a function of other random variables and its probability distribu-
tion are sometimes defined as a derived variable and a derived distribution, respectively.
Although the distribution can be derived theoretically from the probability distribution of
the basic variates, such derivations are often difficult, especially if the function is nonlin-
ear. However, the moments of the derived variate can provide useful information under
these circumstances. For the purpose, we can use the properties of expectations introduced
in Section 3.2.

If Z = g(X1, X2, . . . , Xk) is a derived variable from a k-dimensional random variable
X1, X2, . . . , Xk , the expected value of Z is written as

E[Z ] = E[g(X1, X2, . . . , Xk)]

=
+∞∫

−∞
. . .

+∞∫
−∞

g(x1, x2, . . . , xk) fX1,X2,...,Xk (x1, x2, . . . , xk)dx1dx2 . . . dxk .

(3.4.24)

More generally, the r th-order moment of Z is given by

E[Zr ] = E[[g(X1, X2, . . . , Xk)]r ]

=
+∞∫

−∞
. . .

+∞∫
−∞

[g(x1, x2, . . . , xk)]r fX1,X2,...,Xk (x1, x2, . . . , xk)dx1dx2 . . . dxk .

(3.4.25)

For example, in the case of a linear function Z = aX + b, with constants a and b, the
properties of the expectation operator yield E[Z ] = aE[X ] + b, that is, μZ = aμX + b.
The variance is obtained as follows:

Var[Z ] = Var[aX + b] = E[(aX + b − aE[X ] − b)2]

= a2

+∞∫
−∞

(x − μX )2 fX (x)dx = a2Var[X ] = a2σ 2
X . (3.4.26)

In the case of a linear function of two variables, say, Z = aX + bY , we obtain

E[Z ] = E[aX + bY ] = aE[X ] + bE[Y ] = aμX + bμY (3.4.27)

and

Var[Z ] = Var[aX + bY ] = E[(aX + bY − aE[X ] − bE[Y ])2]

= E[a2(X − μX )2 + 2ab(X − μX )(Y − μY ) + b2(Y − μY )2]

= a2Var[X ] + 2abCov[X, Y ] + b2Var[Y ] = a2σ 2
X + 2abρX,Y σXσY + b2σ 2

Y ,

(3.4.28)

where ρX,Y denotes the correlation coefficient of X and Y . More generally,

E[Z ] = E

[
k∑

i=1

ai Xi + bi

]
=

k∑
i=1

ai E[Xi ] + bi , (3.4.29)

Var[Z ] = Var

[
k∑

i=1

ai Xi + bi

]
=

k∑
i=1

a2
i Var[Xi ] +

k∑
i=1

k∑
j=1; j �=i

ai a j Cov[Xi , X j ].

(3.4.30)
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Example 3.52. Toll station. Assume that the interarrival time X of a vehicle approaching
a toll station of a bridge has an exponential pdf with parameter λ. Accordingly, the mean and
the variance of X are λ−1 and λ−2, respectively (see Examples 3.9 and 3.14). If k toll lines are
available, let us determine the mean arrival time of k vehicles and the coefficient of variation
of this arrival time. Assume that the arrivals are independent of each other.

If one defines the total arrival time as

Z =
k∑

i=1

Xi ,

with Xi denoting the arrival time of the i th vehicle, then

E[Z ] =
k∑

i=1

E[Xi ] =
k∑

i=1

λ−1 = kλ−1

and Var[Z ] =
k∑

i=1

Var[Xi ] =
k∑

i=1

λ−2 = kλ−2.

Hence the coefficient of variation,

VZ =
√

Var[Z ]

E2[Z ]
=

√
kλ−2

k2λ−2
=

√
1

k
,

decreases quite rapidly with increasing k.

In the case of the product of two variates, X and Y , the expected value is closely related
to the covariance of the variables. If Z = XY ,

E[Z ] = E[XY ] = Cov[X, Y ] − E[X ]E[Y ] = ρX,Y σXσY + μXμY . (3.4.31)

Since

XY = μXμY + μY (X − μX ) + μX (Y − μY ) + (X − μX )(Y − μY ),

one can compute E[XY ] and E[(XY )2] to obtain the variance of Z = XY as

Var[Z ] = Var[XY ] = σ 2
Xμ2

Y + σ 2
Y μ2

X

+ 2ρX,Y σXσY μXμY − ρ2
X,Y σ 2

Xσ 2
Y + E[(X − μX )2(Y − μY )2]

+ 2μX E(X − μX )(Y − μY )2� + 2μY E(X − μX )2(Y − μY )�, (3.4.32)

where ρX,Y σXσY = Cov[X, Y ].

If X1, X2, . . . , Xk are k mutually independent random variables, the paired correlation
coefficient of Xi and X j is null, so that the mean of their product, Z = X1, X2, . . . , Xk ,
equals the product of their individual means. Thus,

E[Z ] = E[X1 X2 . . . Xk] = E[X1]E[X2] . . . E[Xk] = μX1μX2 . . . μXk . (3.4.33)

Since

E[Z2] = E[(X1 X2 . . . Xk)2] = E
[
X2

1

]
E

[
X2

2

]
. . . E

[
X2

k

]
,

the variance of the product of k independent variables is given by

Var[Z ] = E[Z2] − E2[Z ] = E
[
X2

1

]
E

[
X2

2

]
. . . E

[
X2

k

] − (E[X1]E[X2] . . . E[Xk])2

= (
σ 2

X1
+ μ2

X1

)(
σ 2

X2
+ μ2

X2

)
. . .

(
σ 2

Xk
+ μ2

Xk

) − μ2
X1

μ2
X2

. . . μ2
Xk

. (3.4.34)
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For two independent variables X and Y , Eq. (3.4.34) yields

Var[Z ] = Var[XY ] = (
σ 2

X + μ2
X

)
(σ 2

Y + μ2
Y

) − μ2
Xμ2

Y (3.4.35)

= σ 2
Xσ 2

Y + σ 2
Xμ2

Y + σ 2
Y μ2

X .

Example 3.53. Storm rainfall total. The duration X and the average rainfall rate Y of a
storm at a given location are assumed to be independent, exponentially distributed variates
with parameter a and b, respectively, as specified in Example 3.33. Accordingly, their means
are a−1 and b−1, respectively, and their variances are a−2 and b−2, respectively. In Example
3.49 the total amount of water delivered by a storm was defined as Z = XY , and its cdf was
derived in the form of a Bessel-type function. Although this cdf is somewhat cumbersome,
the mean and variance of Z are easily found as

E[Z ] = μXμY = (ab)−1

and

Var[Z ] = σ 2
Xσ 2

Y + σ 2
Xμ2

Y + σ 2
Y μ2

X = (ab)−2 + (ab)−2 + (ab)−2 = 3(ab)−2.

It is noted that the coefficient of variation of Z is

VZ =
√

Var[Z ]

E2[Z ]
=

√
3(ab)−2

(ab)−2
=

√
3,

and it does not depend on the statistics of the underlying distribution of storm duration and
intensity.

In the general case of a derived variable Z which is given as a function g(·) of some
other basic variables, say X1, X2, . . . , Xk , the mean and variance can be derived using
Eq. (3.4.25) for r = 1, 2. However, the capability of deriving the second-order statistics
of Z strongly depends on the combination between the functional relationship between
the variables, g(X1, X2, . . . , Xk), and the joint pmf or pdf of the basic variables.

Example 3.54. Safety factor. Consider a system subject to a random load, with pdf given
by the gamma distribution

fY (y) = bη

�(η)
yη−1e−by,

where η and b are known parameters. The shape parameter η and the scale parameter b of
the pdf are related to the mean and variance of Y through

μY = η

b
,

σ 2
Y = η

b2
,

respectively (see Example 3.19). The capacity of the system is also uncertain; we assume
that it is represented by a similarly distributed variate X with known parameters γ and a.
Accordingly, the mean and variance of X are

μX = γ

a

and

σ 2
X = γ

a2
,

respectively.
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Define the safety factor of the system as the ratio between capacity and load, say, Z = X/Y .
The engineer must evaluate the expected safety factor and its variance. If he assumes that
capacity and load are independent, Eq. (3.4.24) yields

E[Z ] = E

[
X

Y

]
=

+∞∫
0

+∞∫
0

x

y

aγ xγ−1e−ax

�(γ )

bη yη−1e−by

�(η)
dxdy = γ

η − 1

b

a
,

which exists only for η > 1. The second-order moment of Z is found by using Eq. (3.4.25),
which yields

E[Z 2] = E

[(
X

Y

)2]
=

+∞∫
0

+∞∫
0

(
x

y

)2 aγ xγ−1e−ax

�(γ )

bη yη−1e−bx

�(η)
dxdy

= γ + γ 2

(η − 1)(η − 2)

(
b

a

)2

,

which exists only for η > 2. The variance of Z is then found as

Var[Z ] = E[Z 2] − E2[Z ] = γ (γ + η − 1)

(η − 1)2(η − 2)

(
b

a

)2

,

which also exists only for η > 2. The coefficient of variation of Z , which also exists only for
η > 2, is given by

VZ =
√

Var[Z ]

E2[Z ]
=

√
γ (γ + η − 1)

(η − 1)2(η − 2)

(
η − 1

γ

)2 (b/a)2

(b/a)2
=

√
(γ + η − 1)

γ (η − 2)
.

We note that this result depends only on the two shape parameters γ and η of the underlying
gamma distributions of system capacity and load, respectively.

In some cases it is difficult to derive the distribution or the moments of a dependent
variate by analytical methods. However, the required moments of Z = g(X1, . . . , Xn) can
be determined by using Taylor’s series expansion about the means of variables X1, . . . , Xn .
For example, the mean and variance of a random variable Z = g(X, Y ) that is a function
of two variables X and Y with means μX and μY , respectively, can be approximated by

E[Z ] ≈ g(μX , μY ) + 1

2

∂2g

∂x2
Var[X ] + 1

2

∂2g

∂y2
Var[Y ] + ∂2g

∂x∂y
Cov[X, Y ], (3.4.36)

Var[Z ] ≈
(

∂g

∂x

)2

Var[X ] +
(

∂g

∂y

)2

Var[Y ] + 2

(
∂g

∂x

∂g

∂y

)2

Cov[X, Y ], (3.4.37)

where the derivatives of g(x, y) are computed for x = μX , and y = μY , and all terms of
order higher than 2 in the expansion are excluded. Eqs. (3.4.36) and (3.4.37) are simplified
for independent variates X and Y , because Cov[X, Y ] = 0.

Example 3.55. Safety factor. Returning to Example 3.54, consider a system subject to the
combined effect of random capacity and load. Although the probability distributions of X
and Y are undetermined, the engineer has estimated the mean and standard deviation of these
variables, say, μX , μY , σX , and σY . Based on this information, the engineer must evaluate the
mean and standard deviation of the safety factor Z = X/Y of the system.

Since g(x, y) = x/y, the derivatives in the approximated moment equations are

∂g

∂x
= 1

y
;

∂g

∂y
= − x

y2
;

∂2g

∂x2
= 0;

∂2g

∂y2
= 2x

y3
;

∂2g

∂x∂y
= − 1

y2
.
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These are used in Eqs. (3.4.36) and (3.4.37) to obtain

E[Z ] ≈ μX

μY
+ μX

μ3
Y

Var[Y ] − 1

μ2
Y

Cov[X, Y ]

and

Var[Z ] ≈
(

μX

μY

)2(Var[X ]

μ2
X

+ Var[Y ]

μ2
Y

− 2Cov[X, Y ]

μXμY

)
.

For example, assume that X and Y are independent of each other, and have similar distributions
as shown in Example 3.54. Since

μY = η/b, σ 2
Y = η/b2, μX = γ /a, σ 2

X = γ /a2,

one gets

E[Z ] ≈ μX

μY
+ μXσ 2

Y

μ3
Y

= γ b

ηa
+ γ ηb3

η3ab2
= γ (η + 1)

η2

b

a

and

Var[Z ] ≈
(

μX

μY

)2(
σ 2

X

μ2
X

+ σ 2
Y

μ2
Y

)
=

(
γ b

ηa

)2(
γ a2

γ 2a2
+ ηb2

η2b2

)
= γ (γ + η)

η3

(
b

a

)2

.

The coefficient of variation of Z is then given by

VZ =
√

σ 2
Z

μ2
Z

≈
√

η(γ + η)

γ (γ + 1)2
=

√
η + η2/γ

η + 1
.

By comparing these results with those obtained in the following Example 3.56, we can evaluate
the accuracy of the approximate estimates of the required second-order statistics. We note
that the accuracy of these approximations depends on the values taken by the parameters
of the underlying distributions, namely, by the shape parameters of the two pdfs describing
the distribution of capacity and load. Therefore, the accuracy of this method depends on the
values taken by the moments of the basic variates.

3.4.3.2 Moment-generating function of derived variables
Although the determination of the probability distribution of a derived variable from those
of the basic variables is not an easy task, the evaluation of its moments can provide some
useful information on the variable in question. However, the computation of Eq. (3.4.25)
can also be cumbersome in certain circumstances, and the approximation by a Taylor’s
series expansion [see Eqs. (3.4.36) and (3.4.37)] should be carefully verified for accuracy,
because it does not provide accurate estimates of second-order statistics in all cases. An
alternative, but powerful technique is then provided by the use of the moment-generating
function.

In Section 3.2 the moment-generating function of a random variable Z was defined
as MZ (t) = E[et Z ], and this definition was extended to multidimensional variables in
Section 3.3. If Z is a derived random variable from k basic variables X1, X2, . . . , Xk , that
is Z = g(X1, X2, . . . , Xk), the mgf of Z can be determined as

MZ (t) = E[et Z ] = E[etg(X1,X2,...,Xk )]

=
+∞∫

−∞
. . .

+∞∫
−∞

etg(x1,x2,...,xk ) fX1,X2,...,Xk (x1, x2, . . . , xk)dx1dx2 . . . dxk . (3.4.38)

After the integration of Eq. (3.4.38) is performed, the moments of any order of the derived
variable Z can be determined by computing the derivatives of MZ (t) for t = 0, as indicated
by Eq. (3.2.20).
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Example 3.56. Wave pressure on coastal structures. The impact pressure of sea waves
on coastal structures may be evaluated as Z = cX 2, where X is the horizontal velocity of the
advancing wave and c is a constant. Because of the uncertainty involved in the evaluation of
X , we consider this to be a random variable; Z is thus a derived variable from X .

Assume X has mean μX and standard deviation σX and has the normal pdf

fX (x) = 1

σX

√
2π

e−0.5[(x−μX )/σX ]2
.

An engineer needs to evaluate the second-order statistics of the impact pressure on the coastal
structure.

Let Y = (X − μX )/σX , which has zero mean, unit variance, and pdf

fY (y) = 1√
2π

e−0.5y2
.

Thus,

Z = cX 2 = c(μX + σX Y )2 = cμ2
X + 2cμXσX Y + cσ 2

X Y 2

and one must find the mean and variance of W = Y 2.
By substituting fY (y) in Eq. (3.4.38),

MW (t) =
+∞∫

−∞

ety2
fY (y)dy =

+∞∫
−∞

ety2 1√
2π

e−0.5y2
dy =

+∞∫
−∞

1√
2π

e−0.5y2(1−2t)dy

=
+∞∫

−∞

1√
2π

e−0.5y2(1−2t)dy = 1√
1 − 2t

.

(using the transformation z = y
√

1 − 2t and because the area under the fY (y) curve is unity.)
The mean of W is given by the first derivative of the mgf at the origin, that is,

μW = ∂ MW (t)

∂t
|t=0 = [(1 − 2t)−3/2]t=0 = 1.

The second-order moment of W is given by the second derivative of the mgf at the origin,
that is,

E[W 2] = ∂2 MW (t)

∂t2
|t=0 = [3(1 − 2t)−5/2]t=0 = 3.

Hence, the variance of W is

σ 2
W = E[W 2] − E2[W ] = 3 − 1 = 2.

The mean of the required impact pressure Z follows immediately from the linear property
of expectation as

μZ = cμ2
X + 2cμXσXμY + cσ 2

XμW = c
(
μ2

X + σ 2
X

)
,

since μY = 0 and μW = 1. The variance can be then found using Eq. (3.4.30), so

σ 2
Z = (2cμXσX )2Var[Y ] + (

cσ 2
X

)2
Var[W ] = 2c2σ 2

X

(
2μ2

X + σ 2
X

)
.

If VX = σX/μX denotes the coefficient of variation of horizontal velocity of the advancing
wave X , the mean of Z can be written as

μZ = cμ2
X

(
1 + V 2

X

)
,

which equals g(E[X ]) augmented by a factor of (1 + V 2
X ). The variance of Z is

σ 2
Z = 2

(
1 + 2

V 2
X

)
c2σ 4

X ,

which equals g(Var[X ]) augmented by a factor of 2(1 + 2/V 2
X ).
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Compared with the derivation of moments, the additional advantage of the mgf is that it
is capable of indicating the probability distribution of the derived variable if the mgf of a
derived variable can be recognized as the mgf of some known distribution.43 This property
descends from the property of the mgf reported in Section 3.2, which states that the mgf
of a random variable, when it exists, is unique and uniquely determines its probability
distribution.

Example 3.57. Surveying errors. The ground elevation measured by using remote-sensing
data is affected by two independent sources of random errors that are described by two normal
variates X and Y with means μX and μY , and standard deviations σX and σY , respectively,
and with normal pdf for X as in Example 3.56. Let us denote by Z = X + Y the overall error
of the estimated elevation and find the distribution of Z by using the moment-generating
function technique.

The moment-generating function of Z is given by

MZ (t) = E[et Z ] = E
[
et(X+Y )

] = E[et X ]E[etY ] = MX (t)MY (t).

Since the moment-generating function of X or Y is

M(t) = exp

(
μt + 1

2
σ 2t2

)
,

(see Appendix A.5), the moment-generating function of Z becomes

MZ (t) = eμX t+ 1
2 σ 2

X t2
eμYt + 1

2 σ 2
Y t2 = e(μX +μY )t+ 1

2 (σ 2
X +σ 2

Y )t2
.

The first derivative of the mgf at the origin gives the mean of Z , that is,

μZ = ∂ MZ (t)

∂t

∣∣∣∣
t=0

=
[[

(μX + μY ) + t
(
σ 2

X + σ 2
Y

)]
e(μX +μY )t+ 1

2 (σ 2
X +σ 2

Y )t2
]

t=0

= μX + μY .

The second derivative of the mgf at the origin gives the second-order moment of Z , that is,

E[Z 2] = ∂2 MZ (t)

∂t2
|t=0 = σ 2

X + σ 2
Y + (μX + μY )2.

Accordingly, the variance of Z is given by

σ 2
Z = E[Z 2] − E2[Z ] = σ 2

X + σ 2
Y + (μX + μY )2 − (μX + μY )2 = σ 2

X + σ 2
Y .

Therefore, the mean of the overall error Z equals the sum of the means of the individual
errors, and its variance equals the sum of the variances of the individual errors. If both
sources of error do not involve the presence of systematic errors, one can assume that μX =
μY = 0, so that the overall error in ground elevation is a zero-mean variable with standard
deviation.44

σZ =
√

σ 2
X + σ 2

Y .

43 In Example 3.56, the mgf of W can be recognized as the moment-generating function of a gamma-distributed
variate (see Example 3.54) with shape parameter 1/2 and scale parameter equal to 1/2. Therefore, one can
conclude that the transformation W = Y 2 of a standard normal variate Y results in a gamma-distributed variate
W , which in this case is a χ2(1) variate.
44 Considering the form of the mgf of Z , one notes that MZ (t) can be the mgf of a normal variate with mean
μZ , and standard deviation σZ (see Appendix A.5). Therefore, we conclude that the overall error found as the
sum of normal individual errors is also a normal error. In addition, we note that the moment-generating function
of the sum of two or more independent normal variates equals the product of the individual moment-generating
functions.
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The preceding example shows another important property of the mgf technique. If a
random variable Z is the sum of k independent basic variates X1, X2, . . . , Xk , its mgf can
be determined as

MZ (t) = E[et Z ] = E

[
exp

(
t

k∑
i=1

Xi

)]
= E

[
k∏

i=1

et Xi

]
=

k∏
i=1

MXi (t). (3.4.39)

This property states that the mgf of the sum of any number k of independent random
variables equals the product of the individual moment-generating functions. This result is
independent of the underlying distributions of the random variables.

Example 3.58. Toll bridge. In Example 3.52 the arrival time X of a vehicle approaching the
toll station of a bridge was assumed to be exponentially distributed with parameter λ. Since
k toll lines are available, let us determine the pdf of the arrival time of k vehicles, assuming
that the arrivals are independent of each other.

One must find the pdf of

Z =
k∑

i=1

Xi ,

which is the sum of k independent random variables. Since

MXi (t) = λ

λ − t

(see Example 3.17) the mgf of the Z variable is given by45

Mz(t) =
k∏

i=1

MXi (t) =
(

λ

λ − t

)k

.

Therefore,

E[Z ] = kλ−1 and Var[Z ] = kλ−2.

These results agree with the derived mean and variance of Z of Example 3.52.

Note that Eq. (3.3.39) also holds for discrete variables, as shown in the following
example:

Example 3.59. Flood occurrence. In Example 3.7 the occurrence of a flood exceeding a
given design level was considered as a two-valued Bernoulli variate X with probability of
occurrence p. Accordingly, X can take the value of 1 with probability p and the value of 0
with probability 1 − p. Suppose that X1, X2, . . . , Xk is a sequence of k independent variables
with common probability p that describes the occurrence of k floods at a river site, with the
assumption that the occurrences are independent of each other. Therefore, the occurrence of
N floods exceeding the design level is given by

N =
k∑

i=1

Xi ,

which is the sum of k independent random variables. Since

MXi (t) = 1 + p(et − 1),

45 This mgf can be recognized as that of a gamma-distributed variate with shape parameter k and scale parameter
λ, as shown in Chapter 4.
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the mgf of the N is given by46

MN (t) =
k∏

i=1

MXi (t) = [1 + p(et − 1)]k .

The properties of the mgf of the sum of independent random variables can also be
extended to the difference between variables.

Example 3.60. Safety margin. Suppose the capacity X of a water supply system is dis-
tributed as specified for the X variable in Example 3.56, with mean μX = 5 and σX = 0.75
units per year; one unit is 106 L. The city’s estimated annual water demand Y is normally
distributed with mean μY = 4 and σY = 1 units. Find the probability distribution of the safety
margin of system operation which is defined as Z = X − Y , if X and Y are independent of
each other.

To solve the problem, one can make use of the auxiliary variable W = g(Y ) = −Y , which
has meanμW = −μY and standard deviationσW = σY because of the properties of expectation
operator. From Eq. (3.4.4) the pdf of W is

fW (w) =
∣∣∣∣ dy

dw

∣∣∣∣ fY [h(w) = |−1|] fY (−w)

= 1

σY

√
2π

e[−0.5(−w−μY )2/σ 2
Y ] = 1

σW

√
2π

e[−0.5(w−μW )2/σ 2
W ],

that is, W is a normal variate with mean μW = −μY and standard deviation σW = σY . There-
fore, the moment-generating function of Z = X + W is given by

MZ (t) = MX (t)MW (t) = eμX t+0.5σ 2
X t2

eμW t+0.5σ 2
W t2 = e(μX −μY )t+0.5(σ 2

X +σ 2
Y )t2

,

which indicates that Z is a normal variate with mean47

μZ = μX − μY = 1 unit,

and standard deviation

σZ =
√

σ 2
X + σ 2

Y =
√

0.752 + 12 = 1.25 units.

One is usually interested in the probability that the safety margin is positive, that is,
Pr[Z > 0] = 1 − FZ (0).

3.4.4 Compound variables

3.4.4.1 Contagious distributions
Let X be a random variable with a density function fX (x |θ ). If θ is not a constant, but it
takes values randomly in a given interval or set, say, ��, the probability distribution of
X is of the contagious or compound or mixture type. This distribution can be found by

46 This can be recognized as the mgf of a binomial variate with parameters k and p, namely, the number of trials
in the sequence and the probability of success of each individual trial.
47 See Appendix A.5.
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integration or summation (depending on the type of variable) for all possible values ��

of θ . In the continuous case

fX (x) =
∫

��

fX (x, θ ) f�(θ )dθ,

where f�(θ ) denotes the density function of θ . If θ is a discrete random variable,

fX (x) =
∑
��

fX (x, θ )p�(θ ), (3.4.40)

where p�(θ ) denotes the mass function of θ . The cdf of X will be found as

FX (x) =
∫

��

FX (x, θ ) f�(θ )dθ, (3.4.41)

or

FX (x) =
∑
��

FX (x |θ )p�(θ ), (3.4.42)

where FX (x |θ ) denotes the family of cdfs of X parameterized by θ .

Example 3.61. Earthquake intensity. In Example 3.48 the cdf of the maximum earthquake
intensity observed in a century was found to be

FY (y) = [FX (y)]n = (1 − e−λy)n, y > 0,

where λ is the parameter of the distribution of the intensity of earthquakes and n is the
number of earthquakes occurring in a century. Because of the randomness of earthquake
occurrences, the number of occurrences should be viewed as a random variable, say, N .
Therefore, the foregoing distribution can be viewed as a contagious distribution of variable
Y with a parameter n, that is,

FY (y|n) = (1 − e−λy)n .

It seems reasonable to assume that N is Poisson distributed as in Example 3.18, that is,

pN (n) = νne−ν

n!
, for n = 0, 1, 2, . . . ,

where ν is the expected number of earthquakes occurring in a century. The probability dis-
tribution of the maximum earthquake intensity becomes

FY (y) =
∞∑

n=0

FY (y|n)pN (n) =
∞∑

n=0

(1 − e−λy)nνne−ν

n!

= e−ν

∞∑
n=0

[ν(1 − e−λy)]n

n!
= exp(−ν) exp[ν(1 − e−λy)] = exp(−νe−λy).

By substituting α for 1/λ, and b for λ−1 ln ν, one gets48

FY (y) = exp[−e−(y−b)/α].

Physical or technical considerations can suggest to the engineer that a mixture model
is required. This assumption may be made, for example, to account for the inherent

48 This is the probability law introduced in Example 3.21, namely, the extreme value type I (EV1) distribution;
this distribution will be discussed in Chapter 7.
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uncertainties in the parameterization adopted to model a particular random variable, or to
account for the additional uncertainties involved in the estimation of the parameters from
the outcomes of the experiment. A simple case of a mixture is given by compounding
two or more distributions fXi (x) weighted by the probability pi that the outcome x of the
investigated random variable X comes from the i th population. In this case, the pdf of X
is given by

fX (x) =
∑
all i

pi fXi (x). (3.4.43)

This probability model can be used, for example, to describe the annual flood flows at
a point of observation in a river by using the seasonal floods, which are described by
different distributions.

3.4.4.2 Properties of contagious variables
The following example is an illustration of some of the basic properties of contagious
variables. More follows in Chapter 7.

Example 3.62. Seasonal rainfall. In previous illustrations (see Examples 3.49 and 3.53),
a rainfall event occurring at a point in space was described by two variables, namely, the
duration X of the storm, and its intensity Y , which is defined as the average rain rate. Assume
that X and Y are independent variables with means of

μX = 10 mm/h, μY = 3 hours,

and standard deviations of

σX = 5 mm/h, σY = 2 hours,

respectively. The total amount of rainfall delivered in a storm is Z = XY . Using Eq. (3.4.31),
we find the mean of this variable is

μZ = μXμY = 10 × 3 = 30 mm;

using Eq. (3.4.35) we compute its standard deviation as

σZ =
√

μ2
Xσ 2

Y + μ2
Y σ 2

X + σ 2
Xσ 2

Y =
√

102 × 22 + 32 × 52 + 52 × 22 =
√

725 ≈ 27 mm.

If n storm events occur in a season, the rainfall total T in that season will be given by the sum
of the rainfall amounts delivered by each of the events. If the storms are independent of each
other,

T =
n∑

i=1

Z ,

so that its mean is nμZ , and its variance equals

Var[T ] = Var

[
n∑

i=1

Z

]
= nVar[Z ] = nσ 2

Z .

Because of the randomness of storm occurrences, the number of such occurrences should
be considered as a random variable, say, N . Therefore, this can be viewed as a contagious
or mixture variable T with a parameter N . Thus, one must seek the mean and variance of
T conditional to a given outcome n of occurrences, and then account for all possible values
taken by N . Since

E[T |n = N ] = E

[
n∑

i=1

Z

]
= nμZ ,
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the conditional mean is given by E[T | N ] = NμZ . Therefore,

E[T ] = E[E[T | N ]] = E[NμZ ] = E[N ]μZ = μN μZ ,

where μN denotes the mean number of storms in a season. Since

E[T 2 | N = n] = Var[T | N = n] + E2[T | N = n] = Var

[
n∑

i=1

Z

]
+ (nμZ )2

= nσ 2
Z + n2μ2

Z ,

the second-order (raw) moment conditional to N is given by

E[T 2 | N ] = Nσ 2
Z + N 2μ2

Z .

So that

E[T 2] = E[E[T 2 | N ]] = E
[
Nσ 2

Z + N 2μ2
Z

] = E[N ]σ 2
Z + E[N 2]μ2

Z ,

= μN σ 2
Z + (

μ2
N + σ 2

N

)
μ2

Z .

The required variance of T is thus given by

σ 2
T = E[T 2] − E2[T ] = μN σ 2

Z + (
μ2

N + σ 2
N

)
μ2

Z − μ2
N μ2

Z = μN σ 2
Z + σ 2

N μ2
Z .

3.4.5 Summary of Section 3.4

In this section we have provided more advanced concepts of associated random vari-
ables. These include functions of two or more variables, products, transformations, and
compound variables. The mgfs of derived variables and contagious distributions are also
discussed.

3.5 COPULAS

In Section 3.3 we provided details of multiple random variables and their joint probability
distributions. This was followed by the functional relationships between random vari-
ables and transformation techniques of Section 3.4, in which we gave details of methods
of obtaining the distributions of associated and transformed jointly distributed random
variables. In this section we introduce briefly the related subject of copulas. Our aim is
to obtain joint distributions of associated series of random variables. The presentation is
limited to bivariate probability distributions, and hence 2-copulas, but the method can be
extended to multivariate distributions.

The term derives from the latin verb copulare which essentially translates as “to join
together” (Sklar, 1959). In its simplest form, a copula function is a bivariate distribution
function with uniform marginal distributions. At the next level of modeling one may
transform the two continuous random variables, that we consider, in such a way that
their marginal distributions are uniform over a certain interval of length; this involves
standardization of the parameters of the bivariate distribution under scale invariance (see
Subsection 7.3.1).

For the statistician, copulas provide a means of studying scale-free measures of de-
pendence between random variables and as a prelude to the construction of families of
bivariate distributions, with possible use in simulations. The origins of the subject can be
traced back to three seminal papers by Wassily Hoeffding, written in German in the early
1940s (see translations by Fisher and Sen, 1994). In his first paper, Hoeffding stated that
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all the properties of a mutivariate distribution that pertain to the topic of correlation can
be divided into two classes, depending on whether or not they are invariant to arbitrary
changes of scale (see one-to-one correspondence introduced in Subsection 3.4.1 and the
probability integral transform of Subsection 8.1.2). Let us now provide some specifics.

The determination of a probability model for dependent bivariate observations
(X1, Y1), . . . , (Xn, Yn) from a population with a nonnormal distribution function
FX,Y (x, y) can be simplified by expressing FX,Y (x, y) in terms of its marginals, FX (x)
and FY (y) and an associated dependence function C, called a 2-copula, implicitly defined
through the functional identity FX,Y (x, y) = C(FX (x), FY (y)). A natural way of study-
ing bivariate data thus consists of separately estimating the dependence function and the
marginals. This two-step approach to stochastic modeling is often convenient, since many
tractable models are readily available for the marginal distributions. It is clearly appro-
priate when the marginals are known, and it is invaluable as a general strategy for data
analysis in that it enables the dependence structure to be investigated independently of
marginal effects.

Let I = [0, 1]. A 2-copula function is a bivariate function C : I × I → I such that

(1) for all u, z ∈ I,

C(u, 0) = 0, C(u, 1) = u, C(0, z) = 0, and C(1, z) = z;

(2) for all u1, u2, z1, z2 ∈ I such that u1 ≤ u2 and z1 ≤ z2,

C(u2, z2) − C(u2, z1) − C(u1, z2) + C(u1, z1) ≥ 0.

[For mathematical details that are omitted in this Section see Joe (1997), Nelsen (1999),
and Salvadori et al. (2007).]

The link between 2-copulas and bivariate distributions is provided by Sklar’s theorem:
Let X and Y be two continuous random variables, and let FX,Y (x, y) be their bivariate
distribution function with marginals FX (x) and FY (y). Then there exists a unique 2-copula
C such that

FXY (x, y) = C(FX (x), FY (y)), for all x, y. (3.5.1)

Conversely, if C is a 2-copula and FX (x) and FY (y) are distribution functions, then
FX,Y (x, y) is a bivariate distribution function with marginals FX (x) and FY (y).

The interesting point is that the properties of FX,Y (x, y) can be discussed in terms of the
structure of C. It is precisely the 2-copula that captures many of the features of a bivariate
distribution. Also, it enables one to investigate measures of association and dependence
properties between random variables. Furthermore, a 2-copula describes exactly and mod-
els the dependence structure between two random variables, independently of the marginal
laws of the variables involved. Clearly, this provides freedom in choosing the univariate
marginal distributions once the desired dependence framework has been selected, and it
usually makes it easier to formulate bivariate (and hence multivariate) models. Inciden-
tally, we observe that all the bivariate models seen in the literature can easily be described
in terms of appropriate 2-copula.

For example, the Gumbel family of 2-copula has the following analytical expression:

Cδ(u, z) = exp{−[(−ln u)δ + (−ln z)δ]1/δ}, (3.5.2)

where u, z ∈ I and δ ∈ [1, ∞). Here δ represents the dependence parameter. The (limit)
case δ = 1 corresponds to independent variables, with C1(u, z) = uz; the (limit) case
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δ → ∞ corresponds to complete dependence between the variables. Note that this family
of 2-copula models positively dependent variables.

The Frank family of 2-copulas has the following expression:

Cδ(u, z) = −1

δ
ln

(
1 + (e−δu − 1)(e−δz − 1)

e−δ − 1

)
, (3.5.3)

where u, z ∈ I and δ ∈ (−∞, +∞). The case δ < 0 corresponds to a negative dependence,
the case δ > 0 corresponds to a positive dependence, and the (limit) case δ = 0 corresponds
to independent variables, with C0(u, z) = uz; thus, members of the Frank family of 2-
copulas can model both negatively and positively dependent variables.

Let us assume that the two continuous random variables of interest, X and Y , have
exponential and Pareto marginals, respectively:

FX (x) = 1 − e−λx , x ≥ 0 (3.5.4)

and

FY (y) = 1 −
(

y0

y

)θ

, y ≥ y0, (3.5.5)

where λ > 0 is the parameter of the exponential distribution, and θ > 1 and y0 are the
shape parameter and lower bound of the Pareto distribution, respectively.

If the dependence between X and Y is described by a 2-copula from Gumbel’s family
(including the GEV distribution of Subsection 7.2.5), by using Sklar’s theorem it is easy
to calculate the bivariate distribution FX,Y (x, y):

FX,Y (x, y) = Cδ(FX (x), FY (y)) = exp{−[(−ln FX (x))δ + (−ln FY (y))δ]1/δ}

= exp

{
−

[
(−ln(1 − e−λx ))δ +

(
−ln

(
1 −

(
y0

y

)θ))δ]1/δ}
. (3.5.6)

The dependence parameter δ of the 2-copula is generally expressed in terms of some
measure of association such as Kendall’s tau, τ , or Spearman’s rho, ρ. These measures
were introduced to generalize the linear coefficient of correlation, also called Pearson’s
product-moment correlation coefficient [see Eq. (1.4.5)]. This coefficient has been used
extensively as a measure of dependence between random variables, even though it is not
the best measure of dependence for nonnormal random variables.

Kendall’s τ rank correlation coefficient can be expressed as a one-to-one function of δ

as

τ (δ) = 4

1∫
0

1∫
0

Cδ(FX (x), FY (y))dC(FX (x), FY (y)) − 1. (3.5.7)

For Gumbel’s family, this becomes

τ (δ) = (δ − 1)

δ
. (3.5.8)

For Frank’s family, the following approximate relationship holds:

τ (δ) = 1

9
δ − 1

900
δ3 + 1

52, 920
δ5 − 1

2, 721, 600
δ7 + · · · . (3.5.9)

This provides a good approximation to τ for |δ| < 5.
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Once an estimate of τ is obtained (see, for example, Salvadori et al., 2007, p. 229), it is
then possible to calculate an estimate of δ from Eqs. (3.5.7) to (3.5.9). Alternatively, an
estimate of δ can be obtained using the maximum likelihood method.

In summary, the 2-copula method provides a convenient means of obtaining the bivariate
distribution of two continuous associated random variables with known marginals. It can be
extended to multivariate distributions. For applications of copulas to geophysical problems
see Salvadori et al. (2007).

3.6 SUMMARY FOR CHAPTER 3

The concept of a random variable which was initially discussed in Chapters 1 and Chap-
ter 2 is formerly presented in this chapter, and its relevance to diverse practical applications
is shown. Discrete variables associated with counting processes and continuous variables
used to model various observations of engineers are considered throughout. The mean,
variance, and moments of higher order are given as descriptors of random variables. The
moment-generating and characteristic functions are presented. Methods of estimation in-
troduced here include the classical moments and maximum likelihood procedures and
alternative methods such as probability weighted moments. Distributions of functions of
random variables are determined. Jointly distributed random variables are presented. Joint,
conditional, and marginal distributions are examined; among the topics discussed are cor-
relation and independence. Details of methods of obtaining the distributions of associated
and transformed jointly distributed random variables are also given. We then introduce
the related subject of copulas, an alternative method of modeling joint distributions. Thus
the fundamental tools required by a civil or environmental engineer who applies statistical
and probabilistic methods are shown in this chapter, with detailed methods of application;
this chapter is an essential sequel to the basic concepts outlined in Chapter 2.
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PROBLEMS

3.1. Sea waves. The pmf of the observed number of days per month of high-amplitude
waves acting on a sea pier is given below.

X = 0 1 2 3 4 5 6 ≥7
pX (x) = 0.38 0.22 0.18 0.13 0.09 0.06 0.03 0.01

Determine the expected value and variance of X .

3.2. Tensile strength. The tensile strength in a structural material is found to be highly
variable, although tests showed that there is an increasing number of specimens of
high strengths with a possible limit of 20 N/mm2 in strength. Based on observations
and as a first approximation, the pdf of tensile strength X is represented by the
function fX (x) = ax2, 0 ≤ x ≤ 20 N/mm2.
(a) Determine the constant a in the function.
(b) What is the probability of X > 10 N/mm2?

3.3. Wind load. A tower is subject to a horizontal force caused by high winds. An
important factor which should be taken into account when strengthening the tower
is the duration of the winds. The duration T of winds in the area is a random variable
with a maximum of 18 hours. From observations of wind data, the pdf of T can be
approximated to the form fT (t) = ct1.5, with a maximum ordinate of k.
(a) Evaluate c and k.
(b) Find the mean and coefficient of variation of T .
(c) What is the probability of a wind lasting more than 9 hours?

3.4. Flood exceedance. A flow of magnitude 40 m3/s is exceeded at a particular site on
a river once in 3 months on average. What is the probability of having at least one
such flood in a year? State assumptions made.

3.5. Compressive strength of concrete. The expected value of the compressive strength
of a particular concrete is 60 N/mm2 and the coefficient of variation is 10%.
Assuming that the theoretical probability distribution is symmetrical but is un-
known, calculate the probability that the compressive strength will be greater than
50 N/mm2.
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3.6. Highway accidents. Highway accidents along a busy highway leading away from
a city have the following pmf (see Example 3.18 for this Poisson pmf):

pX (x) = vx e−v

x!
, for x = 0, 1, 2, . . . .

Originally v has been estimated as 0.9. Subsequently, the exit road was widened
and the parameter was estimated as 0.5. Plot the pmf in each case and determine
the probabilities of Pr[X > 0].

3.7. Earthquake occurrence. During a period of 125 years, 16 major earthquakes have
occurred in the San Francisco area. Assuming these are Poisson events (see Problem
3.6 and Example 3.18), determine
(a) the probability of more than one such earthquake during a 5-year period, and
(b) the mean time between such earthquakes.

3.8. Computer system failure. The times to failure in months of several identical com-
puter systems are observed as follows: 21, 53, 43, 56, 18, 17, 40, 14, 13. Assuming
these are distributed as FT (t) = 1 − e−λt , estimate the parameter λ by the method
of maximum likelihood. Repeat the procedure using the method of moments.

3.9. Maximum flows. In some applications the exponential distribution of Problem 3.8
is written with a lower bound ε and this makes FT (t) = 1 − exp[−λ(t − ε)]. Show
how the parameters may be estimated using the probability weighted moments
procedure.

3.10. Occurrence of volcanic eruptions. There are frequent volcanic eruptions at a par-
ticular site. The times of the occurrences are unpredictable. From past observations,
the pmf of occurrences X over periods of 10 years is as follows:

X = 0 1 2 3
pX (x) = 0.1 0.3 0.4 0.2

What entropy does this distribution represent? What is the maximum possible
entropy for the four values of probability?

3.11. Pipe settlement. Three subcontractors laid water pipes running through a flat part
of a city. Excavations made at 3-meter intervals along the pipelines after a period
of 5 years showed that settlements had taken place from the original lends. The
following table gives the settlements in millimeters at each excavation:

Subcontractor 1 181 190 71 55 105
Subcontractor 2 99 78 25 50 198
Subcontractor 3 23 23 197 75 189

If in a particular case, the settlements had been the same at each point of observation
along the pipeline, no problem will arise with regard to the system. On the basis of
entropy, determine the relative settlement of the pipes laid by each subcontractor.
Which system has the least relative settlement? What is the entropy of a particular
system with no relative settlement?

3.12. Project scheduling. In a building project, the construction of the foundations takes
time T1 and the construction of the superstructure takes time T2. On account of
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inclement weather, labor problems, and other factors, T1 and T2 behave like random
variables with empirical pmfs as follows:

Time in weeks 1 2 3 4 5 6 7
pT 1(t1) = 0.1 0.3 0.4 0.2 0.0 0.0 0.0
pT 2(t2) = 0.0 0.0 0.0 0.1 0.5 0.4 0.0

(a) Calculate the mean times taken for the foundations and the superstructure.
(b) Evaluate the pmf of the total time spent on the foundations and superstructure.
(c) What is the probability that the total work will be completed in less than

7 weeks?

3.13. Sea pier construction. With reference to the data given in Problem 3.1, a contractor
is assigned to work on an extension to the sea pier. The contractor finds that the
profits Y of the job are directly decreased by the number of days per month Xof high-
amplitude waves acting on the sea front. It is estimated that Y = 10,000(10 − X ).
Determine the pmf of Y and the mean and variance of Y .

3.14. Head loss in a pipe. The head loss H in a pipe is related to the mean velocity
of flow V as H = kV 2, where k is a constant depending on pipe length, diameter,
and roughness. In a particular case, V varies randomly between limits v1 and v2.
Assuming a symmetrical triangular pdf for V , derive the pdf of H .

3.15. Joint wind measurements. For the joint pdf of the number of days of occurrences
of high winds recorded by two instruments and given in Table 3.3.1, evaluate the
probability that the differences between the observations by the two instruments are
not greater than 1.

3.16. Contract analysis. A contractor’s financial outlay X and labor force Y are random
variables with bivariate pdf given by:

fX,Y (x, y) = kxy, for 10,000 < x < 100,000 and 10 < y < 20,

and = 0, elsewhere.

(a) Evaluate constant k.
(b) Determine the marginal pdf of X and Y .

3.17. Welding legs. The joint pdf of the lengths of horizontal and vertical legs, X and Y ,
of welding joints (similar to the ones referred to in Example 1.4) is given by

fX,Y (x, y) = 1

16
xy, for 4.0 < x, y < 8.0

and = 0, elsewhere.

Determine the probability Pr[5.5 < X < 6.5; 5.5 < Y < 6.5].

3.18. Density and compressive strength of concrete. Estimate the correlation in the
case of the simplified joint distribution of concrete density and compressive strength
given in Example 3.37 and shown in Fig. 3.3.5 from the data of Table E.1.2.
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3.19. Contractor’s profits, financial outlay, and labor force. For the pdf given in Prob-
lem 3.16, the contractor’s profits P may be assumed to be related to his financial
outlay X and labor force Y as follows:
(1) P = 1.3 X + 15,000
(2) P = 1.2 X + 1000 Y + 10,000
Determine the pdf of P in each case.

3.20. Rivet production. Two machines produce rivets for a factory job. The numbers of
substandard rivets per hour by the two machines are random variables denoted by
X1 and X2. The bivariate pmf of X1 and X2 is given by the following table:

X2 = 0 X2 = 1 X2 = 2 X2 = 3 pX1 (x1)

X1 = 0 0.07 0.05 0.02 0.01 0.15
X1 = 1 0.05 0.10 0.12 0.02 0.35
X1 = 2 0.02 0.12 0.17 0.05 0.36
X1 = 3 0.01 0.01 0.05 0.07 0.14

pX2 (x2) 0.15 0.34 0.36 0.15
∑ = 1.00

(a) Determine the probability that the number of substandard rivets produced do
not differ by more than 1 between one machine and the other.

(b) Determine the conditional distribution of PX2|X1 (x2 | x1).
(c) The factory manager estimated that an older machine, which was replaced,

produced X1 + X2 substandard rivets per hour. Estimate its marginal pmf.

3.21. Earthquake hazard. Two adjoining regions are subject to earthquakes at irregular
intervals. The first region experiences X1 earthquakes over a period of time, and X2

earthquakes occur in the second region over the same period, where X1 and X2 are
random variables. It is estimated that the joint distribution of earthquakes over the
two regions is as follows:

pX1,X2 (x1, x2) = x1 + x2

21
, for x1 = 0, 1, 2 and x2 = 2, 3,

and = 0, elsewhere.

Determine the probabilities pX1|X2 (x1 | x2) and the expected values E[X1 | X2].

3.22. Water treatment plant. A water treatment plant has two units which are designed
to perform with identical characteristics. The consequenses of both units failing
simultaneously are severe on the community. The times to failure in days are denoted
by X1 and X2 and their bivariate pdf is given by

fX1,X2 (x1, x2) = ae−b(x1+x2) or x1, x2 ≥ 0

(a) What is the relationship between the constants a and b?
(b) How may they be estimated in practice?
(c) What is the chance that both units will fail within a year?

3.23. Water treatment plant. In Problem 3.22 a change in design is made so that only
one of the units needs to operate at a time. The second will be brought into operation
only on failure of the first, whenever that happens. What is the probability that the
plant will be inoperative within a year?
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3.24. Sewerage pollution discharge. Two sewage plants serving different communities
discharge a pollutant into a stream. The concentrations of the respective discharges
are measured as X and Y parts per million. Suppose the bivariate distribution is
given by

fX,Y (x, y) = 2 − x − y,

for 0 ≤ X, Y ≤ 1, and 0 elsewhere.
(a) Determine the joint probability Pr[X < 0.5, Y < 0.6].
(b) If X ≤ 0.5, determine the distribution of Y .
(c) Determine the correlation between X and Y .

3.25. Dam construction. The times spent in months by a contractor, engaged in the
construction of small earthen dams, on the substructure and conduit on the one
hand and the dam itself on the other are random variables (on account of frequent
interruptions by weather and other unpredictable factors) denoted by X1 and X2,
respectively. These times have common expectations, and past experience suggests
that the bivariate pdf can be approximated by

fX1,X2 (x1, x2) = ax1x2e−b(x1+x2), for x1, x2 > 0.

Determine the probability that the time spent on the earthwork is greater than or
equal to 1.5 times that on the earthwork.

3.26. Maximum annual flood. Flood flows at a given river site are assumed to be inde-
pendent identically distributed variables. The peak flow X for each flood exceeding
a level of a is assumed to have a distribution with cdf

FX (x) = 1 −
(a

x

)θ

with x > a (Pareto with parameters a and θ ). Since flood events occur randomly,
the number N of flood flows exceeding a in a year is assumed to be distributed as

pN (n) = vne−ν

n!
for n = 0, 1, 2, . . . (Poisson with parameter v). Show that the probability distribution
of the annual maximum peak flow, Y is

FY (y) = exp

[
−

(
x0

x

)β]
,

[EV2 (Fréchet) distribution with parameters x0 and β]. Find the relationships linking
parameters x0 and β with v, θ , and a.
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Chapter 4

Probability Distributions

The physical problems that confront an engineer are associated with random factors that
can greatly influence outcomes. Hence, the application of probability models in seeking
engineering solutions is often a necessity. The assumptions that one needs to make in
practical situations depend on the phenomenon studied. The parameters of the model
will of course vary from one case to another, but the distributions are often identifiable.
They have been given common names such as normal, binomial, and Poisson. There are
instances, however, when the answers may not be straightforward because of uncertainties
regarding the underlying physical mechanisms.

The purpose of this chapter is to identify, describe, derive, and show the use of several
types of probability models. The models are formulated through considerations of real-
world phenomena. Together they constitute a set, or form of tool kit, which is sufficient for
empirical usage once the model has been justified on physical grounds, not merely on the
basis of the closeness of fit (as discussed in Chapter 5). Thus, the decision is made firstly
through prior reasoning and secondly in a confirmatory manner from the shape of the
histogram or the visible properties of other investigative diagrams described in Chapter 1.
Accordingly, the presentation in this chapter is geared to facilitate an understanding of the
laws governing each distribution. This can then be matched with the physical situation
that the engineer encounters.

In this chapter we deal with statistical distributions which one needs to model popu-
lations. As in Chapter 3, the models are classified separately according to whether the
variables are continuous or discrete. Discrete variables can only assume isolated numbers
such as integers. Thus, the derivation of their distributions is necessarily different from
that of continuous variables, which can have any value between two limits.

4.1 DISCRETE DISTRIBUTIONS

A discrete distribution is used to model a random variable X that has, at most, a countable
sample space over a range of values. Our interest is in integer-valued outcomes of X
although the theory is not confined to such.

There are times when interest is focused on an experiment consisting of a single trial, the
outcome of which is deemed to belong to one of two categories. For example, such a trial
might be the determination of whether a concrete sample will fail in compression when
subjected to a specified load, or whether the flood stage of a river is exceeded, or whether a
rivet made on a structure satisfies given specifications, or whether a soil boring encounters
rock. In such cases the probability model that describes the event is associated with a
simple discrete trial. Arising from the so-called Bernoulli process associated with such
discrete trials, the binomial, geometric, and the negative binomial distributions all belong
to the same category and are among those initially considered. Next, the Poisson process is
extensively covered with numerous illustrations, because of its importance in probability
and statistics. The log series and hypergeometric distributions are also discussed in this

165
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section as well as discrete variables that can be in one of several categories, such as the
multinomial case.

4.1.1 Bernoulli distribution

The simplest type of experiment is one in which there is only a single trial. Consider, for
example, one toss of a coin or simply one test which gives only a “yes” or “no” answer.
In general, when referring to persons or objects, those with a particular attribute are
distinguished from those who do not have it. Such a trial has only two possible outcomes,
which are mutually exclusive and collectively exhaustive.

These concern the occurrence of an event, which is a “yes” result, usually called a suc-
cess, and its nonoccurrence, or failure. The results from such a trial constitute a two-sided
Bernoulli random variable (as described by James Bernoulli of Switzerland around the
year 1700, when probability theory was first applied to games of chance). The distribution
of the probabilities of the two outcomes is called a Bernoulli distribution. Furthermore, a
series of these trials are said to constitute a Bernoulli process, where a process is charac-
terized by the behavior of the underlying system over time or space. The governing criteria
are these:

(1) There are only two possible outcomes, called a success or failure;
(2) The probability of occurrence of a success (or a failure) is constant;
(3) The trials are independent (that is, the outcome of a trial does not depend on the

outcome of another trial).

The Bernoulli pmf is defined as

pX (x) ≡ Pr[X = x |p] = px (1 − p)1−x , for x = 0, 1 and 0 ≤ p ≤ 1

= 0, otherwise. (4.1.1)

where p denotes the probability of a success, that is, a “yes” result. An example of a
Bernoulli distribution shown in Fig. 4.1.1, for p = 0.7.

By using expectation measures (defined in Subsection 3.2.1), the mean, variance, and
moment-generating function of a Bernoulli-distributed variable are obtained as follows:

E[X ] = (1)p + (0)(1 − p) = p, (4.1.2a)

Var[X ] = (1 − p)2 p + (0 − p)2(1 − p) = (1 − p)p (4.1.2b)
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Fig. 4.1.1 Bernoulli pmf, pX (x), for p = 0.7.
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and

MX (t) =
1∑

x=0

etx pX (x) = (1 − p) + pet , (4.1.2c)

after substituting from Eq. (4.1.1)1 [t is a dummy value, introduced in Eq. (3.2.17)].
The result for the mean [Eq. (4.1.2a)] confirms that the average number or proportion of

times a success is achieved is the probability of a success. Less obviously from Eq. (4.1.2b)
when this probability is 0.5 the variance of the Bernoulli variable is at a maximum of 0.25,
and the variance decreases nonlinearly to zero as the probability tends to 0 or 1.

Definition and notation: A Bernoulli trial has only two possible outcomes: a success or
a failure, with constant probabilities p and (1 − p), respectively. The outcomes of a series
of such trials are independent. The Bernoulli random variable X has pmf px (1 − p)1−x for
x = 0, 1, and 0 ≤ p ≤ 1, mean p, variance (1 − p)p, and mgf (1 − p) + pet .

The abbreviation X ∼ Bernoulli (p) will be used, as in this case, to differentiate between
different types of distribution where the symbol ∼ means “distributed as.”

4.1.2 Binomial distribution

Let us continue the preceding experiment (performing it under the same conditions) of
determining whether an outcome of a trial is a success or failure. Also, as stipulated before,
let the outcomes be independent of one another with a constant probability p of success.
Then the sequence of such experiments is called a set of Bernoulli trials. For example,
one may take n water samples to determine whether a particular pollutant is detectable or
not and observe that there are m successes in all the trials. (It would seem that the term
“success” is a misnomer because it is not a desirable happening if the pollutant is present;
its use is merely conventional.)

Example 4.1. Water pollution. When monitoring a water pollutant consider these cases:
(a) n = 4; m = 1; and (b) n = 4; m = 2, where n denotes the number of trials and m the
number of successes.

(a) If the first trial is a success, the probability of occurrence of the compound event is
given as follows on the assumption of independence of the trials2:

p(1 − p)(1 − p)(1 − p).

(b) Likewise, if the first two trials are successes, the probability of occurrence of the
compound event is

p2(1 − p)(1 − p).

In case a of Example 4.1, there can be four sequences or arrangements, each cor-
responding to a different compound event (depending on the order in which the two
types of outcomes occur) but having the same joint probability of occurrence. Hence, the

1 As a matter of interest, the Bernoulli distribution is applicable to other pairs of values which the random
variable X can take apart from 1 to 0 (with different yet related means, variances, and mgfs).
2 See Eq. (2.2.14).
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probability of one success and three failures in four trials is obtained from the addition
rule as follows3:

pX (1) ≡ Pr[X = 1|4, p] =
(

4
1

)
p(1 − p)3 = 4!

1!3!
p(1 − p)3 = 4p(1 − p)3.

In general, the result can be written as the pmf of a binomial random variate:

pX (x) ≡ Pr[X = x |n, p] =
(

n
x

)
px (1 − p)n−x , for x = 0, 1, . . . , n; 0 ≤ p ≤ 1

= 0, otherwise, (4.1.3)

where(
n
x

)
= n!

x!(n − x)!

is the total number of possible combinations when selecting x objects from n objects.4

Thus the random variable X , which represents the total number of successes in n trials,
has a binomial distribution with parameters p (the probability of a success) and n.

The binomial cdf is given by

FX (x) =
x∑

k=0

(
n
k

)
pk(1 − p)n−k . (4.1.4)

The maximum value of the cdf is at X = n, for which the right-hand side of Eq. (4.1.4)
is the binomial expansion [p + (1 − p)]n , with n + 1 terms representing the probabilities
from k = 0 to k = n. Because the maximum is equal to 1.0 and the cdf is positive and
nondecreasing, Eq. (4.1.4) satisfies the requirements for a cdf.

In summary, for a random variable to have a binomial distribution, the following con-
ditions are necessary:

(1) A series of Bernoulli trials is made, each of which has only one of two possible
outcomes: a success or a failure.

(2) The trials are conducted under the same conditions and the probability p of a
success is constant.

(3) The number of trials n is fixed.
(4) The outcomes of the trials are independent.
(5) The random variable X is the total number of successes in n trials and the order in

which the events in the trials occur is immaterial.

Because each trial can only have one of two outcomes (a success or failure), the distribution
is termed binomial.5 For n = 1, the binomial random variable, is a simple Bernoulli random
variable.

Example 4.2. Flooding of a road. Suppose a road is flooded with probability p = 0.1
during a year and not more than one flood occurs during a year. What is the probability that
it will be flooded at least once during a 5-year period?

One needs to determine the probability of having no floods and subtracting this from
unity, which is the sum of the probabilities of having 0, 1, 2, 3, 4, or 5 floods during the
5-year period. This procedure is followed when it is easier to compute the probability of the

3 See Eq. (2.2.6).
4 For long factorials, Stirling’s formula can be applied: n! ≈ nn+1/2

√
2π/ exp(n); see Feller (1968, pp. 52–53).

5 When more than two outcomes are possible, the distribution is termed multinomial as shown in Subsection
4.1.6; the binomial is a special type of the multinomial distribution.
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Fig. 4.1.2 Binomial pmf, pX (x), for n = 5 and p = 0.1.

complementary event than the probability of the stated event. Thus, the probability that the
road will be flooded at least once is

1 − 0.10(1 − 0.1)5 ≈ 1 − 0.59 = 0.41.

The probabilities of having 0, 1, 2, 3, 4, and 5 floods of probability 0.1 during the 5-year period
are 0.95 = 0.59049; 5(0.1)(0.9)4 = 0.32805; 10(0.1)2(0.9)3 = 0.07290; 10(0.1)3(0.9)2 =
0.00810; 5(0.1)4(0.9) = 0.00045; and 0.15 = 0.00001, respectively; the sum of these proba-
bilities is unity.

Figure 4.1.2 shows the binomial probability distribution for all six possible events. As a
matter of interest, this is also given for p = 0.5 in Fig. 4.1.3.

From Figs. 4.1.2 and 4.1.3 it is seen that the shape of the probability distribution depends
on the values of the parameters p and N . If p = 0.9, the probabilities of Fig 4.1.2 are
reversed thus changing the positively skewed distribution to one of negative skew.6

4.1.2.1 Mean and variance of a binomial vatiate
The mean of the binomial variate can be obtained from Eq. (3.2.6) as follows:

E[X ] =
∑
all x j

x j pX (x j ) =
n∑

x=0

x

(
n
x

)
px (1 − p)n−x

=
n∑

x=1

n!

(x − 1)!(n − x)!
px (1 − p)n−x

= np
n∑

x=1

(n − 1)!

(x − 1)!(n − x)!
px−1(1 − p)n−x .
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Fig. 4.1.3 Binomial pmf, pX (x), for n = 5 and p = 0.5.

6 When the distribution is symmetrical, as in Fig. 4.1.3, its shape can be approximated by the continuous normal
distribution; this is shown in Subsection 4.2.6.
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Changing the variable on the right-hand side by writing y = (x − 1), we have

E[X ] = np
n−1∑
y=0

(n − 1)!

y!(n − 1 − y)!
py(1 − p)n−1−y .

Because the summation over all n items in Eq. (4.1.4) is unity, the summation over all
(n − 1) items in the foregoing equation is also unity. Hence,

E[X ] = np. (4.1.5a)

The same result can be obtained by applying the factorial moment generating function,
E[t x ] of Subsection 3.2.2.2. Thus,

E[t X ] =
n∑

x=0

t x n!

x!(n − x)!
px (1 − p)n−x

d

dt
E[t X ]|t=1 = E[Xt X−1]|t=1 = E[X ]

= d

dt

n∑
x=0

t x n!

x!(n − x)!
px (1 − p)n−x |t=1

= np
n∑

x=1

(n − 1)!

(x − 1)!(n − x)!
px−1(1 − p)n−x = np

[as in the derivation of Eq. (4.1.5a)].
To determine the variance through the factorial moment-generating function, one takes

the second derivative of E[t X ] at t = 1. Thus,

d

dt2
E[t X ]|t=1 = E[X (X − 1)t X−2]|t=1 = E[X2] − E[X ].

Also,

d

dt2

n∑
x=0

t x (n)!

(x)!(n − x)!
px (1 − p)n−x |t=1

= n(n − 1)p2
n∑

x=2

(n − 2)!

(x − 2)!(n − x)!
px−2(1 − p)n−x

= n(n − 1)p2,

because the foregoing summation is equal to unity, after substituting y = x − 2, for the
reasons given before.

Var[X ] = E[X2] − (E[X ])2 = (E[X2] − E[X ]) + E[X ] − (E[X ])2

= (n2 p2 − np2) + np − n2 p2 = np(1 − p). (4.1.5b)

The moment-generating function is obtained from Eqs. (3.2.18) and (4.1.3) as

MX (t) =
n∑

x=0

etx

(
n
x

)
px (1 − p)n−x =

n∑
x=0

(
n
x

)
(pet )x (1 − p)n−x

= [pet + (1 − p)]n, (4.1.5c)

which derives from the binomial theorem.
As already stated, a binomial variate X , which represents the number of successes in n

trials, arises from a sequence of Bernoulli trials, each with a constant probability of success
p. It follows, for example, that if a variate X1 is binomially distributed with parameters
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n1 and p and another variate X2 is binomially distributed with parameters n2 and p, then
Y = X1 + X2 is binomially distributed with parameters n = n1 + n2 and p. Similarly,
this statement can be extended to more than two binomial variates.7

In this way the results of Eq. (4.1.5) can be obtained directly from those of Eq. (4.1.2)
by considering that the binomial variate X is the sum of n (independent) Bernoulli variates
each of which has a mean of p and a variance p(1 − p). The expectation operators are
then applied as in Eqs. (3.3.22) and (3.3.23).

Definition and properties: In a series of independent Bernoulli trials, the outcome of each
of which is either a success or failure, the random variable X ∼ binomial (n, p) is the number
of successful trials out of a total of n trials. The number of trials n and the probability p of a
success are constant. The pmf of X is

PX (x) =
(

n
x

)
px (1 − p)n−x , for x = 0, 1, 2, . . . , n; 0 ≤ p ≤ 1.

The variate X has mean np, variance np(1 − p), and mgf [pet + (1 − p)]n . A random variable
Y which is the sum of two binomial variates X1 with parameters n1 and p and X2 with
parameters n2 and p, respectively, is a binomial variate with parameters n = n1 + n2 and p.

Example 4.3. Bacterial count. A count of a particular type of bacterium is taken over a
series of 10 tests. The numbers of positive results are as follows:

17, 21, 25, 23, 17, 26, 24, 19, 21, 17.

The mean and variance of the positive results are 21 and 10.6, respectively.
Assume that the tests are so conducted that conditions 1 − 5 (stipulated earlier) for a

binomial distribution apply. Then estimated values of n (the maximum number of organisms
that a test sample can possibly have) and p (the probability of finding an organism at each
trial applied to a portion of a test sample) can be obtained from the mean and variance
using Eq. (4.1.5a) and (4.1.5b). Thus, (1 − p) = 10.6/21.0 = 0.505. Hence, p = 0.495 and
because the mean = 21 = np, n = 43.

Note that the conditions assumed in the foregoing examples may not always be found
in practice. For example, the probability of a specific flood in a given year at a particular
site often changes over time on account of climatic and geomorphological factors. In other
applications, bacteria may be found in clusters, and outputs from machines will diminish
in quality with wear. The approximations, however, are deemed to be close enough in
many instances for the application of the theory of Bernoulli trials.

4.1.3 Poisson distribution

If p is small and n is large, the binomial can be approximated by the Poisson distribution
(named after Poisson, a prominent French mathematician of the nineteenth century). This
distribution is also based on the assumptions of independence and identical distribution.
Let v = np be the mean or expected number of successes in a series of n Bernoulli trials
with probability p. Equation (4.1.3) can then be written as

pX (x) =
(

n
x

) (v

n

)x
(

1 − v
n

)n−x

= n(n − 1)(n − 2) · · · (n − x + 1)

nx x!
vx

(
1 − v

n

)n (
1 − v

n

)−x
. (4.1.6a)

7 As stated in Subsection 3.1.1, we shall use the term variate when the distribution of the random variable is
specified.
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If x and v are fixed and finite,

lim
n→∞

n(n − 1)(n − 2) · · · (n − x + 1)

nx
= 1 and lim

n→∞

(
1 − v

n

)−x
= 1.

If, for example, z is some parameter, where 0 < z < 1, consider the division of 1 by
(1 − z) which results in the series

1

1 − z
= 1 + z + z2 + z3 · · · .

Integrating both sides of the equation, one obtains the series

ln

(
1

1 − z

)
= − ln(1 − z) = z + z2

2
+ z3

3
+ z4

4
+ · · · , (4.1.6b)

which can also be obtained by considering f (z) = ln(1 − z) as a Taylor series.8 Hence, if
d = (

1 − v
n

)n
,

ln(d) = n ln
(

1 − v

n

)
= −v − v2

2n
− v3

3n2
− · · · .

If n tends to infinity in the preceding series, only the first term is nonzero. Therefore,

lim
n→∞

(
1 − v

n

)n
= e−v .

Thus, when p is small and n tends to infinity such a way that np = v in [Eq. (4.1.6a)],
the random variable X is Poisson-distributed with parameter v and pmf:

pX (x) ≡ Pr[X = x |v] = vx e−v

x!
, for x = 0, 1, 2, . . . ., and v > 0 (4.1.7)

= 0, otherwise.9

Examples of Poisson pmfs are given for v = 0.2, 2.5, and 5.0 in Figs. 4.1.4, 4.1.5, and
4.1.6, respectively. Note that the Poisson pmf, which for small values of v is positively
skewed, tends to become symmetrical as v increases.
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Fig. 4.1.4 Poisson pmf, pX (x), for v = 0.2.

8 That is, f (z) = f (a) + (z − a) d f (z)
dz

∣∣∣z=a + (z−a)2

2
d2 f (z)

dz2

∣∣∣
z=a

+ · · · + (remainder). The infinite series con-

verges in this case. We finally substitute a = 0.
9 Hald (1990, pp. 213–217) gives the historical background.
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Fig. 4.1.5 Poisson pmf, pX (x), for v = 2.5.

The Poisson cdf is

FX (k) =
k∑

k=0

vx e−v

x!
, for k = 0, 1, 2, . . . . (4.1.8)

Then,

FX (0) = e−v and FX (∞) = e−v
∞∑

x=0

vx

x!
.

From the Taylor series for ev ,

FX (∞) = e−v ev = 1.

The terms on the right-hand side Eq. (4.1.8) are positive increments, and thus it satisfies
the requirements for a cdf. As shown in Example 3.18, the mean and variance of the
Poisson variate X are as follows:

E[X ] = v (4.1.9a)

and

Var[X ] = v . (4.1.9b)

The fact that E[X ] = v is anticipated because the Poisson distribution derives from a
limiting process that keeps the mean equal to v (as discussed shortly).

The two results from Eq. (4.1.9) suggest one method of verifying whether a variable
is Poisson-distributed, that is, by testing a sample of data with respect to the mean and
variance. However, it should not preclude other tests. More importantly, and as discussed
shortly, prior physical justification is a requirement.
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Fig. 4.1.6 Poisson pmf, pX (x), for v = 5.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 17, 2008 21:2

174 Applied Statistics for Civil and Environmental Engineers

50 10 15 20 25

Time of occurrence, x, s

l = 1s −1

Fig. 4.1.7 Occurrences of a Poisson process in time.

The stipulations and developments just given lead to the derivation of the Poisson
distribution [Eq. (4.1.7)] as a limiting form of the binomial. This is also referred to as the
Poisson approximation to the binomial, because of the assumptions made.

The Poisson parameter v is considered to be the mean number of arrivals or happenings
in a time interval, say, of length t ; it is also applicable to an interval in space, as discussed
shortly. Let λ equal the mean rate, or hazard rate, or intensity, of occurrence of a Poisson
happening or arrival. If the generating process is homogeneous, the rate λ and mean v are
constant for all time intervals; we discuss the nonhomogeneous case shortly. One can then
divide the time interval t into small subintervals each of length �t , such that n�t = t . Ac-
cordingly, the probability of exactly one arrival is approximately λ�t . When �t tends to
zero, this probability becomes exact. Then such a subinterval can have at most a single suc-
cess. Furthermore, when the Poisson assumptions hold there is no relationship between the
outcomes in one subinterval and another disjoint subinterval; and the occurrence over �t is
that of a Bernoulli trial. These conditions can be summarized by the following postulates:

(1) If one partitions a time interval t into sufficiently small subintervals of equal length
�t , the probability of exactly one arrival over any such subinterval tends to λ�t .

(2) The probability of more than one arrival in the subinterval then becomes zero.
(3) The occurrence of an arrival within a subinterval is independent of occurrences in

other disjoint subintervals.

From the assumptions made in deriving Eq. (4.1.7), and from the foregoing stipulations, the
relationship between the mean count v and the mean rate λ, over an interval t is as follows:

v = np = t

�t
λ�t = λt. (4.1.10)

A randomly constructed experiment based on the preceding assumptions gives a
homogeneous or stationary Poisson process X(t) with rate λ and occurrences shown, for
example, in Fig. 4.1.7.

In the application of a Poisson process such as the one illustrated, the random variable
is the count of the number of arrivals or happenings or incidents over an interval of time.
The assumptions made in the theoretical development are justifiable when one considers
numerous types of empirical evidence. The Poisson process is a particular form of a
stochastic or random process which denotes a random function in time or space.10

The sum of two independent Poisson random variables X1 and X2 with parameters
v1 and v2, respectively, is Poisson-distributed with parameter v = v1 + v2. This can be

10 We shall discuss this further under renewal and point processes at the end of Subsection 4.2.2. The
Poisson distribution, obtained through the binomial approximation in Eq. (4.1.7), is derived independently
in Appendix A.3 by considering the number of arrivals or counts in intervals (t, t + �t , and so on).
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shown as follows:

Pr[X1 + X2 = n] =
n∑

k=0

Pr[X1 = k] Pr[X2 = n − k] =
n∑

k=0

vk
1e−v1

k!

vn−k
2 e−v2

(n − k)!
.

Hence, from the binomial expansion of (v1 + v2)n ,

Pr[X1 + X2 = n] = e−(v1+v2)

n!

n∑
k=0

n!

k!(n − k)!
vk

1vn−k
2 = e−(v1+v2)(v1 + v2)n

n!
.

Apart from using time as a variable, the Poisson theory is applicable when other intervals
such as those in length, area, volume, or space are used. Several illustrations are provided
later in this section.

Note that the Poisson distribution is applied in situations where a large number of
objects are distributed over a large area. For example, the number of defects per unit of some
material used in engineering, the number of organisms per unit volume of some fluid, algal
counts from a similar sample for monitoring the quality of lake water, bacterial counts on
petri plates, and the arrivals of hurricane events can be assumed to be Poisson-distributed.
However, the theory is not applicable if there is clustering and the chance of finding an
object in a particular location (or time) is not the same as finding it elsewhere. One such
example is the spatial distribution of pollutants near a seashore stemming from discharges
by small communities located along the coast. Likewise, the Poisson distribution does not
apply when there is interdependence between events. Therefore, events of interest to the
engineer that occur in groups or clusters—such as interrelated rainfalls in certain regions
and imperfections in materials which are found over particular locations but not over other
areas—should be excluded.

Definition: The homogeneous Poisson model is defined as follows:

(1) The random variable X (t) ∼ Poisson (v = λt) is the number of arrivals that occur in
an interval t (such as time, length, area, or space) of a given sequence.

(2) The parameter v is the expected number of arrivals in the interval t and λ = v/t is the
constant rate of occurrence of the events.

(3) If one partitions the interval t into subintervals of equal length �t that are sufficiently
small, the probability of exactly one arrival over any such subinterval tends to λ�t .

(4) The probability of more than one arrival in the subinterval then becomes zero.
(5) The occurrence of an arrival within a subinterval is independent of occurrences in

other disjoint subintervals.

The Poisson pmf is given by

pX (x) = vx e−v

x!
, for x = 0, 1, 2, . . . , and v > 0.

The mean and variance of X are equal to v .

Example 4.4. Atmospheric pollution. Atmospheric dust particles at a particular location
cause an environmental problem. The number of particles within a unit volume is observed
by focusing a powerful microscope on the particles and making counts. The results of tests
on 100 such volumes are shown in Table 4.1.1.

By using Eq. (3.2.1), the estimated mean of the number of dust particles within each
volume is calculated as follows:

x̄ = 13

100
× 0 + 24

100
× 1 + 30

100
× 2 + 18

100
× 3 + 7

100
× 4 + 8

100
× 6 = 2.14.

The theoretical Poisson frequencies of occurrence shown in Table 4.1.1 are obtained from

pX (X = x |2.14) = 2.14x e−2.14/x! for x = 0, 1, 2, 3, 4, 6.
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Table 4.1.1 Poisson distribution of dust particles in the atmosphere

Particles in unit volume

0 1 2 3 4 >4

Observed frequency 13 24 30 18 7 8
Poisson frequency 12 26 27 19 10 6

Example 4.5. Reliability of machinery at a treatment plant. All the pumps at a water
treatment plant have been made to the same specifications by a single manufacturer. From tests
made over 4-week period, it has been ascertained that there are on average two breakdowns
during each period. A new plant manager assumes that the problem is not serious if there are
no more than four breakdowns over a period of 4 weeks. What is the probability p of such
an occurrence?

It is assumed that the failures occur randomly in time, the occurrences are independent, and
the rate of failure is constant. Thus, the Poisson model is applicable with parameter v = 2 and

FX (4) =
4∑

x=0

2x e−2

x!
= 0.135 + 0.271 + 0.271 + 0.180 + 0.090 = 0.947.

Hence, p = 0.947.

Example 4.6. Closure of causeway caused by high flows. High flows result in the closure
of a causeway. From past records, the road is closed for this reason on 10 days during a
20-year period. At an adjoining village, there is concern about the closure of the causeway
because it provides the only access. The villagers assume that the probability of a closure of
the road for more than one day during a year is less than 0.10. Is this correct?

The conditions seem to be satisfied for the application of the Poisson distribution. The
mean number of closures per year is 0.5. Hence, v = 0.5, and

FX (1) =
1∑

x=0

0.5x e−0.5

x!
= 0.607 + 0.303 = 0.910.

Thus,

FX (X ≥ 2) = 1 − 0.91 = 0.09.

The villagers are therefore apparently justified in their assumption.

Example 4.7. Strength of timber. From past data, an engineer has estimated a probability
of p = 0.01 that timber delivered at a construction site from a particular source is below
specification. If 150 joists of timber are necessary for a particular construction job, determine
the minimum number which should be ordered so that the chance of not having the required
number of suitable joists is less than 10%.

Selecting suitable timber for the construction work constitutes a series of Bernoulli tri-
als. Let 150 + x joists be ordered to meet the required stipulation where x is the number of
defective joists. Using the Poisson approximation with n = 150 + x and p = 0.01, the pa-
rameter v = (150 + x)p ≈ 150p = 1.5. The Poisson cdf [Eq. (4.1.8)] is used here to obtain
the probability of finding no more than k defective joists. Thus,

FX (k) =
k∑

x=0

1.5x e−1.5

x!
≥ 0.9.

For values of k equal to 2 and 3, the summation is equal to 0.81 and 0.93, respectively.
Therefore, 153 joists should be ordered.
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Example 4.8. Floorboards. Floorboards supplied by a contractor have some imperfections.
A builder decides that two imperfections per 40 m2 is acceptable. Is there at least a 95% chance
of meeting such requirements, if from previous experience with the same material, an average
of one imperfection per 65 m2 has been found?

It is assumed that imperfections per unit area have a Poisson distribution and the same
material as before is supplied. For this purpose, Eq. (4.1.8) is used in conjunction with
Eq. (4.1.10) in which time t is replaced by area m2. Thus one makes the approximation that

v = 40

65
= 0.615.

Hence,

FX (2) =
2∑

k=0

e−0.6150.615k

k!
= 0.540 + 0.333 + 0.102 = 0.975.

Therefore, the answer is yes.

Example 4.9. Coliform bacteria in wastewater. A public health engineer finds the most
probable number (MPN) of the concentration of coliform bacteria per 100 mL after test-
ing the wastewater and applying the Poisson distribution. Five samples of wastewater are
taken, and three different dilutions are made of each sample and tested in a total of fif-
teen 100-mL tubes. [For a general description of such procedures, see Greenberg et al.
(2005).] Samples are incubated in MacConkey broth, an essential part of the experiment,
for 24 hours at a temperature of 40◦C. At the end of this period, the presence of coliform
organisms in a particular test tube is indicated by gas bubbles and a yellowish tint in the
liquid. Conversely, the result is treated as negative if there is no gas and the color remains
purple.

The maximum likelihood, or MPN value, that gives the observed distribution of positive
and negative results from the 15 tubes is an estimate of the coliform concentration in the raw
water. The MPN represents the unknown Poisson rate or intensity parameter λ. Let c be a
constant used in scaling the probabilities so that their sum is unity, and let λ represent the
mean bacterial concentration per mL that one wishes to estimate from the test results. Let
v1, v2, and v3 be the dilutions in mL of raw water per 100 mL total in the test tubes, and let
n1, n2, and n3 be the numbers of positive results from the five test tubes for each of the three
dilutions, respectively.

It is assumed that the bacteria have a Poisson distribution in the wastewater. Thus Eq. (4.1.7)
is used in conjunction with Eq. (4.1.10). The probability of a negative result for dilution i is
e−vi λ and, correspondingly, if a test tube indicates the presence of bacteria, the probability is
taken as 1 − e−vi λ. In considering that the tests are independent events, the joint probability
of the 15 outcomes is

p = 1

c

k∏
i=1

(e−vi λ)m−ni (1 − e−vi λ)ni ,

Table 4.1.2 Data input for coliform tests

i 1 2 3

vi 100.0 10.0 1.0
ni 5 4 3

vi = dilution volume in mL/100 mL; ni = number
of positive results.
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Fig. 4.1.8 Variation of pc with Poisson rate or intensity parameter λ; p = probability of given
joint outcomes of wastewater tests conditional to given value of Poisson parameter, c = scaling
constant for probabilities.

where i = 1, 2, . . . , k represents the dilutions and m = the number of samples for each
dilution.

In this application k = 3 and m = 5. For the purpose at hand it is not essential to evaluate
c. A maximum value of p in the above equation is found empirically by varying λ over an
appropriate range. This gives the MPN value of the concentration, which equals 100λ, where
λ corresponds to the maximum value of pc.

A sample of wastewater is taken and three dilutions of 100, 10, and 1 mL/100 mL are made.
The numbers of positive results are shown in Table 4.1.2. Values of 1000 pc are computed for
a range of λ from 0 to 1.0 (where 1000 is an additional scaling factor). The results are shown
graphically in Fig. 4.1.8. Also, seven values around the maximum are given in Table 4.1.3.
The maximum value of pc is 0.000394 and the corresponding value of λ is 0.28 coliform
organisms per milliliter. Thus the MPN = 28 organisms per 100 mL.

4.1.3.1 Truncated Poisson process
There are applications when the case X = 0 is not an acceptable happening or is not of
interest, but the other conditions for a Poisson process hold. Some possible examples are
in the study of groups of certain objects or happenings such as the numbers of accidents
or hurricanes. A group of zero is not realizable (or is not relevant) and therefore X = 0 is
eliminated from the frequency distribution. In such cases, a truncated Poisson distributed
is used as follows:

Pr[X = x |X ≥ 1] = Pr[X = x |X ≥ 0]

Pr(X ≥ 1)
= vx e−v

x!

1

(1 − e−v )

= vx

x!(ev − 1)
, for x = 1, 2, 3, . . .

= 0, otherwise. (4.1.11)

Table 4.1.3 Computations of pc for coliform tests for different values of λ

λ 0.25 0.26 0.27 0.28 0.29 0.30 0.31
1000 pc 0.383 0.389 0.393 0.394 0.392 0.388 0.382

λ = average number of coliform bacteria per mL; pc = probability multiplied by normalizing constant.
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The kth factorial moment is given by

E[X (X − 1) · · · (X − k + 1)] =
∞∑

x=1

x(x − 1) · · · (x − k + 1)
vx

x!(ev − 1)

=
∞∑

x=k

vkvx−k

(x − k)!(ev − 1)

= vk

ev − 1

∞∑
j=0

v j

j!
= vkev

ev − 1
.

Hence, from the first and second factorial moments

E [X ] = vev

ev − 1
(4.1.12a)

and

Var[X ] = ve2v − v(v + 1)ev

(ev − 1)2
. (4.1.12b)

Definition and properties: A truncated Poisson variate X that takes positive integer values
greater than zero, has pmf

Pr[X = x |X ≥ 1] = vx

x!(ev − 1)
, for x = 1, 2, 3, . . . , and v > 0,

with mean E[X ] = vev

ev − 1
and variance Var[X ] = ve2v − v(v + 1)ev

(ev − 1)2
.

Example 4.10. Groups of thunderstorms. Thunderstorms that occur over metropolitan
areas raise pond levels and cause high sewer flows. During summer, thunderstorms tend to
occur in groups. An engineer seeks to determine the Poisson frequency distribution of the
areal extent of the groups as an aid to design. Some observations are given in Table 4.1.4.

We estimate the parameter v numerically. One simple procedure is as follows. The sample
mean is estimated by dividing the sum of the product of columns 1 and 2 by the sum of column
2. This is substituted in Eq. (4.1.12a) which is rearranged so that the Poisson parameter is
on the left and the sample mean and the exponential terms are on the right. Commencing
with an initial value such as 1.0 of the unknown parameter and substituting on the right, we
obtain a new approximate value. Proceeding in this way, we solve the equation by successive
approximations until the change in the estimate from two successive steps is negligible. Using
the estimated value of the parameter, the theoretical frequencies are computed and are given
in column 3. It is seen that these are close to the observed frequencies.

Table 4.1.4 Truncated Poisson distribution of groups of thunderstorms

Size of group Observed frequency Theoretical frequency

1 17 15.8
2 15 15.7
3 10 10.4
4 4 5.1
5 2 2.0
6 2 0.7

Sample average = 2.300; truncated Poisson parameter = 1.984.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 17, 2008 21:2

180 Applied Statistics for Civil and Environmental Engineers

4.1.3.2 Nonhomogeneous poisson process
We have heretofore considered homogeneous or stationary Poisson processes. However,
there are many instances when these conditions are not applicable. In such a nonhomoge-
neous or nonstationary Poisson process X (t), the rate λ varies with time and is denoted by
λ(t). Then an increment X (t1) − X (t2) of the process which gives the number of events in
the interval (t1, t2) has a Poisson distribution with parameter

v =
t2∫

t1

λ(t)dt.

These increments constitute a sequence of independent random variables.

Example 4.11. Distributions of rainfalls with variable Poisson rates. Unrelated occur-
rences of rainfall in a particular locality constitute a nonhomogeneous Poisson process with
variable mean rates λ(t), t = 1, 2, . . . , 13, during an annual cycle, where t represents a period
of 4 weeks. Periods 3–7 experience more rain on average than the other periods. The rates
for the year are as follows:

λ(t) = 2t

3
, for 0 ≤ t < 3,

= 2, for 3 ≤ t < 8,

= 13 − t

3
, for 8 ≤ t ≤ 13.

(1) What is the probability of having three or more rainfalls during the first five periods
of the year?

(2) What is the probability of having no more than one rainfall during the periods 8, 9,
and 10 and no more than one rainfall during the last three periods of the year?

For part 1, the mean count for the first five periods is

v =
3∫

0

2t

3
dt +

5∫
3

2dt = 7.

Hence,

Pr[X (5) ≥ 3] = 1 − Pr[X (5) ≤ 2] = 1 −
(

e−7 + 7e−7 + 72e−7

2

)
= 0.97.

For part 2, the independence of [X (10) − X (7)] and [X (13) − X (10)] is used. The mean count
for the periods 8, 9, and 10 is

v = 1

3

10∫
7

(13 − t)dt = 4.5.

The mean count for the last three periods is

v = 1

3

13∫
10

(13 − t)dt = 1.5.

Hence,

Pr[X (10) − X (7) ≤ 1, X (13) − X (10) ≤ 1]

= (e−4.5 + 4.5e−4.5)(e−1.5 + 1.5e−1.5)

= 5.5 × 2.5e−6 = 0.034.
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In summary, the Poisson process is one of the important random or stochastic processes
that are essential for the development and applications of probability theory. The role
played by the Poisson distribution is crucial in many aspects of probability and statistics.
As noted before, the binomial is also a fundamental probability distribution. These are
two of the three principal distributions viewed as fundamental.11

4.1.4 Geometric and negative binomial distributions

The geometric and negative binomial distributions have a special role in statistics. Let
us first consider a series of Bernoulli trials that are continued until exactly r successes
occur and let X trials be required for the purpose. That is, after (X − 1) trials there are
exactly (r − 1) successes. As before, let p denote the probability of a success. Then, by
using the property of independence, the probability of occurrence of the given sequence
is pr−1(1 − p)x−r .

The total number of combinations possible when selecting (r − 1) objects from (x − 1)
objects is(

x − 1
r − 1

)
≡ (x − 1)!

(r − 1)!(x − r )!
.

Hence, the probability of the r th success occurring at the x th trial is given by the negative
binomial distribution with pmf

pX (X = x |r, p) =
(

x − 1
r − 1

)
pr (1 − p)x−r , for x = r, r + 1, r + 2, . . . ,

= 0, otherwise. (4.1.13)

Example 4.12. Delivery of treatment plants for a water supply system. A company has
bid to supply standardized treatment plants for a rural water supply system in a region, having
quoted a low price for the job. However, the supervising engineer has estimated from previous
experience that 10% of plant delivered by this company are defective in some way. If five
items are required, determine the minimum number of plants to be ordered to be 95% sure
that a sufficient number of nondefective plants are delivered. It is assumed that the delivery
of a plant is an independent trial and any fault that may occur in one plant is not related to
possible faults in other plants. The probability of a success, p = 1 − 0.1 = 0.9.

The problem is solved after one or more trials. From Eq. (4.1.11) the cdf for X = 7 is
given by

7∑
x=5

pX (X = x |5, 0.9) =
7∑

x=5

(
x − 1

4

)
0.950.1x−5 = 0.95(1.0 + 0.5 + 0.15) = 0.97.

Hence the required number is 7. The pmf for the negative binomial distribution is given in
Fig. 4.1.9.

4.1.4.1 The alternative form of the negative binomial distribution
The negative binomial can be defined in another form in which the random variable is the
number of failures before the r th success, denoted by Y = X − r . The pmf is obtained by

11 The third is the normal distribution, which follows in Section 4.2.
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Fig. 4.1.9 Negative binomial pmf, pX (x), for r = 5 and p = 0.9.

substituting Y in Eq. (4.1.13):

PY (Y = y) =
(

r + y − 1
y

)
P y(1 − p)y

= (−1)y

(−r
y

)
py(1 − p)y, for y = 0, 1, 2, . . .

= 0, otherwise. (4.1.14)

The resemblance between this and the binomial given by Eq. (4.1.3) is the reason for the
name negative binomial.12

If r = 1, that is, the number of successes required is one, then the negative binomial of
Eq. (4.1.13) becomes the geometric distribution with pmf

pX (X = x |p) = p(1 − p)x−1, for x = 1, 2, 3, . . .

= 0, otherwise, (4.1.15)

where the parameter p satisfies the condition 0 < p ≤ 1.
The name geometric is given to this distribution because the values taken by the pmf

form a geometric series. Figure 4.1.10 shows the geometric distribution for p = 0.7.
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Fig. 4.1.10 Geometric pdf, pX (x), for p = 0.7.

12 Note that

(−1)y
( −r

y

)
= (−1)y (−r )(−r − 1) · · · (−r − y + 1)

y!

= (−1)y (−1)y r (r + 1) · · · (r + y − 1)

y!
=

(
r + y − 1

y

)
.
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Likewise one can obtain the pmf for values of p in the interval 0 < p < 1; however, the
mode is at unity. A random variable that is geometrically distributed is said to represent a
discrete waiting time (that is, the length of time one needs to wait) before a success occurs.

4.1.4.2 Mean and variance of a geometric variate
The sum of a converging geometric series with first term and multiplier equal to (1 − p),
where 0 < p < 1, is

(1 − p) + (1 − p)2 + (1 − p)3 + · · · =
∞∑

x=1

(1 − p)x = 1 − p

p
= 1

p
− 1. (4.1.16)

Let the first derivatives with respect to p be equated and both sides multiplied by (–p).
Hence by treating Xas the random variable, the mean of a geometric variate is

E[X ] =
∞∑

x=1

xp(1 − p)x−1 = 1

p
. (4.1.17a)

To obtain the variance, one uses the second factorial moment. That is,

E[X (X − 1)] = E[X2] − E[X ] =
∞∑

x=1

x(x − 1)p(1 − p)x−1. (4.1.17b)

The second derivatives with respect to p of the middle and right terms of Eq. (4.1.16) are
equated and both sides are multiplied by (1 − p)p. Hence, by using the Eq. (4.1.17b) it
follows that

E[X2] − E[X ] = (1 − p)p
2

p3
= 2

p2
− 2

p
.

Using this result and Eq. (4.1.17a), the variance of a geometric variate is

Var[X ] = E[X2] − [E[X ]]2 = 2

p2
− 2

p
+ 1

p
− 1

p2
= 1 − p

p2
. (4.1.17c)

4.1.4.3 Return period
The concept of a return period is important particularly when one is dealing with extreme
events such as floods, droughts, and wind speeds. Let the random variables Yi represent
in one instance, the maximum flood in year i, i = 1, 2, 3, . . . , respectively. Then if the Yi

are independent, the probability that the time interval T̃ between exceedances of a flood
of magnitude y equals n is

Pr[T̃ = n] = Pr[Y1 < y] Pr[Y2 < y] · · · Pr[Yn−1 < y] Pr[Yn > y]

= {Pr[Y < y]}n−1 Pr[Y > y], for n = 1, 2, . . . ,

assuming that the Yi are identically distributed as in Eq. (4.1.15), which is the pmf of the
geometric distribution.

Hence, when considering high events as in floods, we define the return period as the
mean time interval between exceedances of a specified value:

E[T̃ ] = 1

Pr[Y > y]
. (4.1.17d)

That is, the return period is the reciprocal of the probability of exceedance.
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Conversely, when considering low events as in droughts, we define the return period
as the mean time interval between nonexceedances of a specified value. Then the return
period is the reciprocal of the probability of nonexceedance. That is,

E[T̃ ] = 1

Pr[Y ≤ y]
(4.1.17e)

4.1.4.4 Mean and variance of a negative binomial variate
As in the relationship between the parameters of Bernoulli and binomial variates, the mean
and variance of a negative binomial variate are related to those of a geometric variate as
follows:

E[X ] = r

p
(4.1.18a)

and

Var[X ] = r (1 − p)

p2
. (4.1.18b)

In the alternative form of the negative binomial, in which the variable Y = X − r is the
number of failures before the r th success,

E[Y ] = E[X ] − r = r

p
− r = r (1 − p)

p
(4.1.18c)

and

Var[Y ] = Var[X ] = r (1 − p)

p2
. (4.1.18d)

The variance of the binomial variate is less than its mean. In the case of a Poisson variate,
the mean and variance are equal. This equality of mean and variance applies also to a
geometric or negative binomial X variate only if p = 0.5, but if p < 0.5 the variance is
greater than the mean for these two types and if p > 0.5 the variance is less than the mean.

Definition: In a series of Bernoulli trials, the random variable X which denotes the trial at
which the r th success occurs, where r is a fixed positive integer, has a negative binomial pmf:

pX (X = x |r, p) =
(

x − 1
r − 1

)
pr (1 − p)x−r , for x = r, r + 1, r + 2, . . . ,

and 0 ≤ p ≤ 1,

mean E[X ] = r

p
and variance Var[X ] = r (1 − p)

p2
.

If r = 1, X ∼ geometric (p).

Example 4.13. Design return period. The level of the road in Example 4.2 is raised so that
the chance that the road is flooded (at least once) during a 5-year period is 20%. What should
the design return period be, that is, the number of years on average between exceedances of
a critical river level that causes the flooding of the road?

The probability that the road is not flooded during a 5-year period consequent to a raise in
the level is 0.8. From Eq. (4.1.3), (1 − p)5 = 0.8. Hence, p = 0.04. Thus, the design return
period, which is the reciprocal of p, is 25 years.

Example 4.14. Mean and variance of road floods. On the basis of data in Example 4.13,
what are the mean and variance of the number of 25-year floods over a 5-year period?

E[X ] = N p = 5 × 0.04 = 0.2.

Var[X ] = N p(1 − p) = 5 × 0.04 × 0.96 = 0.192.
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Example 4.15. Waiting time for rare floods. A cofferdam is constructed to enable work
on the main dam, downstream on the same river, to be completed up to a safe level. If the
cofferdam is designed to withstand a 10-year flood, what is the probability that at least two
or more years will elapse before the occurrence of the design flood?

The 10-year flood has a 1 in 10 year chance of occurrence, that is, p = 0.1.

pX (X = 1|p) = p and pX (X = 2|p) = p(1 − p).

Hence, the required probability is

1 − p − p(1 − p) = 1 − 2p − p2 = 0.79.

The engineer would be well-advised to strengthen the cofferdam, which means that a sub-
stantially larger design period should be adopted.

4.1.4.5 Memoryless property of the geometric distribution
A special property of the geometric distribution is that if, say, k successive failures have
occurred after k or more trials, the distribution of the total number of trials, say, k + l,
required before the first success occurs does not change. This is shown as follows by
using conditional probabilities and the properties of an infinite geometric series as in
Eq. (4.1.16):

Pr[X ≥ k + l|X ≥ k] = Pr[X ≥ k + l]

Pr[X ≥ k]
=

∑∞
n=k+l p(1 − p)n∑∞

n=k p(1 − p)n

= (1 − p)k+l

(1 − p)k
= (1 − p)l = Pr(X ≥ l). (4.1.19)

In contrast, but in common with other discrete distributions, the log-series distribution
(which follows) does not have this property.

4.1.5 Log-series distribution

Consider, for example, the series given by Eq. (4.1.6b). Substituting (1 − p) for z and
dividing both sides by − ln(p), one obtains the infinite log series

− (1 − p)

ln(p)
− (1 − p)2

2 ln(p)
− (1 − p)3

3 ln(p)
· · · .

By the given operation (that is, dividing a series by its sum), the series must sum to one
and also the other necessary conditions for a probability distribution must be satisfied.
This leads to the pmf of the log-series distribution:

pX (X = x |p) = − (1 − p)x

x ln(p)
, for x = 1, 2, . . . ; 0 < p < 1, (4.1.20)

which represents the probability of a success after x failures. In the geometric case, the
probability of a success after x failures decreases proportionately by (1 − p) as the run
length increases from (1 − x) to x , as seen from Eq. (4.1.19). For the log-series distribution,
however, the corresponding decrease is (1 − p)(1 − x)/x which depends on x ; and for
low values of x the factor is low.13 An example of a log-series distribution is given in
Fig. 4.1.11.

13 This property is found in many natural phenomena as shown, for example, by Johnson et al. (1992). The log-
series distribution was developed in the 1940s by R. A. Fisher in relation to the distribution of certain species. It
can be shown that the log series is a limiting form of the negative binomial distribution without the zero class.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 17, 2008 21:2

186 Applied Statistics for Civil and Environmental Engineers

0.0

0.2

0.4

  0.6

0.8

1.0

3210 54

x

p X
 (x

)

Fig. 4.1.11 Log-series pmf, pX (x), for p = 0.7.

4.1.5.1 Mean and variance of the log-series distribution
It follows from Eq. (4.1.20) that

− ln(p)E[X ] =
∞∑

x=1

x(1 − p)x

x
=

∞∑
x=1

(1 − p)x

=
∞∑

x=1

(1 − p) + (1 − p)2 + (1 − p)3 + · · · . (4.1.21a)

Hence, from Eq. (4.1.16)

E[X ] = − 1

ln(p)

1 − p

p
. (4.1.21b)

Likewise,

− ln(p)E[X2] =
∞∑

x=1

x2(1 − p)x

x

= (1 − p) + 2(1 − p)2 + 3(1 − p)3 + · · · . (4.1.21c)

If one divides the series on the right-hand side of Eq. (4.1.21c) by (1 − p) and subtracts
the series of Eq. (4.1.21a) from the result, it follows from Eq. (4.1.21a), (4.1.21b), and
(4.1.21c) that,

Var[X ] = E[X2] − (E[X ])2 = E[X ]

p
− (E[X ])2. (4.1.21d)

Definition and properties: The variate X with a log-series distribution has a pmf

pX (X = x |p) = (1 − p)x

−x ln(p)
, for x = 1, 2, . . . ; 0 < p < 1.

Its mean and variance are

E[X ] = − 1

ln(p)

1 − p

p
and Var[X ] = E[X ]

p
− (E[X ])2 ,

respectively.

Example 4.16. Wet and dry spells of rainfall. A period of consecutive rainy days is called
a wet run if the day immediately before the period and the day immediately after the period
are dry. Similarly, a period of days on which no rainfall is experienced is called a dry run if
wet days precede and succeed it.
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Table 4.1.5 Distributions of wet runsa

Length of wet run Observed distribution, Product of Geometric Log-series
in days, (1) (2) (1) × (2), (3) distribution, (4) distribution, (5)

1 194 194 179.6 224.3
2 101 202 109.2 90.6
3 66 198 66.4 48.8
4 30 120 40.3 29.6
5 26 130 24.5 19.1
6 11 66 14.9 12.9
7 13 91 9.1 8.9
8 7 56 5.5 6.3
9 5 45 3.3 4.5

10 2 20 2.2 3.3
11 + (15.3) 3 46

Totals 458 1168

Observed from January 1958 to May 1965 at Kew, London, England.
a Note: 15.3 represents mean length of 3 runs longer than 10.
Wet run: a period of consecutive rainy days for which the day immediately before the period and the day
immediately after the period are dry.
Source: Data from Chatfied (1966); obtained with the permission of the publishers.

The distribution of wet runs observed from January 1958 to May 1965 at Kew in London,
England, is shown in Table 4.1.5 (from Chatfield, 1966).14

The probability distributions of wet and dry spells are important to engineers for planning
and design purposes. One approach is to use a memoryless geometric distribution to model
wet runs. On the other hand, observations from many parts of the world suggest that, as the
length of a dry spell increases, the probability increases that the day following a dry run will
also be dry. Thus the log-series distribution can be advantageous for modeling dry runs.

Consider the observed distribution of wet runs in Table 4.1.5. The data can be used to com-
pare the fit of the geometric and log-series distributions, thus making a preliminary verification
of the above hypothesis. By dividing the total of column 3 by the total of column 2, the mean
run length of 2.55 days is obtained for the wet spells. The reciprocal of this gives p̂ = 0.392,
using Eq. (4.1.17a), as the estimate of the parameter of the geometric distribution applied
to these data. Hence, from Eq. (4.1.15) the geometric distribution is obtained and results are
given in column 4. The parameter of the log-series distribution is estimated numerically from
Eq. (4.1.21b) as p̂ = 0.192 using the calculated mean run length of 2.55 days. Hence by using
Eq. (4.1.20), the log-series distribution is applied and the results are presented in column 5.

The procedure is repeated for the dry spells for which the data and results shown in
Table 4.1.6. The mean run length of the dry spells is 3.50 days.

Estimates of parameter p for the geometric and log-series distributions are 0.286 and 0.118,
respectively.

From Fig. 4.1.12 we see that the geometric distribution provides a generally closer fit to
the observed distribution in the case of the wet runs. However, as expected, the log-series
distribution is a better candidate for the dry runs as seen in Fig. 4.1.13.

4.1.6 Multinomial distribution

The binomial distribution can be extended to the general case in which the sample space
of an experiment is partitioned into r mutually exclusive events with probabilities of

14 This is from the Journal Weather and is reproduced with permission from the Royal Meteorological Society,
104, Oxford Rd, Reading, Berkshire, RG1 7LJ, England.
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Table 4.1.6 Distributions of dry runs

Length of dry Observed Product of Geometric Log-series
run in days, (1) distribution, (2) (1) × (2), (3) distribution, (4) distribution, (5)

1 176 176 123.4 178.2
2 81 162 88.2 78.6
3 44 132 63.4 46.2
4 28 112 45.0 30.6
5 21 105 32.1 21.6
6 17 102 22.9 15.9
7 12 84 16.4 12.0
8 15 120 11.7 9.3
9 9 81 8.4 7.3

10 3 30 6.0 5.8
11 3 33
12 4 48
13 5 65
14–20 (17) 11 187
21 + (25) 3 75

Totals 432 1512

Observed from January 1958 to May 1965 at Kew, London, England.
Note: 17 represents mean length of 11 runs of length 14–20; 25 represents mean length of 3 runs longer
than 20.
Dry run: a period of consecutive dry days for which the day immediately before the period and the day
immediately after the period experience rain.
Source: Data from Chatfied (1966); obtained with the permission of the publishers.
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Fig. 4.1.12 Observed distribution of wet spells at Kew, London, from January 1958 to May 1965
fitted with geometric distribution.
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Fig. 4.1.13 Observed distribution of dry spells at Kew, London, from January 1958 to May 1965
fitted with log-series distribution.
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occurrence p1, p2, . . . , pr and the corresponding frequencies of occurrence are equal to
x1, x2, . . . , xr after n independent trials. The probabilities are represented by the multino-
mial distribution as follows:

p(X1 = x1, X2 = x2, . . . , Xr = xr |n, p1, p2, . . . , pr )

=
(

n!

x1!x2! · · · xr !

)
px1

1 px2
2 · · · pxr

r . (4.1.22)

In the case of the binomial distribution based on Bernoulli trials, r = 2.
The i th class of event, say, has a marginal binomial probability distribution with mean

E[Xi ] = npi (4.1.23a)

and variance

Var[Xi ] = npi (1 − pi ). (4.1.23b)

Definition and properties: A random experiment consists of n independent trials with
outcomes classified into r classes, where the probability of an outcome in class i is pi . This
generates random variables X1, X2, . . . Xr which denote the possible numbers of trials with
outcomes in the respective classes and which have a multinomial distribution with joint
pmf

p(X1 = x1, X2 = x2, . . . , Xr = xr |n, p1, p2, . . . pr )

=
(

n!

x1!x2! · · · xr !

)
px1

1 px2
2 · · · pxr

r ,

for x1 + x2 + · · · + xr = n and p1 + p2 + · · · + pr = 1.
The marginal pmf of Xi is binomial with mean E[Xi ] = npi and variance

Var[Xi ] = npi (1 − pi ).

Example 4.17. Bids for contracts. A city engineer invites separate bids for widening four
roads. Three contractors submit their quotations. The first contractor is usually successful in
getting 60% of similar work in the area, whereas the other two have equal chances of 15%.
What is the probability that the first contractor will be given at least three of the jobs on the
basis of past performances?

From Eq. (4.1.22) the required probability is given by

4!

3!1!0!
(0.60)3(0.15)1(0.15)0 + 4!

3!0!1!
(0.60)3(0.15)0(0.15)1

+ 4!

4!0!0!
(0.60)4(0.15)0(0.15)0 = 0.389.

4.1.7 Hypergeometric distribution

The multinomial case previously described follows a procedure in which sampling is
made with replacement. If samples are taken without replacement, on the other hand, the
outcomes have the hypergeometric distribution. For example, consider a sample of 50
floorboards of which 5 are known to be defective. If 1 out of the 50 is selected at random,
the probability that it will be satisfactory is 45/50. The probability that a second floorboard
drawn randomly is also satisfactory becomes 44/49 if the first board is not replaced before
the draw, but the probability remains the same if the first board is replaced.
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This concept can be extended to the general case, with more than two types of outcomes.
Suppose a sample of size n is drawn without replacement, as part of a random experiment,
from a population which contains m elements. Within the sample space of m elements, let
there be a total of m1 elements of one type, m2 elements of another type, and, similarly,
elements of other types to include finally mr elements of type r , thus comprising a mutually
exclusive and exhaustive set of elements.

The probability of having in the randomly drawn sample of size n, x1 elements of the
first type, x2 elements of the second type, and, similarly, other types including finally
xr elements of type r is given by the hypergeometric distribution. By extending the ba-
sic combinatorial concepts used for the binomial and negative binomial distributions as
already described, the pmf is written as:

p(X1 = x1, X2 = x2, . . . , Xr = xr |m1, m2, . . . , mr , n, m)

=

(
m1

x1

) (
m2

x2

)
. . .

(
mr

xr

)
(

m
n

) , (4.1.24)

where x1 + x2 + · · · + xr = n and m1 + m2 + · · · + mr = m; also, x1 ≤ m1, x2 ≤
m2, . . . , xr ≤ mr and n ≤ m.

In many applications, only the case r = 2 is considered, as in the basic example of floor-
boards of two classes just discussed. The solution to this problem can be obtained directly
from Eq. (4.1.24). However, we shall retain the binomial classification for demonstrating
that under certain conditions the two-variable hypergeometric distribution can be closely
approximated by the binomial distribution. Accordingly, in a sample space (population)
of m, let there be mp successes and mq failures where p + q = 1 and both mp and mq
are integers. Let the random variable X represent the number of successes in n trials. Its
pmf is

pX (X = x) =

(
mp
x

) (
mq

n − x

)
(

m
n

) (4.1.25)

= (mp)!(mq)!(n)!(m − n)!

(x)!(mp − x)!(n − x)!(mq − n + x)!(m)!

=
(

n
x

) [ (mp

m

) (
mp − 1

m − 1

)
· · ·

(
mp − x + 1

m − x + 1

) ]

×
[ (

mq

m − x

) (
mq − 1

m − x − 1

)
· · ·

(
mq − n + x + 1

m − n + 1

) ]
.

After dividing the numerator and denominator of each of the terms in parenthesis by m,
one can show that, as m tends to infinity,

p(X = x) =
(

n
x

)
px (1 − p)n−x .

This limiting form is the binomial pmf, as given by Eq. (4.1.3), with parameter p, where
the random variable X is the number of successes in n trials; it is applicable in the case of
sampling with replacement. When sampling is made without replacement, the binomial
distribution that is valid for sampling with replacement may be used as an approximation
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to represent the two-parameter hypergeometric distribution when m is large, say, m ≥ 200,
and n is relatively very small, say, m ≥ 20n. Likewise, the pmf given by Eq. (4.1.24), for
the general case in which the population of size m contains several classes of elements,
approaches that of the multinomial distribution.

4.1.7.1 Mean and variance of the hypergeometric distribution
Consider again the case r = 2 in Eq. (4.1.24), that is, two types of events corresponding
with the Bernoulli case. Thus, the total number of X successes in n trials can be interpreted
as the sum

X = Y1 + Y2 + · · · + Yn, (4.1.26a)

where Yk , in general, indicates that the kth trial is a success or failure by taking a value of
1 or 0, respectively. As in the binomial case, the Yk, k = 1, 2, . . . , n, are independent and
identically distributed Bernoulli (0, 1) random variables with E[Y ] = p as in Eq. (4.1.2a).
Hence,

E[X ] = E[Y1] + E[Y2] + · · · + E[Yn] = np, (4.1.26b)

which, of course, is the same as for the binomial distribution, given by Eq. (4.1.5a).
In considering the multivariate case represented by Eq. (4.1.24) and the marginal dis-

tributions of the component variables, the mean of the i th random variable Xi is

E[Xi ] = n
mi

m
. (4.1.26c)

To determine the variance, one proceeds by computing the square of the random variable
X [see Eq. (4.1.26a)], taking expectations, and grouping terms:

E[X2] =
n∑

k=1

E
[
Y 2

k

] + 2
∑
k<m

E [YkYm]. (4.1.26d)

The first term on the right-hand side represents a sum of the squares of n Bernoulli variates,
which clearly sums to the same as that on the right-hand side of Eq. (4.1.26b). Each product
in the second term on the right-hand side becomes a zero if both or either of the two terms
are zero (failure), but is unity (success) otherwise. In the summation of the second term we
choose 2 out of n events. The probability that the first event is a success is p. Because we
sample without replacement, the probability of the second variable is (mp − 1)/(m − 1).
Thus,

E[X2] = np + 2

(
n
2

)
mp(mp − 1)

m(m − 1)
= np + 2

(
n
2

)
p(mp − 1)

(m − 1)
.

Hence,

Var[X ] = E[X2] − (E[X ])2 = np(1 − p)
m − n

m − 1
, (4.1.26e)

which is obtained after simplifying and rearranging terms. For the multivariate case rep-
resented by Eq. (4.1.24),

Var[Xi ] = n
mi

m

(
1 − mi

m

) (
m − n

m − 1

)
. (4.1.26 f )

From Eq. (4.1.26e) one can see that the variance of the hypergeometric distribution can be
obtained by multiplying the variance of the binomial variate, as given by Eq. (4.1.5b), by
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(m − n)/(m − 1). This step effects the reduction of the variance that results from sampling
without replacement.

Definition and properties: A random variable X which denotes the number of successes in
a sample of n items selected at random without replacement from a population of m items,
in which there are mp items classified as successes and mq = m(1 − p) items classified as
failures, has a hypergeometric pmf

pX (X = x) =

(
mp
x

) (
m(1 − p)

n − x

)
(

m
n

) , for = 0, 1, 2, . . . , min(mp, n),

where 0 ≤ p ≤ 1. Also, E[X ] = np and Var[X ] = np(1 − p)(m − n)/(m − 1).

Example 4.18. Components for water pumps. Standard components for pumps ordered
for a water supply scheme have the same specifications but it is found that p percent
are defective. A consignment of 100 items has been received. For this consignment to be
accepted, no more than one item in a lot of 10 items selected at random can be defec-
tive. Compare the probabilities by the binomial and hypergeometric distributions, assuming
p = 0.02.

Binomial:

Pr[X ≤ 1] =
1∑

k=0

(
10
k

)
pk(1 − p)10−k = (0.98)10 + 10(0.02)(0.98)9 = 0.984.

Hypergeometric:

Pr[X ≤ 1] =

(
100p

0

) (
100(1 − p)

10

)
+

(
100p

1

) (
100(1 − p)

9

)
(

100
10

)

=

(
2
0

) (
98
10

)
+

(
2
1

) (
98
9

)
(

100
10

) = 981

990
= 0.991

(after many common terms are eliminated from the numerator and denominator).
As m increases and n decreases the two results become closer. In practice the engineer does

not know the value of p. This can, however, be estimated by repeated sampling, for example,
by means of data from supplies made elsewhere, and using Eq. (4.1.24b) or (4.1.24c) for the
mean.

4.1.8 Summary of Section 4.1

The distributions given in this section play a useful role in engineering applications. It is
important to determine whether the assumptions are met to a reasonable degree so that an
appropriate choice can be made. A summary of the distributions is given in Table 4.1.7.
For a wider range of discrete distributions, see Johnson and Kotz (1992) or Evans et al.
(2000). In recent years there has been a movement to many generalizations (sometimes
of the multimodal types) of the classical discrete distributions; Kemp (1997) gives 87
references.
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4.2 CONTINUOUS DISTRIBUTIONS

Several continuous distributions play useful roles in engineering as in numerous other
disciplines. The more important ones are the uniform, exponential, gamma, beta, Weibull,
normal, and lognormal distributions. These are introduced in this section.

As noted before, continuous distributions are applicable when the random variable
can take any value within some range. Examples of this type of random variable are the
strength of a concrete or the flow in a river. A continuous variable is in contrast to a discrete
variable, which is confined in occurrence to integer or other specific values.

4.2.1 Uniform distribution

The simplest type of continuous distribution is the uniform. As implied by the name, the
pdf is constant over a given interval—for example, from a to b, where a < b—and takes
the form

fX (x) = 1

b − a
, for a ≤ x ≤ b, (4.2.1)

= 0, otherwise.

It is also called a rectangular distribution because of the shape of the density function. The
parameters a and b are real-valued constants. All values of the variate between the lower
limit a and the upper limit b are equally frequent or equally likely to occur. An example
of a uniform pdf is given in Fig. 4.2.1 for a = 0.5 and b = 2.5.

Thus, we can say that a variable is uniformly distributed between limits a and b if the
probability that it lies within any interval (c, d) between a and b is proportional to that
interval. That is,

Pr[c < X < d] = d − c

b − a
.

The integral of the pdf between the specified limits is unity, which together with its other
properties satisfies the stated requirements [Eq. (3.1.5a), (3.1.5b), and (3.1.5c)]. The cdf
corresponding to Fig. 4.2.1 is given in Fig. 4.2.2.

By making a = 0 and b = 1, one obtains the standard or unit uniform distribution. This
is used in generating random variates for all types of probability distributions for purposes
of simulation.15 Also of importance is the fact that the uniform pdf, as given by Eq. (4.2.1),

0.0

0.2

0.4

0.6

10 32

x

f X
 (x

)

Fig. 4.2.1 The pdf, fX (x), for a uniform(0.5, 2.5) variate.

15 See Chapter 8.
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Fig. 4.2.2 The cdf, FX (x), for a uniform(0.5, 2.5) variate.

is widely used to give equal likelihoods to the values of a random variable when prior
reasoning or available information does not indicate otherwise.

4.2.1.1 Mean, variance, and moment-generating function of a uniform variate

E[X ] =
b∫

a

xdx

b − a
= b + a

2
, (4.2.2a)

Var[X ] =
b∫

a

x2dx

b − a
− {E[X ]}2 = (b − a)2

12
, (4.2.2b)

and

MX (t) = E[et X ] =
b∫

a

et X 1

b − a
dx = etb − eta

t(b − a)
. (4.2.2c)

Definition: A uniformly distributed random variate can have any value in an interval a to b
with equal likelihood. The pdf, mean, and variance are

fX (x) = 1

b − a
, a ≤ x ≤ b, E[X ] = b + a

2
, and Var[X ] = (b − a)2

12
.

Example 4.19. Density of concrete. Consider the data of Table 1.2.1. This shows the den-
sities and compressive strengths of concrete samples. It may be assumed (as in Chapter 3)
that the marginal pdf of the densities of concrete can be approximated by a uniform distribu-
tion. The pdf is shown in Fig. 3.3.6b assuming a = 2400 kg/m3 and b = 2500 kg/m3. From
the data, the lowest of the 40 values is 2411 and the highest value is 2488 kg/m3; also, the
estimated mean and standard deviation are 2445 kg/m3 and 15.99 kg/m3 (from Table 1.2.2),
respectively. If one uses the method of moments to estimate the two parameters, then by
solving from the two relationships for the mean and variance just given [Eq. (4.2.2a) and
(4.2.2b)],

â = x̄ −
√

3ŝ = 2417 kg/m3 and b̂ = x̄ +
√

3ŝ = 2473 kg/m3.

Because some of the data are outside the range given by the values of the parameters, these
estimates by the method of moments are unacceptable. See Example 3.24 based on the method
of entropy.
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4.2.2 Exponential distribution

From the Poisson process discussed in Subsection 4.1.3, the probability of no occurrences
of the random variable X , which denotes a success, arrival, count, happening, or any other
type of specified event, during a time interval t is

pX (X = 0) = e−λt .

Using this result and considering the time T between occurrences as the random variable,
we find the cdf of variable T is

FT (T ≤ t) = 1 − e−λt .

This means that the waiting time between successive events of a Poisson process has an
exponential distribution. We note that, as in the Poisson, the distribution is applicable
for other variables such as length and space in addition to time. Also, it follows that the
exponential in continuous time corresponds to the geometric distribution in discrete time.

The pdf of the exponential distribution is written as follows by differentiating the
expression just given with respect to t and by replacing T by a general variable X :

fX (x) = λe−λx , for x ≥ 0, λ > 0,

= 0, otherwise. (4.2.3a)

For the same conditions, the cdf is

FX (x) = 1 − e−λx . (4.2.3b)

This is also referred to as the negative exponential because of the negative term in the
exponent.

4.2.2.1 Mean, variance, and moment-generating function
The mean of the exponential distribution is obtained as follows, integrating by parts, and
using l’Hospital’s rule:

E[X ] =
∞∫

0

xe−λx dx = [−xe−λx ]∞0 +
∞∫

0

e−λx dx = 1

λ
. (4.2.4a)

For the Poisson process, λ is the rate at which events occur, whereas 1/λ, as just shown,
is the average time between events. In relation to reliability analysis, it is often referred to
as the mean life time or time to failure. Proceeding further,

E[X2] = [−x2e−λx ]∞0 + 2

λ

∞∫
0

xλe−λx dx = 2

λ2
.

Hence, the variance is

Var[X ] = E[X2] − {E[X ]}2 = 1

λ2
. (4.2.4b)

It is interesting to note that the coefficient of variation is

VX =
√

Var[X ]

E[X ]
= 1. (4.2.4c)
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The moment-generating function (as seen in Example 3.17) is

MX (t) = E[etx ] =
∞∫

0

etxλe−λx dx = λ

λ − t
, for t < λ. (4.2.4d)

From the foregoing one can also show that the coefficients of skewness and kurtosis are
2 and 9, respectively (see Example 3.15).

Definition: The exponential distribution models the time (or length or area) between Poisson
events. It has pdf fX (x) = λe−λx for x ≥ 0 and λ > 0, mean E[X ] = 1/λ, variance Var[X ] =
1/λ2 and mgf MX (t) = λ/(λ − t), for t < λ.

Example 4.20. Floods affecting construction. An engineer constructing a bridge across
a river is concerned of the possible occurrence of a flood exceeding 100 m3/s which can
seriously affect his work. If a flow of such magnitude is exceeded once in 5 years on average,
on the basis of recorded data, what is the chance that the work which is scheduled to last
14 months can proceed without interruption or detrimental effects?

Assume floods exceeding the given magnitude are independent and identically distributed
events. The estimated mean time interval between flood events, x̄ = 5.0 years. Hence λ̂ = 1/5
and from the exponential distribution,

Pr

[
X ≥ 14

12

]
= e−1/5×14/12 = .79.

The risk, 1 − 0.79 = 0.21 seems to be rather high. A shorter time schedule should be adopted
for the work. Alternatively, one should use a different method of construction, one that allows
the engineer to cope with the imposed flood threat.

Example 4.21. Intervals of time between vehicles passing an observation point. In traffic
engineering one is concerned with the length of time between vehicles passing a given point.
If the intervals are too short there will be halts and interruptions, which the engineer attempts
to minimize. The numbers of vehicles that pass a point during a time interval tend to be
Poisson-distributed in sections where there are no obstructions, congestions, or stoppages.
Under these conditions, the time intervals between vehicles passing a point of observation
are exponentially distributed.

The following set of data gives the ordinates of a histogram of the intervals in seconds
between the passing of vehicular traffic. There are 30 equal class intervals of 6 seconds each,
from 0 to 3 minutes, as observed in Dorset, England, and reported by Leeming (1963):

54 23 16 10 16 16 12 8 8 7 4 5 4 5 1
2 0 3 1 2 2 2 0 0 1 0 0 1 1 0

The data are given in Table 4.2.1 in which, for convenience, class intervals of 0.2 minutes
(12 seconds) are used.

The mean time interval is 0.551 minute, which is estimated by multiplying the midpoints
of the class intervals by the relative frequencies given in column 3 and summing. Hence
from Eq. (4.2.4a), λ̂ = 1/0.551 = 1.81. After substituting for λ in Eq. (4.2.3a), the expected
relative frequencies are obtained by multiplying fX (x) by the class width of 0.2 minute for
each x , which represents the midpoint of a class interval. The observed and expected relative
frequencies are shown in Fig. 4.2.3.

The theoretical function shown in Fig. 4.2.3 has maximum ordinate f (x) = λ at x = 0.
As λ becomes smaller, the curvature decreases and at the limit, λ = 0, the f (x) becomes a
uniform pdf defined over (0, +∞).

The observed frequencies indicate that the distribution is close to the exponential type. On
this basis and prior to considerations of future road improvements, the engineer may need to
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Table 4.2.1 Fitting exponential distribution to intervals of time between vehicles passing a point of
observation

Cumulative distributionsUpper class limit Observed number Observed number
in minutes, (1) in class, (2) divided by total, (3) Observed, (4) Exponential, (5)

0.2 77 0.377 0.377 0.166
0 4 26 0.127 0.505 0.420
0.6 32 0.157 0.662 0.596
0.8 20 0.098 0.760 0.719
1.0 15 0.074 0.833 0.805
1.2 9 0.044 0.877 0.864
1.4 9 0.044 0.922 0.906
1.6 3 0.015 0.936 0.934
1.8 3 0.015 0.951 0.954
2.0 3 0.015 0.966 0.968
2.2 4 0.020 0.985 0.978
2.4 0 0.000 0.985 0.985
2.6 1 0.005 0.990 0.989
2.8 1 0.005 0.995 0.993
3.0 1 0.005 1.000 0.995

Total 204

Source: Data from Leeming (1963).

make various computations. One may estimate, for example, the percentage of vehicles that
have interarrival times less than 12 seconds. This is given by

100FX (X ≤ 0.2) = 100[1 − exp(−1.84)(0.2)] = 30.8%.

4.2.2.2 Memoryless property of the exponential distribution
As in the case of the geometric analogue of the discrete category, the exponential distri-
bution models a behavior, arising from the parental Poisson process, that is independent
of present or past occurrences. This can be shown as follows:

Pr[X > x1 + x2|X > x1] = Pr[X > x1 + x2]

Pr[X > x1]
= e−λ(x1+x2)

e−λx1
(4.2.5)

= e−λx2 = Pr[X > x2].

0.0

0.1

0.2

0.3

0.4

10 32

x

f X
 (x

)

Fig. 4.2.3 Exponential distribution (λ = 1.81) fitted to time intervals between vehicles passing a
point of observation.
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4.2.2.3 General exponential distribution
A more general form of the exponential is obtained when the lowest value the random
variable X takes is, say, ε, which is different from zero. In this way, the distribution is
sometimes called a shifted exponential with pdf

fX (x) = λe−λ(x−α), for x ≥ ε, λ > 0, (4.2.6)

= 0, otherwise.

4.2.2.4 Other applications
The exponential distribution has wide applications in all areas of science and engineering.
In Chapter 3 the times between earthquakes were estimated in this way. Similarly, one
can apply the distribution to model time to failure and probabilities of survival of various
design components of a mechanical or electrical nature, for example, in a water treatment
plant.

Even when the assumptions of a Poisson process are not fully met, the exponential
model may be adopted as a reasonable approximation. For example, arrival times of
vehicles may not be independent because minimum distances are maintained between
vehicles; this fact may account for the less-than-satisfactory fit to the exponential at the
left extremity in Example 4.21 (Fig. 4.2.3). Causes for the departure from a Poisson
process can also be attributed to speed limits, slow-moving vehicles, and other restrictions
or impediments. Likewise in applying risk and reliability to design components, slow
deterioration of machine parts will violate the conditions for a constant rate of risk over
time. Nevertheless, the exponential is adoptable in a wide variety of situations, even if it
is sometimes done as a first approximation. The exponential is equivalent to the Pearson
Type X distribution.

4.2.2.5 Renewal and point processes
Consider the following operative strategy concerning, for example, light bulbs or electronic
devices or components of a water treatment plant or other units that have an unpredictable
lifetime. Suppose all the units of interest are identical and that the first unit u1 is placed
in operation at time zero. We let this unit remain in operation up to a random instant T1

(corresponding to a random lifetime X1) until it fails and then immediately replace it with
another unit u2. This second unit is also made to survive up to failure at a random instant
T2, and we continue likewise indefinitely.

The (positive) lifetimes of successive units Xi , i = 1, 2, . . . represent a sequence of
independent identically distributed random variables. Hence the name renewal process
is given to these occurrences. The random variables T1, T2, . . . represent the times of
failure of the units u1, u2, . . . , and the link between the series {Xi } and {Ti } is given by
Tn = ∑n

i=1 Xi where T0 = 0. If we also consider that the random variables N (t), t > 0
count the (random) number of renewals in the interval (0, t], then {N (t), t > 0} is called a
counting renewal process. Statisticians do not often make a distinction between a renewal
process and the associated counting process.

For example, the Poisson process with rate of occurrence λ is a renewal counting
process with interarrival times that are exponentially distributed with common parameter
λ. Some practical situations that can be modeled are the successive failures of electronic
or mechanical components and the successive times or distances between cars passing a
given point of observation on an uninterrupted single-lane road.

The discrete series T0, T1, . . . constitute a point process.
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4.2.3 Erlang and gamma distribution

In the case of the number of discrete independent trials required for r successes, we noted
that the negative binomial distribution is an extension of the geometric distribution, which
concerns a single success. Similarly, when dealing with continuous variables, one may be
interested in the distribution of time to the r th arrival of a Poisson process. This results
in the Erlang distribution, the pdf (that is the probability per unit time) of which can be
obtained by multiplying the arrival rate by the probability that the (r − 1)th arrival occurs
around time t . (A. K. Erlang was a Danish engineer well known for his work on congestion
in telephone lines around 100 years ago.) Hence,

fX (x) = λ(λx)r−1e−λx

(r − 1)!
, for 0 < x and r = 1, 2, 3 . . . , (4.2.7)

= 0, otherwise.

More generally, we can consider that the times between arrivals, say, Ti , i =
1, 2, 3, . . . , r are independent and exponentially distributed with parameter λ. The distri-
bution of X = T1, T2, . . . , Tr can be shown, using Eq. (3.4.8) to take the form given by
Eq. (4.2.7).

The denominator, (r − 1)!, is the product of the first (r − 1) natural numbers. It can be
written in the form �(r ). This is applicable also to noninteger values of r , and is called
the complete (standard)gamma function when defined as

�(r ) =
∞∫

0

tr−1e−t dt, for r > 0, (4.2.8)

= 0, otherwise.

Integrating by parts, it can be shown that �(r + 1) = r�(r ) for any r > 0. Also, �(1) = 1,
which follows directly by substituting r = 1 in Eq. (4.2.8). Also,16 �(1/2) = √

π .
The standard gamma pdf is written as

fT (t) = tr−1e−t

�(r )
, for 0 ≤ t and r > 0, (4.2.9)

= 0, otherwise.

The parameter r is known as the shape parameter because it is related to the shape of the
pdf. This characteristic can be seen from the graphs of the standardized gamma pdfs for
r = 1, 2, and 5 as shown in Fig. 4.2.4a; the corresponding cdfs are given in Fig. 4.2.4b.

When r = 1, the distribution is exponential. As r increases, the skewness decreases;
that is, the distribution tends to become more symmetrical.

The incomplete gamma function ratio takes the form:

FT (t) =
t∫

0

xr−1e−x

�(r )
dx, for r > 0, 0 ≤ t, (4.2.10)

= 0, otherwise.

16 See, for example, Olkin et al., (1980, p. 537).
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Fig. 4.2.4 Standard gamma distribution (a) pdfs and (b) cdfs for r = 1, 2, and 5.

Extensive tables of the foregoing integral and its inverse have been published in the past,
for example, by Harter (1964). Since then, values are obtained from available computer
software programs or through a suitable computer algorithm.17

The gamma distribution is usually defined with two parameters arising directly from
Eq. (4.2.7) except that parameter r also takes noninteger values. Hence it is written as

fX (x |λ, r ) = λr xr−1e−λx

�(r )
, for 0 ≤ x with λ > 0 and r > 0, (4.2.11)

= 0, otherwise.

The term λ is the scale parameter, which scales the variable and makes it dimensionless.

4.2.3.1 Mean and variance of the two-parameter gamma distribution
As shown in Example 3.19, the mean and variance are as follows:

E[X ] = r

λ
(4.2.12a)

and

Var[X ] = r

λ2
. (4.2.12b)

These equations provide estimates of the two parameters by the method of moments. With
regard to the moment-generating function, if one treats the gamma variates X as the sum
of r independent exponentially distributed variates where r is an integer, then the mgf

17 See, for example, Shea (1988).
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follows from the mgf of the exponential [see Eq. (4.2.4d)]. Alternatively, one obtains the
mgf directly as follows:

MX (t) = E[eXt ]

=
∞∫

0

ext λr

� (r )
xr−1e−λx dx =

(
λ

λ − t

)r
∞∫

0

(λ − t)r

� (r )
xr−1e−(λ−t)x dx .

The integral is the area under a gamma (r, λ − t) function and is equal to 1. Hence,

MX (t) =
(

λ

λ − t

)r

. (4.2.12c)

From the physical viewpoint, engineers and scientists have found that the empirical
distributions of many natural and structural processes closely resemble the gamma. The
gamma distribution is especially important in statistics because the chi-squared distri-
bution is a particular form of the gamma with parameter r = v/2, where v denotes the
degrees of freedom, and λ = 1/2. The cdf of this distribution is

F(χ2) = 1

2

χ2∫
0

(t/2)(v/2)−1e−t/2

�(v/2)
dt, (4.2.12d)

where t is a dummy variable. The cdf of the chi-squared distribution is given in Table C.3
in the Appendix C.18

It is also possible to introduce [as in Eq. (4.2.6) for the exponential distribution] a
location parameter in Eq. (4.2.11), say, ε ≥ 0, by changing the variable x twice to (x − ε),
which means that ε ≤ x . Written as such with three parameters (or sometimes in the
simpler two-parameter form), the distribution is also referred to as a Pearson Type III.19

Definition: The gamma distribution models the waiting time between the nth and (n + r )th
Poisson events. In the two-parameter form, it has pdf

fX (x |λ, r ) = λr xr−1e−λx

�(r )
, for 0 ≥ x with λ > 0 and r > 0.

The mean and variance are

E[X ] = r

λ
and Var[X ] = r

λ2
.

The mgf is

MX (t) =
(

λ

λ − t

)r

.

Example 4.22. Pumps for water supply. At a remote pumping station two pumps are
operated so that, when there is a breakdown of one pump, the other pump (which serves
as a standby) is switched on automatically. The pumps are identical and have a mean time
between breakdowns of 300 days. Determine the probability density function of the time, in
days, during which the system operates until a complete breakdown.

18 For large v, χ2
p ≈ 1/2(z p + √

2v − 1)2 where χ2
p and z p are the pth quantiles of the chi-squared and normal

distributions, respectively. If v ≥ 30, for example, the error is less than 1%.
19 See Chapter 7.
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It is assumed that the occurrences of breakdowns are Poisson-distributed, and the operating
time span of a pump has a pdf

fX (x) = 1

300
e−x/300, for x ≥ 0,

= 0, otherwise.

Also, the performance of one pump is assumed to be independent of the other, so that the life
of the system, Z , which is the sum of the lives of the units X which comprise it, has a gamma
pdf

fZ (z) = 1

300

( z

300

)
e−z/300, for z ≥ 0,

= 0, otherwise.

Example 4.23. Design with timber. For the data pertaining to the modulus of rupture of
timber in Table E.1.1, determine the value which is not exceeded more than 5% of the time on
the basis of a two-parameter gamma model. Also, determine the probability of exceedance
of 20 N/mm2.

From Table 1.2.2, the estimated mean and standard deviation of the timber strength data are
x̄ = 39.09 and ŝ = 9.92 N/mm2, respectively. From Eq. (4.2.12a) and (4.2.12b), the estimates
of the two parameters are

λ̂ = x̄

ŝ2
= 39.09

9.922
= 0.397 (N/mm2)−1 and r̂ = λ̂x̄ = 15.5.

We obtain approximate solutions by using the inverse of the chi-squared distribution
[Eq. (4.2.12d)] given in Table C.3 in the Appendix. For the chi-squared distribution, we
note the following:

(a) The shape parameter r and the degrees of freedom v have the relationship v = 2r .
(b) The scale parameter λ = 1/2.

Therefore, we refer to v = 31, because of (a), and F = 0.05 in Table C.3. The entry of 19.3 is
then multiplied by 1/2, because of (b), to give a value of 9.65 as the standard gamma variate
t of Eq. (4.2.10). To apply the two-parameter gamma distribution of Eq. (4.2.11), one must
divide the t value by λ̂ = 0.397 to give 24.3 N/mm2 as the answer to the first part of the
question. That is, we are 95% confident that the timber strength exceeds 24.3 N/mm2.

For the second part of the question,

x = 20.00 N/mm2,

and thus the corresponding gamma standard variate

t = x λ̂ = 7.94.

If one divides this by the chi-squared scale parameter of 1/2, one gets the required entry
of 15.88 in Table C.3 for v = 31. We see that FX (15.88) is approximately 0.01; that is
the probability of exceedance is 0.99. Thus, if the design is based on a timber strength of
20 N/mm2, we can reasonably expect this value to be exceeded in 99 cases out of 100. An
engineer may decide to lower the design strength or select a different timber, if more stringent
conditions are to be imposed.

4.2.4 Beta distribution

The beta distribution models a random variable that takes values in the interval given by
0–1. The distribution plays a special role in decision methods.
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Definition: The beta pdf is given by

fX (x |α, β) = 1

B(α, β)
xα−1(1 − x)β−1, for 0 < x < 1, α > 0, β > 0, (4.2.13a)

= 0, otherwise.

The expression

B(α, β) =
1∫

0

xα−1(1 − x)β−1dx = �(α)�(β)

�(α + β)
(4.2.13b)

denotes the beta function with parameters α and β.

It follows from the two preceding equations that the nth moment is

E[Xn] = B(α + n, β)

B(α, β)
. (4.2.14a)

Hence, by using the relationship with the gamma function in Eq. (4.2.13b) and using the
previously mentioned relationship �(r + 1) = r�(r ),

E[X ] = α

α + β
. (4.2.14b)

Also, because �(r + 2) = (r + 1)�(r + 1) = r (r + 1)�(r ) and by simplifying,

Var[X ] = αβ

(α + β)2(α + β + 1)
. (4.2.14c)

Graphs of the beta distributions are given in Fig. 4.2.5 for beta(1, 4), (4, 4), and (2, 6).
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Fig. 4.2.5 Standard beta distribution (a) pdfs and (b) cdfs for three sets of shape parameters.
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Note that for equal values of the parameters, the beta pdf is symmetrical. From
Eq. (4.2.13) it follows that beta(1, 1) ∼ uniform(0, 1). Furthermore, the beta is related to
the normal and F distributions (details of which are given in Chapter 5). Thus, the beta is
a very versatile distribution and can be applied in diverse situations. The beta, in the form
given here, is equivalent to the Pearson Type I distribution.

Example 4.24. Maintenance of major roads. In a certain country, there are 10 major
roads in State A and a similar number and length of roads in State B. The proportion of roads
that require substantial maintenance works during an annual period can be approximated by
beta(4, 3) and beta(1, 4) distributions, respectively, in the two states.

(1) Which State should spend more on annual maintenance?
(2) What is the probability that not more than two roads will require substantial mainte-

nance work in State B during an annual period?

For the first question, the mean number of roads that require extensive maintenance work
is 10μ = 10α/(α + β). By substituting the values of the parameters given, it is seen that state
A should need to spend on approximately six roads. In State B this number is reduced to two.
Therefore, State A needs to spend more.

To answer the second question, we use Eq. (4.2.13b) for the beta(1, 4) distribution. The
proportion of roads is 0.2. Hence from the beta cdf,

F(0.2) =
0.2∫

0

xα−1(1 − x)β−1

B(α, β)
dx = �(1 + 4)

�(1)�(4)

0.2∫
0

(1 − x)3dx

= 4

[
x − 3x2

2
+ 3x3

3
− x4

4

]0.2

0

= 0.59.

Because this probability is not very high, an engineer may provide for more than two roads
to be maintained in a given year.

4.2.5 Weibull distribution

The Weibull distribution (named after the Swedish physicist W. Weibull, who applied it
when studying material strengths such as yield strengths of Bofors steel and fiber strength
of Indian cotton, and other phenomena; see Weibull, 1951) provides a close approximation
to the probability laws of many natural phenomena. It has been used to model, for example,
the time to failure of electrical and mechanical systems. In reliability engineering, attention
is often focused on a threshold level below which a system or component or basic material
has an unacceptable probability of failure. The exponential is sometimes used as a basic
model. However, the Weibull distribution has greater flexibility and closer fit to failure
strengths and times of failure, and it is also one of the asymptotic distributions of general
extreme value theory [see Gumbel (1954), and discussions in Chapter 7]. Numerous
publications have been made on the theory and application of the Weibull distribution.
As shown in this section, it is closely linked to the exponential distribution which can be
viewed as a (simplified) special case of the Weibull.

Definition: The two-parameter Weibull pdf with parameters β and λ > 0 is given by

fX (x) = β

λ

( x

λ

)β−1
exp

[
−

( x

λ

)β
]

, for x > 0, (4.2.15)

= 0, otherwise.
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Fig. 4.2.6 Weibull distribution (a) pdf and (b) cdf for β = 1, 2, and 4.

The cdf takes the form

FX (x) = 1 − exp

[
−

( x

λ

)β
]

, for x > 0, (4.2.16)

= 0, otherwise.

From the preceding definition we see that if a random variable X ∼ Weibull (β, λ), then
Y = (X/λ)β ∼ exponential (1), that is, fY (y) = exp(−y).

Graphs of the Weibull pdf and cdf are given in Fig. 4.2.6 for values of the shape
parameter β equal to 1, 2, and 4, with the scale parameter λ = 1. For higher values of β,
the pdf tends to become symmetrical, as seen for β = 4.

By using the relationship between the exponential and the Weibull distribution already
described, one can show that the mean and variance of the Weibull distribution are given
by

E[X ] = λ�

(
1 + 1

β

)
, (4.2.17a)

and

Var[X ] = λ2

[
�

(
1 + 2

β

)
−

(
�

(
1 + 1

β

))2
]

. (4.2.17b)

Also, the coefficient of variation VX has the relationship:

V 2
X = �[1 + (2/β)]

[�[1 + (1/β)]]2 − 1 (4.2.17c)

(see Tables C.5 and C.6 in Appendix C and Problem 4.21).
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It is clear from Eq. (4.2.16) and Fig. 4.2.6 that for β = 1, the distribution is exponential.
Confidence limits can be constructed (as shown in the next example) on the value of β

because

X2 = 2nβ

β̂
(4.2.18)

has an approximately chi-squared distribution with v = 2n degrees of freedom, where n
is the sample size.20

Example 4.25. Estimation of low flows. Ten years of annual minimum 10-day minimum
flow data—using the average of 10 consecutive low flows in the driest sequence of each
year—from the River Pang at Pangbourne in hydrometric area 39 in England are ranked and
given below in cubic meters per second:

13.4 25.7 32.2 35.9 40.0 40.0 40.4 50.7 58.2 71.4.

The data are from the Institute of Hydrology, Wallingford. The Weibull distribution is as-
sociated with extreme value theory applied to minima and, therefore, using it to model the
distribution of low flows is justifiable. The present sample size does not warrant the applica-
tion of a distribution with more than two parameters. Using the method of moments, one can
estimate the mean and variance of the data and solve Eq. (4.2.17) iteratively for the shape
parameter β and then for the scale parameter λ. This requires an algorithm for the complete
gamma function, or tables of this function and particular ratios of the function. The maximum
likelihood method, as discussed in Subsection 3.2.3, is also iterative.21 Alternatively, one can
use a least-squares procedure, as given here. It follows from Eq. (4.2.16) that

ln(xi ) − ln(λ) = {ln[− ln(1 − FX (xi ))]}
β

.

We apply the plotting position FX (xi ) = (i − 0.35)/n (as in Example 3.21) and let22

zi = ln(xi )

and

yi = ln{− ln[1 − FX (xi )]}.
Hence, we obtain the following linear relationship:

zi = yi

β
+ ln(λ) + ε

where i is the rank of the data in ascending order, n is the number of items of data, and ε is
an error term in the regression (that is a deviation from the linear model).23 We have from a
least-squares fit to the equation just given, for n = 10,

β̂ =
∑10

i (yi − ȳ)2∑10
i (yi − ȳ)(zi − z̄)

= 2.59,

and

λ̂ = exp
(
z̄ − ȳ/β̂

) = 44.85 m3/s,

20 See Crow (1974).
21 See Van der Auwera et al. (1980) and Smith and Naylor (1987).
22 As discussed further in Chapter 5, the plotting position refers to the probability at which x(i) should be plotted.
23 Details of regression are given in Chapter. 6.
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Fig. 4.2.7 Ten-day low flows at Pangbourne, on the Pang River, England. Weibull probability
plot using plotting position (i − 0.35)/n; i is rank of data in ascending order; and number n of
items of data is 10.

where

z̄ = 1

10

10∑
i=1

zi ,

and

ȳ = 1

10

10∑
i=1

yi .

The preceding linear relationship between z and y (without the error term) representing the
least squares fit of the data to the two-parameter Weibull distribution is shown in Fig. 4.2.7.

From Eq. (4.2.18) the approximate lower 99% confidence limit for β is

β̂

2n
x2

2n,0.99 = 2.59

20
× 8.26 = 1.07.

Because this is greater than 1, the distribution is significantly different from the exponential.
Quantile estimates can be obtained using the estimates of the Weibull parameters and the

preceding equations. For example, the annual minimum 10-day low flow with a return period
of 10 years can be estimated as follows:

y10 = ln

{
− ln

[
1 − 1

10

]}
= −2.25,

and

x10 = exp

[(
y10

β̂

)
+ ln(λ̂)

]
= exp

[(−2.25

2.59

)
+ ln(44.85)

]
= 18.8 m3/s.

Example 4.26. Wind speeds. Engineers must deal with problems and opportunities related
to wind speed. For example, tall structures must be designed to resist the force of high-speed
winds (as discussed in Chapter 7). Wind power is an inexpensive energy resource.

The Weibull distribution is frequently used to model wind speeds.24 Thus if U denotes the
wind speed at a point in space, the pdf is

fU (u) = β

λ

(u

λ

)β−1
exp

[
−

(u

λ

)β
]

,

where λ and β denote the scale and shape parameters, respectively.

24 See Van der Auwera et al. (1980).
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If β = 2, the pdf is said to have the Rayleigh distribution. In fact the values of β are close
to 2 for the fitted Weibull distributions in Northern Europe.25 This property is noted from the
estimates of the Weibull parameters at 175 meteorological stations using twelve 30◦ sectors,
five heights, and four classes of surface roughness. However, problems have been encountered
in fitting data pertaining to very low or very high wind speeds.

If U is Weibull distributed with λ and β as stated, then U m is also Weibull distributed
with corresponding parameters λm and β/m.26 The available power wind density (that is, ex-
pected wind power per unit area) can be determined using this property. Neglecting the
effects of turbulent fluctuations, we find power density is related to the wind speed as
follows:

P = ρa
U 3

2
,

where P denotes power density in watts per square meter and ρa is the density of air (approx-
imately 1.2 kg/m3 at a temperature of 15◦C). From the properties of the Weibull distribution,
the mean power density is then

E[P] = 0.5ρaλ
3�

(
1 + 3

β

)
.

Furthermore, from the differential of the Weibull pdf [Eq. (4.2.15)], one can show that the
modal value of wind speed is given by

λ

(
β − 1

β

)1/β

.

Thus for the Rayleigh distribution, the modal wind speed is λ/
√

2.

Further developments of the Weibull distribution are given in Chapter 7 in relation to
extreme values.

4.2.6 Normal distribution

The normal distribution arose originally in the study of experimental errors. Such errors
pertain to unavoidable differences between observations when an experiment is repeated
under similar conditions. An alternative term is noise, which is used in telecommunication
engineering and elsewhere when referring to the difference between the true state of nature
and the signal received. The uncertainties which are manifest in the errors may arise from
different causes that are not easily identifiable. One must exclude from this definition of
errors any mistakes in measurement or recording, which should be rectified beforehand.
As noted in Chapter 1, when a sequence of observations is made, they generally tend to
cluster around a central value, with smaller deviations occurring more frequently than
larger errors.

The normal distribution is an ideal candidate to represent such errors when they are
of an additive nature. The normal curve originated in the eighteenth century and was
developed later by the German mathematician Gauss and others. By normal one used
to imply that any data set that does not comply is exceptional. On the other hand, the
contributory causes of the aforementioned errors may have a multiplicative effect or their

25 See Troen and Peterson (1989).
26 See Subsection 3.4.1 on transformations.
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squares may be additive, in which cases the lognormal distribution (see Subsection 4.2.7)
and the gamma distribution (see Subsection 4.2.3), respectively, are appropriate.

The pdf of the normal distribution is given by

φ(x) = 1

σ
√

2π
exp

[
−1

2

(
x − μ

σ

)2
]

, for −∞ < x < ∞ (4.2.19)

and specified by two parameters. As shown in Example 3.23, these are the mean μ, the
location parameter, and the standard deviation σ , the scale parameter, of the population.27

The notation N (μ, σ 2) is used to indicate such a distribution. The normal curve is shown
in Fig. 4.2.8 for two sets of parameter values—these should be in the units of the variable,
such as N/mm2 in the case of the strength of a material used in civil engineering.

We see that the mean μ locates the mode, whereas the variance σ 2 governs the spread.
The cdf of the normal distribution can only be evaluated by numerical methods. In practice
one uses the standardized curve for the purpose of evaluation with the transformation of
the variate X to Z as follows:

Z = X − μ

σ
. (4.2.20)

Thus Z is an N (0, 1) variate with pdf

φ(z) = 1√
2π

exp

(
− z2

2

)
. (4.2.21)

The pdf of the standard normal variate is shown in Fig. 4.2.9.
The cdf of X can then be written as

FX (x) = Pr [X ≤ x] = Pr

[
Z ≤ x − μ

σ

]
= Pr [Z ≤ z] (4.2.22)

= (z) =
z∫

−∞

1√
2π

exp

(
− t2

2

)
dt, for −∞ < z < +∞.

0.0
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0.4

0.6

0.8

1.0

−6 −4 −2 20 64 8

x

f X
 (x

) μ 
σ  = 2.5

 = 1.0

μ 
σ = 0.5

 = 2.5

Fig. 4.2.8 Normal probability density functions.

27 The normal distribution is derived in Appendix A.4.
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Fig. 4.2.9 Standard normal density function.

Table C.1 in Appendix C gives numerical solutions of this integral for values of the
argument from 0 to 4.5. Because of the symmetry of the pdf as shown by Eq. (4.2.21),

(−z) = 1 − (z), (4.2.23)

which allows one to find solutions for negative arguments.

Example 4.27. Compressive strength of concrete. In Table 1.2.2 the mean and standard
deviation of the compressive strengths of 40 concrete cubes from a particular mix are given
as 60.14 and 5.02 N/mm2. As seen from the stem-and-leaf plot of Fig. 1.3.1, the box plot of
Fig. 1.3.2, and the estimated values of skewness and kurtosis in Table 1.2.2, it is reasonable
to assume that the compressive strengths have a normal distribution. In fact this is confirmed
from the results of numerous studies on this phenomenon.28 The answers to the following
questions will, therefore, be based on this assumption:

(a) What value of compressive strength is exceeded in 19 tests out of 20?
We need to find the value of x which satisfies the condition

Pr[X > x] = 1 − FX (x) = 1 − (z) = 19

20
= .95.

Thus,

(z) = 1 − 0.95 = 0.05.

From Table C.1 and Eq. (4.2.23), z = −1.645 satisfies the condition. Hence using Eq. (4.2.20)
with sample estimates and values of random variables, we find

x = x̄ + z × ŝ = 60.15 − 1.645 × 5.02 = 51.9 N/mm2.

(b) What is the probability that a test cube will fail when subjected to a compressive
strength of 45 N/mm2 or less?

For the assumed N (60.14, 5.02) population, one obtains from Eq. (4.2.22),

Pr[X < 45] = FX (45) = 

(
45 − 60.14

5.02

)
= (−3.02) = 1 − 0.9987 = 0.0013,

by using Eq. (4.2.23) and Table C.1.
Although this value is close to zero, an engineer may decide to adopt a lower design value,

particularly if there is doubt about quality control on-site. It is, however, important to consider
the size and nature of the work, the risks involved, and the consequences of failure in decisions
of this nature.

28 See, for example, Neville (1995, pp. 637–641).
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(c) What is the probability that the compressive strengths are in the range 50.11–
70.19 N/mm2, that is, two standard deviations from the mean?

Pr[50.11 ≤ X ≤ 70.19] = 

(
70.19 − 60.14

5.02

)
− 

(
50.11 − 60.14

5.02

)
= (2) − (−2) = (2) − [1 − (2)]

= 2(2) − 1 = 2 × .97725 − 1 = .9545.

The probability is the area under the curve between the two vertical lines in Fig. 4.2.9.

Example 4.28. Settlement of bridge foundations A proposed bridge across a stream is
supported at the two ends and on a center pier. Although the design allows for relative
settlements of the foundations, the engineer needs to keep these within limits. Settlements
caused by the sum of numerous dead loads and impacts of moving vehicles may be assumed
to be normally distributed, with the variability arising from the effects on the soil by the
foundations. By correlating with results of tests on similar structures and soil conditions, the
means and standard deviations of the settlements are estimated at the left end, center pier, and
right end as 3.0, 5.0, and 3.0 cm and 1.0, 1.5, and 1.0 cm, respectively, with the higher values
pertaining to the foundation of the center pier. It is also assumed as an initial approximation
that the settlements are independent.

(a) What is the probability that the maximum settlement is in excess of 7.5 cm?
Because of the assumed independence between the three settlements,

Pr[Xmax > 7.5] = 1 − Pr[(X1 ≤ 7.5) ∩ (X2 ≤ 7.5) ∩ (X3 ≤ 7.5)]

= 1 − 

(
7.5 − 3

1.0

)


(
7.5 − 5

1.5

)


(
7.5 − 3

1.0

)
= 1 − (4.5)(1.67)(4.5)

= 1 − 0.952 = .048.

(b) Specify the maximum relative settlement of the center pier for which the engineer
should design on the basis that this will be exceeded with a probability of 0.0001. Assume
that the two adjacent foundations on the banks of the stream are stabilized so that their
settlements are negligible.

Pr[X2 > x] = 0.0001.

Pr[X2 ≤ x] = (z) = 

(
x − 5

1.5

)
= 0.9999.

Hence, z = 3.72 and x = 1.5 × 3.72 + 5 = 10.58 cm.

4.2.6.1 Some properties of the normal distribution
(1) A linear transformation Y = a + bX of an N (μ, σ 2) random variable X makes Y

an N (a + bμ, b2σ 2) random variable.
(2) If Xi , i = 1, 2, . . . , n are independent and identically distributed random variables

from a population with mean μ and standard deviation σ , then the random variable

X̄n =
n∑

i=1

Xi

n
,

that is the sampling mean, from a random sample of size n from the same population,
tends to have an N (μ, σ 2/n) distribution as n approaches infinity.
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This important result is called the Central Limit Theorem.29 If Xi is from a N (μ, σ 2)
population, then the result holds regardless of the sample size n. The theorem states that
even if the distribution of the random variable Xi is not normal, the so-called sampling dis-
tribution of its mean will tend to normality asymptotically. It also means that a large sample
size n is required if the Xi are moderately nonnormal to obtain this result approximately,
say, n > 30, but n should be much larger for greater departures from normality.

Example 4.29. Concrete densities. The mean and standard deviation of the densities of
concrete from a particular mix given in Table 1.2.2 are (very close to) 2445 and 16 N/mm2,
respectively. We do not know the values pertaining to the population. However, let us assume
that the standard deviation of 16 N/mm2 is the true value. (We shall consider the case of
an unknown standard deviation, Chapter 5.) From the values of skewness and kurtosis in
Table 1.2.2, it seems reasonable to assume that the density of concrete represented here is
from a normal population; a uniform distribution is an approximation used, for instance, in
Example 3.37. Then the distribution of X̄n = ∑n

i=1 Xi/n will be approximately N (μ, 162/n)
even for small values of n. We note from Table C.1 that, for example, (2.575) = 0.995.
Thus we can say, using Eq. (4.2.20),

Pr[−2.575 × 16/
√

n ≤ (X̄n − μX ) ≤ 2.575 × 16/
√

n] = .99.

This means that if we have a sample size, say, n = 16,

Pr[−10.3 ≤ (X̄n − μ) ≤ 10.3] = 0.99.

The implication is that even with a small sample of 16, we are 99% confident that the mean
can be estimated within 10 N/mm2 of the true value. Of course, if the variance is larger (or
if the sample size is smaller), the difference will be greater. There will be more about these
aspects in Chapter 5.

4.2.6.2 Binomial and Poisson approximations to normality
In Section 4.1 we noted that if X is a binomial (N , p) variate, we may treat X as the sum
of n Bernoulli (p) variates. Hence from the Central Limit Theorem, X/n tends to have a
normal distribution when n becomes large. Recalling that the mean and variance of the
binomial X are np and np(1 − p), the distribution of the random variable

Z = X − np√
np(1 − p)

(4.2.24a)

will tend to that of an N (0, 1) variate as n increases to infinity. If p is close to 0 or 1 (which
means large departures from normality), greater values of n are required for the result to
hold approximately than when p is close to 0.5.

Likewise, we noted that the Poisson distribution has mean and variance v . If X ∼
Poisson (v), then for increasing values of the mean count v , the standardized variable

Z = X − v√
v

(4.2.24b)

tends to be N (0, 1) distributed; v > 5 is a reasonable, close approximation.

29 See Appendix A.6. Furthermore, the Weak Law of Large Numbers states that |X̄n − μ| is ultimately small as
n increases (which can be shown using the Chebyshev inequality when the variance of X exists). It might be
large infrequently for some n. The Strong Law of Large Numbers states that the probability of such an event is
extremely small. See Feller (1968, Chapter 10). Problems 4.24 and 4.25 concern the application of the Central
Limit Theorem.
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In general, if one approximates a discrete random variable by a continuous variable,
the probability mass (discrete or point value) when X takes the value x is spread over
the interval (x − 1/2) to (x + 1/2) in the continuous case; in so doing we replace a line
by an area under a curve. Thus, an appropriate correction should improve results and the
rectification for the spread is termed the continuity correction.

Example 4.30. Computer breakdowns. An engineer’s consulting office has a large number
of computers. However, in recent months there have been an excessive number of breakdowns,
averaging 5 per week. If the number out of use exceeds 7, not all the staff can work, and the
engineer needs to reinvest in new computers. What is the probability of such an occurrence?

We shall assume that the breakdowns are independent (on the hypothesis that if the defects
were related, diagnosis would have been possible earlier) and identically distributed. Hence
considering the weekly breakdowns B as occurrences of a Poisson random variable with
mean v = 5,

Pr[B > 7] = 1 −
7∑
0

e−55b

b!
= 1 − 0.866 = 0.134.

We now apply the normal approximation with the continuity correction. Noting that the
variable has a mean and variance of 5 and using Eq. (4.2.24b) and Table C.1 for the distribution
of the standard normal variable, we find

Pr[B > 7] = 1 − 

(
7 + 0.5 − 5√

5

)
= 1 − 0.868 = 0.132.

We see that virtually the same result as from the Poisson distribution is obtained in a small
fraction of the time by using the normal approximation.

Definition: Normal distribution. The pdf of a normal variate, X , with mean μ and standard
deviation σ , that is, an N (μ, σ 2) variate, is

φ(x) = 1

σ
√

2π
exp

[
−1

2

(
x − μ

σ

)2
]

, for −∞ < x < +∞.

The cdf of the (transformed) standard normal variate Z = (X − μ)/σ , that is, a N (0, 1)
variate, is

(z) =
z∫

−∞

1√
2π

exp

(
− t2

2

)
dt, for −∞ < z < +∞,

which can be read from Table C.1. Some important properties include the following:

(1) A linear transformation Y = a + bX of an N (μ, σ 2) variate X makes Y an N (a +
bμ, b2σ 2) variate.

(2) The mgf is given by MX (t) = exp(μt + σ 2t2/2) (see Appendix A.5).
(3) Central Limit Theorem: If a random variable Xi is from a population with mean μ

and standard deviation σ , then the random variable X̄n = ∑n
i=1 Xi/n from a random

sample of size n tends to have an N (μ, σ 2/n) distribution as n approaches infinity. If
Xi is normally distributed, the result holds regardless of sample size (see Appendix
A.6).

(4) The mean X̄ and variance S2 of n independent normal variates, X1, X2, . . . , Xn , are
independent.30

30 See, for example, Hoel (1984, pp. 394–396).
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4.2.6.3 Truncated normal distribution
In Section 4.1, the truncated Poisson process was discussed for appropriate discrete vari-
ates. Similarly for the normal and other continuous distributions, a population may be
truncated because, for example, a stipulation is applied in the manufacturing process. If
the upper limit is xμ, then the resulting distribution of the variate X with original pdf
fX (x) and cdf FX (x) is represented by the conditional pdf:

fX |X≤xa (x) = a fX (x), for x ≤ xu, (4.2.25a)

= 0, otherwise,

where the constant a is given by

a = 1/FX (xμ). (4.2.25b)

If a lower bound xl is introduced, the inequality in Eq. (4.2.25a) is reversed and
Eq. (4.2.25b) modified accordingly. It is also possible to introduce lower and upper bounds
at the same time, thus truncating the pdf in both directions. Then,

a = 1/[FX (xμ) − FX (xl)].

4.2.7 Lognormal distribution

We noted in Section 4.2.6 that the addition of a large number of small random effects
will tend to make the distribution of the aggregate approach normality. Likewise, if a
phenomenon arises from the multiplicative effect of a large number of uncorrelated factors,
the distribution tends to be lognormal (or logarithmic normal), that is, the logarithm of
the variable becomes normally distributed. There are numerous examples in nature, such
as the distribution of small particle sizes in sediment transport, the crushing of aggregates,
the strength or yield stress of some materials used in construction, and the magnitudes and
interarrival times of earthquakes (see Aitchison and Brown, 1957). This type of reasoning
can also be extended to the occurrences of floods and droughts.

Let X be a positive random variable and define

Y = ln(X ). (4.2.26)

Also let Y have an N (μY , σ 2
Y ) distribution; then we can say that X has a lognormal

distribution, that is, L N [μln(X ), σ
2
ln(X )]. Using the one-to-one transformation given by

Eq. (3.4.4), the pdf of the lognormal distribution is obtained from Eqs. (4.2.19) and
(4.2.26) as

fX (x) = 1

xσln(X )

√
2π

exp

{
−1

2

[
ln(x) − μln(X )

σln(X )

]2
}

, for 0 ≤ x < +∞. (4.2.27)

Plots of the lognormal pdf are shown in Fig. 4.2.10 for two different pairs of values of the
parameters.

Because Y = ln(X ) has a normal distribution, we can use the tables of the normal
distribution (Appendix C, Table C.1) to determine a probability or solve an inverse problem
as shown shortly.

By using the moment-generating function with Eqs. (4.2.26) and (4.2.27), the expecta-
tion operator can be written as

E[Xr ] =
∞∫

0

xr fX (x)dx = 1

σln(X )

√
2π

∞∫
−∞

ery exp

{
−1

2

[
y − μln(X )

σln(X )

]2
}

dy.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 17, 2008 21:2

216 Applied Statistics for Civil and Environmental Engineers

0.00

0.04

0.08

0.12

0.16

50 10 15 20

x

f X
 (x

)

μ ln(X) = 2.2; s ln(X ) = 0.5

μ ln(X) = 1.5;  σ ln(X ) = 1.0

Fig. 4.2.10 Lognormal density functions.

Thus,

E[Xr ] = E[eYr ]; Y ∼ N (μln(X ), σ 2
ln(X )).

Therefore,

E[Xr ] = MY (r ) = exp
[
rμln(X ) + 1

2r2σ 2
ln(X )

]
.

Hence the mean is

μX = E[X ] = exp
[
μln(X ) + 1

2σ 2
ln(X )

]
. (4.2.28a)

Similarly, the variance takes the form

σ 2
X ≡ E[X2] − μ2

X = exp
{
2

[
μln(X ) + σ 2

ln(X )

]} − exp
{
2

[
μln(X ) + 1

2σ 2
ln(X )

]}
.

Using Eq. (4.2.28a), we can write this as

σ 2
X = μ2

x

{
exp

[
σ 2

ln(X )

] − 1
}
. (4.2.28b)

Equation (4.2.28b) gives the coefficient of variation:

VX = σX

μX
= {

exp
[
σ 2

ln(X )

] − 1
}1/2

. (4.2.28c)

By denoting the median by m, it follows directly from the properties of the normal distri-
bution [as shown by Eq. (4.2.22) and Table C.1] that

Fln(X )

[
m ln(X ) − μln(X )

σln(X )

]
= 0.5,

that is, m ln(X ) = μln(X ). Also, we note that the median of the log-transformed X population
equals the logarithm of the median of the original X population. (This result occurs because
the median is the middle term in a ranked series and the transformation does not change
the ranks—but such a property is not applicable to the mean or any other parameter.)
Hence, using the previous result, we write

m ln(X ) = ln(m X ) = μln(X ). (4.2.28d)

From Eq. (4.2.28a), we have

ln(μX ) = μln(X ) + 1
2σ 2

ln(X ).

Also, from Eq. (4.2.28c),

1
2σ 2

ln(X ) = ln
[(

V 2
X + 1

)1/2
]
.
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It follows from the two foregoing equations that

μln(X ) = ln(m X ) = ln

[
μX(

V 2
X + 1

)1/2

]
. (4.2.28e)

The lognormal is equivalent to the Johnson SL distribution.

Example 4.31. Lognormal distribution of timber strengths. Without the zero value, the
summary data representing the modulus of rupture in Table 1.2.2 has a coefficient of skewness
of 0.53. Although this is not highly significant, we may, in the first instance, fit a lognormal
distribution to the data. Also, the mean and coefficient of variation of the data are 39.33
N/mm2 and 0.24, respectively.

From Eq. (4.2.28c), we have

σln(X ) =
√

ln
(
V 2

X + 1
) =

√
ln(0.242 + 1) = 0.237.

From Eq. (4.2.28e)

μln(X ) = ln

[
μX(

V 2
X + 1

)1/2

]
= ln

[
39.33

(0.242 + 1)1/2

]
= 3.644.

Also from Eq. (4.2.28d), the median is

m X = 39.33

(0.242 + 1)1/2
= 38.24 N/mm2.

For example, to determine the modulus of rupture that is exceeded 95% of the time, we
solve the inverse of (x) = 0.05 using Table C.1 of the normal distribution. Thus, z = −1.645
for (z) = 0.05 and the corresponding y is given by

y − 3.644

0.237
= −1.645.

Hence, x = exp(y) = exp(3.644 − 0.237 × 1.645) = 25.9 N/mm2.
We may also be interested to know, for example, the probability that the modulus of rupture

of a randomly selected timber is not less than 20 N/mm2. This is given by

Pr[X ≥ 20] = 1 − FX (20) = 1 − FZ

[
ln(20) − 3.644

0.237

]
= 1 − Fz(−2.735) = .997

4.2.8 Summary of Section 4.2

In this section we have introduced some of the more commonly used continuous distribu-
tions. These are summarized in Table 4.2.2. For other types and more advanced concepts,
refer to books cited at the end of the chapter. In the next section we discuss some types of
multivariate distributions.

4.3 MULTIVARIATE DISTRIBUTIONS

Jointly distributed random variables were introduced in Section 3.3. In this section we
examine the multivariate type of distribution, which can model the common occurrences
of different types of events. Indeed many types of multivariate models can be formed on
the basis of the univariate distributions described in Sections 4.1 and 4.2. See, for instance,
Example 3.31 in which the number of pixels detected in the remote sensing of flooded areas
has a binomial distribution and the total number of inundated pixels is Poisson-distributed,
thus yielding a Poisson-binomial distribution for the probability of not detecting a part
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of an inundated area. Also, the exponentially distributed storm intensity and duration of
Example 3.33 lead to a bivariate exponential distribution of intensity and duration, taking
into account the correlation between these two variables. Furthermore, the density and
compressive strength of concrete is assumed to have a bivariate distribution (Example
3.43). In addition, the multinomial distribution which is used in counting multiple events
was derived in Section 4.1 as a generalization of the binomial distribution, replacing the
two types of Bernoulli events with several types. Thus there can be numerous possible
multivariate distributions.31 Our coverage is limited to the bivariate normal distribution,
but we discuss other types briefly.

4.3.1 Bivariate normal distribution

The joint distribution of two random variates, say, X and Y , each normally distributed is
termed the bivariate normal distribution. The pdf in standardized form is given as follows
applied to corresponding variates, Z1 and Z2:

fZ1,Z2 (z1, z2) = [2π (1 − ρ2)1/2]−1 exp

[
− (

z2
1 − 2ρz1z2 + z2

2

)
(2 − 2ρ2)

]
, (4.3.1)

where −∞ < z1, z2 < +∞ and ρ, constrained by −1 ≤ ρ ≤ 1, is the coefficient of linear
correlation between the two variates. Also, Z1 = (X − μX )/σX and Z2 = (X − μY )/σY ,
and the normalizing constants are constrained by −∞ < μX , μY < +∞, and σX , σY > 0.
In fact, these sets of parameters can be shown to be the means and standard deviations of
X and Y , respectively.

The bivariate normal distribution of the X and Y variates takes the form

fX,Y (x, y) = 1

2πσXσY

√
1 − ρ2

exp

{
− 1

2(1 − ρ2)

[(
x − μX

σX

)2

−2ρ
x − μX

σX

y − μY

σY
+

(
y − μY

σY

)2
]}

, (4.3.2)

where −∞ < x, y < +∞. The volume enclosed by the surface represented by Eq. (4.3.2)
is unity, which is also applicable to Eq. (4.3.1). The surface of a typical bivariate normal
distribution is shown in Fig. 4.3.1.

It is easy to show that the marginal distributions are the univariate distributions for X
and Y , and the conditional distributions can be obtained as in Eq. (3.3.15).

Example 4.32. Bivariate normal distribution of compressive strengths and densities of
concrete. In Example 3.37 we considered marginal triangular and uniform distributions for
the compressive strengths Y and densities X , respectively, of concrete listed in Table E.1.2.
Because of the assumption that the densities are uniformly distributed, the conditional and
marginal distributions of compressive strengths are equivalent; that is, the information from
the densities does not alter the engineer’s knowledge of the distribution of compressive
strengths. However, a closer representation can be made using marginal normal distributions
for both variables. Thus, the bivariate distribution is given by Eq. (4.3.2) and the marginal
distribution of the densities is

φ(x) = 1

σX

√
2π

exp

[
−1

2

(
x − μx

σx

)2
]

, for −∞ < x < +∞.

31 For details of many types of multivariate distributions, see Johnson and Kotz (1975).
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y (kg/m 3)

f (
x,

 y
)

x (N/mm
2 )

Fig. 4.3.1 Bivariate normal pdf.

From Eq. (3.3.15), the conditional pdf of the compressive strengths is

fY |X (y|x) = fY,X (y, x)

fX (x)
= σX

√
2π

exp[−(1/2)((x − μX )/σX )2]

1

2πσXσY

√
(1 − ρ2)

× exp

{
− 1

2(1 − ρ2)

[(
x − μX

σX

)2

− 2ρ
x − μX

σX

y − μY

σY

+
(

y − μY

σY

)2
]}

= 1

σ ∗
Y

√
2π

exp

[
−1

2

(
y − μ∗

Y

σ ∗
Y

)2
]

.

If, as in this application, the correlation is nonnegative, the variance of the conditional distri-
bution of compressive strengths reduces from that of the marginal to

Var[Y |x] = σ ∗2
Y = σ 2

Y (1 − ρ2).

Correspondingly, the mean is given by

E[Y |x] = μ∗
Y = μY + ρ

σY

σX
(x − μX ).

These relationships enable us to obtain the conditional pdf of the compressive strengths
Y , given the marginal pdf, the mean of the densities X , the correlation between the two
variables, and a measurement of X . If this measurement yields a value greater than the mean
and correlation is positive, then the conditional mean of compressive strengths is greater than
that of the marginal mean, as seen from the second relationship. However, the conditional
variance will be less than the marginal variance for all nonzero values of correlation; more
about this follows.

For the data referred to (from Table 1.2.2), ȳ = 60.14 N/mm2, sY = 5.02 N/mm2, x̄ =
2445 kg/m3, and (as given in Example 1.29) ρ̂ = 0.44. As assumed, the marginal pdf of
Y ∼ N (60.14, 5.022). For an observed X value of 2550 kg/m3, the conditional pdf of Y ∼
N (74.64, 4.512), which follows from the two relationships above. For example, prior to this
observation,

Pr[Y < 55] = 1 − 

(
60.14 − 55

5.02

)
= 1 − (1.023) = 0.153
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Fig. 4.3.2 Marginal and conditional (a) pdfs and (b) cdfs of compressive strength of concrete y
for three values of concrete density x .

and after the observation,

Pr[Y < 55] = 1 − 

(
74.64 − 55

4.51

)
= 1 − (4.354) = 0.00001.

In Fig. 4.3.2, the marginal pdf of Y is compared to three conditional pdfs for X values of
2350, 2400, and 2550 kg/m3. Also shown are the corresponding cdfs. Results and diagrams
such as these can be useful for design purposes.

Example 4.32 and Fig. 4.3.2 show how observations of one variable X can be used
to predict the performance of another, Y . We note that the correlation between the two
variables has reduced the spread of each of the conditional pdfs fY |X (y|x) compared to
that of the marginal pdf fY (y). This observation reflects a reduction in the variance and the
mean square error of prediction. The reduction increases with the correlation regardless of
its sign; on the other hand, with little or no correlation between the variables this exercise
is ineffectual. If the correlation is positive and the observation of X is greater (lower) than
its expected value, then the prediction of Y is revised upward (downward). With negative
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correlation these conditions are reversed. This procedure is applicable in many spheres of
civil and environmental engineering.

4.3.2 Other bivariate distributions

Several bivariate distributions such as the lognormal distribution are useful in science and
engineering. The cdf of the bivariate exponential distribution is given by

FX,Y (x, y) = 1 − e−ax − e−by − e−ax−bx−cxy, for x, y ≥ 0; 0 < a, b, c.

We demonstrated its use in Chapter 3.32

Another example is the bivariate logistic distribution, the basic form of which is

FX,Y (x, y) = (1 + e−x + e−y)−1.

For other types and for the estimation of parameters, refer to one of the texts cited at
the end of this chapter.33

4.4 SUMMARY FOR CHAPTER 4

As shown here, it is desirable to represent a set of observations by a specific type of
distribution rather than a histogram (Chapter 1), which can then be treated as a prelimi-
nary graph. These distributions will enhance objectivity through computer simulation or
hypothesis testing on parameters (Chapter 5).

In this chapter, several useful probability distributions are described and developed.
Important properties have been listed. The physical relevance of the various types and the
assumptions made are discussed.

Summaries of the distributions are given in Tables 4.1.7 and 4.2.2, which pertain to
discrete and continuous distributions, respectively. The lists are not comprehensive. For
example, details of extreme value distributions are included in Chapter 7. Furthermore, an
example of the Rayleigh distribution is given in this chapter (Example 4.26), the Pareto
distribution is illustrated in Chapter 3 (Example 3.46) and elsewhere, and the Cauchy
pdf is given by Eq. (5.9.2). Further details of the distributions analyzed here and several
additional types are found in the cited references (see, for example, Evans et al., 2000).

We have shown in this chapter and elsewhere that there are theoretical links between
different discrete and continuous distributions. For example, the exponential distribution
is associated with the gamma and Weibull, whereas the normal is central to many types
such as the Poisson, binomial, gamma, lognormal, and beta distributions.34

Many of the frequent distributions can be represented by so-called families of distribu-
tions. These include useful types such as the Johnson system of distributions.35

32 See Examples 3.33, 3.34, 3.35, and 3.36, and 3.44.
33 See, for example, Johnson and Kotz (1975). The bivariate lognormal distribution is applied by Kottegoda and
Natale (1994) in irrigation.
34 Leemis (1986) presents a chart showing most of these relationships.
35 See, for example, Hahn and Shapiro (1967), Johnson et al. (1994, 1995), Kottegoda (1980, 1987).
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PROBLEMS

4.1. Protective sea embankment. To counteract the effects of erosion and damage
caused by sea waves, an embankment wall is built alongside a railway line. From
recorded data, the annual maximum wave height exceeds that of the embankment,
on average, once in 8 years. What is the probability that the embankment will
be overtopped at least once during the next 10 years? Assume that the events are
independent and identically distributed.

4.2. Dam design. Determine the return period that should be used in a design for a small
dam so that the design flood is exceeded with a probability of not more than 0.05
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during a 50-year economic time horizon. Assume that the events are independent
and identically distributed.

4.3. Bridge design. A bridge is to be constructed over a river. The design criterion is
that a flood should rise above the high-level marks on the piers in not more than
once in 25 years with a probability not exceeding 0.1. What return period should
be used in the flood design? Assume that the events are independent and identically
distributed.

4.4. Revision of dam design. In a situation similar to that of Problem 4.3, supposing
the engineer adopts a 100-year design period, determine (a) the probability that the
design flood level is not exceeded during a 100-year period (b) the probability that
the design flood is exceeded just after the tenth year but not during the first 10 years.

4.5. Frequent flooding. Calculate the probability of having two 10-year flows in a 5-year
period assuming that the events are independent and identically distributed.

4.6. Storm sewer design. For a storm sewer design, an engineer uses the annual maxi-
mum 1-hour rainfall with a 5-year return period as a design criterion. As shown on
the city plan, sewer A drains one area of the city and sewer B drains the remaining
area. However, there is no correlation in the intensive rainfalls which occur in the
two parts of the city, although the storm characteristics are the same. What is the
probability that there will not be more than two design events in the city during a
5- year period?

4.7. Vehicle count. The following count is made on the number of vehicles that pass an
observation point every 10 minutes for 1 hour. What counts are expected theoreti-
cally if the distribution is Poisson?

Count i 0 1 2 3 4 5 6
Frequency f 220 94 23 11 4 2 1

4.8. Machine failure. The probability that a certain make of piling machine breaks
down is 0.00002 per 100 m of piles made. What is the probability of having one
breakdown after 1000 m and before 1010 m of piles?

4.9. First-time failure. Taking the probability given in Problem 4.8 as the probability of
failure during a week’s work and an average weekly production of 1000 m of piles,
determine the probability of failure for the first time after 3 months. How does the
first-time probability of failure vary with time?

4.10. Transportation. An operator runs a small bus which conveys people from a town
center to a large shopping complex. The bus leaves as soon as 12 people have arrived.
If we assume that the passenger arrivals are independent and are at a mean rate of
9 per hour, what is the probability that the time between two consecutive departures
is more than 60 minutes? Assume that there are no delays caused by the nonarrival
of the bus because standby buses are available.

4.11. Traffic: number of cars waiting to turn. For the control of vehicles at a traffic
light, one needs to determine the length of the left-turn lane (right-turn lane in



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 17, 2008 21:2

226 Applied Statistics for Civil and Environmental Engineers

countries where vehicles are driven on the left). The occurrences of left (right) turns
are assumed to have a Poisson distribution in time. The mean uninterrupted rate of
left (right) turns is 160 per hour and the red light is on for 50 seconds. What is the
expected number of vehicles awaiting a left (right) turn?

4.12. Traffic: length of lane. In Problem 4.11 the design criterion for the length of the
left (right) lane is that it should be sufficient for 95% of the time. What should be
the minimum length of the lane as a multiple of the average length of a vehicle?

4.13. Wet spells. The following distribution of wet spells was observed at the Dharam-
jaigarh rainfall station in central India during the monsoon season:

i , length of wet spell in days 1 2 3 4 5 6 7 8
Oi , observed number of spells 161 52 32 17 8 6 4 1

What is the minimum length of wet spell which is exceeded with probability less
than 0.05 assuming a geometric distribution?

4.14. Stream pollution. Traces of toxic wastes from an unknown source are found in a
stream. From tests made on the water the mean concentration is found to be 1 mg/L.
What is the probability that the concentration of the pollutant will be in the range
0.5–2 mg/L assuming the distribution is (a) exponential (b) normal?

4.15. Failure of pumps installed in parallel. A pumped storage power supply scheme
has five pumps of identical specification installed in parallel. The mean life span of
a pump is estimated as 10 years from previous experience. What is the minimum
number of pumps required in parallel so that the probability of not having a failure
of the system during a 3-year period is more than 0.95?

4.16. Failure of pumps in a compound system. Suppose that in the scheme described in
Problem 4.15, two pumps are placed in parallel, one of which must work. This sub-
system is combined in series with another identical pump. Determine the probability
of not having a failure of the system in any year.

4.17. Traffic accidents. From experience it is found that there are about three accidents
per year at an intersection. If the occurrences are Poisson-distributed, what is the
pdf of the time till the fourth accident?

4.18. Defective valves. A manufacturer supplies nine valves for a pumping scheme. Two
faulty valves were included in the consignment. However, the scheme had been
completed using three of the nine valves. What is the probability that no faulty
valves were used?

4.19. Gamma-distributed annual runoff. The annual runoffs in the Cave Creek, near
Fort Spring, Kentucky, U.S.A., are given as follows in millimeters over an 18-year
period:

337 84 385 394 361 538 196 448 582 480 326 294 385 264
458 413 299 455.

Assuming independence and a gamma distribution for the annual runoff, determine
the probability that the runoff will be greater than 100 mm in a given year. Data
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from C. T. Haan (1977), Statistical Methods in Hydrology, Iowa University Press,
Ames, IA; used with permission, copyright 1977, The Iowa State University Press.

4.20. Low river flows in a tropical region. The following annual minimum mean daily
flows, given in m3/s, were recorded at the proposed Bango diversion site in the
Hasdo subcatchment of the Mahanadi basin in India over a 22-year period:

2.78 2.47 1.64 3.91 1.95 1.61 2.72 3.48 0.85 2.29 1.72
2.41 1.84 2.52 4.45 1.93 5.32 2.55 1.36 1.47 1.02 1.73

Assuming a two-parameter Weibull distribution, determine the probability that the
annual minimum low flow will be less than 2 m3/s over a 2-year period.

4.21. Low river flows in a temperate region. Ten years of annual minimum daily mean
low-flow data from the River Pang at Pangbourne in hydrometric area 39 in England
are ranked and given here in cubic meters per second:

11.5 23.6 29.1 32.7 34.5 37.0 39.8 49.0 54.6 53.5.

Fit a Weibull distribution to the data, estimating the parameters using Eqs. (4.2.17)
and Tables C.5 and C.6 in Appendix C, noting that �(r + 1) = �(r ). If it is not
permissible to pump water from the river when the daily mean low flow is less
than 20 m3/s, estimate the return period of such an event. Data are used by per-
mission from Institute of Hydrology (1980), “Low flow studies report,” Institute of
Hydrology, Wallingford.

4.22. Ferry transport schedule. A ferry boat is designed to carry 35 passengers across
a lagoon from station A during the busy hours of the day. If the passengers arrive
at an average rate of two per 5 minutes and ferries leave every 70 minutes, what
is the probability that there will be more than the stipulated number of passengers
waiting to take the boat? How often should a ferry be scheduled to leave station A
if the chance of an excess is to be less than 5%? Assume that the arrivals of the
passengers constitute a Poisson process.

4.23. Distribution of concrete strengths. The compressive strengths of concrete in
Table 1.2.2 have an estimated mean of 60.14 N/mm2 and a standard deviation
of 5.02 N/mm2 and are assumed to be normally distributed. What is the probability
that in ten random tests the compressive strength will be in the range 45–75 N/mm2?

4.24. Ferry transport: weight restriction. Suppose there is a weight restriction of
2900 kg for a ferryboat. Random tests carried out on a large number of incoming
passengers establish a mean weight of 75 kg per person and a standard deviation
of 25 kg. What is the probability that the total weight of an incoming batch of
35 passengers will exceed the limit?

4.25. Monthly rainfalls. Monthly rainfalls in a locality are independent and identically
distributed normal variates with mean 20 cm and variance 12 cm2. Determine the
probability that 220 cm of rainfall occurs over a period of 6 months. What is the
probability of having less than 18 cm rainfall each month for a period of 6 months?

4.26. Relationship between rainfall and runoff. Annual rainfall is usually normally
distributed over many river basins around the world. In a particular catchment,



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 17, 2008 21:2

228 Applied Statistics for Civil and Environmental Engineers

annual rainfall X has a mean of 1000 mm and a standard deviation of 200 mm. The
annual runoff Y is related to the rainfall as follows:

Y = 100 + 0.4X.

Specify the complete distribution of Y . What is the probability that Y will be less
than 350 mm in a year?

4.27. River diversion. A river with annual flows X ∼ N (300, 50) is joined by a major
tributary with annual flows Y ∼ N (150, 75) at point P . At point Q on the river
below P there is a diversion with annual flows Z ∼ N (100, 25). The units are in
1000 m3. Below Q, suppose the annual flows are denoted by R. If X , Y , and Z are
independent, determine the following:
(a) the distribution of R
(b) Pr(R > 300)
Recalculate (a) and (b) if there are miscellaneous withdrawals and net losses
affecting X and Y which total 15% in each case.

4.28. Lognormal distribution of annual river flows. The annual flows, in cubic meters
per second, at the Weldon River at Mill Grove, Missouri, for the period 1930–1960
are averaged as follows:

3.06 1.52 16.60 2.78 1.15 13.39 2.74 6.16 1.21 5.90
4.06 2.66 11.29 8.46 7.04 12.51 10.91 16.09 3.46 4.28
6.92 11.35 6.95 3.23 18.70 3.75 1.25 2.06 3.83 18.02 14.41.

Fit the lognormal distribution to this data. What is the probability that the annual
river flow is in the range 2–15 m3/s? These data are from R. D. Markovic (1965),
“Probability functions of best fit to distributions of annual precipitation and runoff,”
Hydrology Papers, no. 8, Colorado State University, Fort Collins, CO, and are used
with permission of Colorado State University.

4.29. Lognormal distribution of low flows in the Po River, Italy. Low flows in the Po
River basin in northern Italy are affected by irrigation releases and return flows. The
following are the annual minimum low flows in cubic meters per second occurring
at Pontelagoscuro during the period 1 October to 14 April, a period that is outside
the irrigation season. There are 18 occurrences during the period 1920–1991:

735 429 742 828 554 855 787 668 655
830 732 577 1030 650 620 561 588 635

The low flows in the lower reaches of the Po River have a two-component log-
normal distribution on account of the intervention caused by irrigation (from N.
T. Kottegoda and L. Natale (1994), “Two-component log-normal distribution of
irrigation-affected low flows,” J. Hydrol., Vol. 158, pp. 187–199). For the data
given, which represents one component, determine the probability that an annual
minimum of 400 m3/s can be maintained in the Po at Pontelagoscuro over a 3-year
period?

4.30. Ratios of densities of concrete. Densities of concrete (such as those given in
Table 1.2.1) can be approximated by a uniform distribution. Taking data from two
similar mixes of concrete, determine the distribution of the ratios of the densities,
after transformation to U (0, 1).
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4.31. Relationship between strengths of construction materials. The strength of a
construction material X , in newtons per square millimeter, is found to be normally
distributed. It is claimed that a new material Y can be produced that is proportional
in strength to the square of the strength of X . Derive the distribution of Y assuming
that X is standardized to zero mean and unit variance.
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Chapter 5

Model Estimation and Testing

In Chapters 1 and 3, we stressed the importance of statistical inference. This allows
one to make conclusions regarding a population, which represents the aggregate of all
conceivable measurements, on the basis of information contained in a sample of data
from the population. For the engineer, inference and decision-making are the ultimate
aims of statistical analysis. As a crucial part of the inference, methods of estimating one
or more parameters of a probability model characterizing the population were discussed
in Subsection 3.2.3. We encountered several point estimators by which a value is found,
using a given sample of observations, to represent a parameter.

The second phase of the inferential procedure, which we deal with in this chapter,
involves verification of the model. Thus, we can ascertain whether our initial hypothesis
is correct. We also test the significance of a batch of data.

With the intention of emphasizing the importance of the basic concepts, we begin
this chapter with a review of the definitions of terms related to random sampling and
clarification of the properties of point estimators introduced in Subsection 3.2.3. We then
proceed to interval estimation, a method of obtaining, at a given level of confidence
(or probability), two statistics which include within their range an unknown but fixed
parameter. The significance of estimated parameters using sample data and the differences
between estimated parameters from two or more samples are then discussed together with
the appropriate sampling distributions. On the contrary, nonparametric methods described
next are not based on sampling distributions.

An important area of statistical inference is the analysis of variance of random variables.
As shown, it deals with associations and causal factors. The analysis of variance is related
to the design of experiments, the aim of which is to view the state of nature, or systems
devised by humans, that is partially obscured by random effects.

We also discuss model fitting and goodness-of-fit tests, supplemented by various graph-
ical methods, and followed by methods of detecting and coping with outliers.

5.1 A REVIEW OF TERMS RELATED TO RANDOM SAMPLING

A population consists of all conceivable observations of a process or attribute of a compo-
nent (such as the density of a batch of concrete sampled in Table E.1.2). A population may
consist of elements that do not exist (in a physical sense); it is then said to be conceptual.
A sample, such as the values listed in Table E.1.1, is a subset of a population. A random
sample is one that is representative of the population.1 A random variable is a real-valued
function defined on a sample space. Whether a random variable is continuous or discrete
depends on how the sample space is defined.

1 More formally, a random sample is a collection X1, X2, . . . , Xn of random variables taken from a population
with density f (·) if the joint density fX1,X2, ...,Xn(x1, x2, . . . , xn) = f1(x1) f2(x2) · · · fn(xn).

230



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:19

Model Estimation and Testing 231

If the population is known or assumed to have a distribution such as the normal distri-
bution discussed in Chapter 4 but the value of a parameter θ is unknown, then we need
a random sample of observations, say, X1, X2, . . . , Xn of size n, to estimate θ . The joint
distribution of X1, X2, . . . , Xn is known as the sampling distribution of X1, X2, . . . , Xn .
Any function of the observations that is quantifiable and does not contain any unknown
parameter is called a statistic. A statistic is a random variable that gives us a means of
estimation. We can determine a single number to represent θ or we can determine two
numbers, which include θ within their range, at a given level of probability. These proce-
dures are discussed in the next two sections, respectively. It is also important to distinguish
between an estimator and an estimate. The first is the rule or method of estimation; for
example, the sample mean X̄ is a point estimator of μ, the population mean; the second
is the value which the estimator yields in a particular application.

5.2 PROPERTIES OF ESTIMATORS

An important field of statistical inference is the estimation of parameters. Alternative
types of estimators, which have properties that are more or less desirable than others, can
be used for such a purpose, as discussed initially in Subsection 3.2.3. In this section we
summarize and exemplify these properties.

5.2.1 Unbiasedness

Given a sample of observations, our objective here is to estimate the value of a parameter
θ . The observations are random variables, say, X1, . . . , Xn; hence an estimate of the
parameter obtained from them, which is a statistic and a function of the observations, is
also a random variable. In most cases, such a statistic can differ considerably from the
true value of the parameter regardless of the method of estimation. However, we seek to
find an estimator that will, on average (that is, after repeated sampling), give satisfactory
results. That is, the estimator will produce statistics that are distributed according to a
certain law. This law is the sampling distribution to which we referred earlier. Some types
of these sampling distributions will be considered in this chapter. The law must have some
desirable attributes if the estimator is to be acceptable for our purpose. For instance, if the
mean value of this distribution is θ , then the estimator has the property of unbiasedness.

Definition and properties: A point estimator θ̂ is an unbiased estimator of the population
parameter θ if E[θ̂ ] = θ . If the estimator is biased, the bias = E[θ̂ ] − θ .

Example 5.1. Mean and variance of the sample mean. Let us show that the sample mean
X̄ and the sample variance

Ŝ2 = 1

n − 1

n∑
i=1

(Xi − X̄ )2

are unbiased estimators of μ and σ 2.
The first result follows immediately by taking expectations of a random sample of size n,

X̄ = 1

n
(X1 + X2 + · · · + Xi . . . + Xn)

which yields

E[X̄ ] = 1

n
(nE[Xi ]) = 1

n
(nμ) = μ.
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For the variance [as in Eq. (1.2.7)]

E[Ŝ2] = 1

n − 1
E

[
n∑

i=1

(Xi − X̄ )2

]
= 1

n − 1

(
n∑

i=1

E
[
X 2

i

] − nE[X̄ 2]

)

= 1

n − 1

{
n∑

i=1

E[(Xi − μ)2] − nE[(X̄ − μ)2]

}
= 1

n − 1

{
n∑

i=1

σ 2 − nVar[X̄ ]

}

= 1

n − 1

(
nσ 2 − n

σ 2

n

)
= σ 2.

Unfortunately, many estimators are biased but have other desirable properties. Methods
of correcting or reducing the bias such as the jackknife and bootstrap were discussed in
Subsection 3.2.3.

There are also three other properties that our ideal estimator should have. These are
consistency, efficiency, and sufficiency, concepts introduced by the English statistician
Fisher.

5.2.2 Consistency

A consistent estimator of a parameter θ produces statistics that converge to θ , in terms of
probability. Thus we can define consistency as follows:

Definition and properties: An estimator θ̂n , based on a sample size n, is a consistent estimator
of a parameter θ , if for any positive number ε,

lim
n→∞

Pr[|θ̂n −θ | ≤ ε] = 1. (5.2.1)

One finds, however, that sometimes an unbiased estimator may not be consistent. This
case is illustrated as follows:

Example 5.2. Unbiasedness and consistency. A simple example of a consistent estimator
that does not necessarily have the property of unbiasedness is found in Subsection 1.2.2 in
which we considered two methods of estimating the variance σ 2. The estimators are written
as random variables, firstly by

S2 = 1

n

n∑
i=1

(Xi − X̄ )2,

and secondly by

Ŝ2 = 1

n − 1

n∑
i=1

(Xi − X̄ )2.

As noted in Example 5.1, the second equation gives the unbiased estimator of the variance.
However, it can be shown (by considering the entire population as implied by the original
Fisher definition of consistency) that the first equation gives a consistent estimator. Because
inconsistency in this case is considered to be of less importance, we prefer to use the second
equation.

5.2.3 Minimum variance

In practice we seldom have more more than one sample, but if we had a number of
samples with high variability, we may find that a single statistic that gives an estimate
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of a population parameter θ is quite different from the true value even if the estimator is
unbiased. So we must seek an estimator that is also comparatively low in variance. Among
unbiased estimators, the one with the smallest variance is called the minimum variance
unbiased estimator.

Furthermore, it has been found that some types of estimators have a bound that is ex-
ceeded by the variance. This type is known as a minimum variance bound (mvb) estimator.
The lower bound is found by what is known as the Cramer-Rao inequality.2 Hence we
obtain the relationship:

∂ ln L

∂θ
= g(θ ){θ̂ − f (θ )}, (5.2.2)

where ln L is the log-likelihood function discussed in Section 3.2, g(θ ) and f (θ ) are
functions independent of the sample of observations, and f (θ ) is in a simple form such
as θ or θ2, which is relevant to the sampling distribution. Thus if an equation of the form
of Eq. (5.2.2) can be obtained, θ̂ is a minimum variance bound estimator, mvb, of f (θ ).
It can also be shown from Eq. (5.2.2) that

Var[θ̂ ] = f ′(θ )/g(θ ), (5.2.3)

so that if f (θ ) ≡ θ , Var[θ̂ ] = 1/g(θ ).

Definition and properties: A minimum variance unbiased estimator is the estimator
with the smallest variance out of all unbiased estimators.

If the derivative of the log-likelihood function ln L can be put in the form

∂ ln L

∂θ
= g(θ ){θ̂ − f (θ )},

then θ̂ is a minimum variance bound estimator, mvb, of f (θ ), with variance

Var[θ̂ ] = f ′(θ )/g(θ ).

Example 5.3. Minimum variance bound of the location parameter and the square of the
scale parameter of the normal distribution. The pdf of the normal distribution is given by

φ(x) = 1

b
√

2π
exp

[
−1

2

(
x − a

b

)2
]

, for −∞ < x < +∞.

The estimator of the square of the scale parameter b is the variance as seen from
Example 3.23. Also,

∂ ln L

∂a
= n

b2
(X̄ − a).

Thus from Eq. (5.2.2), f (θ ) ≡ f (a) = a; and X̄ is an mvb estimator of a with variance b2/n,
from Eq. (5.2.3).

To estimate the variance statistic of b2, we use the estimator for a just given. From
Example 3.23 and Eq. (5.2.2), with f (θ ) ≡ f (b) = b2,

∂ ln L

∂b
= −n

b
+

∑n

i=1
(Xi − X̄ )2

b3
= n

b3

[
1

n

n∑
i=1

(Xi − X̄ )2 − b2

]
.

2 See, for example, Stuart and Ord (1991, pp. 614–618).
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Then from Eq. (5.2.2) we find that

S2 = 1

n

n∑
i=1

(Xi − X̄ )2

is an mvb estimator of b2. Its variance is 2b4/n from Eq. (5.2.3).

5.2.4 Efficiency

The term efficiency is used as a relative measure of the variance of the sampling distribu-
tion, with the efficiency increasing as the variance decreases. One may search unbiased
estimators to find the one with the smallest variance and call it the most efficient. It seems,
however, desirable to combine the properties of unbiasedness and minimum variance be-
cause an estimator can have minimum variance but it may be biased, albeit to a small
degree. This combination can be accomplished by means of the mean square error (mse)
criterion. Thus if A is an estimator of θ , the mse is

E[(A − θ )2] = E[{(A − E[A]) − (θ − E[A])}2]

= E[(A − E[A])2] + (θ − E[A])2

= Var[A] + (bias)2.

(In the first equation, we see that the terms of the cross-product, 2E[(A − E[A])(θ −
E[A])], sum to zero). Thus the estimator becomes more efficient as the mse decreases.

Definition and properties: An estimator that has minimum mean square error among all
possible unbiased estimators is called an efficient estimator. The mean square error of an
estimator, which is equivalent to the sum of its variance and the square of its bias, can be used
as a relative measure of efficiency when comparing two or more estimators.

Example 5.4. Relative efficiencies of the estimators of the mean of concrete densities.
From Tables 1.2.1 and 1.2.2, the mean of the densities of 40 concrete test cubes is
2445 kg/m3. However, if we had only the first five test cubes, the estimated mean would
be 2431 kg/m3. Both estimators are unbiased as seen in Example 5.1. Hence the relative
efficiency, as given by the ratio of the mse values, bears inversely with the ratio of variances:

σ 2/40

σ 2/5
= 1

8
.

This merely confirms what we already know, that is, the large-sample estimator for the
mean is more efficient than that based on a smaller sample. The efficiency is seen to be
proportional to the sample size n.

The outcome of the Example 5.4 notwithstanding, the minimization of variance will
generally give different results from the minimization of mse.

5.2.5 Sufficiency

Properties such as unbiasedness, consistency, and minimum mean square error guide us
to select the most suitable estimators. To complete the discussion, we now discuss the
important concept of sufficiency. A sufficient estimator gives as much information as
possible about a sample of observations so that no additional information can be conveyed
by any other estimator. This can also be defined more formally as follows:

Definition and properties: Let a sample X1, X2, . . . , Xn be drawn randomly from a pop-
ulation having a probability distribution with unknown parameter θ . Then the statistic
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T = f (X1, X2, . . . , Xn) is said to be sufficient for estimating θ if the distribution of
X1, X2, . . . , Xn conditional to the statistic T is independent of θ .

We can see, for example, that the median, taken as a measure of mean density or central
tendency as discussed on Subsection 1.2.1, does not contain all the information in a sample.
The median is the middle value of the sample; if any other value is changed the mean
changes but the median is unaltered. It is therefore not a sufficient statistic for the purpose,
unlike the mean which is discussed in the following example:

Example 5.5. Normal and uniform variates. From Table 1.2.2, the mean and standard
deviation of the compressive strengths of concrete are 60.14 and 5.02 N/mm2. We also made
the hypothesis (in Example 4.27) that these strengths are normally distributed (which is subject
to verification later in this chapter but is confirmed by numerous other studies). If the sample
variance is the true value of the variance σ 2, then the sample mean X̄ = (1/n)

∑n
i=1 Xi is a

sufficient statistic for the location parameter of the normal distribution, which is the population
mean μ. On the other hand, if the sample mean is the true value of μ, the sample variance
S2 = (1/n)

∑n
i=1 (Xi − X̄ )2 is a sufficient statistic for σ 2, the square of the scale parameter

of the normal distribution
In practice, both parameters are unknown. However, if X̄ and S2 are considered jointly,

these two statistics are jointly sufficient for μ and σ 2. This is because no other estimators can
provide any more information for the population mean and variance.

Also consider a uniform(0, θ ) distribution. Let us draw a random sample X1, X2, . . . , Xn

from this distribution. Then for estimating θ, Xmax = max[X1, X2, . . . , Xn] is sufficient.3

Example 5.6. Poisson variates. Suppose X1, X2, . . . , Xn is a random sample of Poisson
(v) variates. Then it can be shown as follows that T = ∑n

i=1 Xi is a sufficient statistic for v.
The joint sampling pdf of the variates is

f (x1, x2, . . . , xn | v) =
n∏

i=1

(
vxi e−v

xi !

)
= v Sn e−nv

Mn

where

Sn =
n∑

i=1

xi

and

Mn =
n∏

i=1

xi !.

The sum of n Poisson (v) variates is Poisson (nv) distributed (as shown in Subsection 4.1.3).
Thus the pdf of T is p(t | v) = (nv)t e−nv/t! for t = 0, 1, 2, . . .

If Sn = t , the joint conditional sampling pdf of the variates is

h(x1, x2, . . . , xn | t, v) = v Sn e−nv/Mn

(nv)t e−nv/t!

= t!

nt Mn
.

Because the result does not depend on v, T is a sufficient statistic for v.

5.2.6 Summary of Section 5.2

This formal summary of the desirable properties of point estimators is intended to provide
insight to the various methods of estimation. These were discussed initially in Section 3.2

3 See, for example, Casella and Berger (2002, pp. 281–282).
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of Chapter 3 and used in Chapter 4. They will be applied in one form or other throughout
the book.

5.3 ESTIMATION OF CONFIDENCE INTERVALS

In Chapters 3 and 4, we discussed and applied methods of estimating the values of one
or more parameters of a population; in Section 5.2 we examined more closely the prop-
erties of the resulting estimators. We have seen that point estimates can be erroneous;
in reality the probability that an estimate is equal to an unknown parameter is zero. The
resulting uncertainty can be quantified by the relative variances or mean square errors
of the estimators. Because of this uncertainty, the next step of inference is interval es-
timation. Here we determine two numbers, say, a and b, that are expected to include
within their range an unknown parameter θ in a specified percentage of cases after re-
peated experimentation under identical conditions. That is, in place of one statistic that
estimates θ , we find a range specified by two statistics, which includes it at a given level
of probability. The end points a and b of this range are known as confidence limits, and
the interval (a, b) is known as the confidence interval. We do not have the precision as for
a point estimator but we have confidence (without absolute certainty) that the assertion is
right.

5.3.1 Confidence interval estimation of the mean when the standard deviation is known

Let Cl and Cu be the lower and upper confidence limits that include an unknown but
invariable parameter θ . Although there is some uncertainty associated with this statement,
we will be right in a proportion, say, 1 – α, of the samples taken from the same population,
on average, when we make the assertion that the given interval includes θ . Thus we can
say, by adopting the long-run frequency interpretation of probability,

Pr[Cl ≤ θ ≤ Cu] = 1 − α, for 0 < α < 1. (5.3.1a)

As noted, θ is a constant, but the estimator θ̂ and the confidence limits Cl and Cu are
random variables (the values of which depend fully or partly on observations); exam-
ples of θ̂ such as X̄ and Ŝ2 have been encountered in Examples 5.1 to 5.3. The prob-
ability (1 – α) is known as the confidence level or confidence coefficient. It often takes
values such as 0.99, 0.95, and 0.90. The confidence limits Cl and Cu depend on the
sampling distribution of θ̂ . The standard deviation of the statistic θ̂ is called its standard
error.

Equation (5.3.1a) is used to establish two-sided confidence limits. In some situations,
we may require one-sided confidence limits. The lower and upper one-sided confidence
limits are specified, respectively, by

Pr[Cl ≤ θ ] = 1 − α, for 0 < α < 1 (5.3.1b)

and

Pr[θ ≤ Cu] = 1 − α, for 0 < α < 1. (5.3.1c)

In the first case, the upper limit is considered to be at the upper limit of the sampling
distribution; in the second case, the lower limit is at the lower limit of such a distribution.
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5.3.1.1 Sampling distribution of the mean
From the Central Limit Theorem of Section 4.2, we noted that, regardless of the distribution
of a variable X , the standard error of the sample mean, X̄ , tends to

σX̄ = σ/
√

n (5.3.2)

as the sample size n tends to ∞. The sampling distribution of X̄ is close to normal if n >

30, even when X is not normally distributed. However, if X is normal, the distribution
of X̄ is exactly normal regardless of sample size. Hence by using Eq. (5.3.2), we can
apply Eq. (5.3.1) to find confidence limits for the population mean μ. Knowing that if
X ∼ N (μ, σ 2), we may write

Z = X̄ − μ

σ/
√

n
∼ N (0, 1). (5.3.3)

For example, using Eqs. (5.3.1a) and (5.3.3) and Table C.1 of Appendix C for the
standard normal cdf, we have for (1 − α) = 0.95,

Pr[−1.96 ≤ Z ≤ 1.96] =
1.96∫

−1.96

FZ (z)dz = 0.95. (5.3.4)

This result stems from the symmetry of the normal distribution; that is, for α =
0.05, 	(1.96) − 	(−1.96) = 0.975 − 0.025 = 0.95. Note that the entries required in
Table C.1, and in the following tables, are (1 − α/2) for two-sided confidence limits
or (1 − α) for a one-sided confidence limit.

This means that the probability that the interval −1.96 to 1.96 includes the random
variable Z as defined by Eq. (5.3.3) is 0.95. Similarly, intervals can be provided with other
values of α. We can also construct an endless number of noncentral intervals that contain
Z with probability 0.95, but the interval given by Eq. (5.3.4) is central and is the shortest
of all possible intervals because of the symmetry of the distribution. Confidence intervals
are summarized by the following definitions, and the statistical interpretations are given
in the examples that follow.

Definition and properties: Let X̄ be the mean of a random sample of size n drawn from
a population with known standard deviation σ . The 100(1 – α) percent central two-sided
confidence interval for the population mean μ is

(X̄ − zα/2σ/
√

n, X̄ + zα/2σ/
√

n)

where zα/2 is a standard normal variate that is exceeded with probability α/2. The one-
sided upper and lower 100(1 – α) percent confidence limits for the population mean μ are,
respectively, as follows:

X̄ + zασ/
√

n and X̄ − zασ/
√

n ≤ μ.

Figure 5.3.1 is an illustration of the pdf of the standard normal variate Z as defined in
Eq. (5.3.3) with the locations of zα/2 and –zα/2 required for a 100(1 – α) percent central
two-sided confidence interval on the mean when the standard deviation is known.

Example 5.7. Confidence limits for the mean of concrete strengths. From Table 1.2.2,
the mean and standard deviation of the compressive strengths of 40 test cubes of concrete
are 60.14 and 5.02 N/mm2, respectively. We also assume that the compressive strengths are
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Fig. 5.3.1 Standard normal pdf showing two-sided confidence interval.

normally distributed.4 To facilitate the application, let us assume that the estimated standard
deviation of 5.02 N/mm2 is the true value. Then from Eqs. (5.3.3) and (5.3.4),

Pr

[
−1.96 ≤ X̄ − μ

5.02/
√

40
≤ 1.96

]
= 0.95,

and hence

Pr[−1.56 ≤ X̄ − μ ≤ 1.56] = 0.95.

Thus we can say with 95% confidence, before estimating the mean value of the concrete
strengths by experimentation, that the sample mean will be greater or less than 1.56 N/mm2

of the true value of the mean. Let us now substitute the sample value x̄ = 60.14 for X̄ . The
value 60.14 is then subtracted throughout. Finally we reverse the negative signs and, because
this calls for a reversal of the inequalities,

Pr[58.58 ≤ μ ≤ 61.70] = 0.95.

We know that the true mean μ, which is fixed but unknown, cannot vary from one experiment
to another on the same concrete, as already mentioned. The correct interpretation of the above
stipulation, on a frequency basis, is that if one were to repeat the same experiment and the
standard deviation be constant, 95% of the intervals constructed in this way will, on average,
include the true mean μ. With the single experiment at hand, we are 95% confident that the
interval (58.58, 61.70) includes μ.

Example 5.8. One-sided confidence limit for the mean time interval between vehicles
passing an observation point. In Example 4.21 we found it reasonable to assume that
the time interval between vehicles at a given location is exponentially distributed. In that
case study the average time interval was calculated as 0.551 minute. Let us suppose we are
concerned that an excessively low mean time interval between vehicles will cause traffic
congestion on the road. As an initial step in the investigation, we can provide a one-sided
99% confidence limit on the mean rate. The mean and variance of the exponential distribution
of the time interval between vehicles with cdf

FX (x) = 1 − e−λx

are 1/λ and 1/λ2, respectively, as noted in Subsection 4.2.2. For a large sample size, we can
assume that the sampling distribution of the estimator of the mean is approximately normally
distributed with mean 1/λ and variance 1/(nλ2), where n is the number ofobservations.

4 As we said in Chapter 4, there is much evidence to support this assumption. See, for example, Problem 5.34.
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We make use of the symmetry of the normal distribution and calculate the one-sided 99%
confidence limit of the mean time interval as follows:

Pr

[
1/λ̂ − 1/λ

1/λ
√

n
≥ 2.326

]
= 0.01.

which can be written as

Pr

[
λ

λ̂
≥

(
1 + 2.326√

n

)]
= 0.01.

Substituting λ̂ = 1/0.551 and n = 204 from Example 4.21, we write

Pr

[
λ ≥ 1.162851

0.551

]
= 0.01.

This is equivalent to

Pr

[
1

λ
≤ 0.474

]
= 0.01.

Hence, the 99% lower confidence limit of the mean time interval is 0.474 minute.

5.3.2 Confidence interval estimation of the mean when the standard
deviation is unknown

Quite often in practice the mean and standard deviation are both unknown. Under such
conditions we must modify our approach. We assume normality of the variate X as be-
fore, but the consequences of a nonnormal distribution are minor for small to moderate
departures from normality, if the sample size is large, say, n > 30. In this situation we
apply the Student’s t distribution.5 The T variable represents the mean X̄ standardized as
in Eq. (5.3.3) except that the sample standard deviation Ŝ is used in place of σ . Thus for
a sample size n, the variable

X̄ − μ

Ŝ/
√

n
∼ tn−1; (5.3.5)

that is, it has the Student’s t distribution with v = (n − 1) degrees of freedom (as defined
in Subsection 1.2.2). The pdf of Student’s t distribution is given by

fT (t) = �[(v + 1)/2]√
πv�(v/2)

1

[(t2/v) + 1](v+1)/2
, for −∞ < t < ∞. (5.3.6)

It is equivalent to the Pearson Type VII distribution. The derivation is shown in Appendix
A.7.

Graphs of the pdf of Student’s t distribution are given in Fig. 5.3.2 for degrees of
freedom v = n − 1 equal to 2, 4, and 10. Also, comparison is made with the standard
normal pdf, which has a smaller spread.

These graphs show that the Student’s t distribution approaches the standard normal
distribution as the sample size increases. The approximation is found to be quite close for
n > 30.

5 Originated by William S. Gosset, who worked for the Guinness brewery in Dublin around 1900 and wrote
under the pseudonym Student. His correspondence with R. A. Fisher in subsequent years is a fascinating part of
the history of mathematical statistics (see Box, 1981).
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Fig. 5.3.2 Graphs of pdfs of Student’s t distribution with 2, 4, and 10 degrees of freedom
compared with standard normal pdf.

The cdf of Student’s t distribution is tabulated in Appendix C.2. Because the distribution
is a function of v = n − 1, the tables are different from those of the normal distribution.
For selected values of F(t), t values are given for a range of values of v .

Definition and properties: Let X̄ and Ŝ be the mean and standard deviation of a random
sample of size n drawn from a normal distribution with unknown standard deviation σ . The
100(1 − α) percent central two-sided confidence interval for the population mean μ is as
follows:

(X̄ − tn−1,α/2 Ŝ/
√

n, X̄ + tn−1,α/2 Ŝ/
√

n)

where tn−1,α/2 is a Student’s t variate with n − 1 degrees of freedom and probability α/2 of
exceedance.

Example 5.9. The 95% confidence limits for the mean of concrete strengths with un-
known standard deviation. We return to Example 5.7 based on the data of Table 1.2.2 in
which the estimated mean and standard deviation of the compressive strengths of 40 test cubes
of concrete are 60.14 and 5.02 N/mm2, respectively. We assume that the compressive strengths
are normally distributed as before. The same exercise as in Example 5.7 is repeated to find
the 95% confidence limits but we use Student’s t distribution because in reality the standard
deviation is unknown, and therefore an estimated value is used. Referring to Table C.2 of
Appendix C , for v = n − 1 = 39 degrees of freedom and F(t) = 1 − α/2 = 0.975 (because
α = 1 − 0.95 = 0.05 and the sampling distribution is symmetrical like the normal), we obtain
the t variate as 2.023 approximately by interpolation. Thus from Eqs. (5.3.1) and (5.3.5),

Pr

[
−2.023 ≤ X̄ − μ

5.02/
√

40
≤ 2.023

]
= 0.95.

Hence,

Pr[58.53 ≤ μ ≤ 61.75] = 0.95.

We note that the confidence limits so obtained are very close to those in Example 5.7 where
we assumed that the standard deviation is known; for a smaller sample size the difference
is greater.
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Fig. 5.3.3 The 99% confidence limits of difference between population and sample means of
compressive strengths of concrete using sample standard deviation.

Let us, however, restate the problem, firstly by applying 99% confidence limits to the
difference between the true mean and sample mean for n equal to 10, 20, and 30 and then by
considering a range of values from 4 to 6 N/mm2 for the unknown standard deviation (around
its estimated value of 5.02 N/mm2). To find the confidence limits, we commence with the
general condition from Eq. (5.3.5):

Pr

[
−tn−1,0.005

Ŝ√
n

≤ X̄ − μ ≤ tn−1,0.005
Ŝ√
n

]
= 0.99.

From Table C.2, values of tn−1,0.005 for n equal to 10, 20, and 30 are 3.250, 2.861, and 2.756,
respectively. The 99% confidence limits are presented in Fig. 5.3.3 for the three specified
values of n as graphs of the difference X̄ – μ against the standard deviation Ŝ.

For example, if n = 20 and the estimated standard deviation Ŝ = 6 N/mm2, the 99%
confidence limits for the difference in means are 3.84 and −3.84 N/mm2. These differ-
ences become smaller for increasing values of n and smaller values of the sample standard
deviation.

Example 5.10. Sample sizes required for one-sided confidence interval on the mean
concrete strength. In Example 5.9 we considered different sample sizes and different two-
sided confidence intervals for X̄ − μ over a range of values of the standard deviation. Let us
now consider a one-sided lower 99% confidence interval on the mean. In this example we find
the minimum sample size required for tests, when the confidence interval and the coefficient
of variation are specified functions of the mean.

From the results given in Table 1.2.2, the coefficient of variation V = 8% approximately.
In the first instance, let us use this value in our application. We also stipulate that the lower
confidence limit does not exceed 16% of the mean. That is,

Ŝ√
n

tn−1,0.01 ≤ 0.16X̄ .
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Substituting V = Ŝ/X̄ = 0.08, we get the following condition:

tn−1,0.01√
n

≤ 2.

From Table C.2, the minimum sample size to meet this condition is n = 5.
In our second example, let us consider that the concrete strengths are more variable and

assume that V = 16%. We also specify that the lower confidence limit does not exceed 8%
of the mean. This leads to the condition

tn−1,0.01√
n

≤ 0.5.

From Table C.2 the minimum sample size required to meet this condition is n = 25.
One practical approach is to substitute the coefficient of variation that is appropriate for

the particular type of concrete tested and put limits on the confidence interval as a function
of the mean.

5.3.3 Confidence interval for a proportion

Consider a two-sided Bernoulli variate as in Subsection 4.1.1 that occurs with probability
p; that is, a given trial is a success with probability p whereas the failure probability is
(1 – p). The mean and variance of such a variate are p and p(1 – p), respectively. If
an experiment involving a Bernoulli variate is repeated n times, the standard error of the
estimated proportion of a success is

σ p̂ =
√

p(1 − p)

n
. (5.3.7)

For a large sample size, say, n > 30, and for np > 5, and n(1 − p) > 5, the sampling
distribution is very nearly normal. In practice we substitute the sample values for p in the
right-hand side of Eq. (5.3.7).

Example 5.11. Leaks from water pipes. A survey of leaks from water pipes in a city water
distribution system, conducted over a representative area, shows that substantial loss occurs
in 7 out of 37 pipes tested. We can find 95% confidence limits for the proportion of leaking
pipes in the city first by substituting 7/37 for p in Eq. (5.3.7) and then by using the normal
approximation and Eq. (5.3.1):

7

37
± 1.96

√
7

37
× 30

37
× 1

37
= 0.19 ± 0.13.

That is, we can say with 95% confidence that the interval (0.06, 0.32) includes the true
proportion of pipes in the city from which there is a substantial waste.

5.3.4 Sampling distribution of differences and sums of statistics

Let S1 and S2 be independent statistics from two populations (based on sample sizes n1

and n2). Also, let the respective means and standard errors of the sampling distributions
of the two statistics be μS1 , μS2 and σS1 , σS2 , respectively.

The differences between the statistics (after repeated sampling) from the two populations
have a sampling distribution with mean

μS1−S2 = μS1 − μS2 (5.3.8a)

and standard error

σS1−S2 =
√

σ 2
S1

+ σ 2
S2

. (5.3.8b)



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:19

Model Estimation and Testing 243

The sampling distribution of the sums of the statistics S1 + S2 has a mean

μS1+S2 = μS1 + μS2 (5.3.8c)

and a standard error

σS1+S2 =
√

σ 2
S1

+ σ 2
S2

, (5.3.8d)

which is the same as for the differences of the two statistics.

Example 5.12. Confidence limits for the differences between two means of the annual
rainfalls at two stations. Measurements of rainfall have been taken at a particular location,
say, station 1, over a period of n1 = 50 years, and the annual mean and standard deviation are
estimated as x̄1 = 900 mm and ŝ1 = 80 mm, respectively. At another location, say, station
2, measurements cover a period of n2 = 40 years, from which estimates of the annual mean
and standard deviation are x̄2 = 825 mm and ŝ2 = 90 mm, respectively. Because annual
rainfalls are the result of a large number of small causes, such an additive effect makes it
plausible to assume that the distribution is normal (see Central Limit Theorem of Appendix
A.6). There is sufficient empirical evidence to support this claim; and although in some
cases nonnormal distributions seem to be appropriate, the approximation is a reasonable one.
Thus, the sampling distribution of the difference between the two means is also normal. The
(1 − α) percent confidence limits for the difference between the two means are found using
Eqs. (5.3.1), (5.3.2), (5.3.8a), and (5.3.8b) as follows:

(x̄1 − x̄2) ± zα/2

√
σ 2

1

n1
+ σ 2

2

n2
,

where zα/2 is the standard normal variate which is exceeded with probability α/2. Hence,
substituting ŝ1 for σ1 and ŝ2 for σ2, the 95% confidence limits are approximately

75 ± 1.96

√
802

50
+ 902

40
= 75 ± 36 mm ⇒ (39 mm, 111 mm).

In applications such as the foregoing, the results are approximate, if the population
is nonnormal. The error is of course less for smaller departures from normality or for
larger sample sizes. Furthermore, when the standard deviations are unknown, Student’s t
distribution is appropriate for the purpose, but as seen in Example 5.9 in comparison with
Examples 5.7 and, the differences are very small for n > 30.

5.3.5 Interval estimation for the variance: chi-squared distribution

Consider a set of normally and independently distributed random variates Xi , i =
1, 2, . . . , v , with means μi and variances σ 2

i . Suppose we standardize the Xi by subtracting
the mean and dividing by the standard deviation, respectively, to a set Zi , i = 1, 2, . . . , v ,
with zero mean and unit variance. Consider the random variable formed by the sum of
squares of the Z variates, say,

χ2 = Z2
1 + Z2

2 + · · · + Z2
v . (5.3.9)

The mgf of χ2 is given by

Mχ2 (t) = E[exp(tχ2)] =
v∏

i=1

E
[
exp

(
t Z2

i

)]
.
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Because

E
[
exp

(
t Z2

i

)] =
∞∫

−∞
etz2 e−z2/2

√
2π

dz = 1√
1 − 2t

∞∫
−∞

√
1 − 2t√

2π
e−(1−2t)z2/2dz,

for i = 1, 2, . . . , v, and t < 1/2,

and the integral on the right-hand side is unity, being a representation of the area under a
normal curve with a mean of zero and variance 1/(1 − 2t),

Mχ2(t) =
[

1/2

(1/2) − t

]v/2

.

If we compare this mgf with that of Eq. (4.2.12c) for the gamma distribution, we can
say that the sum of squares of independent standard normal variates has the chi-squared
distribution with v degrees of freedom and cdf

F(χ2) = 1

2

χ2∫
0

(u/2)(v/2)−1e−u/2

�(v/2)
du, (5.3.10)

[as given by Eq. (4.2.12d)]. Figure 5.3.4 shows pdfs of the chi-squared distribution for
v = 2, 6, and 12.

Consider a random sample X1, X2, . . . , Xn of independent normally distributed variables
with common mean μ, variance σ 2, and sample mean X̄ . As shown in Example 5.1,

Ŝ2 = 1

n − 1

n∑
i=1

(Xi − X̄ )2 (5.3.11)

is an unbiased estimator of the variance σ 2. Let us now consider the quantity

n∑
i=1

(Xi − μ)2 =
n∑

i=1

[(Xi − X̄ ) + (X̄ − μ)]2. (5.3.12)
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Fig. 5.3.4 Chi-squared distributions for degrees of freedom equal to 2, 6, and 12.
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[Because
∑n

i=1 (Xi − X̄ ) = 0, the cross-product term of Eq. (5.3.12) is zero.] Hence.

n∑
i=1

(Xi − μ)2 =
n∑

i=1

(Xi − X̄ )2 + n(X̄ − μ)2.

Dividing throughout by σ 2 and substituting (n − 1)Ŝ2 from Eq. (5.3.11) for the middle
term, we find∑n

i=1 (Xi − μ)2

σ 2
= (n − 1)Ŝ2

σ 2
+ (X̄ − μ)2

σ 2/n
. (5.3.13)

Following Eq. (5.3.9), the first term of Eq. (5.3.13) is distributed as χ2
n ; likewise, and

with reference to the Central Limit Theorem (see Appendix A.6), the last term is distributed
as χ2

1 . Therefore, taking account of the additive property of the gamma and chi-squared
variates, we can say

(n − 1)
Ŝ2

σ 2

has a χ2
n−1 distribution, that is, with v = n − 1 degrees of freedom.

This important result is used in finding confidence limits for the variance σ 2 of a normal
population. The chi-squared cdf is given in Table C.3 of Appendix C, for various values of
the degrees of freedom v . For example, the (1 – α) percent two-sided confidence interval
for σ 2 is found from

Pr

[
χ2

n−1,1−α/2 ≤ (n − 1)Ŝ2

σ 2
≤ χ2

n−1,α/2

]
= 1 − α. (5.3.14a)

This probability is represented by the area between the two vertical lines of Fig. 5.3.5a,
which shows the pdf.

Equation (5.3.14a) corresponds with Eq. (5.3.4) which is the basis for the confidence
interval for the mean μ of a normal population. The chi-squared values in Eq. (5.3.14a)
are, from left to right, the values that a χ2

n−1 variate exceeds with probabilities (1 − α/2)
and α/2, respectively. Let us take reciprocals of the three terms on the left-hand side of
Eq. (5.3.14a), and therefore reverse the directions of the inequalities. Hence, after multi-
plying the three terms by (n − 1)Ŝ2, we obtain the following probability which corresponds
with Eq. (5.3.1a):

Pr

[
(n − 1)Ŝ2

χ2
n−1,α/2

≤ σ 2 ≤ (n − 1)Ŝ2

χ2
n−1,1−α/2

]
= 1 − α. (5.3.14b)

This is used to set the equal-tails confidence interval for the variance σ 2. See Fig. 5.3.5a
and 5.3.5b. We can also obtain a shorter interval with unequal tails. However, this needs
a numerical solution and is therefore not practicable.

Similarly, we can set lower and upper confidence limits for the variance σ 2 as in
Eq. (5.3.1b) and (5.3.1c), respectively.

Definition and properties: Let Ŝ2 be the variance of a random sample of size n drawn from
a normal distribution with unknown variance. The 100(1 − α) percent equi-tailed two-sided
confidence interval for the population variance σ 2 is as follows:(

(n − 1)Ŝ2

χ 2
n−1,α/2

,
(n − 1)Ŝ2

χ 2
n−1,1−α/2

)
,
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Fig. 5.3.5 Equal-tails confidence interval for variance: (a) pdf and (b) cdf of chi-squared
distribution.

where χ2
n−1,α/2 and χ 2

n−1,1−α/2 are the values that a χ2
n−1 variate exceeds with probabilities

α/2 and (1 − α/2), respectively.
The corresponding one-sided upper confidence limit for σ 2 is defined as

(n − 1)Ŝ2

χ 2
n−1,1−α

.

Example 5.13. Upper 99% confidence limit for the standard deviation of compressive
strengths of concrete test cubes. In the data of Table 1.2.2, we noted that the compressive
strengths of 40 test cubes have an estimated standard deviation of 5.02 N/mm2. This comes
from an assumed normal population as justified in Example 5.37. As in Eq. (5.3.14b) but
corresponding to Eq. (5.3.1c), we can obtain a one-sided upper 99% confidence limit for the
population variance as follows:

Pr

[
σ 2 ≤ (n − 1)Ŝ2

χ 2
n−1,1−α

]
= 1 − α.

Hence from an approximate interpolation from Table C.3 for α = 0.01, the upper confidence
limit for σ 2 is found from

Pr

[
σ 2 ≤ 39 × 5.022

21.5

]
= 0.99.

As confidence limits for the standard deviation, we can take the square roots of the corre-
sponding limits of the variance because of the monotonic relationship between the variance
and the standard deviation. Hence the 99% upper confidence limit for σ is 6.76 N/mm2.
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5.3.6 Summary of Section 5.3

Confidence intervals are obtained in this section for the estimation of parameters of differ-
ent types under several conditions. In setting a random interval that at a preassigned level
of probability includes a fixed but unknown population parameter, the long-run frequency
approach to probability is adopted. Some situations require two-sided confidence inter-
vals whereas in other cases one-sided confidence limits can be more appropriate. Three
other statistical intervals are discussed elsewhere in the book. In Sections 6.1 and 6.2, we
determine a prediction interval that will contain at a given level of confidence a future
observation of a population. The notion of tolerance limits (as applied to a proportion p of
a population) is illustrated in Subsection 8.1.3. In Subsection 9.3.1, we apply prediction
intervals in reliability assessments.

The use of three important sampling distributions, the normal, Student’s t , and chi-
squared are shown in this section. The F distribution is introduced in the next section.

5.4 HYPOTHESIS TESTING

A second major area of statistical inference is the testing of hypotheses. This is closely
related to the determination of confidence limits discussed in Section 5.3. Either subject
could have been considered initially. What we are examining concerns the parameters
or form of the probability distribution that yields the observations. This involves mak-
ing a declaration or statement called a hypothesis about a population. It should be noted
that the statement is not about the available sample. The discussion is focused on cer-
tain assumptions (regarding, for instance, the mean of the population) without initially
making any commitment on assuming them. Acceptance of the hypothesis is on the ba-
sis of a statistical test. The consequent action and decision-making are called hypothesis
testing.

From a philosophical viewpoint, our conception of the actual state of nature may not
be correct. Besides, the testing procedure will have its shortcomings. However, we have a
sample of data that represents the physical reality, and although our initial hypothesis may
be somewhat tentative, we can revise the concept each time new information becomes
available and thus come closer to the true state of nature.

The approach we follow is akin to the verification of some of the scientific hypotheses
of scientists and engineers. We cannot, however, test statistically whether, for instance,
a highway will be safe under the influence of an earthquake that exceeds a particular
magnitude, except in a rare case in which there are sufficient data to test the hypothesis.
On the contrary, it is usually feasible to ascertain whether a new method of road surfacing
increases the lifetime of a highway, or whether a procedure for treating wastewater makes
a change in the quality of the effluent, as measured, for example, by the biochemical
oxygen demand discussed in Example 1.30. As another example, there may be reason to
believe that the distribution of high flows in a river has changed on account of climatic
effects or because the flow regime has been altered. All of these concern random variables,
observable in sufficient numbers, as opposed to a single event.

In each of these cases just mentioned, and similar ones, a random sample is taken from
the population and statistical hypotheses, called null and alternative, are declared. Then a
statistical test is made. If the observations do not support the model or theory postulated,
the null hypothesis is rejected in favor of the alternative one, which may be considered
to be true. However, if the observations are in agreement, then the null hypothesis is
not rejected. This does not necessarily mean that it is accepted. It suggests that there is
insufficient evidence against the null hypothesis in favor of the alternative one.
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Associated with the decision is a level of significance, α. This is complementary to
the probability introduced in Eq. (5.3.1a) for setting confidence limits. An engineer may
question whether there has been a significant change, for instance, in a mean rate of traffic
flow on a highway or an average strength of a material. On the contrary, such a variation
may sometimes be due to sampling differences without any change in the mean or other
aspect of the population. It is then said to be not significant.

It is important to note that the initial assumption of a significance level removes any
subjectivity in our decision-making so that two or more investigators will reach the same
conclusion. Hypothesis testing thus concerns procedures for rejecting a statement or not
rejecting it and the chances of making incorrect decisions of either kind. It also involves
the use of a particular function of the sample measurements. If we assume that the ob-
servations come from a normal or other specified population, then the test is called para-
metric. Nonparametric tests, which are discussed in the next section, are not based on
such assumptions. Furthermore, in this section we deal only with hypotheses concerning
parameters of a distribution. Those hypotheses used in testing whether a random variable
has a particular distribution will be examined in Section 5.5.

5.4.1 Procedure for testing

As just outlined, hypothesis testing concerns one or more parameters and also the related
probability distribution. The basic steps, which are common to innumerable tests of this
type, are as listed here. They involve an engineer’s assumed model and whether the avail-
able observations provide any contradictory evidence. In testing, two different hypotheses
are compared.

(1) The first step is to declare a null hypothesis, H0. This is the hypothesis to be tested.
It assumes that the observed results are entirely due to chance. For example, we may
wish to verify whether the initial mean μ1 of the annual maximum flows in a river
at a point of observation is indeed the same as a projected new mean μ2 consequent
to changes in the flow regime that may have proved sufficient for a change in the
population mean. If our null hypothesis is true, any observed difference in means is
merely the consequence of sampling variation from the same population. That is,
the difference is attributed in full to differences in random sampling. The hypothesis
is expressed as

H0 : μ1 − μ2 = 0.

(2) In the next step an alternative hypothesis H1 is declared. The term may be confusing,
because this is what we really wish to test. In our case it is

H1 : μ1 − μ2 �= 0.

(3) The third step is to determine or specify a test statistic. In the example cited, it is
based on the difference between the respective observed means X̄1 and X̄2.

(4) Then we need to know the distribution of the test statistic, through sampling theory
as introduced in Section 5.3 and discussed further shortly. The sampling distribution
depends also, as noted in Section 5.3, on the distribution to which the observations
belong. Therefore, we may need to make an assumption regarding the underlying
distribution.

(5) As a fifth step, we must define a rejection region, also called a critical region, for
the test statistic. For this definition it is necessary to preassign a level of significance
α as defined shortly.
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(6) Finally, we use the observed data to verify whether the computed value of the test
statistic is within or outside the rejection region. If this is within the rejection region,
we say that the difference (or whatever is tested) is significant at the 100α percent
level.

Note that in the cited example (of annual maximum flows in a river subject to changes
in the flow regime) with the foregoing steps, we are testing whether one mean is equal
to another, and so our critical region will cover both tails of the sampling distribution.
Accordingly, we call the procedure a two-tailed test. On the other hand if we were testing
whether one mean is greater than the other, then a one-tailed test is required because the
critical region will cover only one of the tails.

If the test statistic and rejection region are defined as T and R, respectively, the proba-
bility of rejecting the null hypothesis H0 is given by

Pr[T ∈ R | H0] = α. (5.4.1)

The foregoing notation merely implies that H0 is true. The probability α provides the
link between the confidence intervals of Section 5.3 and hypothesis testing.

Rejection is the same as stating that the test statistic is statistically significant. That is, if
the engineer notes that the observed difference can occur by chance less than, say, once in
a hundred such tests (with α = 0.01), then the results are treated as statistically significant.
In other words, this should be a convincing demonstration, beyond a reasonable doubt that
the null hypothesis is false.

Quite often, failure to reject leads to further verification and not to immediate acceptance,
as already discussed; so the opposite test result may thus simply mean that the hypothesis is
not rejected. Because some engineers do not like this kind of ambiguity, we shall continue
to use the term “acceptance” to signify that a hypothesis has not been rejected. We now
discuss two types of possible errors arising out of these tests.

If a hypothesis is rejected when it should be accepted, because the null hypothesis H0

is true, the error we make is of Type I. The probability of doing so is equal to the level of
significance α as defined by Eq. (5.4.1). Thus,

Pr[Type I error] = Pr[T ∈ R | H0] = α. (5.4.2)

Alternatively, we may fail to reject the null hypothesis H0 when it is not true and thus
make what is called a Type II error. If the acceptance region of the test statistic is denoted
A, which does not of course have anything in common with the rejection region R, and A
and R taken together comprise the parameter space  for T ,

Pr[Type II error] = Pr[T ∈ A | H1] = β. (5.4.3)

In either of these cases we are wrong in our judgment. Now consider the two cases in
which we are right. In the first case, when we correctly fail to reject the null hypothesis, the
probability is complementary to that of making a Type I error. This is the same probability
associated with the confidence interval in Eq. (5.3.1a). That is,

Pr[T ∈ A | H0] = 1 − α. (5.4.4)

The probability of correctly rejecting the null hypothesis H0 when it is not true is the
complement of that given by Eq. (5.4.3),

Pr[T ∈ R | H1] = 1 − β. (5.4.5)

The complement of β is also called the power of the test of the null hypothesis H0 versus
the alternative H1. This important criterion is used, for example, in determining a minimum
sample size to restrict the aforementioned types of errors and in comparing two tests.
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Because a decrease in one type of error increases the other error, we must design
our decision rules so that errors are minimized, usually by reaching a compromise be-
tween the two types. The probability of risking a Type I error is the level of significance
α of the test, as already stated. We can limit this by choosing α suitably. Quite often
in practice, α = 0.05 seems reasonable, and this corresponds to an incorrect rejection
once in 20 times on average. If the consequences of a Type I error are more serious,
we choose a smaller value such as α = 0.01 or even α = 0.001 or less. For minimizing
β, the Type II error (that is, a wrong acceptance) the procedure is not straightforward,
because β is conditioned on H1 and depends on α, and the sample size n, in addition to
the true value of the parameter tested. It is customary to draw graphs showing β or the
power of the test (1 − β), which is the chance of avoiding this type of error. These are
called operating characteristic or power function curves, respectively, and are illustrated
shortly.

Example 5.14. Tests for proportions using the binomial approximation to the normal
distribution. Two types of plant are used to treat the sewage effluent from two similar areas
of a city. Of 90 tests made on the output from plant X, 33 tests show that the pollution has
been reduced significantly, whereas 44 tests out of 100 on the output from plant Y show that
the pollution has been reduced to the same or lower levels. Are the effects of the plants in
reducing pollution different?

It is generally reasonable to assume that the number of tests that show significant results is
binomially distributed, with parameters represented by the numbers of tests and the population
proportions of successful results. These are given by (nX = 90, pX ) and (nY = 100, pY ) for
plants X and Y , respectively.

The null hypothesis H0: pX = pY = p.
The alternative hypothesis H1: pX �= pY .

Level of significance: α = 0.05.

Calculations: Because we do not specify which plant is more effective, if there is any
significant difference between the two, a two-tailed test is called for. On the basis of the null
hypothesis, we can obtain an estimate of p using data from both plants. This gives

p̂ = 33 + 44

90 + 100
= 77

190
= 0.405.

We then take the difference between the observed proportions p̂X and p̂Y as the test statistic,
in order to examine the possible difference in effectiveness of the two plants:

p̂X − p̂Y = 33

90
− 44

100
= −0.073.

The variance of the difference between the observed proportions is

Var[ p̂X − p̂Y ] = Var[ p̂X ] + Var[ p̂Y ] = pX (1 − pX )

nX
+ pY (1 − pY )

nY
,

using Eqs. (5.3.7) and (5.3.8). On the basis of the null hypothesis, we substitute the estimate
of p, that is, 0.405, obtained above for pX and pY . Hence,

Var[ p̂X − p̂Y ] = 0.405 × 0.595

(
1

90
+ 1

100

)
= 0.005087.

On the basis of the null hypothesis and with reference to Subsection 4.2.6, ( p̂X − p̂Y ) has an
approximate N(0, 0.005087) distribution. Thus, the estimated standard normal score (that is
the resulting variate) is

z = −0.073 − 0√
0.005087

= −1.03.
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At the 5% level of significance, this is within the acceptance region of −1.96 to +1.96, from
Table C.1.

Decision: The null hypothesis is thus not rejected and the evidence is insufficient to show
that there is a difference in effectiveness of the treatment plants.

Example 5.15. Change in the mean annual maximum flow with known standard devi-
ation and prior mean. Annual maximum flows in the Pond Creek catchment area in the
eastern United States are listed below in cubic meters per second for two periods of 12 years
from 1945 to 1968. It is thought that changes in the flow regime during the middle of this
period have modified the distribution of flows resulting in higher maximum flows. This is
equivalent to stating that the mean flow has increased from the first period to the second
period.

First period: 2000 1740 1460 2060 1530 1590 1690 1420 1330 607 1380 1660
Second period: 2290 2590 3260 2490 3080 2520 3360 8020 4310 4380 3220 4320

Null hypothesis H0: μ2 = μ1, that is, the new mean is equal to the past mean, where the
mean flow for the first and second periods are μ1 and μ2, respectively.

Alternative hypothesis H1: μ2 > μ1, that is, the new mean is greater than the past mean.
Level of significance: α = 0.01.

Calculations: During the first period, that is, from 1945 to 1956 the mean and standard
deviation are estimated as 1539 and 372 m3/s, respectively. We assume initially that these
represent the population mean μ and standard deviation σ prior to 1957. We also assume as
a first approximation that the standard deviation is the same before and after 1956. We use a
one-tailed test (because we are testing whether the flow has increased).

Let X̄2 be the estimated new mean, after 1956, based on a sample size n = 12. If we assume
that the annual maximum flows are normally distributed, also as a first approximation, the
standard normal score is

Z = (X̄2 − μ)

(σ/
√

n)
.

This becomes our test statistic. For α = 0.01, our decision rule is

(1) Reject H0 if the z score is greater than 2.326 [see Table C.1 for 	(z) = 1 − α = 0.99].
(2) Otherwise do not reject H0.

Substituting for μ, σ , and n, z = (x̄2 − 1539)/(372/
√

12 = (x̄2 − 1539)/107.4. From the
foregoing data, the mean for the second period of 12 years is x̄2 = 3653 m3/s. The z score of
19.7 is far greater than the critical value of 2.326.

Decision: The null hypothesis H0 is therefore rejected.

Example 5.16. Change in the mean annual maximum flow with known prior mean
and unknown but constant standard deviation. In practice we do not know the standard
deviation in Example 5.15. So our test will be based on the sample value and thus it is
appropriate to apply the t distribution.

Null hypothesis H0: μ2 = μ1, that is, the new mean is equal to the past mean.
Alternative hypothesis H1: μ2 > μ1, that is, the new mean is greater than the past mean.
Level of significance: α = 0.01.

Calculations: As before we assume (1) that the standard deviation is constant and (2) that
the annual maximum flows are normally distributed. Thus the test statistic is

T = (X̄2 − μ)

(σ/
√

n)
.

For α = 0.01, our decision rule is
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(1) Reject H0 if the t score is greater than t11,0.01 = 2.718 [see Table C.2 for F(t) =
1 − α = 0.99 and v = n − 1 = 11].

(2) Otherwise do not reject H0.

The sample t score is 19.7, the same as the z score in Example 5.15, which is also far greater
than the critical value t11,0.01= 2.718.

Decision: Here too the null hypothesis H0 is rejected.

5.4.1.1 Testing the difference between two means using known variances
If X̄1 and X̄2, say, are two estimated means, of μ1 and μ2 obtained from two small samples
of sizes n1 and n2, respectively, and if the two populations are normal with known variances
σ 2

1 and σ 2
2 , then the random variable

Z = (X̄1 − X̄2) − (μ1 − μ2)

σX̄1−X̄2

(5.4.6)

has an N (0, 1) distribution. The denominator of the variable is the standard error of the
difference between two statistics as defined by Eq. (5.3.8b). In this case it is given by

σX̄1−X̄2
=

√
σ 2

1

n1
+ σ 2

2

n2
. (5.4.7)

5.4.1.2 Testing the difference between two means when the variances are unknown
but equal

Let the sample variances be Ŝ2
1 and Ŝ2

2 . Because both are estimates of the constant variance
σ 2, a pooled estimate can be formed by

Ŝ2
p = (n1 − 1)Ŝ2

1 + (n2 − 1)Ŝ2
2

n1 + n2 − 2
. (5.4.8)

Then the random variable

T = (X̄1 − X̄2) − (μ1 − μ2)

Ŝp
√

1/n1 + 1/n2

= (X̄1 − X̄2) − (μ1 − μ2)√
(n1 − 1)Ŝ2

1 + (n2 − 1)Ŝ2
2

√
(n1 + n2 − 2)n1n2

n1 + n2
(5.4.9)

has the t distribution with n1 + n2 − 2 degrees of freedom. In the case of small samples,
we may make the assumption that the population variances are equal when there are
insufficient grounds to assume the contrary.

Example 5.17. Differences in the mean compressive strengths of concrete from two
batches with assumed equal but unknown variances. Results of tests on concrete strengths
made on two batches of concrete are summarized as:

Batch 1: x̄1 = 60.34 ŝ1 = 5.72 N/mm2 n1 = 12.
Batch 2: x̄2 = 54.23 ŝ2 = 7.01 N/mm2 n2 = 10.

Suppose we wish to test whether the strength of the first batch is significantly higher than that
of the second.

Null hypothesis H0: μ1 = μ2.
Alternative hypothesis H1: μ1 > μ2.
Level of significance: α = 0.05.
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Calculations: From Eq. (5.4.9) on the basis of the null hypothesis,

t = 60.34 − 54.23√
11 × 5.722 + 9 × 7.012

√
20 × 12 × 10

22
= 2.25.

The degrees of freedom are v = 12 + 10 − 2 = 20. From Table C.2, t20,0.05 = 1.725 and
t20,0.01 = 2.528.

Decision: Hence the mean strength of the first batch of concrete is higher at the 5% level
of significance but not at the 1% level. Further tests are recommended.

When, as in the data sited in Example 5.17, the variances seem to be totally dif-
ferent, the assumptions related to Eq. (5.4.9) are not justified. However, some modi-
fication can be made to the test procedure. Tests on variances will follow in the next
subsection.

5.4.1.3 Testing the difference between two means when the variances are
unknown and unequal

There are many instances when it is not correct to assume that the variances corresponding
to the means tested are equal. However when the variances are unequal, the statistic does not
have a t distribution. This is called the Behrens-Fisher Problem. The sampling distribution
is rather complicated (see Stuart and Ord, 1991, pp. 785–786). It is possible to find an
approximation as indicated, for example, by Casella and Berger (2002, pp. 409–410) and
Brownlee (1965, pp. 299–302). In the case of observations taken from normal populations
with unknown and unequal variances, the statistic

T ′ = (X̄1 − X̄2) − (μ1 − μ2)√
Ŝ2

1/n1 + Ŝ2
2/n2

(5.4.10)

has an approximate t distribution with

v =
[
Ŝ2

1/n1 + Ŝ2
2/n2

]2(
Ŝ2

1/n1
)2

/(n1 − 1) + (
Ŝ2

2/n2
)2

/(n2 − 1)
(5.4.11)

degrees of freedom.

Example 5.18. Change in the mean annual maximum flow with unknown and unequal
variances. We return again to the data of Example 5.15. The two main parameters are μ1

and μ2.

Null hypothesis H0: μ1 = μ2.
Alternative hypothesis H1: μ1 > μ2.
Level of significance: α = 0.01.

Calculations: We use a one-tailed test. From the data of Example 5.15,

x̄1 = 1539, ŝ1 = 372, x̄2 = 3653, ŝ2 = 1563 m3/s, n1 = n2 = 12.

Hence from Eqs. (5.4.10) and (5.4.11),

v = [(3722/12) + (15632/12)]2

[(3722/12)2/11] + [(15632/12)2/11]
≈ 12.

T ′ = (3653 − 1539)√
(3722/12) + (15632/12)

= 4.56.

From Table C.2, t12,0.01 = 2.681.
Decision: Hence the null hypothesis is rejected (as in Example 5.15).
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5.4.2 Probabilities of Type I and Type II errors and the power function

As already noted, the designer chooses the Type I error probability α, but the Type II
error probability depends on α, the sample size, and the true value of the parameter tested.
Consider the two-tailed test used for testing the mean of a N (μ, σ 2) population:

Null hypothesis H0: μ = μ0.
Alternative hypothesis H1: μ �= μ0.

Suppose that it is correct to reject the null hypothesis because the true value of μ

is μ0 + c, where c is a constant. It is also correct (apparently) to accept the alternative
hypothesis with standardized test statistic

Z ∼ (c
√

n/σ, 1)

where n is the size of a test sample; that is, the mean has been displaced by c/(σ/
√

n)
standardized units. For example, Fig. 5.4.1 is a graph of the pdfs of Z for the null
hypothesis with zero mean and the alternative hypothesis with the mean displaced
by three standardized units; the displacement is positive here but it can also be
negative.

A Type II error [defined initially by Eq. (5.4.3)] is made, that is, when H1 is true, only if
−zα/2 ≤ Z ≤ zα/2, where −zα/2 and zα/2 are the values which a standard normal deviate
exceeds with probabilities of (1 − α/2) and α/2, respectively. The probability β of a Type
II error is determined after adjusting the specified limits by the mean of the Z variate.
Accordingly, it is given by

β = 	

(
zα/2 − c

√
n

σ

)
− 	

(
−zα/2 − c

√
n

σ

)
where 	(·) is the cdf of the standard normal distribution. See Fig. 5.4.1.

Thus we see that the probability β of a Type II error is dependent on α, n, and c/σ .
Curves representing β are called characteristic curves. These are shown in Fig. 5.4.2a for
a two-tailed normal test with level of significance α = 0.05, sample sizes n from 1 to 100
and c/σ = 0.25, 0.50, 0.75, and 1.0.

0

0.1

0.2

0.3

0.4

−4 −3 −2 −1 210 6543 987

z

φ (
z)

b a/2
a/2

Fig. 5.4.1 Significance test on the sample mean. The normal (0, 1) pdf on the left is the assumed
model in standardized form. Suppose the normal (3, 1) pdf on the right represents the true model.
Then the Type I error is α and the Type II error is β. The test is applicable regardless of the sign of
the shift in the mean. The magnitude of β changes with the absolute magnitude of the shift; α is
invariant here.
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Fig. 5.4.2 (a) Operating characteristic curves with sample sizes n from 1 to 100 and absolute
displacements of the mean from 0.25 to 1.00 σ for a two-sided normal test with a level of
significance α = 0.05. (b) Power curves with the sample sizes and absolute displacements but with
a level of significance α = 0.01.

From these curves we see that, for the same sample size n, β increases as c/σ decreases.
That is, small differences in the mean are more difficult to detect and lead to a higher
probability of incorrect acceptance. Also, as expected, there is an increase in β as the
sample size n decreases.

The complement of β is the power function. As already stated it is the probability of
rejecting the null hypothesis when it is not true (which is of course the right thing to do)
in favor of the alternative hypothesis. It is equivalent to

Power = 1 − β = 1 −
[
	

(
zα/2 − c

√
n

σ

)
− 	

(
−zα/2 − c

√
n

σ

)]
.

Power curves are shown in Fig. 5.4.2b for a two-tailed normal test with level of sig-
nificance α = 0.01, sample sizes n from 1 to 100 and c/σ = 0.25, 0.50, 0.75, and 1.0.
Clearly, the power increases with c/σ and sample size n.

The characteristic and power curves are complementary. These can be easily changed
for different values of α. Similar procedures can be applied for a one-sided test in which
the alternative hypothesis is H1: μ > μ0 or H1: μ < μ0.
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5.4.3 Neyman-Pearson lemma

(1) As mentioned earlier, statistical hypotheses are more restrictive than those in sci-
entific applications such as in particle physics. Here we are concerned with the
behavior of observable random variables. For example, if a random sample is taken
from a distribution with specific parameters, then a simple hypothesis is one that
uniquely defines the distribution from which the sample is taken against an alter-
native hypothesis. The other type of hypothesis is called a composite hypothesis.

(2) A critical (rejection) region with power not less than that of any other region of the
same size used in testing the null hypothesis H0 against the alternative hypothesis
H1 is called a best critical region (bcr). Here H0 and H1 are simple hypotheses
if we are choosing between two specified distributions. A test involving a bcr is
called a most powerful (mp) test.

If our test statistics are devised such that the probability of a Type I error does not
exceed a constant α, called the size of the test, then in effect we are applying the classical
Neyman-Pearson theory, which is discussed briefly here. It is named after Jerzy Neyman
and Egon Pearson. Accordingly, we keep the probability of a Type I error fixed and search
for the test statistic that maximizes (1 − β) where β is the probability of a Type II error.
Suppose that our hypotheses concern a distribution with only one parameter θ . Let H0

and H1 denote θ = θ0 and θ = θ1 respectively. Then to construct a bcr we consider the
corresponding likelihoods

L0 =
n∏

i=1

f (xi | θ0) and L1 =
n∏

i=1

f (xi | θ1).

The ratio L0/L1 should be low for points within the critical region R, thus minimizing
the Type I error α and maximizing the power (1 −β). It should be high, on the other hand,
for points in the (complementary) acceptance region A. Thus the probability of a correct
decision is high under H0. In this approach one sees again the fundamental trade-off in
hypothesis testing. We now outline a procedure for application.

Definition: Neyman-Pearson lemma. Let R be a critical (rejection) region of size α, when
testing the null hypothesis H0: θ = θ0 against the alternative hypothesis H1: θ = θ1. We
define a constant kα such that in the region R, (L0/L1) ≤ kα , and in the acceptance re-
gion A, L0/L1 > kα , where L0 = ∏n

i=1 f (xi | θ0) and L1 = ∏n
i=1 f (xi | θ1). Then R is the

best critical region of size α. Such a test involving a bcr is called a most powerful (mp)
test.

Example 5.19. A simple likelihood test on a normal population with unit variance. Let
X1, X2, . . . , Xn be a random sample from an N (μ, 1) population. Suppose our objective is
to test the null hypothesis H0: μ = μ0 against the alternative hypothesis H1: μ = μ1 > μ0.
The ratio of the likelihoods can be used to find the bcr of size α.

The ratio of the likelihoods is given by

L0

L1
= (1/

√
2π )n exp[−(1/2)

∑n
i=1 (Xi − μ0)2]

(1/
√

2π )n exp[−(1/2)
∑n

i=1 (Xi − μ1)2]

= exp

[(
n∑

i=1

Xi

)
(μ0 − μ1) + n

2

(
μ2

1 − μ2
0

)]
.

(The likelihoods are as in Example 3.23 but with unit variance.)
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We define a constant kα , which depends on α, as a limiting value of the likelihood ratio,
and a critical region R of size α within which

exp

[(
n∑

i=1

Xi

)
(μ0 − μ1) + n

2

(
μ2

1 − μ2
0

)] ≤ kα.

Outside R,

exp

[(
n∑

i=1

Xi

)
(μ0 − μ1) + n

2

(
μ2

1 − μ2
0

)] ≥ kα.

Taking logarithms and simplifying, we find for H1: μ = μ1 > μ0, the bcr is defined for

X̄ ≥ 1

2
(μ0 + μ1) − ln(kα)

[n(μ1 − μ0)]
= cα.

In applications we determine the constant cα using α.
If the alternative hypothesis is stipulated as H1: μ = μ1 < μ0, the bcr is then defined for

X̄ ≤ 1

2
(μ0 + μ1) + ln(kα)

[n(μ0 − μ1)]
.

The foregoing procedure is applicable to simple hypotheses. A more general method
can be applied to composite hypotheses in which more than one parameter is considered
and where nuisance parameters with unknown values, which are not crucial for purposes of
inference, are present. These tests are termed likelihood ratio tests but are not necessarily
the most powerful under the circumstances.6

5.4.4 Tests of hypotheses involving the variance

In Eq. (5.3.14a) we noted that a quantity such as
∑n

i=1 (Xi − X̄ )2/σ 2 has a chi-squared
distribution with (n − 1) degrees of freedom. However, if the true mean μ is known,
this replaces X̄ in the preceding sum of squares and the degrees of freedom are n. Thus
with the knowledge of the sampling distribution, a hypothesis test can be made on the
variance.

Example 5.20. A significance test on the change in variance. From a long series of annual
river flows, the variance is found to be 49 units. This can be treated as the population variance.
However, a new sample of 25 years gives a value ŝ2 = 81 units.

Null hypothesis H0: σ 2 = 49.
Alternative hypothesis H1: σ 2 > 49.
Level of significance: α = 0.05.

Calculations: The quantity nŝ2/σ 2 has a chi-squared distribution with n degrees of free-
dom. From Table C.3, χ 2

25,0.05 = 37.7 and nŝ2/σ 2 = 25 × 81/49 = 41.3.

Decision: Thus the null hypothesis H0 is rejected.

6 Reference may be made to one of the books cited at the end of this chapter such as Stuart and Ord (1991), which
also have proofs of the Neyman-Pearson and other lemmas. The classical or frequentist approach is presented
here. We shall return to this subject in Chapter 10 in relation to the alternative Bayesian method, in which the
prior probabilities of the occurrences of H0 and H1 are assumed to be known.
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5.4.5 The F distribution and its use

Consider the random variable formed by the ratio of two independent chi-squared random
variables divided by the corresponding degrees of freedom m and n,

F = χ2
1 /m

χ2
2 /n

. (5.4.12)

This is sometimes known as the variance ratio. It has the Snedecor’s F distribution (named
after R. A. Fisher) with pdf,

hF ( f ) = �[(m + n)/2]

�(m/2)�(n/2)

(m

n

)m/2 f (m/2)−1

[1 + (m/n) f ](m+n)/2
, for 0 < f < ∞,

(5.4.13)

with m and n—numerator and denominator, respectively—degrees of freedom. Its deriva-
tion, which is similar to that of Student’s t , is shown in Appendix A.8.

Recall from Eq. (5.3.13) that (v/σ 2)Ŝ2 has a χ2
v distribution (that is, with v degrees of

freedom) where Ŝ2 is the estimated variance of a sample of size n, using v = n − 1 as
the divisor [as in Eq. (5.3.11)]. If two populations are normal and independent samples of
sizes (m + 1) and (n + 1) are drawn from them, then

F = Ŝ2
1/σ

2
1

Ŝ2
2/σ

2
2

(5.4.14)

also has an F distribution with m and n—numerator and denominator, respectively—
degrees of freedom.

This distribution has practical use in significance testing of variances. In Table C.4, F
values are given for a range of numerator and denominator degrees of freedom, m and n,
respectively, and corresponding to values of cdf from 0.9 to 0.995. The tabulation gives

G(F) = Pr[F ≤ Fm,n;α] = 1 − α,

for α ranging from 0.005 to 0.1. To find a corresponding value with complementary
probability, that is, for α ranging from 0.9 to 0.995 we use the property which follows
from Eq. (5.4.12) that if U ∼ Fm,n , then V = 1/U ∼ Fn,m . If we let ξp and ξ ′

p be the pth
quantiles of U and V , respectively,

p = Pr[U ≤ ξp] = Pr

[
1

U
≥ 1

ξp

]
= Pr

[
V ≥ 1

ξp

]
= 1 − Pr

[
V ≤ 1

ξp

]
.

However, we also know that

1 − p = Pr[V ≤ ξ ′
1−p].

Thus,

ξ ′
1−p = 1

ξp
.

So to find a quantile with probability p in the range 0.005–0.1, we refer to Table C.4 and
find the one with probability (1 −p) with reversed degrees of freedom and then take its
reciprocal.

Graphs of two F pdfs are shown in Fig. 5.4.3.

Example 5.21. Comparing variances of test results on an effluent. A constituent in an
effluent is analyzed seven and nine times through procedures X and Y , respectively. Test
results have standard deviations of 1.9 and 0.8 mg/L, respectively, by the two procedures. It
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Fig. 5.4.3 Two examples of the F density function. The numerator and denominator degrees of
freedom are given within parentheses.

is important to know whether the second method is more precise than the first (that is, with
less variance in the outcome).

Null hypothesis H0 : σ 2
1 = σ 2

2 .
Alternative hypothesis H1 : σ 2

1 > σ 2
2 .

Level of significance: α = 0.05.

Calculations: We use a one-tailed test. The data are as follows:

n1 = 7, n2 = 9, s2
1 = 1.92, s2

2 = 0.82.

We apply Eq. (5.4.14) under the null hypothesis to give F = 1.92/0.82 = 5.64. From Table
C.4, after some extrapolation, F6,8,0.05 = 3.58; note also that F6,8,0.01 = 6.37.

Decision: We reject the null hypothesis. Thus we may conclude that the second method
is more precise at the 5% level of significance. We note that there is no difference between
the methods at the 1% level of significance. Investigations of the differences should therefore
continue.

5.4.6 Summary of Section 5.4

In Section 3.2 we discussed methods of estimating parameters. Point estimates were
considered there, whereas in Section 5.3 interval estimates were investigated. In this
section another important aspect of the inferential procedure which concerns statistical
hypotheses with respect to the parameters of a distribution has been examined. A summary
of significance tests is given in Table 5.4.1.

The testing of hypotheses hinges on assumptions about the probabilities associated
with the null hypothesis. The method is obviously not infallible, so we must proceed
with care. When judiciously applied, however, it is one of the best ways of differentiating
chance effects from real differences. Type I and Type II errors, which are the chances of
incorrectly rejecting a hypothesis or incorrectly accepting it, respectively, and the power
of a test, which is the complement of the Type II error, are emphasized in this section.
Considerations of errors and the power of a test give validity to the inferential procedure.
However, we have made distributional assumptions in hypothesis testing that are not
always tenable. Nonparametric methods, discussed in the next section, do not have this
limitation.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:19

260 Applied Statistics for Civil and Environmental Engineers

Table 5.4.1 Summarya of significance tests of the mean and variance of normal variates, Xi

Null hypothesis, Other Estimate of Distribution of
H0 parameters test statistic test statistic

μ = μ0 Known σ 2 X̄−μ0
σ/

√
n N (0, 1)

μ = μ0 Unknown σ 2 X̄−μ0
Ŝ/

√
n

tn−1

σ 2 = σ 2
0 Known μ

∑n
i=1 (Xi − μ)2/σ 2

0 χ2
n

σ 2 = σ 2
0 Unknown μ

∑n
i=1 (Xi − X̄ )2/σ 2

0 χ2
n−1

μ1 = μ2 Known (X̄1−X̄2)
σ
√

1/n1+1/n2
N (0, 1)

σ 2
1 = σ 2

2 = σ 2

μ1 = μ2 Known σ 2
1 , σ 2

2
(X̄1−X̄2)√

σ 2
1 /n1+σ 2

2 /n2
N (0, 1)

μ1 = μ2 Unknown (X̄1−X̄2)
Ŝp

√
1/n1+1/n2

Eq. (5.4.8) gives Ŝp tn1+n2–2

σ 2
1 = σ 2

2 = σ 2

μ1 = μ2 Unknown Approximation by Eq. (5.4.10) See Eq. (5.4.11)

σ 2
1 �= σ 2

2

σ 2
1

σ 2
2

= 1 Known μ1, μ2

∑m
i=1 (Xi,1 − μ1)2/(m − 1)∑n
i=1 (Xi,2 − μ2)2/(n − 1)

Fm,n

σ 2
1

σ 2
2

= 1 Unknown μ1, μ2

∑m
i=1 (Xi,1 − X̄1)2/(m − 1)∑n
i=1 (Xi,2 − X̄2)2/(n − 1)

Fm−1,n−1

a Sample mean X̄ and variance Ŝ2 estimated from n values.

5.5 NONPARAMETRIC METHODS

As noted in Chapter 4, the normal distribution plays a central role in the theory of statistics
and probability and its use is supported by the Central Limit Theorem. However, there
are many instances when one is uncertain of the true form of the probability distribution
of the variable involved and the available sample is small, say, less than 30. It is therefore
desirable to have methods that can be applied regardless of distribution. Such procedures
are called distribution-free methods. For instance, one may set confidence limits (on a
parameter) which do not depend on the form of the underlying distribution. Furthermore,
there are experiments in which the measurements cannot be quantified in numerical terms
and are expressed, for example, as a success or failure, a form of goodness, a color, and
so on.

The term nonparametric methods is generally used to describe the wide-ranging proce-
dures used in analyzing all the aforementioned types of data. In these methods we are not
concerned with the parameters of populations. In contrast, parametric methods pertain to
those techniques where the distribution is known but the values of the parameters are not
specified. Furthermore, nonparametric methods do not require much computational effort
and are thus easier to apply. Also, small samples can be used. Although the methods are
less powerful in detecting Type I and Type II errors, the loss of power is sometimes min-
imal and is outweighed because the assumptions are less restrictive. Initially, hypotheses
pertaining to parameters, such as the means, in one or more samples will be examined.
Tests of randomness and association are then considered.
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5.5.1 Sign test applied to the median

The nonparametric sign test is an alternative to the tests on the mean using the normal or
the t distribution as sampling distributions, as discussed in Section 4.4. The one sample
sign test is applicable when we sample any continuous distribution that has a median, M .
We test the hypothesis that the median is equal to a specific value M0.

We commence the application of the sign test by subtracting M0 from each of the
observations and noting the signs of the differences. Sometimes an observation may be
equal to the specified median, in which case we discard that observation. Let n be the
number of nonzero differences. We then count the number of positive differences, say, k
out of a total of, say, n nonzero differences. If M = M0, the expected number of positive
differences is equal to the expected number of negative differences. The null hypothesis
to be tested is

H0 : M = M0.

The alternative hypothesis is one of the following:

(1) H1: M > M0.
(2) H1: M < M0.
(3) H1: M �= M0.

Under the null hypothesis, and on account of sampling variations, the observed plus
and minus signs are binomially (n, 1/2) distributed. We use the normal approximation to
the binomial except when sample sizes are very small, say, less than 10. The mean and
variance of a binomial (n, p) variable are np and np(1 − p) as noted from Eq. (4.1.5a)
and (4.1.5b), respectively; these are, respectively, n/2 and n/4 for p = 1/2. Also, because
of the discrete approximation, a continuity correction is necessary.

Having chosen a level of significance, α, we find zα from Table C.1 for the normal
distribution, noting that for the alternative hypotheses 1 and 2 a one-tailed test is required,
whereas a two-tailed test is used for 3. Thus the critical region is defined.

Definition and properties: The one-sample sign test applied to the median. Let n be
the number of nonzero differences between the sample values and the assumed median,
which is true under the null hypothesis, and let k be the number of positive differences. Then
by the normal approximation to the binomial, the following variate has a standard normal
distribution under the null hypothesis:

z = (k + 1/2) − n/2

(
√

n)/2
, if k <

n

2
, (5.5.1a)

z = (k − 1/2) − n/2

(
√

n)/2
, if k >

n

2
. (5.5.1b)

(The addition and subtraction of 1/2 from k are continuity corrections, introduced in Chapter
4.) The zα value from Table C.1 is compared with the z score calculated from one of the
preceding equations to decide whether the null hypothesis should be rejected at a level of
significance α.

Example 5.22. Sign test on the median of the compressive strengths of concrete. We
apply the test to the 40 compressive strengths listed in Table E.1.2.

Null hypothesis H0: M = 61 N/mm2.
Alternate hypothesis H1: M < 61 N/mm2.
Level of significance: α = 0.05.
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Calculations: Replacing each value exceeding 61 N/mm2 with a plus sign and each value
less than 61 N/mm2 by a minus sign, we get

– – – – – ++ – – – ++++ – ++++ – – – – – – – – – + – – + – – – ++ – – –

The number of positive differences k = 14.
The number of nonzero differences n = 40.

Because k < n/2,

z = (14 + 1/2) − 40/2

(
√

40)/2
= −1.74.

Using the left tail only, we find zα = −1.64.
Decision: The null hypothesis is rejected at the 5% level of significance.
Note that if the assumption that the concrete strengths are normally distributed is correct

(and this seems justifiable, as noted previously, from empirical evidence in numerous case
studies), then the more powerful parametric tests on the mean and other parameters are
preferable.

The sign test can also be applied to paired samples. A plus or minus sign takes the
place of each pair of sample values if the difference between the paired observations is
positive or negative, respectively, in such a test. This method is analogous in a sense to
the parametric two-sample t test on the mean, but here the null hypothesis is that the two
populations which we sample are continuous and symmetrical and have equal means. The
null hypothesis is therefore less binding in the assumptions.7

5.5.2 Wilcoxon signed-rank test for association of paired observations

In the sign test we make use of only the signs of the differences between the observations
and the median or of the differences between the paired observations in the two-sample
test. The Wilcoxon signed-rank test utilizes the magnitudes of the differences and is thus
intuitively a more powerful test compared with the much simpler sign test. Both procedures
can be used in testing differences in means.

In this test we note the magnitudes and the signs of the paired differences from two
samples of observations and then rank the absolute values of the differences. Thus the
smallest difference is assigned rank 1 and the largest difference gets the highest rank, which
is equal to the number of pairs n with nonzero differences (with the signs disregarded in
each case). If the absolute values of two or more of such differences are equal, we give each
a rank equal to the mean of the ranks they would otherwise receive. The ranks attributed
to positive and negative differences are then summed in separate columns. These sums
are denoted T + and T −, respectively. The null hypothesis is that the means of the two
populations are equal. The alternate hypothesis can take one of three forms as already
specified for the sign test.

For small sample sizes, the test statistic is T = min(T +, T −). Its quantiles are provided
in special tables for different levels of significance.8 If T > T0, where T0 is the critical
quantile, the null hypothesis is rejected.

7 See Problem 5.15.
8 See, for example, Siegel and Castellan, Jr. (1988, pp. 332–334) or Conover (1998) or Gibbons and Chakraborti
(2003).
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Definition and properties: Wilcoxon signed-rank test. Under the null hypothesis we can
use either T + or T −, the sum of the ranks applied to the absolute values of the positive and
negative differences, respectively, between the paired observations for the test statistic T . For
large sample sizes n, T can be approximated by the standard normal variate

Z = T − μT

σT
,

where

μT = n(n + 1)

4
(5.5.2a)

σ 2
T = n(n + 1)(2n + 1)

24
. (5.5.2b)

(See Appendix A.9 for a proof.) The approximation is sufficiently accurate for n ≥ 15. The
test procedure is similar to that for the sign test.

Example 5.23. Comparing strengths of materials made by two different methods using
the Wilcoxon signed-rank test. The following are the compressive strengths of a material
in N/mm2, manufactured by two different methods A and B.

A: 60.3 50.2 56.5 60.6 59.3 49.7 50.8 59.8 52.5 57.4 55.8 54.5 53.6 56.7 57.1
B: 56.0 56.2 55.1 59.2 62.3 54.5 56.5 57.1 56.2 56.1 58.5 63.5 58.2 48.9 53.0

We apply the signed-rank test to investigate whether method B is superior to method A as
claimed, assuming that the values represent independent random variables.

Null hypothesis H0: μA = μB .
Alternate hypothesis H1: μB > μA.
Level of significance: α = 0.05.

Calculations: Differences between corresponding pairs, B − A, are as follows:

−4.3 6.0 −1.4 −1.4 3.0 4.8 5.7 −2.7 3.7 −1.3 2.7 9.0 4.6 −7.8 −4.1.

Ranking the absolute differences in increasing order, we get the ranks of the positive differ-
ences:

13 6 11 12 7 4.5 15 10.

Hence T + = 78.5.

μT = 15 × 16

4
= 60 and σ 2

T = 15 × 16 × 31

24
= 310.

From which,

z = 78.5 − 60√
310

= 1.05.

Decision: Because z is less than zα = 1.645, the null hypothesis is not rejected at the
α = 5% level of significance.

[Note that the ranks of the negative differences are:

9 2.5 2.5 4.5 1 14 8

Hence T − = 41.5; because T + + T − = n(n + 1)/2 this gives z = −1.05 and the result cor-
responds with that for T +.]

A nonparametric alternative to the two-sample t test, which can be applied to two
samples that are unequal in size is given by the Wilcoxon rank-sum test or, equivalently,
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the Mann-Whitney U test.9 We deal next with a generalized form of this test called the
Kruskal-Wallis test, applicable to three or more samples.

5.5.3 Kruskal-Wallis test for paired observations in k samples

The test is applied to, say, k independent random samples of sizes ni , i = 1, 2, . . . , k, with
a total of n observations. It is assumed that all samples are random samples from their in-
dividual populations and that there is independence within the samples and between them.
The null hypothesis is that the samples come from the same continuous population. The
alternate hypothesis is that at least one of the populations tends to produce comparatively
larger values than the others.

Following a procedure similar to that in the Wilcoxon signed-rank and the Mann-
Whitney tests, the pooled data are ranked from the lowest to the highest as if they belong
to one sample. However, one notes against each rank the original sample from which the
item of data comes (as in the Wilcoxon signed-rank test).

Definition and properties: Kruskal-Wallis test for paired observations. If Ri is the sum
of the ranks of the data in the i th sample of size ni and n is the total sum of the k samples,
the normalized test statistic is

H = 12

n(n + 1)

k∑
i=1

R2
i

ni
− 3(n + 1). (5.5.3a)

Under the null hypothesis that the samples come from the same population, H has an ap-
proximate chi-squared distribution with (k − 1) degrees of freedom.

The sum of the ranks of the pooled data is n(n + 1)/2 (the sum of an arithmetic series)
which gives the mean rank of (n + 1)/2 for all the data, and Ri/ni is the mean rank of
the values of the i th sample.10 Consequently, it is not difficult to show that the normalized
test statistic of Eq. (5.5.3a) is equivalent to

H = 12

n(n + 1)

k∑
i=1

ni

[
Ri

ni
− n + 1

2

]2

. (5.5.3b)

That is, H is the weighted sum of the squared differences between the mean rank from
the i th sample and the mean rank for all the data. Thus large values of H lead to rejection of
the null hypothesis that all the samples are realizations of one population. Therefore, from
Eq. (5.3.9) and if ni ≥ 5 for i = 1, 2, . . . , k, the test statistic can be approximated by a χ2

k−1
distribution.11 We provide a general example followed by a more detailed application.

Example 5.24. Kruskal-Wallis test on the association of storm patterns with depths
and durations of rainfalls. Kottegoda and Kassim (1991) presented an original method of
classifying storms into three or more types. The suggested storm-structure classifications are
shown in Fig. 5.5.1.

These are based on the form of the variation of the percentage cumulative depth with the
percentage storm duration. In each case, a storm type with constant intensity, that is one

9 See, for example, Wackerly et al. (2002, pp. 812–813) or Gibbons and Chakraborti (2003) or Conover (1998).
10 See, for example, Kruskal and Wallis (1952).
11 For the statistic represented by Eq. (5.5.3b) without the normalizing constant 12/(n(n + 1)), tables including
values of ni < 5 are provided by Gibbons and Chakraborti (2003), Lehmann (1975), and some of the other
references.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:19

Model Estimation and Testing 265

0

25

50

75

100

250 50 75 100

Storm duration (%)

C
u
m

u
la

tiv
e
 d

e
p
th

 (
%

)

C
u
m

u
la

tiv
e
 d

e
p
th

 (
%

)

C
u
m

u
la

tiv
e
 d

e
p
th

 (
%

)

Storm duration (%) Storm duration (%)

1a

1b

0

25

50

75

100

250 50 75 100

2a

2b

0

25

50

75

100

250 50 75 100

3a

3b

Fig. 5.5.1 Classification of storm structure types.

with a uniform rate of rainfall, is identified by a diagonal straight line. The curves represent
storm profiles or structures found in practice. If, as shown by the first diagram, the profile
does not cross the line of constant intensity, the storm structure is classified as type 1. The
next two diagrams show storm profiles that cross the mean line once and twice, respectively,
within the storm duration. These are classified correspondingly as types 2 and 3. The profiles
can deviate in many ways from one storm to another; in particular, they can be reversed
in form with respect to the lines of constant intensity as seen, for example, by types 1a
and 1b.

A particular aspect of the study was to determine whether storm types are related to
the amounts and durations of measured rainfalls. The Kruskal-Wallis test was used for the
purpose. Application was made to observations recorded from 1985 to 1988 at 13 rain gauges
around Birmingham, England, in the Severn-Trent catchment area.

The null hypothesis H0: The mean depths under the three types of storms are equal at each
station. This hypothesis is also applied to the storm durations.

The alternate hypothesis H1: The three means are not equal.
Level of significance: α = 0.05.

Calculations: Observations made during 49 storms at the 13 rain gauge stations over a
2-year period are used in the study. Table 5.5.1 shows the computations and the H values at
each of the rain gauge stations. The number of storms recorded at a station is denoted by n.
Note that all storms were not recorded at every station.

Initially, the storms are ranked in ascending order at each station first with respect to
the depths and second with respect to the durations. The different types of storms are then
identified at each station. Next, the numbers and ranks falling into each type are then grouped
and the mean ranks are calculated. Last, Eq. (5.5.3b) is used to estimate the H statistics for
depths and durations separately.

Because the storms are of three types, k = 3 and hence the critical region is H ≥ χ2
2,0.05 =

5.99 from Table C.3.
Decision: In Table 5.5.1 we see that 3 out of 13 of the H values fall into the critical region

for the rainfall depths and also for the durations. We note that the third type of storm is
inadequately represented because, as stipulated, the number of items should not be less than
five for each type for the chi-squared approximation. However, reference to tables for small
samples already cited confirms the findings.

Therefore, one cannot come to a definite conclusion regarding the null hypothesis and
further studies are required after collection of additional data. It is also possible that such storm
patterns are not associated with depths and durations except in some areas that experience
special climatic or seasonal effects.

Example 5.25. Kruskal-Wallis test applied to determine whether three samples of com-
pressive strengths of concrete come from the same population. Consider the concrete
cube test records of Table E.1.2. As noted these tests were made during the period 8 July
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Table 5.5.1 Kruskall-Wallis test applied to rainfall data

Station 1 2 3 4 5 6 7 8 9 10 11 12 13

N 41 45 35 34 27 38 49 37 30 38 44 35 38

na
1 22 25 17 19 14 15 21 19 17 19 15 19 22∑

ria/n1 18.0 19.8 15.9 15.7 12.2 11.1 19.5 14.4 14.2 21.4 21.4 17.2 17.0∑
rib/n1 23.5 20.6 14.4 18.1 14.7 17.2 19.5 16.9 16.1 21.4 21.6 17.8 18.0

n2 17 18 16 13 12 21 24 14 9 15 26 15 14∑
ria/n2 22.9 26.2 18.8 18.8 15.5 24.7 28.4 23.8 15.7 17.9 21.3 18.3 21.0∑
rib/n2 16.4 25.6 20.1 15.8 13.6 20.8 28.5 22.9 15.8 16.2 21.7 17.2 21.0

n3 2 2 2 2 1 2 4 4 4 4 3 1 2∑
ria/n3 37.0 34.0 29.7 26.2 20.0 28.2 33.8 24.1 20.6 16.2 38.3 28.5 25.0∑
rib/n3 33.1 29.3 32.3 23.4 9.7 24.5 33.6 19.5 12.2 23.9 3.7 34.5 20.4

Ha 5.4 4.0 3.4 2.4 1.7 14.4 6.0 7.1 1.7 1.2 4.9 1.2 1.9

Hb 5.5 2.0 6.7 1.1 0.4 1.3 6.0 2.5 0.7 2.5 6.6 2.7 0.7

a Suffixes 1, 2, and 3 refer to storm types; a and b refer to depths and durations of rainfall, respectively.

1991 to 21 September 1992. Let us suppose the composition of the aggregates of concrete
were changed on 18 September 1991, and again on 4 December 1991. If so, one should con-
sider the possibility that the resulting three samples do not come from the same population.
Our interest here is in the compressive strengths of concrete. We use the Kruskal-Wallis test
to examine any differences in the mean strengths.

The null hypothesis H0: The mean compressive strengths of the samples taken before
September 18, 1991, those taken during the period September 18 to December 4, 1991, and
those taken after December 4, 1991 are equal.

Alternate hypothesis H1: The three means are not equal.
Level of significance: α = 0.05.

Calculations: Sample 1 has 12 compressive strengths, taken prior to 18 September 1991.
The ranks in chronological order are obtained using Tables 1.2.1 and E.1.2 as follows:

14 6 15 40 32.5 9 7 3 30 16 2 27

Note that in the case of ties, mean ranks are given. The total of the ranks is 201.5. The mean
rank = 201.5/12 = 16.79.

Sample 2 has 14 compressive strengths, taken from 18 September to 4 December 1991.
The ranks are as follows in chronological order:

4 8 21 13 10 18.5 23 17 20 28 34 38 37 23.

The total of the ranks is 294.5. The mean rank = 294.5/14 = 21.04.
Sample 3 has 14 compressive strengths, taken after 4 December 1991. The ranks are as

follows in chronological order:

31 32.5 35 29 25.5 12 1 39 36 11 5 18.5 25.5 23.

The total of the ranks is 324. The mean rank is 324/14 = 23.14.
[We verify that the total sum of the ranks = 201.5 + 294.5 + 324 = 820.0, which tallies

with the theoretical total of n(n + 1)/2 = 40 × 41/2 = 820.]
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The critical region is H ≥ χ2
0.05,2 = 5.99 from Table C.3.

From Eq. (5.5.3a)

H = 12

n(n + 1)

3∑
i=1

R2
i

ni
− 3(n + 1)

= 12

40 × 41

[
201.52

12
+ 294.52

14
+ 3242

14

]
− 3 × 41 = 1.95.

[The same result is obtained from Eq. (5.5.3b).]
Decision: Because H ≤ χ 2

0.05,2 = 5.99, the null hypothesis is not rejected.

5.5.4 Tests on randomness: runs test

In the applications of statistical methods, it is often assumed that a sample is taken at
random and that the values of a sample represent variables that are themselves random.
Some tests are devised specifically to detect trends; others are used to investigate periodic
behavior in a series. A technique based on the number of runs shown by a series is
applicable as a general test on randomness. By definition, a run is a sequence of variables
of a particular kind that is preceded and followed by a sequence of variables of a different
kind or by no variables at all (in the first and last positions). For example, magnitudes
greater than the median can be of one kind, in which case magnitudes below the median
will constitute the other kind.

As an illustration, consider the following series which represents 35 pollutant levels
in a stream measured at regular intervals of time denoted by either A, acceptable, or U ,
unacceptable:

U U A U A U U U U U A A U U U U A U A A A A U U A A A A A U A A U U A.

By the given definition, this comprises 16 runs where, for example, each run of one or
more Us is preceded and followed by a run of one or more As or no measurements at all.
In such cases, the total number of runs relative to the sample size provides an indicator
of randomness. Too few runs suggest a grouping, clustering, trend, or periodic behavior,
whereas too many runs lead to the suspicion that there are high-frequency oscillations. A
random series should have neither too few nor too many runs.

Definition and properties: Runs test for randomness. A run is a sequence of variables
of a particular kind that is preceded and followed by a sequence of variables of a different
kind or no variables at all. In a sequence containing n variables of one kind and m variables
of another kind, the sampling distribution of the total number of runs, R, can be closely
approximated by the normal distribution with12

μR = 1 + 2nm

(n + m)
(5.5.4a)

and

Var[R] = 2nm(2nm − n − m)

(n + m)2(n + m − 1)
. (5.5.4b)

The approximation is quite close for m, n > 9.

12 Tables are provided by Wackerly et al. (2002, pp. 814–815) and Gibbons and Chakraborti (2003) for small
samples. See also Wald and Wolfowitz (1940).
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Because a discrete distribution is approximated by a continuous distribution, a continuity
correction, as in Eq. (5.5.1a) and (5.5.1b), should be applied to the observed number of
runs, r , as shown in Example 5.22.

Example 5.26. Runs test on annual river flows. Annual flows of the Derwent at Yorkshire
Bridge, England, for the period 1938–1967 are tabulated below in millimetres of equivalent
runoff over the catchment area above the site.

946 1074 867 1058 838 837 1133 815 1138 869
910 868 927 1193 969 742 1386 737 1113 955

1143 665 1187 947 955 891 763 1288 1302 1029.

Our objective is to ascertain whether the population is random using the runs test.

Null hypothesis H0: The population is random.
Alternate hypothesis H1: The population is not random.
Level of significance: α = 0.05.

Calculations: The median is 951 mm. Runs above the median are underlined as follows:

946 1074 867 1058 838 837 1133 815 1138 869
910 868 927 1193 969 742 1386 737 1113 955

1143 665 1187 947 955 891 763 1288 1302 1029.

The number of values n above the median = the number of values m below the median = 15.
The total number of observed runs r = 20.

The test statistic is

Z = (R ± (1/2)) − μR√
Var[R]

.

By using a two-tailed test with α = 0.05, the critical region is Z (positive with R + 1/2) >

1.96 and Z (negative with R − 1/2) < −1.96, from Table C.1.
Sample estimates of the mean and variance of the total number of runs are obtained using

Eq. (5.5.4a) and (5.5.4b):

μ̂R = 1 + 2 × 15 × 15

30
= 16 and Var[R] = 2 × 15 × 15(450 − 30)

302 × 29
= 7.24.

Hence,

z = (20 + 1/2) − 16√
7.24

= 1.49.

Decision: Thus the null hypothesis that the population is random is not rejected.

5.5.5 Spearman’s rank correlation coefficient

In Chapter 3 we studied the correlation between two series [see Eq. (3.3.27)], but (as
discussed further in Chapter 6) the associated significance test is based on assumptions
that may be restrictive at times. The nonparametric alternative is called Spearman’s rank
correlation coefficient; it is often referred to simply as the rank correlation coefficient.
For this purpose we use ranks as in some of the tests of location already described. That
is, the data are converted to ranks. In this way the correlation coefficient does not depend
on the actual values and, furthermore, the ranks do not vary if one makes a monotonic
transformation (which is unambiguous and does not change the order) of the variables.
Unlike Pearson’s product-moment correlation coefficient, this does not require that the
relationship between the variables is linear.
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Definition and properties: Spearman’s rank correlation coefficient is estimated as fol-
lows for a set of paired data, (xi , yi ), i = 1, 2, . . . , n, that are ranked separately so that, for
each data set, the highest value has rank 1 and rank n is that of the lowest value:

rs = 1 − 6
∑n

i=1 d2
i

n(n2 − 1)
, (5.5.5)

where di is the difference between the ranks given to xi and yi . Alternatively, the statistic is
denoted by the Greek letter ρ.

Under the null hypothesis of no correlation between the X and Y series, the distribution
of rs can be closely approximated by the normal distribution with

μrs = 0 and Var[rs] = 1/(n − 1).

If we return to the product-moment correlation coefficient estimated by Eq. (1.4.3)
and substitute the ranks for the actual paired observations (xi , yi ), the formula reduces
algebraically to Eq. (5.5.5). (See Appendix A.10 for proof.)13

Example 5.27. Rank correlations of concrete densities and strengths. Table E.1.2 gives
densities and strengths of concrete from 40 samples taken over a period of 15 months. The
correlation is tested using Spearman’s rank correlation method.

Null hypothesis H0: μrs = 0, the densities and strengths are uncorrelated.
Alternate hypothesis H1: μrs �= 0, the densities and strengths are correlated.
Level of significance: α = 0.01.

Calculations: The data are presented in Table 5.5.2. This table also includes the ranked
data, commencing with the highest (rank 1) in each data set, as well as the proper ranks
allocated with adjustments for ties. Finally, the differences in ranks are shown. The sum of
squared differences is 6189. Hence, from Eq. (5.5.5)

rs = 1 − (6 × 6189)

{40(402 − 1)} = 0.42.

The critical region: z ≥ zα/2 = 2.575 or z ≤ zα/2 = −2.575.
From the given properties,

z = rS − μrS

Var[rs]
= 0.42 − 0√

1/(40 − 1)
= 2.62.

Decision: The null hypothesis is rejected and there is a positive correlation. We note
also that the value of 0.42 compares closely with the coefficient of 0.44 obtained from the
product-moment correlation coefficient using Eq. (1.4.3).

5.5.6 Summary of Section 5.5

In this section we examined several nonparametric tests. They can be advantageous because
the tests are not based on restrictive assumptions. The procedures ranged from the sign
tests on the media to comparisons of the distributions of two or more samples, tests on
randomness and correlation tests. Some of the methods given elsewhere, such as the
Kolmogorov-Smirnov two-sample test in Subsection 5.6.3 and the jackknife and kernel-
based methods of Subsection 3.2.3 are also nonparametric. A few additional tests are
provided in the references cited.

13 Tables for small sample are provided by Wackerly et al. (2002, p. 816) and Gibbons and Chakraborti (2003).



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:19

270 Applied Statistics for Civil and Environmental Engineers

Table 5.5.2 Spearman’s rank correlation test of concrete densities and compressive strengthsa

Density Strength Density, Strength, Rank Rank Difference
Item x y ranked ranked of x of y in ranks d d2

1 2437.0 60.5 2411.0 49.9 25.5 18.0 7.5 56.3
2 2437.0 60.9 2415.0 50.7 25.5 15.5 10.0 100.0
3 2425.0 59.8 2425.0 52.5 38.0 22.5 15.5 240.3
4 2427.0 53.4 2427.0 53.2 36.5 36.0 0.5 0.3
5 2428.0 56.9 2427.0 53.4 35.0 30.0 5.0 25.0
6 2448.0 67.3 2428.0 54.4 15.5 5.0 10.5 110.3
7 2456.0 68.9 2429.0 54.6 8.5 2.0 6.5 42.3
8 2436.0 49.9 2433.0 55.8 28.5 40.0 −11.5 132.3
9 2435.0 57.8 2435.0 56.3 31.5 29.0 2.5 6.3
10 2446.0 60.9 2435.0 56.7 19.0 15.5 3.5 12.3
11 2441.0 61.9 2436.0 56.9 23.5 12.0 11.5 132.3
12 2456.0 67.2 2436.0 57.8 8.5 6.0 2.5 6.3
13 2444.0 64.9 2436.0 57.9 22.0 8.5 13.5 182.3
14 2447.0 63.4 2436.0 58.8 17.5 10.0 7.5 56.3
15 2433.0 60.5 2437.0 58.9 33.0 18.0 15.0 225.0
16 2429.0 68.1 2437.0 59.0 34.0 4.0 30.0 900.0
17 2435.0 68.3 2441.0 59.6 31.5 3.0 28.5 812.3
18 2471.0 65.7 2441.0 59.8 4.0 7.0 −3.0 9.0
19 2472.0 61.5 2444.0 59.8 3.0 13.0 −10.0 100.0
20 2445.0 60.0 2445.0 60.0 20.5 21.0 −0.5 0.3
21 2436.0 59.6 2445.0 60.2 28.5 24.0 4.5 20.3
22 2450.0 60.5 2446.0 60.5 13.0 18.0 −5.0 25.0
23 2454.0 59.8 2447.0 60.5 11.5 22.5 −11.0 121.0
24 2449.0 56.7 2447.0 60.5 14.0 31.0 −17.0 289.0
25 2441.0 57.9 2448.0 60.9 23.5 28.0 −4.5 20.3
26 2457.0 60.2 2448.0 60.9 7.0 20.0 −13.0 169.0
27 2447.0 55.8 2449.0 61.1 17.5 33.0 −15.5 240.3
28 2436.0 53.2 2450.0 61.5 28.5 37.0 −8.5 72.3
29 2458.0 61.1 2454.0 61.9 6.0 14.0 −8.0 64.0
30 2415.0 50.7 2454.0 63.3 39.0 39.0 0.0 0.0
31 2448.0 59.0 2455.0 63.4 15.5 25.0 −9.5 90.3
32 2445.0 63.3 2456.0 64.9 20.5 11.0 9.5 90.3
33 2436.0 52.5 2456.0 64.9 28.5 38.0 −9.5 90.3
34 2469.0 54.6 2457.0 65.7 5.0 34.0 −29.0 841.0
35 2455.0 56.3 2458.0 67.2 10.0 32.0 −22.0 484.0
36 2473.0 64.9 2469.0 67.3 2.0 8.5 −6.5 42.3
37 2488.0 69.5 2471.0 68.1 1.0 1.0 0.0 0.0
38 2454.0 58.9 2472.0 68.3 11.5 26.0 −14.5 210.3
39 2427.0 54.4 2473.0 68.9 36.5 35.0 1.5 2.3
40 2411.0 58.8 2488.0 69.5 40.0 27.0 13.0 169.0

Sum 6189.0

a Density in kg/m3; strength in N/mm2.

5.6 GOODNESS-OF-FIT TESTS

In Section 5.4 hypothesis-testing procedures related to the parameters of a distribution
were discussed. Another important type of hypothesis concerns the form of a probability
distribution. It may, for example, be necessary to test whether a discrete variable has a
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Poisson distribution or whether a continuous variable is normally distributed. For these
purposes, we make an overall comparison of observed and hypothetical frequencies that
fall into specified classes as discussed in Section 1.1. Alternatively, we may compare
observed and theoretical cumulative frequencies. These constitute two main types of
goodness-of-fit tests. The Anderson-Darling goodness-of-fit test is a special type devised
to give heavier weighting to the tails of a distribution; we discuss applications when the
model parameters are estimated from the same sample that is used for the test. Other
methods for testing the goodness-of-fit to a normal distribution are also given. In Section
5.8, we describe some graphical techniques that are highly useful in fitting probability
distributions.

5.6.1 Chi-squared goodness-of-fit test

The chi-squared test is a test of significance based on the chi-squared statistic with cdf
given by Eq. (4.2.12d) and used in this chapter in various applications. As shown by
Eq. (5.3.9), the statistic is derived by the sum of squares of independent standard normal
variates. The main steps are the ranking of a sample of data, division into a number
of classes depending on the magnitudes and the range, and the fitting of a probability
distribution. The statistic comes from the weighted sum of squared differences between
the observed and theoretical frequencies.

Consider, for example, the modulus of rupture data of a certain type of timber presented
in Tables E.1.1 and 1.1.3. These are ranked and divided into classes with intervals of
5 N/mm2. In Table 1.1.4 are shown the observed relative frequencies within each class and
the corresponding histogram is given by Fig. 1.1.4. Let a normal distribution, as shown for
example by the pdfs in Fig. 4.2.8, be fitted and the expected relative frequencies obtained.
The observed frequencies Oi and expected frequencies Ei are found by multiplying the
relative frequencies, for each class i from a total of l classes, by the sample size n. To test
whether the differences between the observed and expected frequencies are significant,
we use the statistic

X2 =
l∑

i=1

(Oi − Ei )2

Ei
. (5.6.1)

A large value of this statistic indicates a poor fit; so we need to know what values
are acceptable. The sampling distribution of X2 tends, as n approaches infinity, to a χ2

v
distribution, where v = l − k − 1 represents the degrees of freedom and k is the number
of parameters estimated from the same data used for the test. (The test is not exact for
finite samples because the statistic is an approximation obtained by taking only the first
term in a logarithmic series expansion consequent to maximizing the likelihood of the
joint occurrences of events in each interval. For practical use, however, it is sufficient that
the distribution is approximately of the χ2 form.)14

A possible shortcoming, which may reduce the effectiveness of the test, is that X2 is
positive and that no consideration is given to the signs and locations of the differences in
Eq. (5.6.1). Nevertheless, the test gives satisfactory results when there is no significant
dependence between the variables, if n ≥ 50 and for each class i , ni ≥ 5. It is versatile
and does not require one to know the values of the parameters before the test, as in
the classical form of the Kolmogorov-Smirnov goodness-of-fit test, which is discussed
next.

14 See Johnson and Leone (1977, pp. 274–277).
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Example 5.28. Goodness-of-fit of wet runs of rainfall. In Example 4.16 we considered the
distributions of wet and dry runs of daily rainfall at Kew in London, England, from January
1958 to May 1965. It was seen in Table 4.1.5 and Fig. 4.1.12 that the geometric distribution
provides a close fit to the observed distribution of wet runs. For a formal assessment of these
fits, we can use the chi-squared goodness-of-fit criterion, as approximated by Eq. (5.6.1),
using the given data.

Null hypothesis H0: The random variable (wet runs) has a geometric distribution with
p = 0.392.

Alternate hypothesis H1: The random variable does not have the specified distribution.
Level of significance: α = 0.05.
Critical region: X 2 ≥ χ2

8,0.05 = 15.5 (from Table C.3), noting that in Table 4.1.5 there are
l = 10 classes and k = 1 for the application of Eq. (5.6.1), which gives v = 10 − 1 − 1 = 8.

Calculations: From Table 4.1.5,

X 2 = (194 − 179.6)2

179.6
+ (101 − 109.2)2

109.2
+ (66 − 66.4)2

66.4

+ (30 − 40.3)2

40.3
+ (26 − 24.5)2

24.5
+ (11 − 14.9)2

14.9

+ (13 − 9.1)2

9.1
+ (7 − 5.5)2

5.5
+ (5 − 3.3)2

3.3
+ (2 − 2.2)2

2.2
= 8.49.

Decision: Because X 2 < χ2
8,0.05 = 15.5, the null hypothesis is not rejected. It can be con-

cluded that the wet runs have a geometric distribution as specified.
In a practical sense we should be aware, however, that the true distribution of wet runs

cannot be exactly the same as the hypothesized distribution. What we have found is a good
approximation to the true distribution.

Regarding the dry runs, the logarithmic series distribution seems to provide a better fit,
as seen from Table 4.1.6 and Fig. 4.1.13. The chi-squared test can also be applied to this
hypothesis.

For the application of the chi-squared test to a continuous variable, as represented, for
example, by the timber strength data of Table 1.1.3, the expected frequencies Ei are the
products of the total sample size n and the areas under the pdf, as specified by the null
hypothesis, between the bounds of each class i . Calculations of areas under the normal
and gamma pdfs are demonstrated in Examples 4.27 and 4.23, respectively.

The choice of classes will affect the power of the test. Furthermore, it is not the best
approach to have equal class intervals for the purpose. An equitable allocation of the
frequencies is obtained if we divide the total area under the pdf into equal areas and hence
find the class boundaries. This is the equal-probabilities method of constructing classes
as proposed by Mann and Wald (1942) and clarified by Williams (1950) who also suggest
for a level of significance α = 0.05, values of classes l = 39, 35, 30, 23, 15, 12, and 9 for
total sample sizes n = 2000, 1500, 1000, 500, 200, 100, and 50, respectively. For other
values of n and α, we use the formula

l = 2

[
2(n − 1)2

z2
a

]0.2

, (5.6.2)

where zα is the value which a standard normal variate exceeds with probability α (see
Table C.1). Also n/ l ≥ 5; although this requirement is relaxed somewhat by recent authors,
too many classes tend to reduce the power of the test.15

15 An alternative form of Eq. (5.6.2) and other information are given by Stuart and Ord 1991, pp. 1172–1182.
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Definition and properties: Chi-squared goodness-of-fit test. The test statistic is

X 2 =
l∑

i=1

(Oi − Ei )2

Ei
,

where Oi and Ei are the observed and expected frequencies, respectively, for each class i out
of a total of l classes into which an ordered sample of n observations is placed. A hypothesized
theoretical distribution gives the expected frequencies. The sampling distribution of X 2 tends,
as n approaches infinity, to a X 2 to a χ2

v distribution, where ν = l − k − 1 represents the
degrees of freedom and k is the number of parameters estimated from the same sample as
used in the test. The test is applicable to discrete and continuous variables, with a minimum
of 5 values in each class.

5.6.2 Kolmogorov-Smirnov goodness-of-fit test

The Kolmogorov-Smirnov goodness-of-fit test is a nonparametric test that relates to the
cdf rather than the pdf of a continuous variables. It is not applicable to discrete variables.16

The test statistic, in a two-sided test, is the maximum absolute difference (that is, usually
the vertical distance) between the empirical and hypothetical cdfs.

For a continuous variate X let x(1), x(2), . . . x(n) represent the order statistics of a sample
of size n, that is, the values arranged in increasing order. The empirical or sample distri-
bution function Fn(x) is a step function. This gives the proportion of values not exceeding
x and is defined as

Fn(x) = 0, for x < x(1),

= k/n, for x(k) ≤ x ≤ x(k+1); k = 1, 2, . . . , n − 2,

= 1, for x ≥ x(n). (5.6.3)

Let F0(x) denote a completely specified theoretical continuous cdf. The null hypothesis
H0 is that the true cdf of X is the same as F0(x). That is, under the null hypothesis

lim
n→∞ Pr[Fn(x) = F0(x)] = 1.

The test criterion is the maximum absolute difference between Fn(x) and F0(x), formally
defined as

Dn = sup
x

|Fn(x) − F0(x)|. (5.6.4a)

The foregoing measure of deviation is for a two-sided test which is commonly used. If
for some reason a one-sided test is required to test whether, for instance, Fn(x) > F0(x),
then the statistic is modified as

D+
n = sup

x
[Fn(x) − F0(x)]. (5.6.4b)

Likewise one can define the statistic D−
n . One of the advantages of the test is that the test

statistic is distribution-free, unlike those applied in hypothesis testing in Section 5.4.
For large values of n, Smirnov (1948) gives the limiting distribution of

√
nDn , as

lim
n→∞

[
Pr

[√
nDn ≤ z

]] =
(√

2π

z

) ∞∑
k=1

exp

[
−(2k − 1)2 π2

(8z2)

]
. (5.6.5)

16 See, however, the modifications suggested for such a test by Conover (1998).
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Thus, one can compute that the critical values Dn,α for large samples, say, n > 35, are
1.3581/

√
n and 1.6276/

√
n for α = 0.05 and 0.01, that is, for probabilities of 0.95 and

0.99 in Eq. (5.6.5), respectively. [From simulations we note that these results hold closely
for the summation of even the first five terms in Eq. (5.6.5).] For smaller sample sizes,
critical values Dn,α are given in Table C.7, of Appendix C.

The test is applied on the assumption that F0(x) denotes a completely specified theo-
retical continuous cdf, that is with known parameters.17 In the next example we do not
estimate the parameters of the distribution from the same sample that is used for the test.

Example 5.29. Testing goodness-of-fit of timber strengths. In Table E.1.1, modulus of
rupture data from 50 mm × 150 mm Swedish redwood and whitewood timber are given
in newtons per square millimeter. Let us suppose that the first 100 items were delivered by
one supplier and a second lot of 64 items came from another batch. (Let us ignore the zero
item at the end.) We assume that the distributions of the two lots are identical; but we will
examine this in the next example. Because of the positive skewness shown in Table 1.2.3,
the distribution can be one of several types such as the gamma described in Chapter 4. The
Weibull seems to be an ideal candidate, however, because it was originally devised to model
material strengths and similar effects and has been used for such purposes for over 75 years.
We apply, in the first instance, the two-parameter Weibull distribution with cdf, as presented
before through Eq. (4.2.16),

FX (x) = 1 − exp

[
−

( x

λ

)β
]

.

Following the least squares estimation procedure of Example 4.25, we estimate the following
parameters from the first 100 items of data:

β̂ = 5.39 and λ̂ = 42.55.

We use these estimates to model the empirical distribution of the next 64 items and hence
apply the Kolmogorov-Smirnov goodness-of-fit test.

Null hypothesis H0: The random variable (representing the modulus of rupture of
50 mm × 150 mm Swedish redwood and whitewood timber) has a Weibull distribution
as specified earlier.

Alternate hypothesis H1: The random variable has a different distribution.
Level of significance: α = 0.05.

Calculations: Critical region: Dn , as defined by Eq. (5.6.4a), is

> Dn,α = 1.3581√
n

= 1.3581√
64

= 0.17.

By setting this value above and below the sample cdf, confidence limits can be drawn as
shown in Fig. 5.6.1.

It is also shown that the observed value of the maximum absolute difference between the
theoretical and step functions dn = 0.1008, which is less than the critical value.

Decision: The null hypothesis is not rejected.

5.6.3 Kolmogorov-Smirnov two-sample test

The preceding test can be adapted to ascertain whether two samples come from the same
distribution.

17 When parameters are estimated from the same sample as used in the test, see Table C.8, in Appendix C.
Also, reference may be made to Lilliefors (1967), Gibbons and Chakraborti (2003), and the discussion by Stuart
and Ord (1991, pp. 1191–1192). A corrected table, for use with the normal distribution, is given by Dallal and
Wilkinson (1986). (See Problem 5.28.)
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Fig. 5.6.1 Kolgomorov-Smirnov one-sample goodness-of-fit test.

Let us define the maximum absolute difference between two empirical distribution
functions as Dm,n . Let these functions be represented by the step functions Fm(x) and
Gn(x) based on two samples of sizes m and n, respectively. That is,

Dm,n = sup
x

|Fm(x) − Gn(x)|. (5.6.6)

This is applicable to a two-sided test and corresponds to Eq. (5.6.4a). Also, with the
test statistic given by Eq. (5.6.4b) we can adopt a one-sided test.18 For large values of m
and n,

lim
m,n→∞

[
Pr

(√
mn

m + n
Dm,n ≤ z

)]
=

(√
2π

z

) ∞∑
k=1

exp

[
− (2k − 1)2 π2

(8z2 )

]
, (5.6.7)

which is the same as the distribution given by Eq. (5.6.5). That is, for large values of m and
n,

√
mn/(m + n) can be substituted for

√
n in Eq. (5.6.5), and the test procedure applied.

Example 5.30. Testing whether two samples come from the same population. We refer
again to the modulus of rupture data from 50 mm × 150 mm Swedish redwood and whitewood
timber presented in Table E.1.1. In Example 5.29 we supposed that the first 100 items were
delivered by one supplier and a second lot of 64 items also came from the same supplier but
from another batch. Let us verify whether the two samples are from the same population. We
apply the Kolmogorov-Smirnov two-sample test for the purpose.

Null hypothesis H0: The random variables sampled by the first 100 values (of modulus of
rupture of 50 mm × 150 mm Swedish redwood and whitewood timber presented in Table
E.1.1) and the random variables sampled by the next 64 values have the same distribution.

Alternate hypothesis H1: The random variables have different distributions.
Level of significance: α = 0.05.

Calculations: In Table 5.6.1 the data from each sample are ranked separately with values
of the step functions Fm(x) and Gn(x).

18 Tables are provided by Gibbons and Chakraborti (2003) for the application of the two-sample test to small
samples. For equal sample sizes less than 40, tables are given by Birnbaum (1952).
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Table 5.6.1 Data for Kolmogorov-Smirnov two-sample test applied to timber strengths

Rank Fm(x) xa Fn(x) x Rank Fm(x) x Fn(x) x

1 0.01 22.67 0.01563 17.98 51 0.51 39.34 0.79688 47.83
2 0.02 22.75 0.03125 22.74 52 0.52 39.60 0.81250 49.57
3 0.03 23.16 0.04688 23.14 53 0.53 39.62 0.82813 49.59
4 0.04 23.19 0.06250 24.09 54 0.54 39.77 0.84375 49.65
5 0.05 24.25 0.07813 25.39 55 0.55 39.93 0.85938 50.91
6 0.06 24.84 0.09375 25.98 56 0.56 39.97 0.87500 51.39
7 0.07 26.63 0.10938 27.31 57 0.57 40.53 0.89063 51.90
8 0.08 28.00 0.12500 27.90 58 0.58 40.71 0.90625 53.00
9 0.09 28.13 0.14063 27.93 59 0.59 40.85 0.92188 53.99

10 0.10 28.46 0.15625 28.71 60 0.60 40.85 0.93750 55.23
11 0.11 28.69 0.17188 29.90 61 0.61 41.64 0.95313 56.80
12 0.12 28.76 0.18750 30.02 62 0.62 41.75 0.96875 57.99
13 0.13 28.83 0.20313 30.33 63 0.63 41.85 0.98438 58.34
14 0.14 28.97 0.21875 30.53 64 0.64 42.31 1.00000 69.07
15 0.15 28.98 0.23438 31.33 65 0.65 42.47
16 0.16 29.11 0.25000 32.03 66 0.66 43.26
17 0.17 29.93 0.26563 32.76 67 0.67 43.33
18 0.18 30.05 0.28125 33.14 68 0.68 43.48
19 0.19 31.60 0.29688 33.18 69 0.69 43.48
20 0.20 32.02 0.31250 33.71 70 0.70 43.64
21 0.21 32.40 0.32813 34.40 71 0.71 43.99
22 0.22 32.48 0.34375 34.44 72 0.72 44.00
23 0.23 32.68 0.35938 34.49 73 0.73 44.30
24 0.24 33.06 0.37500 35.03 74 0.74 44.51
25 0.25 33.19 0.39063 35.17 75 0.75 44.54
26 0.26 33.47 0.40625 35.30 76 0.76 44.59
27 0.27 33.61 0.42188 36.53 77 0.77 44.78
28 0.28 33.92 0.43750 36.84 78 0.78 44.78
29 0.29 34.12 0.45313 36.85 79 0.79 45.19
30 0.30 34.56 0.46875 36.92 80 0.80 45.54
31 0.31 34.63 0.48438 38.00 81 0.81 45.92
32 0.32 35.43 0.50000 38.71 82 0.82 46.01
33 0.33 35.58 0.51563 38.81 83 0.83 46.33
34 0.34 35.67 0.53125 39.05 84 0.84 46.86
35 0.35 35.88 0.54688 39.20 85 0.85 46.99
36 0.36 35.89 0.56250 39.21 86 0.86 47.25
37 0.37 36.00 0.57813 40.20 87 0.87 47.42
38 0.38 36.38 0.59375 40.27 88 0.88 47.61
39 0.39 36.47 0.60938 40.39 89 0.89 47.74
40 0.40 36.81 0.62500 41.72 90 0.90 48.37
41 0.41 36.88 0.64063 41.78 91 0.91 48.39
42 0.42 37.51 0.65625 43.07 92 0.92 48.78
43 0.43 37.65 0.67188 43.12 93 0.93 50.98
44 0.44 37.69 0.68750 43.33 94 0.94 53.63
45 0.45 37.78 0.70313 43.41 95 0.95 54.04
46 0.46 38.05 0.71875 44.07 96 0.96 54.71
47 0.47 38.16 0.73438 44.36 97 0.97 56.60
48 0.48 38.64 0.75000 44.36 98 0.98 65.35
49 0.49 39.15 0.76563 45.97 99 0.99 65.61
50 0.50 39.33 0.78125 46.50 100 1.00 70.22

Note: In practice Fn(x) can be reduced to, say, 3 significant figures.
aModulus of rupture, in N/mm2.
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Fig. 5.6.2 Kolgomorov-Smirnov two-sample goodness-of-fit test.

The vertical positions of the items indicate the ranks of the combined data, from top to
bottom. Also, the step functions are plotted in Fig. 5.6.2.

We find that the observed maximum absolute difference between the two empirical distri-
bution functions, dm,n= 0.133. The test statistic√

mn

m + n
Dm,n =

√
100 × 64

100 + 64
× 0.133 = 0.831.

This is less than the numerator of the corresponding critical value of 1.36/
√

n (for a one-
sample test) of Table C.7.

Decision: The null hypothesis is not rejected.

Definition and properties: Kolmogorov-Smirnov tests. The test statistic for a two-sided
goodness-of-fit is Dn , the maximum absolute difference between the empirical and hypothet-
ical distribution functions. For large sample sizes,

Pr
[√

nDn ≤ 1.3581
] = 0.95 and Pr

[√
nDn ≤ 1.6276

] = 0.99

These results are quite close for sample sizes greater than 35. Other critical values can be
obtained from the limiting sampling distribution,

lim
n→∞

[
Pr

(√
nDn ≤ z

)] =
(√

2π

z

) ∞∑
k=1

exp

[
− (2k − 1)2 π2

(8z2)

]
.

Values for smaller sample sizes are as tabulated.
The test statistic for a two-sided two-sample test is Dm,n , the maximum absolute difference

between two empirical distribution functions. For large values of m and n,
√

mn/(m + n)
can be substituted for

√
n in the preceding equations.

5.6.4 Anderson-Darling goodness-of-fit test

The Anderson-Darling test is devised to give heavier weighting to the tails of a distri-
bution where unexpectedly high or low values, called outliers as discussed in Chapter 1,
are sometimes located. This is made possible if one divides the difference between the
empirical cdf Fn(x) and theoretical cdf F0(x) to be tested [that is, (Fn(x) − F0(x))—which
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approaches zero in each tail] by
√

F0(x)[1 − F0(x)]; see Anderson and Darling (1954).
After squaring the test statistic becomes

A2 =
∞∫

−∞
[Fn(x) − F0(x)]2 1

F0(x)[1 − F0(x)]
F0(x)dx, (5.6.8)

where f0(x) is the hypothetical pdf. It is shown that this is equivalent to

A2 = −n −
n∑

i=1

(2i − 1)(ln F0[x(i)] + ln{1 − F0[x(n−i+1)]})
n

, (5.6.9)

where x(1), x(2), . . . , x(n) are the observations ordered in ascending order. Because the cdfs
are in the range 0–1, their logarithms are negative and hence the summation on the right-
hand side of Eq. (5.6.9) is negative. The absolute value of the summation is also greater
than n, thus resulting in a positive value of A2.

For large values of the test statistic A2, the null hypothesis that Fn(x) and F0(x) have
the same distribution is rejected. Let us assume that the distribution is completely speci-
fied. Accordingly, critical values A2

α at five α levels of significance, at the upper tail, are
A2

0.10 = 1.933, A2
0.05 = 2.492 =, A2

0.025 = 3.070, and A2
0.01 = 3.857, respectively. These

asymptotic values hold approximately for n > 10. They apply to tests on any type of
distribution. However, if the parameters are estimated from the sample used in the test, the
test statistic is modified to A∗ = A2(1.0 + 0.75/n + 2.25/n2) and A∗ = A2(1.0 + 0.3/n)
in the case of the normal and exponential distributions, respectively. In this situa-
tion, the corresponding upper tail critical values are 0.631, 0.752, 0.873, and 1.035
for the normal and 1.062, 1.321, 1.591, and 1.959 for the exponential distributions,
respectively.

Tests for other distributions, such as extreme value Weibull, logistic, and gamma, are
discussed by Kotz and Johnson (1982) and detailed in the references cited; see, in particular,
the work of M. A. Stephens. See also Marsaglia and Marsaglia (2004).

Example 5.31. Distribution of concrete densities. Let us reconsider the distribution of the
concrete densities given in Table 1.2.1. In Chapter 3 we assumed a marginal uniform pdf as a
first approximation. However, a normal distribution seems to be a better choice. We now apply
the Anderson-Darling test to verify the hypothesis, using the estimated mean and standard
deviation of 2445 and 15.99 kg/m3 from Table 1.2.2.

Null hypothesis H0: The random variables sampled by the 40 concrete densities in
Table 1.2.1 have a normal distribution with the given parameters.

Alternate hypothesis H1: The random variables do not have the specified distribution.
Level of significance: α = 0.05.

Calculations: The calculations are shown in Table 5.6.2a.
The summation of the numerator of Eq. (5.6.9) is given here. The estimated A2 is

−40 −
(

−1615.74

40

)
= 0.3935

After the previously specified modification, A∗ = A2(1.0 + 0.75/n + 2.25/n2), for the nor-
mal distribution, A∗ = 0.4014. This is less than the critical value of 0.752.

Decision: The null hypothesis is not rejected.
As a matter of interest we repeat the exercise using the uniform distribution. The data

range from 2411 to 2488 kg/m3. With reference to the uniform pdf given by Eq. (4.2.1), we
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Table 5.6.2a Anderson-Darling test applied to concrete densities: normal hypothesis

Rank Concrete density (kg/m3) First F term Second (1 − F) term Summation term

1 2411 0.01675 0.00359 −9.72
2 2415 0.03032 0.03997 −29.87
3 2425 0.10550 0.04565 −56.54
4 2427 0.13014 0.05197 −91.52
5 2427 0.13014 0.06668 −134.24
6 2428 0.14385 0.20811 −172.84
7 2429 0.15850 0.22649 −216.19
8 2433 0.22649 0.24576 −259.42
9 2435 0.26587 0.24576 −305.80

10 2435 0.26587 0.26587 −356.14
11 2436 0.28678 0.28678 −408.60
12 2436 0.28678 0.28678 −466.05
13 2436 0.28678 0.37726 −521.65
14 2436 0.28678 0.40123 −580.03
15 2437 0.30844 0.42558 −638.92
16 2437 0.30844 0.42558 −701.86
17 2441 0.40123 0.45022 −758.33
18 2441 0.40123 0.45022 −818.23
19 2444 0.47506 0.47506 −873.31
20 2445 0.50000 0.50000 −927.37
21 2445 0.50000 0.50000 −984.21
22 2446 0.52494 0.52494 −1039.63
23 2447 0.54978 0.59877 −1089.63
24 2447 0.54978 0.59877 −1141.86
25 2448 0.57442 0.69156 −1187.09
26 2448 0.57442 0.69156 −1234.18
27 2449 0.59877 0.71322 −1279.27
28 2450 0.62274 0.71322 −1323.91
29 2454 0.71322 0.71322 −1362.44
30 2454 0.71322 0.71322 −1402.32
31 2455 0.73413 0.73413 −1440.02
32 2456 0.75424 0.73413 −1477.26
33 2456 0.75424 0.77351 −1512.29
34 2457 0.77351 0.8415 −1541.06
35 2458 0.79189 0.85615 −1567.87
36 2469 0.93332 0.86986 −1582.67
37 2471 0.94803 0.86986 −1596.74
38 2472 0.95435 0.8945 −1608.61
39 2473 0.96003 0.96968 −1614.12
40 2488 0.99641 0.98325 −1615.74

assume that a = 2410 and b = 2490 kg/m3. The results are shown in Table 5.6.2b. The
estimated A2 is

−40 −
(

−1740.27

40

)
= 3.5068

which is greater than the critical value of 2.492 for a 5% level of significance but less than
the 3.857 for a 1% level of significance, as given before, and assuming that the parameters
are not estimated from the same sample used in the test. Thus one might use the uniform
distribution as a first approximation.
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Table 5.6.2b Anderson-Darling test applied to concrete densities: uniform hypothesis

Rank Concrete density (kg/m3) First F term Second (1 − F) term Summation term

1 2411 0.01 0.03 −8.07
2 2415 0.06 0.21 −21.04
3 2425 0.19 0.23 −36.86
4 2427 0.21 0.24 −57.77
5 2427 0.21 0.26 −83.74
6 2428 0.23 0.40 −110.23
7 2429 0.24 0.41 −140.43
8 2433 0.29 0.43 −171.97
9 2435 0.31 0.43 −206.29

10 2435 0.31 0.44 −244.09
11 2436 0.33 0.45 −284.46
12 2436 0.33 0.45 −328.68
13 2436 0.33 0.50 −374.11
14 2436 0.33 0.51 −422.50
15 2437 0.34 0.53 −472.69
16 2437 0.34 0.53 −526.33
17 2441 0.39 0.54 −578.11
18 2441 0.39 0.54 −633.02
19 2444 0.43 0.55 −686.80
20 2445 0.44 0.56 −741.48
21 2445 0.44 0.56 −798.96
22 2446 0.45 0.58 −857.09
23 2447 0.46 0.61 −913.85
24 2447 0.46 0.61 −973.13
25 2448 0.48 0.66 −1029.79
26 2448 0.48 0.66 −1088.75
27 2449 0.49 0.68 −1147.66
28 2450 0.50 0.68 −1207.40
29 2454 0.55 0.68 −1263.88
30 2454 0.55 0.68 −1322.34
31 2455 0.56 0.69 −1380.30
32 2456 0.58 0.69 −1438.76
33 2456 0.58 0.71 −1496.77
34 2457 0.59 0.76 −1550.57
35 2458 0.60 0.78 −1603.41
36 2469 0.74 0.79 −1641.99
37 2471 0.76 0.79 −1679.22
38 2472 0.78 0.81 −1713.91
39 2473 0.79 0.94 −1737.27
40 2488 0.98 0.99 −1740.27

Definition and properties: Anderson-Darling goodness-of-fit test statistic

A2 = −n −
n∑

i=1

(2i − 1)(ln F0[x(i)] + ln{1 − F0[x(n−i+1)]})
n

,

in which x(1), x(2), . . . , x(n) are the observations ordered in increasing order, has asymptotic
values of 1.933, 2.492, 3.070, and 3.857 for α = 0.10, 0.05, 0.025, and 0.01 levels of
significance, respectively. These values are good approximations for n > 10 for a com-
pletely specified distribution of any type. However, if the parameters are estimated from the
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sample used for the test, the test statistic is modified to A∗ = A2(1.0 + 0.75/n + 2.25/n2)
and A∗ = A2(1.0 + 0.3/n) in the case of the normal and exponential distributions, respec-
tively. In this situation, the corresponding critical values are 0.631, 0.752, 0.873, and 1.035 for
the normal and 1.062, 1.321, 1.591, and 1.959 for the exponential distributions, respectively.

5.6.5 Other methods for testing the goodness-of-fit to a normal distribution

The following is a summary of additional procedures for verification of the fit of a normal
distribution to an observed distribution.

5.6.5.1 Sample skewness g1 and kurtosis g2

As previously noted, for the null hypotheses E[G1] = 0 and E[G2] = 3. Also, as shown
by R. A. Fisher, the asymptotic variance of skewness is Var[G1] = {6n(n − 1)/[(n − 2)
(n + 1)(n + 3)]}, which for large samples tends to Var[G1] = 6/n. Under the null hypothe-
sis, the distribution of the sample skewness G1 is normal whereas that of the sample kurtosis
G2 is nonnormal. The asymptotic standard error of kurtosis is 3 + (24/n)1/2. The prob-
ability distribution of G2 can be obtained through computer simulation. For sample sizes
of 20, 30, 40, 50, 75, 100, 150, and 200 items, the upper and lower 95% confidence limits
are 4.68, 1.73; 4.57, 1.84; 4.46, 1.99; 4.36, 2.06; 4.17, 2.19; 4.03, 2.27; 3.86, 2.37; 3.74,
2.44, respectively.19 Thus the tests based on skewness and kurtosis can be applied without
much computation. However, there are more powerful tests as discussed in this chapter.

Example 5.32. Testing strengths and density of materials for normality by using the
skewness and kurtosis statistics. We refer to the data summaries in Table 1.2.2.

Null hypothesis H0: The random variables sampled by each of the strengths and the density
in Tables 1.1.3 and 1.2.1 have a normal distribution.

Alternate hypothesis H1: The random variables do not have the specified distribution.
Level of significance: α = 0.05.

Calculations:

(a) Timber strengths

Var[G1] =
[

6 × 165 × 164

163 × 166 × 168

]
= 0.1892

for the skewness of the timber strengths using the full sample n = 165; the variance is
equal to 0.1902 for n = 164. Thus the critical values of skewness are ±1.96 × 0.189 =
±0.37. We see that in both cases the critical values are exceeded with respect to either
skewness or kurtosis (see values for kurtosis given before for n = 150 and n = 200).

(b) Concrete strengths and densities

Var[G1] =
[

6 × 40 × 39

38 × 41 × 43

]
= 0.3742.

The large sample critical value of skewness is ±1.96 × 0.374 = ±0.73. We see that
in both cases, the critical values are not exceeded either with respect to skewness or
kurtosis (see values for kurtosis given before for n = 50).

Decision: The null hypothesis is rejected in the case of timber strengths but not in the cases
of concrete strength and densities.

19 See, for example, D’Agostino and Pearson (1973). For other values of n and α, reference may be made to
tables provided by Barnett and Lewis (1994) or Rosner (1975) or Ferguson (1961).
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5.6.5.2 Shapiro and Wilk’s W-statistic
This is the ratio of the sum of the squares of a specified linear combination of all the
ordered sample values to the sum of the squared deviations of each of the values from the
sample mean x̄n . It is given by

W =
{∑[m]

i=1 an,n+1−i [x(n+1−i) − x(i)]
}2

∑n
i=1 [xi − x̄n]2

.

The highest integer less than n/2 becomes the upper limit of summation [m] in the
numerator.20 Theoretically, the test statistic is the same as

W =
+∞∫

−∞
[Fn(x) − F0(x)]2d F0(x),

using the terminology of the Kolmogorov-Smirnov and Anderson-Darling tests. The test
should be used in conjunction with a normal Q-Q plot.

5.6.5.3 Filliben’s correlation coefficient
This is a correlation coefficient of the ordered observations and the order statistic medians
from a standard normal population and is discussed in Section 5.8.

5.6.6 Summary of Section 5.6

In this section we have examined several goodness-of-fit tests. The chi-squared test has
the least power, that is, the probability of incorrectly accepting a hypothesis is the highest
in this case; simply stated, it is somewhat insensitive in detecting differences between
models. Also, the grouping can affect the results of the test. However, it is easier to
apply than the Kolmogorov-Smirnov tests and can be used when the estimates of the
distribution and the test statistic are found from the same data.21 However, when test-
ing for normality the Kolmogorov-Smirnov test can be modified as shown in Table C.8
of Appendix C, when parameters are estimated from the same sample used in the test.
The Anderson-Darling test is more powerful, particularly when detecting differences in
the tails, and in situations in which suspected outliers are present; cases in which pa-
rameters are estimated from the same sample used in the test are considered separately,
together with nonnormal distributions. We have also discussed additional methods of
testing for normality such as the test based on skewness and kurtosis and also the Shapiro-
Wilk W test; more, including tests for exponentiality, will be found in Section 5.9 in
which we deal with outliers. The complementary practical methods of probability plotting,
which are very useful in graphical verification of goodness-of-fit, will be highlighted in
Section 5.8.

20 The weights an,n+1−i are tabulated by Shapiro and Wilk (1965), who give selected percentiles of W for
3 ≤ n ≤ 50. Royston (1982) provides a Fortran algorithm based on an approximation to the null distribution
of W for n ≤ 2000. See also Barnett and Lewis (1994). It has been found to be a powerful test for normality
by Pearson et al. (1977) but not by Tiku (1975). Besides, Shapiro et al. (1968) give the powers of various tests.
Furthermore, Shapiro and Wilk (1972) provide a test for exponentiality.
21 See comparisons by Stuart and Ord, 1991, pp. 1189–1190.
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5.7 ANALYSIS OF VARIANCE

In this section the methods introduced in Sections 5.4 and 5.5 are generalized. However,
contrary to what is implied by the title, which is usually abbreviated to ANOVA, we are
concerned only with the variation in the means through the analysis of sums of squares.
The methods discussed here vary from a single-factor ANOVA to the design and analysis
of results of experiments involving two or more factors with interactions between them.
Emphasis will of course be made on aspects of statistical inference. The analysis will be
based on the fundamental statistical principles of randomization, replication, and unbiased
measurement.

On the subject of hypothesis testing in Section 5.4, the question arose whether any
known differences between sample means can be attributed to chance or whether the
means of the sampled populations are different. For instance, it may be important to know
whether three methods of aggregation (or, alternatively, three ways of curing) result in
significantly different compressive strengths of concrete. In another application, one may
wish to determine whether there are real changes in the lasting qualities of a road to which
four different methods of surfacing are applied over various sections. A common feature
in such experiments is that there is only one factor involved but it can take several levels.
These levels are called treatments, and each treatment usually has numerous observations
called replicates.22

We should seriously consider the possibility that any differences observed in the illus-
trations just cited arise from causes that are not accounted for in our postulations. In the
road experiment, for example, the substructures or bearing capacities may not be the same
over the sections tested; these factors can easily affect the durability of the road. We shall
return to this subject in Example 5.34. Proper experimental design is necessary so that
such extraneous causes do not exert an undue effect on the variable studied. For this pur-
pose the general procedure is to perform an experiment in which we compare treatments,
obtain variability through repeated observations, and use a measurement process that is
kept under statistical control.

In another instance, suppose we are interested in the long-lasting qualities of water pipes
made out of different materials, buried at various depths in soils of several types of chemical
compositions and interacting with groundwater in which the acidity is not constant. Then
one approach is to randomize the multiple effects and investigate the performance of
each pipe under all possible exposures. To perform the randomization procedure without
bias, one must allocate experimental units to factors or treatments ideally by a random
process using equal probabilities. If we can include all the variations from extraneous
factors under the subtotal for chance variation, then we have a completely randomized
design.

There are practical and computational limitations however in randomizing out, on an
equal probability basis, all causal factors that are not of direct interest even if we could
identify every one of them. For instance, when working with past observations that cannot
be repeated, data limitations are such that these conditions are not always realized. Nev-
ertheless, any resulting differences can be minimized so that the variable studied is not
confounded with other influences that are not under control. We shall discuss such aspects
further in the examples that follow.

22 The generic term treatment comes from the original methods of statistical experimental design, most notably
by R. A. Fisher who collaborated with F. Yates, in agricultural and in genetic research; it represents fertilizers,
soils, acidity levels, and so on.
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The alternative to randomization is to conduct a controlled experiment in which all
the factors except the one of interest are fixed. In the pipe experiment, for instance, if
depth is the only variable with which we are concerned, we can conduct the experiment
repeatedly in the same type of soil in localities where groundwater has similar interactive
characteristics.

On the other hand, the extraneous effects can also be included as different types of
factors if they are thought to be relevant to the design. Thus the analysis of variance also
extends to the design of experiments with more than one factor. These aspects will be
discussed under two-way analysis of variance in Subsection 5.7.2.

If we choose the values of a factor in predetermined ways then we have a fixed-effects
model. The alternative method, which leads to a random-effects model, signifies that the
choice is made in a random manner from a large population.

Here is another important point. Hitherto, single hypothesis has been tested as in Sec-
tions 5.4 and 5.5. The ANOVA procedure can accommodate the simultaneous testing of
multiple hypotheses.

5.7.1 One-way analysis of variance

A simple type of problem with which one deals concerns k independent random samples of
sizes ni , i = 1, 2, . . ., k, from k treatments. We denote the j th value from the i th treatment
as Xi j . Thus the model for the one-way ANOVA is of the linear form

Xi j = μ = + θi + εij, i = 1, 2, . . ., k, j = 1, 2, . . ., ni , (5.7.1)

where μ is the overall mean and θi is the i th treatment effect. Also, we assume that the εij

are independent and normally distributed random errors with zero mean and finite variance
σ 2, which is the same for all treatments. The model given by Eq. (5.7.1) is also called the
one-way classification because we are concerned with only one factor.

The null hypothesis in our relatively simple model as just defined is that the treatment
effects are equal. The opposing alternative hypothesis is that this is not true, at least in one
case. That is,

H0 : θi = 0 for i = 0, 1, 2, . . ., k,

H1 : θi �= 0, for at least one i. (5.7.2)

For this type of test we analyze the total variability of the Xij, by which we mean m var(Xij)
where m = ∑k

i=1 ni To simplify further, let us assume that the ni in Eq. (5.7.1) are equal
so that m = nk. Thus the variability, which is the sum of the squared differences from the
overall mean, is estimated by

k∑
i=1

n∑
j=1

(xij − x̄.)
2 where x̄. = 1

nk

k∑
i=1

n∑
j=1

xij.

If H0 is true, this variability is totally attributed to chance effects. Under H1, on the
contrary, a part of the variability can be attributed to differences between the treatment
effects, which we estimate by

x̄i = 1

n

n∑
j=1

xij. (5.7.3)
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The test procedure applicable to Eq. (5.7.2) is called analysis of variance because we
partition the total variability in the data (as given by sums of squared differences from the
means) into different parts. The division is as follows:

k∑
i=1

n∑
j=1

(xij − x̄.)
2 =

k∑
i=1

n∑
j=1

[(x̄i − x̄.) + (xij − x̄i )]
2

=
k∑

i=1

n∑
j=1

(x̄i − x̄.)
2 + 2

k∑
i=1

n∑
j=1

(x̄ − x̄.)(xij − x̄i )

+
k∑

i=1

n∑
j=1

(xij − x̄i )
2

= n
k∑

i=1

(x̄i − x̄.)
2 +

k∑
i=1

n∑
j=1

(xij − x̄i )
2. (5.7.4a)

We note that the cross-product term is zero; this arises from the fact that for each i the
summation of the j terms

∑n
j=1 (xi j − x̄i ) is zero, which follows from Eq. (5.7.3).

We can write Eq. (5.7.4a) as

SST = SST r + SSE . (5.7.4b)

The first term in Eq. (5.7.5b) is the total sum of squares, or SST . Then on the right-hand
side we have, respectively, the sum of squares attributed to the differences in the treatments,
or SSTr (also called the between-samples sum of squares), and the sum of squares arising
from chance or experimental effects called errors, or SSE .

Suppose we denote by T. the grand total of all kn values. Then noting that x̄. = T./kn
we write

SST =
k∑

i=1

n∑
j=1

(xij − x̄.)
2 =

k∑
i=1

n∑
j=1

x2
ij − 2x̄.T. + nkx̄2

. =
k∑

i=1

n∑
j=1

x2
ij − 1

kn
T 2

.

(5.7.5a)

Also, if we denote by Ti the sum of the values for the i th treatment, and because
x̄i = Ti/n,

SSTr = n
k∑

i=1

(x̄i − x̄.)
2 = n

k∑
i=1

x̄2
i − 2x̄.n

k∑
i=1

x̄i + nkx̄2
. = 1

n

k∑
i=1

T 2
i − 1

kn
T 2

. .

(5.7.5b)

Thus Eq. (5.7.5a) and (5.7.5b) provides rapid methods, alternative to those of
Eq. (5.7.4a) and (5.7.4b), for calculating the total sum of squares and the sum of squares
of the treatments.

It follows from Eq. (5.3.13) that
∑n

j=1 (xij − x̄i )2/σ 2 is a χ2
n−1 variate, where σ 2

was defined for Eq. (5.7.1). This is applicable to each treatment effect i = 1, 2, . . . , k.
Hence by the rule governing the addition of chi-squared variables as given by
Eq. (5.3.9),∑k

i=1

∑n
j=1 (xij − x̄i )2

σ 2

is a χ2
k(n−1) variate. It also follows that if H0 is true, the x̄i , i = 1, 2, . . . , k are independent

and identically distributed N (μ, σ 2/n) variates; hence
∑k

i=1 (x̄i − x̄.)2/(σ 2/n) is a χ2
k−1
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Table 5.7.1 Analysis of variance for a one-way classification

Source of variation Degrees of freedom Sum of squares Mean square F value

Treatment k − 1 SSTr MSTr = SSTr
(k−1)

MSTr
MSE

Error k(n – 1) SSE MSE = SSE
k(n−1)

Total kn – 1 SST

variate. Then from the properties of chi-squared variates, and using Eq. (5.7.4a) and
(5.7.4b), we know that SSE/k(n − 1) and SSTr/(k − 1) are each estimates of σ 2 under the
null hypothesis. On the contrary, if the null hypothesis is false, a part of SSTr/(k − 1) arises
from differences in the treatment effects as defined by Eq. (5.7.2). In such a situation this
term will have a higher value than that of SSE/k(n − 1). Taking the ratio of two chi-squared
variables divided by their respective degrees of freedom, we can use the F distribution as
defined by Eq. (5.4.14) to test the hypothesis; we assume that the variates are independent
which is true under the null hypothesis.23 That is,

F = SSTr/[(k − 1)σ 2]

SSE/[(k(n − 1)σ 2]
= k(n − 1)SSTr

(k − 1)SSE
. (5.7.6)

A summary of the procedure adopted in dividing and analyzing the total sum of squares
is given in Table 5.7.1.

Table 5.7.2 Table of concrete densities d , dates t , and strengths s from Table E.1.2

Treatment: density d , date t ,
strength s Observations Total Mean

1 d < 2430 kg/m3 2411 2415 2429 2428 2425
t 8/7 13/9 3/12 31/3a 26/6a

s 58.8 50.7 68.1 56.9 59.8 294.3 58.86

2 2430 ≤ d < 2440 kg/m3 2436 2436 2433 2436 2437
t 6/9 9/10 4/12 7/2a 21/9a

s 52.5 59.6 60.5 49.9 60.5 283.0 56.60

3 2440 ≤ d < 2450 kg/m3 2445 2447 2445 2446 2448
t 9/9 23/9 14/10 18/12 19/3a

s 63.3 55.8 60.0 60.9 67.3 307.3 61.46

4 2450 ≤ d < 2460 kg/m3 2454 2455 2454 2456 2456
t 12/7 2/9 3/10 6/12 9/3a

s 58.9 56.3 59.8 67.2 68.9 311.1 62.22

5 d ≥ 2460 kg/m3 2488 2473 2469 2472 2471
t 23/8 29/8 3/9 18/10 22/10
s 69.5 64.9 54.6 61.5 65.7 316.2 63.24

Total T and mean of s 1511.9 60.5

aDenotes that the year of testing is 1992; the other data (without superscript a) pertain to 1991 tests; the
date t = 31/3, for example, denotes March 31.

23 See, in particular, H. Scheffé, (1959, Chapter 7).
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Example 5.33. Compressive strength and density of concrete. We refer to the densities
and compressive strengths of concrete listed in Table E.1.2. Our objective is to test whether
compressive strength is a function of density. Suppose we treat density d as a single factor
affecting the compressive strength and divide the densities into five levels or treatments as
follows:

(1) d< 2430 kg/m3,
(2) 2430 ≤ d < 2440 kg/m3,
(3) 2440 ≤ d < 2450 kg/m3,
(4) 2450 ≤ d < 2460 kg/m3,
(5) d ≥ 2460 kg/m3.

Five “replicates” or observations are chosen for each treatment. Because experiments per-
formed during a particular week (or longer period) may have some undesirable influences
(such as operator bias) on the results, we shall try to spread the dates of observation as far
as possible in the choice of observations from the set of 40 items. As seen, however, from
Table 5.7.2 this effort is only partially successful in the case of the fifth treatment. Of course,
this problem will not arise under a controlled experiment. We can in such a case randomize
the effects of the experimenter, machinery, temperature, and other causal factors such as the
moisture content of the concrete mix.

Null hypothesis H0: The mean compressive strengths of concrete are the same
for each of the five levels of density.
Alternate hypothesis H1: There are differences in the means.
We note that the two hypotheses are formally stipulated by Eqs. (5.7.1) and (5.7.2).
Level of significance: α = 0.05.

Calculations: The calculations are based on Tables 5.7.1 and 5.7.2 and Eq. (5.7.5a) and
(5.7.5b). Thus,

SST =
5∑

i=1

5∑
j=1

x2
ij − 1

25
T 2

. = 92,156.89 − 1512.92

25
= 723.23.

Also,

SSTr = 1

5

5∑
i=1

T 2
i − 1

25
T 2

. = 457,900.43

5
− 1511.92

25
= 146.42.

Hence,

SSE = 723.23 − 146.42 = 576.81.

The results are summarized in Table 5.7.3.
Decision: The F value is 1.27 which is less than F4,20,0.05 = 2.87 [where the degrees of

freedom are m = 5 − 1 = 4 and n = 5(5 − 1) = 20]. Therefore, the null hypothesis is not
rejected.

Table 5.7.3 Analysis of variance for compressive strengths of concrete as a function of density

Source of variation Degrees of freedom Sum of squares Mean square F value

Density of concrete 4 146.42 146.42
4 = 36.61 36.61

28.84 = 1.27

Error 20 576.81 576.81
20 = 28.84

Total 24 723.23
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5.7.2 Two-way analysis of variance

As mentioned in the introduction to this section, many situations arise in which it is of
practical interest to vary a particular extraneous factor (which we think has a significant
influence on the variable studied) as much as possible so that its variation can be isolated.
In this way the error sum of squares is reduced. The experiment is called a two-factor
experiment. We then set out to do a two-way analysis of variance. In the one-way analysis
of variance we partitioned the total sum of squares into two components, one of which
was allocated to the experimental error. Now we have the treatment component as before
and a new block component. A block, in this context, is a level at which an extraneous
factor is held constant so that its effect on the total sum of squares can be estimated. A
complete block design is one in which there are observations for each treatment within
each block. If we randomize the treatments throughout each block, we have a randomized
block design.

In a multifactor application one conducts a factorial experiment wherein all possible
combinations of the levels of the factors are examined. Furthermore, for each combination
of factors it is beneficial to have several trials or replicates as shown in the next example.
In practice, however, tests of hypotheses are often limited to the most relevant factors in
order to minimize the dimensions of the problems; this is termed an incomplete block or
factorial design.

Alternatively, we can call the treatments and blocks row and column variables or factors
I and II.

In addition, two factors may interact in the sense that if the factors are materials and
forms, for example, one material can have a marked effect on a particular form whereas
another material will be associated with another form. In such situations therefore, which
may occur frequently, one needs to model the interaction between a pair of variables and
test its significance.

The linear model for the two-way ANOVA is written as

Xijk = μ + αi + β j + (αβ)ij + εijk, for i = 1, 2, . . ., l; j = 1, 2, . . ., m;

k = 1, 2, . . ., n. (5.7.7)

Here μ is the overall mean, αi is the treatment effect at level i , β j is the block effect at
level j , (αβ)ij is the interaction between the treatments and blocks at the stated levels and
we assume that εijk are independent N (0, σ 2) variates. As stipulated by Eq. (5.7.7), there
are l levels of treatments and m levels of blocks. Also, we have n replicates, one for each
combination of treatment and block. Thus, we have a total of lmn observations. If we
conduct the experiment so that these are obtained in a random order, we will then have a
completely randomized block design.

Without the interaction term, Eq. (5.7.7) represents a simple linear additive model. The
three sets of hypotheses are as follows:

(1) H0: αi = 0, for i = 1, 2, . . ., l.

H1 : αi �= 0, for at least one value of i. (5.7.8a)

(2) H0 : β j = 0, for j = 1, 2, . . ., m.

H1 : β j �= 0, for at least one value of j. (5.7.8b)

(3) H0 : (αβ)ij = 0, for i = 1, 2, . . . , l; j = 1, 2, . . ., m.

H1 : (αβ)ij �= 0, for at least one pair of values of iand j. (5.7.8c)
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The test is based on an analysis of the total variability, that is, the total sum of squared
differences from the means, which is divided into different parts as follows:

l∑
i=1

m∑
j=1

n∑
k=1

(xijk − x̄.)
2

=
l∑

i=1

m∑
j=1

n∑
k=1

[(x̄i − x̄.) + (x̄ j − x̄.) + (x̄ij − x̄i − x̄ j + x̄.) + (xijk − x̄ij)]
2

= mn
l∑

i=1

(x̄i − x̄.)
2 + ln

m∑
j=1

(x̄ j − x̄.)
2

+ n
l∑

i=1

m∑
j=1

(x̄ij − x̄i − x̄ j + x̄.)
2 +

l∑
i=1

m∑
j=1

n∑
k=1

(xijk − x̄ij)
2. (5.7.9a)

This result comes from the square of four terms so there are 3 × 2 = 6 cross-
product terms. Each of which will sum to zero for reasons similar to those applicable to
Eq. (5.7.4a). As before, we can symbolize the above equation by writing

SST = SSTr + SSB + SSTrB + SSE (5.7.9b)

with the terms corresponding to those of Eq. (5.7.9a).
To find solutions more expediently, let us denote by Ti the sum of the values for the

i th treatment, by Tj the sum of the values for the j th block, by Tij the sum of the values
common to the i th treatment and the j th block, and by T. the grand total of all lmn values.
Then, as in the case of Eq. (5.7.5a) and (5.7.5b), we can write the sum of squares in the
alternative forms:

SST =
l∑

i=1

m∑
j=1

n∑
k=1

x2
ijk − T 2

.

lmn
, (5.7.10a)

SST r =
l∑

i=1

T 2
i

mn
− T 2

.

lmn
, (5.7.10b)

SSB =
m∑

j=1

T 2
j

ln
− T 2

.

lmn
, (5.7.10c)

SSTrB =
l∑

i=1

m∑
j=1

T 2
ij

n
− T 2

.

lmn
− SSTr − SSB, (5.7.10d)

SSE = SST − SSTr − SSB − SSTrB. (5.7.10e)

The testing procedure, which involves the use of the F distribution, is an extension of
the methods applicable to the one-way analysis of variance as specified in the text leading
up to Eq. (5.7.6). This is summarized in Table 5.7.4.

Example 5.34. Road rutting—a two-way classification experiment. Road-wearing ex-
periments, with alternate base designs, were conducted at eight sites on busy highways in
central England to investigate the behavior of the expected deterioration under heavy traffic.
In particular, measurements were made at approximately 6-month intervals on the rutting
or lowering of road surfaces. This example is based on site 6, which is 16 km northeast of
Birmingham. Beneath the surface courses, which are about 130 mm (5 in.) in total depth,
the thickness of the base layer was made equal to approximately 152 mm (6 in.) or 229 mm
(9 in.) or 305 mm (12 in.) over the experimental sections. The systematic design also included
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Table 5.7.4 Analysis of variance for a two-way classification with interaction

Source of variation Degrees of freedom Sum of squares Mean square F value

Treatments l − 1 SSTr MSTr = SSTr
(l−1)

M STr
M SE

Blocks m − 1 SSB MSB = SSB
(m−1)

M SB
M SE

Interaction (l − 1)(m − 1) SST r B MSTrB = SSTrB
(l−1)(m−1)

M STrB
M SE

Error lm(n − 1) SSE MSE = SSE
lm(n−1)

Total lmn − 1 SST

two types of base material. These were dense bituminous macadam (DBM) and hot-rolled
asphalt (HRA). (Thus there were six sections, each with identical specifications at site 6. For
all the experiments there was a total of 74 sections.) Below this layer there was a subbase
of compacted stones; this was at least 229 mm (9 in.) in depth and did not have any type of
added material such as bitumen or asphalt; it is not considered further. Measurements of the
rutting of the road surface were made at 30 locations at site 6. At each location there were
three types of base thickness and two types of base material, taken over six sections. At each
section, measurements were taken at five locations called replicates, but not in the usual sense
of the term which implies repeated measurements at the same spot. The experimental layout
at the site is shown in Fig. 5.7.1.

Rutting data for the six combinations of base thickness and base material are presented
in Tables E.5.1 to E.5.6 with dates of observations. There seem to be some shortcomings
in the data. First, the time series of rutting are not monotonically increasing as they should
be. Great care had been exercised in making measurements, taken at approximately 6-month
intervals, to return to the same spots on the road, as located by numerous markings. However,
the surface layers are known to shift from time to time with the impact of heavy vehicles
and under the influence of extreme types of weather. These account for the oscillations in the
data. Also, there are a few missing observations; these were simply infilled from neighboring
values.24 Alternatively, we considered leaving out the missing values but this will make the
replicates different in length. The five time series of observations from Section 2, which is
typical, with base thickness of 229 mm (9 in.) and DBM material is shown in Fig. 5.7.2.

Most of the data series show overall increases in time with no visible nonlinear behavior.
Therefore, simple linear relationships were used for the rutting depth and time of measure-
ment. (Attempts to fit nonlinear models did not result in any significant differences.) The
linear model is written in the form

Xi = β0 + β1ui + εi

and the gradient β1 of the fitted straight line (discussed further in Chapter 6) is estimated by
the least squares method as

β̂ =
∑n

i=1 (ui − ū)(xi − x̄)∑n
i=1 (ui − ū)2

,

where xi denotes a measurement at time i ; x̄ is the mean of the first n measurements, ui

is equivalent to integer i , and ū is the mean of the first n integers. For the purpose of this
exercise the assumption is made that the data points are equispaced in time, although this
is not strictly correct. Linear models were applied and gradients estimated from each of the

24 More elaborate infilling procedures are provided by Kottegoda and Elgy (1977).
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Fig. 5.7.1 Layout for road rutting experiment in central England.

30 series such as those shown in Fig. 5.7.2. For each of the 30 locations, the total increase in
rutting over the entire measurement period is estimated by

(n − 1)β̂1,

where n is the number of measurements. There are two negative values from the six series of
measurements at site 6, and these are set to zero. The data are presented in Table 5.7.5.

For each combination of base thickness and material, called a cell, there are five replicates
(called locations in Fig. 5.7.1). Table 5.7.5 also shows the cell means.

Hypotheses are as stipulated by Eq. (5.7.8).
Level of significance: α = 0.05.

Calculations: Results of the two-way classification ANOVA with interaction using
Eqs. (5.7.9) and (5.7.10) are shown in Table 5.7.6.

Critical region: The estimated F values are given in the last column. From Table C.4 the
corresponding critical values for α = 0.05 are F1,24,0.05 = 4.26 applicable to the treatments
and F2,24,0.05 = 3.40 applicable to the blocks and interactions. We see that the estimated F
values are not significant.
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Fig. 5.7.2 Rutting of road surface at site 6, on highway 16 km northeast of Birmingham,
England; 305-mm base thickness; base material: DBM (dense bituminous macadam).
Measurement time series shown at five adjacent locations.

Table 5.7.5 Road rutting data

6-inch base cell mean 9-inch base Cell mean 12-inch base Cell mean
j = 1 value j = 2 value j = 3 value

DBM i = 1 4.4 3.5 2.94 0.6 2.9 2.09 2.4 0.9 1.75
1.8 2.0 3.1 2.6 1.8 3.7

3.0 1.2 0.0

HRA i = 2 4.1 1.4 1.99 1.3 0.0 1.35 0.9 4.9 3.06
1.3 0.4 1.3 1.8 3.3 2.5

2.7 2.4 3.8

Note: These data have been extracted from Tables E.5.1 to E.5.6 and Fig. 5.7.2.

Table 5.7.6 Analysis of variance for a two-way classification of road rutting data of
Table 5.7.5 for treatments i = 1, 2 and blocks j = 1, 2, 3

Source of variation Degrees of freedom Sum of squares Mean square F value

Treatments 1 0.12 0.12 0.08
Blocks 2 3.45 1.73 1.08
Interaction 2 7.80 3.90 2.44
Error 24 38.36 1.60

Total 29 49.73
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Fig. 5.7.3 Variation of mean rutting depth with base thickness indices (1–152 mm; 2–229 mm;
3–3.05 mm) for two types of base material.

In Fig. 5.7.3 are shown the variation of the cell means of the three types of base thickness
for each of the two types of base material. For the base material DBM, there is expect-
edly a decrease in the rutting as base thickness increases. However, for the highest base
thickness with the HRA material there is a large increase. The phenomenon of crossing in
this graph is an indication of interaction that if supported by the ANOVA should be further
investigated.25

We also analyzed the residuals for any unusual behavior which would violate the assump-
tions on which the ANOVA is made. The residuals are denoted as follows when there are two
factors in the experiment:

εijk = xijk − x̄ij.

These differences can be obtained directly from Table 5.7.5. The residuals are given in Table
5.7.7 and are seen to range from −2.2 to 2.1 mm.

A histogram of the residuals is shown in Fig. 5.7.4. The histogram does not show any
marked nonnormal behavior. We also studied the residuals separately for each type of base
thickness. From the results shown in Fig. 5.7.5, these are symmetrically distributed about zero;
also, there are no large differences in the variances although the intermediate base thickness
has residuals with less variance.

Table 5.7.7 Residuals of road surface data

Type of base material 6-inch base j = 1 9-inch base j = 2 12-inch base j = 3

DBM i = 1 1.5 1.6 −1.2 −1.5 0.8 1.0 0.6 −0.9 0.0
−1.0 0.1 0.5 −0.9 2.0 −1.7

HRA i = 2 2.1 −0.6 −0.7 −0.1 −1.3 0.0 −2.2 1.8 0.2 −0.6
−1.5 0.7 0.4 1.0 0.8

25 See for example, Duncan (1955), who compares the range of any set of means with an approximate least
significant range obtained from tables that are also given with an example by Johnson (1994, pp. 416–417).
See also Montgomery and Runger (1994, pp. 650–652), Keuls (1952), Walpole and Myers (1993), and more
advanced work by Scheffé (1959, Section 3.7)
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Fig. 5.7.4 Histogram of residuals from road rutting data.

The study was repeated for the two different base materials. The results are shown in
Fig. 5.7.6. Here too there are no significant differences in the means and variances.

Decision: As stated, the estimated F values are not significant and the residuals do not
show any unusual behavior in distributional properties. Hence the means of the variables
used in the experiment, which are the base thickness and base material, are not significantly
different within each type. Thus the rutting does not seem to be influenced by the thickness
of the base or its material.

At other sites the outcomes may be quite different. Given the nature of the experiment this
seems to be likely. The analysis was therefore repeated with data collected at site 8, where the
layout is similar to site 6. The materials of the base are DBM and HRA with depths of 140 mm
(5.5 in.), 216 mm (8.5 in.), and 292 mm (11.5 in.). Computations showed that the variation in
the blocks, corresponding to the depths of the base layer, is significant for α = 0.05 but not
when α = 0.01; the treatments (base material) and interactions are not significant. However,
the residual analysis showed that the distribution has a very high kurtosis, and the variances
for each base material and for each thickness are different by several magnitudes. Because
this violates the assumptions of the model, one cannot conclude from the results at this site
that the thickness of the base material affects the rutting of the road. Further investigations
are necessary.

5.7.3 Summary of Section 5.7

In this section we have introduced some basic methods of analysis of variance and outlined
concepts in experimental design. The approaches discussed are important to the civil and
environmental and engineer.
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Fig. 5.7.5 Residuals from road rutting data for three values of base thickness: 1–152 mm;
2–229 mm; 3–305 mm.
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Fig. 5.7.6 Residuals from road rutting data for each type of base material: 1–dense bituminous
macadam (DBM); 2–hot-rolled asphalt (HRA).

We have not discussed here the use of Latin squares, for example, discussed originally
by Euler 200 years ago and adopted in experimental design by Fisher (1966) (and also
included in numerous texts cited at the end of this chapter). This approach can be used
when there is an important third factor, the levels of which are then symbolized by letters
that appear once in each row and once in each column of a square; the rows and columns
represent the first two factors and the objective is to remove from the experimental error
the variation from these two factors.

As discussed, ANOVA is often applied in the presence of multiple factors. Also, there
are situations in which an analysis of covariance (ANCOVA) is called for. This includes
complex interactions between various factors and known or unknown influences between
factors or sources; the purpose is to make “fair” comparisons between treatments or blocks
and also to reduce the total residual variance for an overall assessment.26

In all applications, however, as in the case of other statistical techniques, the data and
how they are obtained should be carefully considered. Furthermore, if the observations
are not the result of a designed experiment [as in Fisher (1966)], there is a higher risk of
reaching incorrect decisions.

5.8 PROBABILITY PLOTTING METHODS AND VISUAL AIDS

Graphical procedures form a very useful visual method of verifying whether a theoreti-
cal distribution fits an empirical distribution. The graphs are known as probability plots
and are complementary to the goodness-of-fit tests described in Section 5.6. As stated in
Subsection 1.4.3, a probability plot is a form of Q-Q plot in which one axis represents
an empirical distribution and the other corresponds to a hypothesized theoretical distri-
bution. The main advantage is that the plot shows us quite easily how well a theoretical
distribution fits an empirical distribution. Such a graph is therefore widely accepted by
engineers as a form of presentation of data, usually for a confirmation of an analysis;
readily adaptable computer software or widely available computer facilities are very help-
ful. Some pioneering work in manual probability plotting was made by R. W. Powell, a
civil engineer (see Powell, 1943); see also Cox (1978) who, in his history of graphical

26 Details of these methods are found in Stuart and Ord (1991, pp. 1150–1152) and other references cited at the
end of this chapter.
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methods in statistics, states that probability plotting was suggested by Francis Galton in
1899.

For probability plotting by hand, one needs special types of graph paper called prob-
ability paper. The grid on one axis (the horizontal is generally preferred) of the paper is
modified to suit the cdf of a particular distribution. Thus when the distribution function
is plotted against the variate, which is scaled on the other axis, a linear relationship is
obtained if the observations are from the hypothetical distribution. A common practice
is to draw a best-fitting line by eye, which is sometimes called an eye-ball fit. Commer-
cialized graph papers standardized accordingly are available for the normal, lognormal,
exponential, extreme value, and Weibull continuous distributions and also for the binomial
and Poisson discrete distributions.

In this section we shall examine in some detail some of the more useful types. Al-
though the method is subjective, it can be supplemented (as shown here) by an associated
goodness-of-fit criterion to support a relationship or the lack of one. A probability plot can
indicate with respect to the pdf where the fit is not sufficiently good (for example, in the
left tail, right tail, or the mode) and whether another type of distribution is more suitable.
More importantly, it can show unusual features such as a change in a distribution at a point
in time, or the presence of outliers. The plot also carries information on location spread,
shape, and percentiles without the grouping problems one associates with a histogram.
Furthermore, the parameters can be estimated from the intercept and gradient of the line,
as shown in the examples that follow.

5.8.1 Probability plotting for uniform distribution

Consider a sample of n observations from a uniform(0, 1) distribution. The random vari-
ables X (1), X (2), . . ., X (n) arranged in increasing order are termed order statistics and will
be discussed further in Chapter 7. The expectation of a typical order statistic is

E(X (i)) = i

n + 1
(5.8.1)

(see Example 7.5).
If we plot the values of the ordered observations x(1), x(2), . . ., x(n) from a uniform(0,

1) distribution against their expected values [i/(n + 1)], i = 1, 2, . . ., n, we should find a
linear relationship.

Example 5.35. Probability plot of concrete densities assuming a uniform distribu-
tion. Let us examine the distribution of the 40 concrete densities listed in Table E.1.2 using a
probability plot. Initially, we shall compare the ordered observations and the expected values
from a uniform(0, 1) distribution as defined by Eq. (5.8.1). The distribution we hypothesize is
uniform(2411, 2488 kg/m3). It follows that if the hypothesis is true, the ordered observations
will form a linear relationship with the order statistics (expected values) of a uniform(0, 1)
distribution. A plot is shown in Fig. 5.8.1.

The diagonal line shown here represents the hypothesized distribution. The shape of the
curve is an S type, and this indicates a lack of fit in the tails. Thus the uniform distribution
can only be viewed as a coarse approximation.

Example 5.36. Plotting of random uniform variates. Using a random number generator
two samples of size 40 and two samples of size 200 were obtained. (Details follow in Subsec-
tion 8.2.1.) These sets are plotted in Fig 5.8.2. For the smaller data sets sampling fluctuations
make the plots deviate in a random manner. They are different from the probability plot of
the concrete data shown in Fig. 5.8.1 and do not seem to diverge from the diagonal so much.
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Fig. 5.8.1 Uniform probability plot of densities of concrete.

Note that as the sample size increases the deviations in the plots become less. For a theo-
retical sample of infinite size, one should expect a perfect linear plot to coincide with the
diagonal.

5.8.2 Probability plotting for normal distribution

For the normal and other distributions of practical importance, the expected values (or
other measures of location) of the order statistics do not exist in a closed form as defined
by Eq. (5.8.1) for the uniform(0, 1) distribution. Therefore one often uses an approximation
such as

E[X (i)] = F−1

(
i − c

n − 2c + 1

)
, for i = 1, 2, . . . , n, (5.8.2)
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Fig. 5.8.2 Probability plots of uniform (0, 1) random variates: samples of size 40 and 200.
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where c is a constant depending on the distribution F(x). This expectation is of course
the [(i − c)/(n − 2c + 1)]th quantile of the distribution. It is sometimes generalized to
the [(i + a)/(n + b)]th quantile, where a and b are constants. The choice is known as a
plotting position. This refers to the probability at which the x(i) should be plotted on a
graph.

Much effort has been made in the past to obtain theoretically acceptable plotting posi-
tions, particularly with respect to bias. Filliben (1975), for instance, took the approximation
c = −0.3175 and b = 1 + 2c for the normal distribution; thus the i th plotting position
becomes

pi = i − 0.3175

n + 0.365
, (5.8.3)

except that pn= 0.51/nand p(1)= 1 – pn .
Our experience has been that the effects on the plots using different plotting positions for

the same hypothetical distribution are not practically different except for small samples,
say, less than 30 in size.27 Therefore, let us consider the following plotting position:

pi = i − 0.5

n
. (5.8.4)

This is named after Hazen, a civil engineer. It has been widely used by engineers and in
recent textbooks.28 However, to conform to results obtained elsewhere, we shall substitute
the constant 0.35 for 0.5 in the above formula for the generalized Pareto, generalized
extreme value, and related distributions such as the EV1 (Gumbel) and Weibull.29

In a normal probability plot, one axis, which is usually the horizontal one, has the
standard normal quantiles z on a linear scale. These quantities are also called the z scores
and defined as E[Z (i)] = 	−1(pi ). In commercialized graph paper, z values are replaced
by 	(z) on a nonlinear scale. The values of the ordered observations xare plotted against
probabilities pi ; this has the effect of stretching the scale of ordinates toward the high
and low probabilities. In either case the x versus z relationship that we plot is linear; it
represents

x = μ + σ z,

where μ and σ are the mean and standard deviation, respectively, of the X variable.
Many algorithms are available for the inverse function z = 	−1(pi ) of the normal

distribution.30

5.8.2.1 Correlation coefficient test statistic
The following correlation test statistic can be used to determine empirically the goodness-
of-fit. We use the ordered observations, x(1), x(2), . . ., x(n) and their plotting positions
p1, p2, . . ., pn as in Eq. (5.8.4). The test statistic is given by

r =
∑n

i=1 (x(i) − x̄)(pi − p̄)√∑n
i=1 (x(i) − x̄)2

√∑n
i=1 (pi − p̄)2

, (5.8.5)

27 See also, Wilk and Gnanadesikan (1968); they refer to a sample size less than 16 that affects the choice of
plotting position.
28 See Chambers et al. (1983).
29 See, for example, Hosking (1990).
30 See, for example, Abramowitz and Stegun [1964, p. 193, Eq. (26.2.23)].
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Fig. 5.8.3 Normal probability plot of concrete strengths.

where x̄ and p̄ are the means of the x and p series, respectively. This has been used, for
example, by Filliben (1975).

Example 5.37. Normal probability plot of concrete strengths. A normal probability plot
of the compressive strengths of concrete, which are ordered in Table 1.2.1, is shown in Fig.
5.8.3. The plotting position given by Eq. (5.8.3) is used. A straight line is fitted by eye, which
is the usual practice. We see that the normal distribution provides a good fit to the data. For the
mean, we read the ordinate from the straight line corresponding to z = 0, which is 60 N/mm2

approximately. The standard deviation can be estimated from the difference in ordinates for
z = 0 and z = 1 which is 6 N/mm2. These are nearly equal to the results in Table 1.2.2.

The test correlation coefficient statistic from Eq. (5.8.5) is r = 0.990. From the table based
on computer simulations provided by Filliben (1975) for a sample of size n = 40, these values
have a probability level of about 0.65. This has the obvious interpretation that even if we had
set our level of significance as high as α = 0.35, the null hypothesis of normality cannot be
rejected.

Example 5.38. Plot of normal and uniform variates on normal probability paper. Figure
5.8.4 shows a plot of a set of computer-generated standard normal variates plotted on normal
paper. Also shown are uniform variates standardized by subtracting the mean and dividing
by the standard deviation. Both are from samples of size n = 40 as in Figure 5.8.3. These
plots are compared with the straight line that represents a theoretical normal distribution.
The plot of the normal variates seems to be similar to that of the concrete strengths in
Figure 5.8.3. However, the standardized uniform variates show discrepancies in both tails of
the distribution, highlighting differences in the two distributions. This illustrates, in general, an
important practical use of probability plots, that is, to uncover unexpected types of behavior
that do not appear to be caused by sampling differences. This aspect is emphasized more
clearly in the following example:

Example 5.39. Normal probability plot of observations with outliers. Probability plots
are also very useful in showing possible outliers. We have seen in Chapter 1 that their pres-
ence can also be revealed (albeit at a much simpler level) by a box and whiskers plot
(see Fig. 1.3.2). The U.S. Geological Survey, in common with other organizations, has
records of numerous data sets of annual maximum river flows with suspected outliers. The
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Fig. 5.8.4 Normal and uniform random variates on a normal plot.

Little River at Buffumville, MA, Station 01124500 (see data set 6 of Table E.5.7) is one
of them. A probability plot of a 38-year sample from this observation station is shown in
Fig. 5.8.5.

We see that the data conform to a normal distribution if one does not take into account the
two highest observations. In the next section we shall test such data sets systematically for
possible outliers.

Discrepancies are usually evident in the tails. Prominent curvatures indicate violation
of the normal assumption. For example, if the distribution is uniform an S curve is seen
as in Fig. 5.8.4; if the distribution is exponential, a J-shaped curve appears.

5.8.3 Probability plotting for Gumbel or EV1 distribution

In Chapter 3 we briefly discussed the Gumbel distribution (see Example 3.21) which is
applied to extreme values, such as maximum or minimum events. This type of distribution
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Fig. 5.8.5 Normal probability plot of annual maximum flows in the Little River, Buffumville,
MA, with one or two suspected outliers.
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is also known as the EV1 distribution and is examined in detail in Chapter 7. The cdf has
the following form:

FX (x) = exp
[−e−(x−b)/α]

,

for −∞ < x < ∞, −∞ < b < ∞, −∞ < α < ∞, (5.8.6)

where α and b are two parameters. Hence the reduced variate

y = − ln[− ln F(x)] = x − b

α
(5.8.7)

plotted against the observations x will show a linear relationship if this distribution fits the
data. Thus we have on a Gumbel or EV1 probability plot the ranked observations scaled
on, say, the vertical axis with the reduced variates y on the horizontal axis. In commercial
graph paper, this grid usually shows in addition the corresponding probabilities as given
by the relationships of Eqs. (5.8.6) and (5.8.7).

Example 5.40. Gumbel extreme value probability plot of annual maximum flows. A
plot of annual maximum flows in the Tevere (Tiber) at Ripetta, Roma, (see Table E.5.8) is
shown on Gumbel extreme value paper in Fig. 5.8.6. We see that the Gumbel extreme value
distribution provides a good approximation to the distribution of annual maximum flows.

If a straight line is fitted by eye, as shown, it follows from Eq. (5.8.7) that the parameters
b and α can be estimated by the intercept at y = 0 and slope of the straight line, respectively.

Thus b̂ = 900 m3/s and α̂ = 380 m3/s.

5.8.4 Probability plotting of other distributions

We consider briefly other distributions which are suitable for probability plotting.

5.8.4.1 Exponential distribution
The exponential cdf takes the form

FX (x) = 1 − exp(−λx)

0

1000

2000

3000

−2 −1 10 32 654

Reduced variate

A
n

n
u

a
l m

a
xi

m
u

m
 f

lo
w

 (
m

3
/s

)

Fig. 5.8.6 Gumbel probability plot of annual maximum flows in the Tevere River at Ripetta,
Rome, Italy.
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[see Eq. (4.2.3b)]. Because

ln[1 − F(x)] = −λx,

a plot of x versus ln[1 – F(x)] will show a linear relationship for observations which are
exponentially distributed (with negative slope). The parameter λ can be estimated from
the reciprocal of the slope of the fitted straight line. A necessary condition is that this line
must pass through the origin.

Example 5.41. Time intervals between vehicles. Consider the traffic data used in Example
4.21 (and summarized in Table 4.2.1). The ordinates of a histogram of the intervals between
the passing of vehicular traffic with 30 equal class intervals of 6 seconds from 0 to 3 minutes
as observed in Dorset, England, and reported by Leeming (1963), are given as follows:

54 23 16 10 16 16 12 8 8 7 4 5 4 5 1
2 0 3 1 2 2 2 0 0 1 0 0 1 1 0.

We can draw a probability plot of the data using the plotting position given by Eq. (5.8.4) and
the central positions in the 30 classes or cells of the histogram. Thus,

FX (x(i)) = i − 0.5

n
.

Accordingly, as shown above, we plot x versus ln[1 − F(x(i))]. The plot is shown in Fig. 5.8.7
for the aforementioned 30 values of i from the sample of n = 204.

It is seen that a straight line can be fitted to the data. However, for the longer gaps between
vehicles for which data are few, with many zero items as just shown, there are some deviations.
A straight line fitted by eye passes through the second point from the left (–4.95, 170). Hence,

λ = 4.95

170
× 60 = 1.75 min−1.

As expected from the subjective nature of this approach, the result is somewhat different
from the more accurate estimate of 1.81 min−1 obtained in Example 4.21 by the method of
moments.

As already shown, graphical methods make it possible to take account of any peculiarities
in the data such as values called outliers. This is the subject of the next section.
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Fig. 5.8.7 Exponential probability plot of traffic interval data (fitted line excludes the two highest
points).
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In general, Cox (1978) compares ten graphical methods for assessing consistency with
the exponential distribution and finds that most are transformations of one another. He
states that the choice is partly “a matter of taste.”

5.8.4.2 Lognormal distribution
Special types of normal probability paper are available with a logarithmic scale on one
axis so that the observations are effectively transformed to their logarithms when plotted.
We can alternatively transform the observations to logarithms and use normal probability
paper. In a similar manner we can test whether the observations have a Johnson type of
distribution (see Chapter 4) and in general whether any transformation of the random
variable to normality is possible.

5.8.4.3 Weibull distribution
From Eq. (4.2.15), the Weibull cdf is given by

FX (x) = 1 − exp

[
−

( x

λ

)β
]

, for x > 0.

By writing z = ln(x), rearranging terms, and taking natural logarithms twice,

z = (1/β) ln { − ln[1 − FX (x)]} + ln(λ).

Therefore, if the x values are Weibull-distributed then ln(x) will plot as a straight line
against ln{–ln[1 –FX (x)]}. This result was demonstrated in Example 4.25 and Fig. 4.2.7.
In commercial graph paper, a logarithmic scale is shown on one axis for plotting values
of observations. The other axis is scaled linearly with respect to ln{–ln[1 –FX (x)]} but
corresponding probabilities (for which a plotting position is used as in Example 4.25) are
given.

5.8.4.4 Poisson distribution
In Poisson graph paper there are curves for each value of the random variable x from,
say, 0 to 15. Each curve shows the relationship of the Poisson probability, on the vertical
axis, with the value of the parameter ν, on the horizontal axis [as given by Eq. (4.1.7)].
One plots a dot on each curve corresponding to the empirical probability obtained from
the data for that value of x (as in Example 4.4 and Table 4.1.1, for example). If these
dots are generally close to a vertical straight line, the Poisson is a good approximation.31

The position of the best-fitting vertical line with respect to the horizontal scale gives the
expected value of the parameter v .

5.8.5 Visual fitting methods based on the histogram

Some additional methods can provide further insight to the fit or lack of fit of a distribution.
These are based on the histogram introduced in Chapter 1.

5.8.5.1 Hanging histogram
This histogram is a visual display of the differences between the numbers of observed
and fitted values. Because this is an input to the chi-squared goodness-of-fit test, the

31 See, for example, Volk (1969) and Problem 5.36.
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resulting diagrams should be used together with the chi-squared statistic.32 Our notation
corresponds with that of the frequency histogram of Section 1.1, which gives the observed
values Oi within each class i . Assuming that a particular theoretical distribution fits the
data, we can also find the expected values Ei for class i . For instance, if xi is the right
boundary (maximum value) of the class and xi−1 is the right boundary of the previous
(smaller) class,

Ei = n[F(xi ) − F(xi−1)],

where n is the number of observations and F(x) denotes the value of the fitted cdf at x ;
methods of calculating F(x) are discussed in Subsection 5.6.2. The hanging histogram is
a plot of the difference in frequencies (Oi – Ei ) against the class i.

5.8.5.2 Variance-adjusted hanging histogram
Useful as it may be for diagnostic purposes, the hanging histogram is affected by the
unequal variances in the classes or cells, arising particularly from the variability of the Oi .
The expected frequencies Ei are also variable but to a much smaller magnitude. Therefore,
and by using the properties of the binomial distribution [see Eq. (4.1.5b)],

Var[Oi − Ei ] ≈ Var[Oi ] = npi (1 − pi ),

where pi is the probability of occurrence of an event in class i . Considering also that p2
i

is small in comparison with pi , we may write

Var[Oi − Ei ] ≈ npi = Ei.

If we rescale the difference (Oi – Ei ) by using

Oi − Ei√
Ei

,

the resulting plot may be called the variance-adjusted hanging histogram. We also see
that the foregoing variables can be squared and summed to give the chi-squared statistic
[Eq. (5.6.1)]; this, as noted in Subsection 5.6.1, is also an approximation. Thus a plot of
the adjusted differences can be viewed as a goodness-of-fit measure in unison with the
chi-squared test.

Example 5.42. Hanging histogram of timber strength data. Consider the histogram of
Fig. 1.1.4 which is based on Table 1.1.4. To demonstrate an application of the hanging
histogram, we shall fit first the Weibull and second the normal distributions. However, to
examine the details more closely, we shall use smaller intervals of 2.5 N/mm2. The difference
in frequencies (Oi – Ei ) is plotted first in Fig. 5.8.8a for the Weibull and second in Fig. 5.8.8b
for the normal distribution. We notice that in general the differences are somewhat smaller
for the Weibull confirming our intuition based on Table 1.2.2 that this is a more appropriate
distribution.

The corresponding variance adjusted differences

Oi − Ei√
Ei

are plotted in Fig. 5.8.9a and 5.8.9b. A feature of the discrepancy between the two diagrams
is the extended right tail of the normal distribution. This shows some lack of fit and in a
positively skewed distribution (as seen from Table 1.2.2) the right tail is what we look at
initially.

32 These methods were originated by J. W. Tukey; see Velleman and Hoaglin (1981) and Rice (1995).
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Fig. 5.8.8 Hanging histogram for distributions of timber strength data: (a) Weibull and
(b) normal.

5.8.6 Summary of Section 5.8

In this section we have discussed and examined some of the methods of probability plot-
ting. Their use by engineers is becoming increasingly common. Some methods based
on the histogram were also discussed. However, they should be treated as an aid in
the determination of the distribution of a random variable and be used in conjunction
with a goodness-of-fit criterion. In practice, we can determine only whether a particular
distribution provides a close approximation to the empirical distribution; there will al-
ways be some uncertainty. The probability plot and associated methods highlight features
such as the fit in the tails of the distribution and the presence of discordant values or
outliers.

5.9 IDENTIFICATION AND ACCOMMODATION OF OUTLIERS

In any sample of observations, there is the possibility of having one or more unexpectedly
high or low values. These values are so far distant in magnitude from the other observations
that they do not seem to be representative of the sample; that is, they do not apparently
have the same distribution. Such unexpectedly high or low values are called outliers or
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Fig. 5.8.9 Variance-adjusted hanging histogram for distributions of timber strength data
(a) Weibull and (b) normal.

discordant observations. Sometimes the terms rogue or spurious are used to describe
outlying observations, but we prefer to use these names for other types of suspected
observations.

5.9.1 Hypothesis tests

The prior detection of outliers is often based on probability plots or box plots, and depends
on the type of data and how they are presented. After initial detection, precise identification
is possible through tests of homogeneity. These are formulated in order to determine
whether under the null hypothesis any suspected observations, say, k in number, cannot
be rejected as part of a homogeneous set of size n (in which all members are identically
distributed) produced by a specified model G. The alternative hypothesis is that the extreme
observations are the outcome of a different generating mechanism L . That is,

H0 : xi ∈ G, i = 1, 2, . . ., n

and

H1 : xi ∈ G, i = 1, 2, . . ., n − k;
xi ∈ L �= G, i = n − k + 1, n − k + 2, . . ., n.

(5.9.1)
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Here G can be the normal distribution or one which is normal by transformation. Although
by invoking normality we have various tests at our disposal, our hypotheses need not be
stereotyped in this way.

H1 in Eq. (5.9.1) is referred to as the mixture alternative, in which L is a different
type of (contaminant) distribution or may consist of more than one type. The number k
is not usually known in advance and is usually guessed; it may be regarded as a binomial
variable. In the slippage alternative, the distribution L may only have a difference in
mean from G, or variance, or perhaps both. When k = n, we call H1 the distributional
alternative. In this case L has a different distribution that governs all the observations. The
distributional alternative includes the thick-tailed types, such as the Cauchy distribution
used, for example, in describing some types of economic data, and having the pdf,

fX (x) = 1

π (1 + x2)
. (5.9.2)

In the following discussion we shall not consider the possibility of the distributional
alternative with k = n, for an appropriate goodness-of-fit procedure can be applied in such
a situation. Also, we shall confine ourselves to high outliers. These usually arouse greater
practical interest, as seen in flood studies. It does not mean that possible outliers at the lower
end of a sample of observations are not important; on the contrary they can significantly
change sample estimates of parameters, particularly if one adopts a log-transformation.
In both cases, similar tests are applicable.

5.9.2 Test statistics for detection of outliers

Under the normal null hypothesis there are several tests which can be used. Methods such
as the Shapiro and Wilk’s W -statistic and the skewness and kurtosis statistics have been
described in Subsection 5.6.5. Also included was the Anderson-Darling test, which gives
heavy weighting to the tails and should have superiority in detecting outliers. However,
this test is applicable to any distribution and is therefore less preferable, in terms of power,
than those which are devised to probe departures from the normal or any other specified
distribution.

It should also be emphasized that tests described here are related to different aspects
of nonnormality. Thus, it is quite possible not to have the same outcome after applying
different tests to one set of observations (as will be seen in Example 5.44).

In the identification of outliers under the null hypothesis of normality, a procedure
which is found to be sensitive is the Studentized deviate

B j = |x(n− j+1) − x̄n− j+1|
sn− j+1

, (5.9.3)

in which x̄n− j+1 and sn− j+1 are the mean and standard deviation, respectively, of the
(ordered) sample, x(1) < x(2) < · · · < x(n− j+1).. The application is shown shortly.33

In general, the approach we adopt initially is to suspect the presence of k(high) outliers
in the ordered set x(1) < x(2) < · · · < x(n− j+1) < · · · < x(n−1) < x(n). The number k is
preassigned by examining any extraordinarily large gaps in magnitude between adjacent
values at the upper end in relation to similar gaps elsewhere in the ordered set. The choice
of k should be sufficiently generous to eliminate the possibility of underestimating the
actual number of outliers present.

33 See Kottegoda (1984); tables are provided by Jain (1981).
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In returning to Eq. (5.9.3), the notation adopted here is such that j = 1 signifies that the
full sample is considered and that the highest value is tested as an outlier; however, with
j = 2 we are testing for two outliers, and to calculate the mean and standard deviation
in this case we delete the highest value in the original sample. Critical values are given
in Table C.9 for levels of significance α = 0.05 and 0.01 and sample sizes ranging from
20 to 100. Similarly, with j = k we commence by deleting the highest k − 1 values. For
the statistical testing, a stepwise backward elimination procedure is adopted, commencing
with the stated k outliers that are initially suspected. Starting with j = k, in each case a
suspected outlier x(n− j+1) with corresponding test statistic B j is tested against the (n − j)
observations that are less extreme. If B j is not significant, then j is reduced by 1, and
so on. The procedure is stopped when a test statistic B j shows significance, for j = l,
say, at a chosen level α (when compared with the critical values given in Table C.9). The
observations x(n−l+1), x(n−l+2), . . ., x(n) are then treated as outliers at the given level of
significance α. That is, we declare l outliers, as shown in the next example; it is, of course,
possible to finish with l = 0. In summary, in testing k initially suspected outliers, the test
points out l outliers, where 0 ≤ l ≤ k.

Example 5.43. Testing high flood outliers with Studentized statistic. In Table E.5.7 are
listed series of observations of annual maximum flows in North American rivers. The unique
feature of these sets of data are that there are, in each case, one or more suspected outliers.
(These data were provided by the kind courtesy of the U.S. Geological Survey.) Consider,
for example, series 10 for Quinebaug River at Quinebaug, CT, with n = 45. As shown in the
probability plot of Fig. 5.9.1, this seems to be lognormally distributed (that is, the normal
distribution provides a good approximation to the logarithms of the observations) except that
there are four suspected outliers. For our use of the Studentized test, we chose k = 4.

Null hypothesis H0: The distribution of the observation x(n−3) is the same as the lognormal
distribution of the observations x(1), x(2), . . ., x(n−4).

Alternate hypothesis H1: The distribution of x(n−3) is different from the lognormal distri-
bution of the observations x(1), x(2), . . ., x(n−4).

Level of significance: α = 0.05.

Calculations: Using the test statistic of Eq. (5.9.3) with the stepwise backward testing
procedure, we find

B1 = 4.25; B2 = 3.94; B3 = 3.70; B4 = 3.10; B5 = 1.71.

If we had abided by the expected generosity in our choice of k, we should have commenced
with k = 5. Then we would have compared B5 = 1.71 with the last entries 2.47 and 2.52 for
n = 40 and 50, respectively, under k = 5. So, in this case, we cannot reject the null hypothesis
(different from our null hypothesis for k = 4) that the fifth-largest observation x(n−4) has the
same distribution as that of the smaller observations (as we had suspected from Fig. 5.9.1
and decided to use k = 4). In other words, we cannot declare that the fifth-largest observation
x(n−4) is an outlier.

Returning to the hypotheses as given earlier, we compare B4 = 3.10 with the lowest entries
2.55 and 2.59 in Table C.9 for n = 40 and 50, respectively, under k = 4. Clearly, B4 = 3.10
is significant and, as seen from the table, so are B3, B2, and B1.

Decision: We reject the null hypothesis. Thus the fourth-largest observation x(n−3) is an
outlier and the three largest observations are also outliers. Accordingly, we declare that there
are four outliers.

Example 5.44. Comparison of tests for outliers. We applied the skewness, kurtosis, and
Studentized tests to detect outliers in the annual maximum flows in 11 North American rivers,
as listed in Table E.5.7. By initially excluding the suspected outliers, the normal distribution
provided a sufficiently close approximation to seven series, and for the remaining four series
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Fig. 5.9.1 Normal probability plot of log-transformed annual maximum flows in the Quinebaug
River, Connecticutt, with four suspected outliers.

a simple log-transformation was similarly effective. The results of the test statistics, for the
first nine series, are given in Table 5.9.1 for Bj , j = 1, 2, 3, for the Studentized deviates with
reference to Eq. (5.9.3) and likewise for skewness and kurtosis. Because the last two series
have more than two suspected outliers, the test statistics were extended using a maximum
value j = 6.

Critical values for skewness and kurtosis statistics are obtained as shown in Section 5.6 and
those for the Studentized deviates from Table C.9. The test statistics that exceed the critical
values are underlined and the numbers of outliers declared, l, are given in the last column.
Results are the same for the three tests except in the last two series: In these two cases, four
outliers are declared on the basis of the more sensitive Studentized test, but only three are
found by the other tests.

5.9.3 Dealing with nonnormal data

Subsection 5.9.2 was confined to normally distributed variables or to those variables that
can be simply transformed to normality through logarithms. Similarly, if a random variable
X has a two-parameter gamma distribution [Eq. (4.2.11)], then by the transformation of
Wilson and Hilferty (1931), X1/3 is normal in distribution. We can also extend these
methods to cope with log-gamma-distributed variates. In all of these it is seen that the
procedures for outlier detection does not depend on prior estimation of any (distributional)
parameters.

However, if the lognormal or gamma distributions, for instance, need a location or shift
parameter for its specification—such as (X − ε) as in Eq. (4.2.6)—then the procedure
becomes exploratory. This statement can also be said if the original observations are
seen to be Gumbel-distributed (that is, EV1-distributed) as in Example 3.21, which is
appropriate for flood flows. In this case the log-transformed variable exp[–(x − b)/α]
is exponentially distributed. It is necessary to estimate the parameters α and b prior to
transformation. Methods of detecting outliers in exponential samples differ from those
used for normal data. In the first instance, the coefficients of skewness and kurtosis may
be compared to the theoretical values of 2 and 9, respectively (see Example 3.15). The
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Lewis and Fieller (1979) statistics may be used for the purpose. Note that upper outliers
from the Gumbel distribution become lower outliers after the transformation. The test
statistics are

Tj = x( j)∑n
i= j x(i)

(5.9.4)

for the detection of j = 1, 2, 3, . . . outliers. Barnett and Lewis (1994) give some tables
of significance levels. In addition, the Shapiro and Wilk (1972) goodness-of-fit test can
be used. The W -exponential statistic, which pertains to this test, is given by the following
ratio of squared differences from the means:

WE j = (n − j + 1)[x̄n− j+1 − x(1)]2[
(n − j)

∑n
i= j [x(i) − x̄n− j+1]2

] . (5.9.5)

We must reiterate that the application of Eqs. (5.9.4) and (5.9.5) requires the estimation
of two parameters before the log-transformation to exponentiality. The procedure is thus
data-based and is of an exploratory nature.

5.9.4 Estimation of probabilities of extreme events when outliers are present

Assigning probabilities to outliers is a difficult problem. First, one does not know the value
of k in the hypotheses of Eq. (5.9.1). Tables such as C.9 for the Studentized deviates are
not exact with respect to the level of significance α. Type I errors (incorrect rejection) can
therefore be higher than indicated. Further, there is a possibility that some values closer
to the central observations also belong to the same population as the outliers. It is evident
that we are dealing with at least two different populations, the first having only one or a
few visible observations and some items possibly mixed with those of the second. If, for
example, pn values come from distribution L with pdf f1(x) where 0 < p ≤ 1/2 and the
remainder comes from distribution G with pdf f2(x), the mixed population has pdf

f (x) = p f1(x) + (1 − p) f2(x). (5.9.6)

Difficulties arise in estimating p, pdf f1(x), and its parameters. The methods of cluster
analysis of Chapter 6 may be helpful here. Alternatively, there is the Bayesian approach
to consider, its inherent problems of estimation notwithstanding.34

The ancient French custom of Winsorization (Hampel, 1974) which can be used under
the hypotheses of Eq. (5.9.1) requires the shifting of all outliers to a prefixed position closer
to the central observations, prior to the estimation of parameters, thus moderating their
effect. There are various robust forms of estimation.35 The trimmed mean discussed in
Subsection 1.2.1 is an example and likewise one can have a trimmed standard deviation;
similarly, the estimation of location can be based on a few chosen order statistics. In
addition, there are the jackknife methods of Subsection 3.2.3.

Outliers have a high influence in flood risk analysis for engineering design. The problem
has been solved empirically in the vast majority of cases. For example, in the method
adopted by the American Water Resources Council, the database is increased whenever
possible by taking account of historical evidence.36 This includes information provided
by senior citizens, marks on bridge piers, newspaper accounts, and ancient chronicles.

34 See, for example, Box and Tiao (1968) and Hawkins (1980), for example.
35 See, for example, Huber (1972) and Staudte and Sheather (1990).
36 See Water Resources Council (1981) and Problem 5.39.
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5.9.5 Summary of Section 5.9

This section has highlighted the importance of outliers in the estimation of probabilities
of extreme values. When the variable is approximately normally distributed or can be
transformed to normality, several methods are available, of which the Studentized deviate
seems particularly sensitive. Under other distributional assumptions, however, the proce-
dure is of an exploratory nature because of the prior necessity to estimate parameters. For
purposes of risk analysis, the presence of outliers presents problems that have hitherto
been resolved empirically.

5.10 SUMMARY OF CHAPTER 5

This chapter should be considered as an essential sequel to Chapters 3 and 4, in which sta-
tistical properties of distributions and probability models were discussed. We opened with
a discussion and summary of the properties of estimators encountered in the two previous
chapters. Our main task was to deal initially with the uncertainties in model parameters
and, at a subsequent stage, in the models themselves; the analysis was based on observa-
tions of the phenomena studied. If we sacrifice some precision in our estimates (which
will almost always be imprecise), we can set up confidence limits for the parameters. Our
assertion is that these confidence limits represent interval estimates or bands that include
an unknown parameter; we expect this statement to be true a specified number of times
out of 100, that is, if we were to conduct an experiment repeatedly. As the available data
increases, our confidence interval decreases in width. Alternatively, we may be concerned
with only one such boundary, that is, either the upper or lower confidence limit.

We proceed to various tests of hypotheses. These are methods of extracting significance
from available samples. We define a null hypothesis in terms of a test statistic and a
rejection region. If this is rejected in favor of an alternative hypothesis, because the test
statistic falls in the rejection region, it means that there is a change or a difference in the
mean or other statistic that is greater than that which is likely to be caused by random
fluctuations. The difference is then said to be statistically significant; in other words it is
beyond the limit that is exceeded only 100 α percent of the time through expected behavior
under the null hypothesis. Accordingly, the test is said to have a level of significance α.
There is the probability α that we may incorrectly reject the null hypothesis or, on the
contrary, incorrectly accept it with probability β; these are called the Type I and Type II
errors, respectively, and (1 – β) is called the power of the test. The procedure implies that
the sampling distribution of the test statistic is known and appropriate types of sampling
distributions are discussed in this chapter. That is, we need to make assumptions about
the distributions of the basic variables, and therefore hypothesis testing may seem to be
restrictive. On the other hand, nonparametric tests have no such limitations although they
may be lower in power. We discuss a wide range of nonparametric tests.

Goodness-of-fit criteria are used to verify, again at a level of significance α, the form of a
probability distribution and include the chi-squared, Kolmogorov-Smirnov, and Anderson-
Darling tests. Some criteria that are specific to the normal distribution are then discussed.

In the analysis of variance, we consider changes in the means of variables through the
sums of their squares; we also outlined concepts in experimental design. These methods
make it possible, by means of significant tests, to attribute causal factors to phenomena
investigated by an engineer or conclude that there is a lack of influence.

The probability plotting methods and visual aids of the penultimate section should be
highly appealing to engineers. They supplement the hypothesis-testing methods and have
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the advantages that a fit or a lack of fit can be directly observed; for example, one can see
where any discrepancy occurs, such as near the mode or in the tails of a distribution.

We then deal with unexpectedly high or low values called outliers. These are the
problem-causing observations that do not seem to have the distribution of the other items.
Methods of detection, identification, and coping with outliers are discussed.

REFERENCES

General. The following references are given for further reading as required:

Barnett, V., and T. Lewis (1994). Outliers in Statistical Data, 3rd ed., John Wiley and Sons, New
York. Standard reference on outliers; contains tables for skewness and kurtosis tests for normality;
table for Shapiro-Wilks and other tests.

Box, G. E. P., W. G. Hunter, and J. S. Hunter (1978). Statistics for Experimenters, John Wiley and
Sons, New York. Valuable reference for engineers written at an introductory level.

Cochran, W. G., and G. M. Cox (1957). Experimental Designs, 2nd ed., John Wiley and Sons, New
York. An authoritative book.

Conover, W. J. (1998). Nonparametric Statistics, 3rd ed., John Wiley and Sons, New York. Recom-
mended introductory text. Tables for Mann-Whitney test, Kolmogorov test for discrete variables,
and Wilcoxon signed-rank test for small samples.

Fisher, R. A. (1966). The Design of Experiments, 8th ed., Oliver and Boyd, Edinburgh. A classic,
not to be missed by readers at all levels.

Freund, J. E. (1992). Mathematical Statistics, 5th ed., Prentice Hall, Englewood Cliffs, NJ. An
intermediate-level text.

Gibbons, J. D., and S. Chakraborti (2003). Nonparametric Statistical Inference, 4th ed., Mar-
cel Dekker, New York. An advanced-level book; includes runs test and tables for two-sample
Kolmogorov-Smirnov test on small samples and numerous tables listed in this chapter.

Hahn, G. J., and W. Q. Meeker (1991). Statistical Intervals—A Guide for Practitioners, John Wiley
and Sons, New York. Recommended for discussions of confidence limits and other intervals.

Hahn, G. J., and S. S. Shapiro (1967). Statistical Models for Engineering, John Wiley and Sons,
New York. Reprinted in 1994 as a Wiley Classic in applied statistics for engineers. Includes an
extensive chapter on probability plotting.

Hines, W. H., and D. C. Montgomery (1990). Probability and Statistics in Engineering and Man-
agement Science, 3rd. ed., John Wiley and Sons, New York. See in particular the chapters on
hypothesis testing and analysis of variance.

Hinkelmann, K., and O. Kempthorne (1994). Design and Analysis of Experiments, Vol. I: Introduc-
tion to Experimental Design, John Wiley and Sons, New York. An advanced-level book.

Hoel, P. G. (1984). Introduction to Mathematical Statistics, 5th ed., John Wiley and Sons, New
York. Engineers will find the book appealing.

Hollander, M., and D. A. Wolf (1999). Nonparametric Statistical Methods, 2nd. ed., John Wiley
and Sons, New York. Suggested reading.

Johnson, R. A. (1994). Miller and Freund’s Probability and Statistics for Engineers, 5th ed., Prentice
Hall, Englewood Cliffs, NJ. Written at a comprehensible level; example and table for multicom-
parison test for ANOVA.

Kendall, M., A. Stuart, and J. K. Ord (1983). The Advanced Theory of Statistics, Vol. 3: Design and
Analysis of Time Series, 4th ed., Charles Griffin, London. Advanced-level supplementary reading,
especially Chapter 37 (ANOVA) and Chapter 38 (design of experiments).

Lehmann, E. (1975). Nonparametrics: Statistical Methods Based on Ranks, Holdin-Day, Oakland,
CA. For further reading on rank tests; tables for Kruskal-Wallis test using small samples.

Montgomery, D. C., and G. C. Runger (1994). Applied Statistics and Probability for Engineers,
John Wiley and Sons, New York. Chapters 11 and 12 on the analysis of variance, written at a
basic level; multicomparison tests in ANOVA.

Rice, J. A. (1995). Mathematical Statistics and Data Analysis, 2nd ed., Duxbury Press, Belmont. A
clearly written book; practical applications including bootstrap and hanging histogram.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:19

314 Applied Statistics for Civil and Environmental Engineers

Snedecor, G. W., and W. G. Cochran (1989). Statistical Methods, 8th ed., Iowa University Press,
Ames, IA. Chapters 11–16 on design of experiments. Advanced-level book.

Walpole, R. E., and R. H. Myers (1993). Probability and Statistics for Engineers and Scientists, 5th
ed., Macmillan, New York. Commendable introductory reference. Control and cusum (cumulative
sum) charts; design of experiments. Tukey’s multiple range test, Duncan’s test, Duncan’s multiple
range test, Plackett-Burman, and Taguchi’s robust parameter test.

Additional references quoted in text
Abramowitz, M., and I. A. Stegun (eds.) (1964). Handbook of Mathematical Functions, National

Bureau of Standards (U.S.), Appl. Math. Sect., Publ. No. 55, Dover, New York. Reference for
approximations to the normal integral among others.

Anderson, T. W., and D. A. Darling (1954). “A test of goodness of fit,” J. Am. Stat. Assoc., Vol. 49,
pp. 765–769. Anderson-Darling goodness-of-fit test.

Birnbaum, Z. W. (1952). “Numerical tabulation of the distribution of Kolmogorov’s statistic for
finite sample size,” J. Am. Stat. Assoc., Vol. 47, pp. 425–441. Tables for the Kolmogorov-Smirnov
two-sample test applied to equal samples less than 40.

Box, G. E. P., and G. C. Tiao (1968). “A Bayesian approach to some outlier problems,” Biometrika,
Vol. 55, pp. 119–129. Use of Bayesian methods to investigate outliers.

Box, J. F. (1981). “Gosset, Fisher, and the tdistribution,” Amer. Stat., Vol. 35, pp. 61–66. A fascinating
discussion of Gosset’s correspondence with R. A. Fisher.

Brownlee, K. A. (1965). Statistical Theory and Methodology in Science and Engineering, John
Wiley and Sons, New York. Behrens-Fisher problem, pp. 299–302.

Casella, G., and R. L. Berger (2002). Statistical Inference, 2nd ed., Wadsworth & Brooks/Cole,
Pacific Grove, CA. Reference on a sufficient estimator for the uniform distribution, pp. 277–278;
the approximate solution to the Fisher-Behrens problem, pp. 409–410.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey (1983). Graphical Methods for Data
Analysis, Wadsworth, Belmont, CA. Use of Hazen plotting position, Eq. (5.8.4).

Cox, D. R. (1978). “Some remarks on the role in statistics of graphical methods,” Appl. Stat., Vol.
27, No. 1, pp. 4–9. Gives the history of graphical methods in statistics and compares methods for
assessing consistency with the exponential distribution.

D’Agostino, R., and E. S. Pearson (1973). “Tests for departure from normality. Empirical results
for the distribution of b2 and

√
b1,” Biometrika, Vol. 60, pp. 613–622. Goodness-of-fit test for

normality.

Dallal, G. E., and L. Wilkinson (1986). “An analytic approximation to the distribution of Lilliefors’
test statistic for normality,” Am. Stat., Vol. 40, pp. 294–296. Adaptation of Kolmogorov-Smirnov
test.

Duncan, D. B. (1955). “Multiple range and multiple F tests,” Biometrics, Vol. 11, pp. 1–42. Compares
the range of any set of means with an appropriate least significant range obtained from tables,
which are given with an example.

Ferguson, T. S. (1961). “On the rejection of outliers,” in Proc. 4th Berkeley Symposium on Math-
ematical Statistics and Probability, Vol. 1, edited by J. Neyman, University of California Press,
Berkeley, CA, pp. 253–287. Tables for the use of skewness and kurtosis as outlier detection
criteria.

Filliben, J. J. (1975). “The probability plot correlation coefficient test for normality,” Technometrics,
Vol. 17, pp. 111–117. Goodness-of-fit test for normality.

Hampel, F. R. (1974). “The influence curve and its role in robust estimation,” J. Am. Stat. Assoc.,
Vol. 69, pp. 383–393. On robust statistics.

Hawkins, D. M. (1980). Identification of Outliers, Chapman and Hall, London. Bayesian approach
to outlier detection.

Hosking, J. R. M. (1990). “L-moments: Analysis and estimation of distribution using linear com-
binations of order statistics,” J. R. Stat. Soc., B, Vol. 52, pp. 105–124. Reference on plotting
positions.

Huber, P. J. (1972). “Robust statistics: A review (the 1972 Wald Lecture),” Ann. Math. Stat.,
Vol. 43, pp. 1041–1067. On robust statistics.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:19

Model Estimation and Testing 315

Jain, R. B. (1981). “Percentage points of many-outlier detection procedures,” Technometrics,
Vol. 23, pp. 71–75. Tables of Studentized deviates for use in detection of outliers associated
with a normal distribution.

Johnson, N. L., and F. C. Leone (1977). Statistics and Experimental Design in Engineering and the
Physical Sciences, Vol. 1, 2nd ed., John Wiley and Sons, New York. The chi-squared approxima-
tion, pp. 274–277.

Keuls, M. (1952). “The use of the Studentized range in connection with an analysis of variance,”
Euphytica, Vol. 1, p. 112. Of importance in the interpretation of ANOVA results.

Kottegoda, N. T. (1984). “Investigation of outliers in annual maximum flow series,” J. Hydrol.,
Vol. 72, pp. 105–137. Methods of identifying and treating outliers.

Kottegoda, N. T., and J. Elgy (1977). “Infilling flow data,” in Proceedings of the 3rd International
Hydrology Symposium, edited by H. J. Morel-Seytoux, Fort Collins, Colorado, Water Resources
Publications, Highlands Ranch, CO. Several procedures for infilling data.

Kottegoda, N. T., and A. H. M. Kassim (1991). “Classification of storm profiles using crossing
properties,” J. Hydrol., Vol. 127, pp. 37–53. Storm profile study using Kruskal-Wallis test.

Kotz, S., and N. L. Johnson (eds.) (1982). The Encyclopedia of Statistical Sciences, Vol. 7, John
Wiley and Sons, New York. Anderson-Darling goodness-of-fit test.

Kruskal, W. H., and W. A. Wallis (1952). “Use of ranks in one criterion variance analysis,” J. Am.
Stat. Assoc., Vol. 47, pp. 583–621. Nonparametric test.

Leeming, J. J. (1963). Statistical Methods for Engineers, Blackie, London. Road traffic data used
in Example 4.21.

Lewis, T., and N. R. J. Fieller (1979). “A recurrence algorithm for null distribution for outliers,
1. Gamma samples,” Technometrics, Vol. 21, pp. 371–375. Outliers associated with a gamma
distribution.

Lilliefors, H. W. (1967). “On the Kolgomorov-Smirnov test for normality with mean and variance
unknown,” J. Am. Stat. Assoc., Vol. 62, pp. 399–402. Kolmogorov-Smirnov test for normality
with parameters estimated from the same sample.

Mann, H. B., and A. Wald (1942). “On the choice of the number of class intervals in the application
of the chi square test,” Ann. Math. Stat., Vol. 13, pp. 306–317. An original reference on the
chi-squared test.

Marsaglia, G., and J. C. W. Marsaglia (2004). “Evaluating the Anderson-Darling Distribution,”
J. Stat. Softw., Vol. 9, No. 2. Further work on the Anderson-Darling test.

Pearson, E. S., R. B. D’Agostino, and K. O. Bowman (1977). “Tests for departure from normality:
Comparison of powers,” Biometrika, Vol. 64, pp. 231–246. Provides justification for the Shapiro-
Wilk test.

Powell, R. W. (1943). “A simple method of estimating flood frequencies,” Civ. Eng., Vol. 13,
pp. 105–106. Pioneering work on probability plotting.

Rosner, B. (1975). “On the detection of many outliers,” Technometrics, Vol. 17, pp. 221–227.
Skewness and kurtosis tests for normality and other methods.

Royston, J. P. (1982). “An extension of Shapiro and Wilk’s W test for normality to large samples,”
Appl. Stat., Vol. 31, pp. 115–124. An algorithm for the Shapiro-Wilk test.
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PROBLEMS

5.1. Piling failures. A contractor involved in driving piles for foundations in a region
has a good record of success. Nevertheless, some piles have been unsuccessful. The
following failures have been recorded from 50 driven piles in each set:

Set number, i Number unsuccessful

1 2
2 3
3 1
4 2
5 4
6 0
7 1
8 3
9 0

10 2
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Assume the probability of failure is a constant and the trials are independent.
(a) What type of statistical process generates the numbers given in the second

column?
(b) What is the distribution of the average failure rate, for various i , when based on

large sizes of sets?
(c) What is the estimated fraction of failures p from all the sets?
(d) Provide 95% confidence limits on the true value of p, stating the assumptions

made.
(e) Draw a line diagram of the observed and theoretical distributions based on the

above table and state whether the data are compatible with it.

5.2. Confidence limits for concrete densities. Suppose that only the top 20 of the
concrete densities listed in Table E.1.2 are available.
(a) Assuming a normal population, provide 95% confidence limits for the mean

density of concrete.
(b) Revise the confidence limits for the mean density if the population standard

deviation is 16 kg/m3.

5.3. Minimum sample size for estimating mean dissolved oxygen (DO) concentra-
tion. Monitoring of pollution levels of similar streams in a region indicates that the
standard deviation of DO is 1.95 mg/L over a long period of time.
(a) What is the minimum number of observations required to estimate the mean

DO within ±0.5 mg/L with 95% confidence?
(b) If only 30 observations are taken, what should be the percentage level in the

confidence limits for the same difference in means?

5.4. Yield strength of steel rods. Tests done on a new make of steel rods indicated
that, on average, loads up to 1990 kg can be withstood before exceeding the yield
strength. This value is based on estimates from 50 specimens chosen at random.
The standard deviation of the load is 183 kg. If a more stringent design is based
on a 99.9 lower confidence limit, determine the mean yield strength to meet this
specification.

5.5. Confidence intervals on the variance of concrete densities. For the data of Prob-
lem 5.2a, provide 95% confidence limits on the population variance.

5.6. Confidence limits on proportions of wet days. A building contractor who works
in a relatively dry area is planning to acquire additional work in a newly devel-
oping area but is somewhat doubtful of progress because of the adverse effects of
rainfall in many months of the year. However, the contractor knows that March is
a month of low rainfall with independently distributed daily rainfalls and no ap-
parent relationship between the weather on successive days. Therefore, the thought
is that this may be a suitable month to work on the foundations. The proportion
of wet days in March is 0.10 from data of the past 3 years. Suppose it is possi-
ble to put off the decision for some time in order to make further observations of
daily rainfalls in March. Determine the total number of years of data necessary
before one can be 95% confident of estimating the true proportion of wet days to
within 0.05.
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5.7. Significance of change in temperature. A water supply engineer is concerned that
possible climatic change with respect to temperature may have an effect on forecasts
for future demands for water to a city. The long-period mean and standard deviation
of the annual average temperature measured at midday are 33 and 0.75◦C. The alarm
is caused by the mean temperature of 34.3◦C observed for the previous year. Does
this suggest that there is an increase in the mean annual temperature at a 5% level
of significance.

5.8. Time intervals between passing vehicles. In Example 4.21 the parameter of the
fitted exponential distribution was estimated as 1.81 min−1 for the time gaps between
vehicles in traffic from 204 observations. By probability-plotting methods, this is
estimated in Example 5.41 as 1.75 min−1. If these were field estimates over different
time periods, do they constitute a significant difference in the mean time intervals,
using α = 0.05?

5.9. Comparing outputs of waste water plants. Two treatment plants are built in an
area to treat wastewater from a city. Their relative performances are compared from
the results of BOD tests made on the outputs. Eight preliminary results are listed
below as differences in BOD between plant 1 and 2.

Test 1 2 3 4 5 6 7 8
Difference in BOD (mg/L) +1.2 +0.2 −1.6 +0.7 +1.3 −0.9 −0.1 −1.9

Test the difference in the outputs at the 5% level of significance.

5.10. Change in the mean and variance of flood flows. Annual maximum flows of the
Tevere (Tiber) River recorded at Ripetta in Rome are given in Table E.5.8 for the
period 1921–1974. The observation of numerous low maximum flows during the last
20 years led to a suspicion that the flow regime or climatic conditions had changed.
Divide the record into two halves. Determine if the mean annual maximum flow in
the second half is lower than those in the first half at a level of significance α = 0.01
under the following conditions:
(a) If the standard deviation is 450 m3/s.
(b) If the standard deviation is estimated from the data but is assumed to be constant.
(c) If the standard deviations are estimated separately for the two halves and are

assumed to be different.
(d) Using the estimated variances in part c, above, determine whether the change

in the variance is significant for α = 0.01?

5.11. Control chart for quality control of concrete. Control charts were introduced
in 1924 by Walter A. Shewhart [see W. A. Shewhart (1931), Economic Control
of Quality of Manufactured Products, D. Van Nostrand, New York] in order to
detect and control any unwanted deviations in a process so that quality can be
maintained.

Suppose tests based on compressive strengths have been made on concrete cubes
to determine the ultimate loads that can be carried by concrete being used at a
construction site. From past data the mean and standard deviation are estimated as
61.1 and 4.9 N/mm2, respectively, and each day five test cubes are tested at random
and the mean is computed. The following results are obtained from the tests of 12
working days:



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:19

Model Estimation and Testing 319

Mean compressive
Batch number, i strength (N/mm2)

1 58.1
2 60.9
3 62.5
4 59.9
5 56.1
6 58.7
7 61.5
8 61.9
9 63.5

10 58.1
11 67.1
12 60.1

Draw control charts using bands that are two standard errors from the mean. (Three
standard errors are commonly used.)
(a) Do any of the above results suggest that corrective action is necessary?
(b) What is the probability that a Type I error, is made, that is, action as in (a) is

taken without any need for it?
(c) What is the probability of making one or more of such errors during a 6-day

working week?
(d ) What is the probability of making a Type II error, if the use of aggregates of

lower quality has reduced the mean strength to 57.5 N/mm2?
(e) How does one reduce the foregoing errors?

5.12. Power curve for concrete strengths. In Example 5.9, 95% confidence limits of
58.53 and 61.76 N/mm2 were provided for the 40 concrete strengths with mean and
standard deviation 60.14 and 5.02 N/mm2 listed in Table 1.2.2. Determine the Type
II errors made if the population values are equal to each of the following values, all
in newtons per square millimeter:

60.5 61.5 62.0 62.5 63.5.

Draw the power curve for the corresponding points.

5.13. Irrigation and rain. Irrigation usually commences on 15 April in the Po River
basin, Italy. An engineer is interested in the probability of rain during the 7 days
from April 15 to 21. From rainfall data of the past 100 years in a particular area, the
following distribution of rainy days is obtained for the period:

Rainy days 0 1 2 3 4 5, 6, 7 Total
Frequency 57 30 9 3 1 0 100

The binomial model B(M = m | 7, 0.1) is postulated. Can this be justified at the 5%
level of significance on the basis of a chi-squared test?

5.14. One-sample sign test on flows. The following is a sample from the recorded annual
flows in the St Lawrence River which runs out from the Great Lakes of North Amer-
ica. The data are in standardized units obtained by dividing the original observations
by the annual mean. Test the null hypothesis that the median is 1.006 against the
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alternative hypothesis that it is greater or less than this value, at the 5% level of
significance.

0.942 0.947 1.005 0.988 1.001 1.013 1.013 1.088 1.000 0.959.

5.15. Sign test applied to paired observations. We reexamine the concrete densities
listed in Table E.1.2. Divide the record into two samples of equal length and apply
the sign test to correspondingly paired observations from the two halves. Test the
hypothesis that the mean density is unchanged at the 5% level of significance.

5.16. Wilcoxon signed-rank test on flows. Use the Wilcoxon signed-rank test to ascertain
whether the mean of the annual maximum flows of the Tevere River has changed
from the first half to the second half of the period given in Table E.5.8. Test the null
hypothesis that the means are the same against the alternative hypothesis that the
mean flow is less in the second half at the 1% level of significance.

5.17. Runs test on the Wolfer sunspot numbers. Wolfer sunspot numbers are an in-
dex of activity on the solar surface. They have been investigated for their impact
on terrestrial climate and for the resulting environmental effects. Twenty annual
observations are listed below for the period 1770–1789:

101 82 66 35 31 7 20 92 154 125
85 68 38 23 10 24 83 132 131 118

Apply a runs test for randomness. Do these represent a random series at the 5%
level of significance?

5.18. Spearman rank correlation test on the DO-BOD relationship. With reference to
the data in Table E.1.3, determine the rank correlation coefficient for the relationship
between DO and BOD. Compare with the result in Example 1.30.

5.19. Poisson distribution of numbers of days of high waves. High waves in a coastal
area where further development is planned cause property damage and erosional
problems but measurements of wave heights are scanty. A researcher has obtained
the following information of the number of days of high waves in a year from local
chronicles and residents:

Number of days of high waves 0 1 2 3 4 5
Frequency 26 13 6 3 2 0

Sketch a histogram of the number of days of high waves recorded in the area during
a 50-year period.

Test the hypothesis that the occurrence of high waves is Poisson distributed at the
5% level of significance using the chi-squared test. What is the probability that the
mean rate will be more than 1 day per year?

5.20. All-red phase of traffic lights. At 12 four-way junctions in London, England, brief
“all red” phases were introduced. The numbers of accidents causing injuries were
recorded for 2 years before and after the installation as given here:
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Site 1 2 3 4 5 6 7 8 9 10 11 12

Before 27 4 18 20 17 12 18 24 18 19 3 8
After 20 9 14 14 16 3 13 4 9 11 3 6

With the kind courtesy of the Transport and Road Research Laboratory, England.

Test the reduction in the number of accidents at the 1% level of significance. It is
thought that sites with high rates of accidents are highly weighted. At a given site the
variance is expected to be proportional to the mean over consecutive time periods.
Taking the square roots of the numbers will reduce the differences in variances.
Repeat the test at the 5 and 1% levels of significance for the variance-adjusted data.

5.21. Speed limit: USA. Speeds of cars were estimated on rural interstate roads in the
United States during 1973 and 1975. The numbers of cars within certain categories
of speeds are listed here.

Less than 45 mph 45–55 mph 55–70 mph 70–85 mph Total

Upper limits (kph) 72.5 88.5 112.6 137
1973 0 7 63 30 100
1975 1 28 69 2 100

Determine whether there is a significant decrease, at the 1% level, of the proportion
of cars exceeding the speed limit of 55 mph (88.5 kph) between the two years.

Data are from D. B. Kamerud, “The 55 mph speed limit: Costs benefits, and
implied trade-offs,” Transp. Res., Vol. 17, pp. 51–64, Copyright (1983) with the kind
permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington,
OX5 1GB, England.

5.22. Speed limit: England. To test the effect of a 65 km/h (40 miles/h) speed limit on
the A 4123 road in England, speeds of vehicles were calculated from observations
taken at sites during one day before and one day after the introduction of the limit.
The following results were obtained:

Mean speed in kph
of private cars

Day and site Before After

Monday Northbound 68.3 (42.4) 63.4 (39.4)
1 Southbound 61.4 (38.1) 58.9 (36.6)
Tuesday Northbound 72.8 (45.2) 64.1 (39.8)
2 Southbound 69.9 (43.4) 64.6 (40.1)
Wednesday Northbound 61.4 (38.1) 56.8 (35.3)
3 Southbound 59.1 (36.7) 55.1 (34.2)

Note: Values in parentheses are in mph as originally calculated.
With the kind courtesy of the Transport and Road Research Laboratory,
England.

In considering that there may be other factors, such as weather, that could have
caused the differences, observations were also made on the same days over a similar
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part of the road where no speed limit was imposed. The following changes in mean
speeds [before-after] were recorded in the same units:

Monday −2.42 (−1.5)
Tuesday −0.16 (−0.1)
Wednesday −1.29 (−0.8)

Test the change at the 5% level of significance.

5.23. Machine failures. The following are intervals in hours between failures of the air
conditioning system of a Boeing 720 jet airplane:

23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71,
11, 14, 11, 16, 90, 1, 16, 52, 95.

Test whether the data are exponentially distributed at the 5% level of significance.
Draw a probability plot.

Data with the kind courtesy of the publishers from F. Proshan (1963), “Theoretical
explanation of observed decreasing failure rate,” Technometrics, Vol. 5, pp. 375–383.

5.24. Bacterials counts. The following are counts of the number of fields of bacteria
reported by C. Bliss and R. A. Fisher (1953), “The negative binomial distribution
to biological data,” Biometrics, Vol. 9, pp. 176–196.

Bacteria for field 0 1 2 3 4 5 6 7 8 9 10 11 12 and more
Number of fields 11 17 31 24 29 18 19 16 13 17 6 8 31

As a preliminary step fit the geometric distribution to these data. Apply a chi-squared
goodness-of-fit test at a level of significance α = 0.05, combining the counts for
fields 0 and 1.

Data used with the kind courtesy of the International Biometric Society, 808 17th
Street NW, Suite 200, Washington, DC.

5.25. Pump failures. Two manufacturers, A and B, supply pumps to the same specification
of 500 hours on average to failure. Twenty pumps of each manufacturer have been
installed and the times to failure for each pump are as follows:

A 510 450 478 512 506 485 501 481 452 494
514 507 487 467 502 508 503 492 502 499

B 510 513 497 506 493 501 547 514 487 490
495 497 508 493 522 502 527 486 531 497

(a) Test whether the mean time of failure for A is less than that for B.
(b) Test whether the proportion of pumps not reaching specification is less for B

than for A.
Use α = 0.01 and an appropriate test in each case.

5.26. Groundwater quality. The following are measurements of concentrations of chlo-
ride in milligrams per liter in a shallow unconfined aquifer taken at intervals of 3
months [from J. Harris, J. C. Loftis, and R. H. Montgomery (1987), “Statistical
models for characterizing ground-water quality,” Groundwater, Vol. 25, pp. 185–
193]:
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38 40 35 37 32 37 37 32 45 38
33.8 14 39 46 48 41 35 49 64 73

67 67 59 73 92.5 45.5 40.4 33.9 28.1

Compute the coefficients of skewness and kurtosis and make an approximate test
for normality, using α = 0.05. (Data used with the kind courtesy of the publishers.)

5.27. Kolmogorov-Smirnov two-sample test on flows. Annual rainfall from 1918 to
1978 in the Po River basin of northern Italy are given in the penultimate column
of Table E.7.2. Divide the record into two parts of 30 and 31 years. Determine
whether the rainfall regime has changed by testing whether the two parts belong to
the same population at the 5% level of significance using the Kolmogorov-Smirnov
two-sample test.

5.28. Lilliefor’s test. The following are the ranked annual inflows in 106, for the period
1950–1974, to the Warragamba reservoir, which supplies water to the city of Sydney,
Australia:

724 1,505 3,310 6,551 6,915 7,114 7,811 8,962 9,219 9,664
9,840 10,134 10,299 10,924 11,953 12,566 13,969 14,941 15,449 16,800

17,601 18,250 18,483 19,081 20,242

(By kind courtesy of the University of New South Wales, Sydney.)
Test whether the distribution is normal using Table C.8 of Appendix C, which is

Lilliefors’ test for normality corrected by G. E. Dallal and L. Wilkinson (1986), “An
analytic approximation to the distribution of Lilliefors’ test statistic for normality,”
Am. Stat., Vol. 40, pp. 294–296, for the purpose.

5.29. Chi-squared test. We transformed the Warragamba annual flows (introduced in
Problem 5.28 but extended over a 103-year period) to natural logarithms. The data
were ranked and sorted into ten classes with equal class intervals as follows:

Class boundary 11.61 12.07 12.52 12.98 13.44 13.89 14.35 14.81 15.26 ∞
Number of class 2 6 8 14 19 16 17 11 8 2

The total is n = 103, the estimated mean is 13.50, and the variance is 0.874.
Using the chi-squared goodness-of-fit procedure, test the hypothesis that the log-

transformed flows are normally distributed with α = 0.05.

5.30. Anderson-Darling test. Reconsider the data of Problem 5.28. Test the hypothesis
of normality using the Anderson-Darling test at the 5% level of significance.

5.31. Harmonic coefficients. Monthly inflows into Warragamba reservoir in New South
Wales, Australia, were computed over the period 1881–1983 in units of 1000 m3.

It is proposed to fit the following harmonic model to the periodicity in the means:

μτ = μ +
6∑

i=1

αi sin

(
2π iτ

6

)
+

6∑
i=1

βi cos

(
2π iτ

6

)
,

where μτ is the harmonic mean in month τ, τ = 1, 2, . . . , 12; 1 denotes January
and so on; μ is the annual mean; αi , βi , i = 1, 2, . . . , 6 are harmonic coefficients.
The following harmonic coefficients have been computed in m3:
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Harmonic i

1 2 3 4 5 6

αi 6,066 8,568 −12,629 −2,135 8,954 0
βi −39,393 7,062 −16,877 6,586 −5,204 875
SS 9,817 762 2,746 296 663 5

Note: The last row gives the sum of squares associated with each harmonic
in units 108(m3)2.

Determine by an analysis of variance how many of the harmonics are significant
using α = 0.05. There are 1236 items of data and the total sum of squares is 457,
175 ×108 (m3)2.

Calculate the fitted means using the significant harmonics.

5.32. Analysis of variance of road data. Using the data from Table 5.7.5 for the road-
rutting experiment of Example 5.34, test whether the base thickness has a significant
effect on the depth of the rutting. For this test combine the results from the two types
of base material.

5.33. Analysis of variance of dynamic effect of vehicles. We return again to the road
rutting-experiment of Example 5.34. From Fig. 5.7.2 and other data sets in Tables
E.5.1 to E.5.6, it is suggested that the movement of heavy vehicles can have a
dynamic effect (that is, time-dependent) on the road surface. This can change with
road material and thickness. Analyze the variance of this effect by using the estimated
error sum of squares (xi−β̂0−β̂1ui )2 to represent it. Hence determine whether it is
significant with α = 0.05. Assume (a) that the intercepts and gradients for the 30
series studied in Example 5.34 are variable; (b) assume a constant intercept and
gradient.

5.34. Normal plots. In Table E.1.2 and Problems 1.6 and 1.14 of Chapter 1, there are lists
of compressive strengths of concrete in newtons per square millimeter obtained by
testing three lots of test cubes. Make comparative normal probability plots of these
three sets of test results. Comment on the results.

5.35. Lognormal probability plotting of sunspot data. Make normal and lognormal
probability plots the Wolfer sunspot data of Problem 5.17. Comment on the results.

5.36. Number of vehicles passing using a Poisson probability plot. Draw curves to
represent for each Poisson occurrence, say, from 0 to 6, the relationship between the
probability of occurrence and the value of the parameter from say 0.1 to 1.0. Plot
the probabilities of the following observer counts of the number of vehicles passing
a point of observation:

Count 0 1 2 3 4 5 6
Frequency 221 95 24 12 5 2 1

Is the Poisson a reasonable model? What is the estimated parameter from the plot?

5.37. Tensile strengths on Weibull probability paper. The original work of W. Weibull
(1951), “A statistical distribution function of wide applicability,” J. Appl. Mech.,
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Vol. 18, pp. 293–297, on the strengths of materials suggests that the breaking ten-
sile stress of concrete has a Weibull distribution. The following results of tensile
strengths, in newtons per square millimeter, were obtained from 12 tests conducted
in a laboratory:

14.8 15.7 15.1 13.8 14.3 16.6 14.1 16.4 16.1 13.7 13.9 14.6

Plot these results on Weibull probability paper. Fit a straight line by eye and comment
on the results.

5.38. Hanging histogram of the Tevere flood flows. For the annual maximum flows of
the Tevere River of Problem 5.16, draw a hanging histogram using the lognormal
distribution. Comment on the results.

5.39. Accommodation of outliers. Consider the annual maximum flows in the North
Fork Sun River listed in Table E.5.7, series 1. It is noted that there is one suspected
outlier in the series of 25 annual maximum flows.
(a) Plot the data on normal probability paper.
(b) Fit a straight line by eye without considering the outlier.
(c) Excluding the outlier, calculate the mean x̄ and unbiased variance ŝ2.

For incorporating outliers, the procedure adopted by Water Resources Council
(1981), Guidelines for Determining Flood Flow Frequency, Bulletin 17B, Resources
Council, Washington, DC, p. 222, is to empirically increase the database using
historical evidence, if available, and then revise the mean and variance. Suppose
l outliers are identified in a record of nR years; and from past information, such
as marks on bridge piers, it is found that the highest recorded flood level has not
been exceeded in nT years. Then the revised mean x̃ and revised variance s̃2 of the
extended database, are calculated as follows:

x̃ =
[
(nT − l)x̄ + ∑i=nR

i=nR−l+1 x(i)

]
nT

(nT − 1)s̃2 =
[

ŝ2(nT − l) + (nT − l)(x̄ − x̃)2 +
i=nR∑

i=nR−l+1

(x(i) − x̃)2

]
.

[The first equation is a direct adjustment of the mean and the second equation follows
from the ANOVA methods of Section 5.7.]

If the magnitude of the outlier has not been exceeded for 500 years, calculate
the annual maximum flow with a return period of 500 years assuming a normal
distribution.
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Chapter 6

Methods of Regression and Multivariate Analysis

In previous chapters we discussed cases and encountered problems in which two or more
variables are related. These ranged from the scatter plots of Chapter 1 to the bivariate and
multivariate distributions of Chapters 3 and 4 and the ANOVA methods of Chapter 5. We
now examine methods of exploiting such relationships in order to make them useful in
engineering assessments and predictions. Regression analysis is the most popular of these
methods. Basically, it involves the use mathematical functions to model and investigate
the dependence of one variable, say, Y , called the response variable on one or more other
observable variables, say, X , known as the explanatory variables. Let it be clear that the
purpose of regression is not to search for a cause-and-effect relationship without prior
knowledge of the behavior and interactions between variables.The way such a search
should be done was discussed with respect to the design of experiments in Section 5.7.
In regression we start with our physical knowledge of the processes involved, limited
though it may be, and then formulate, fit, evaluate, and validate the relationship through
a mathematical model. The procedure is iterative.

As a first step we can say, for example, that the compressive strength of a concrete at
28 days is dependent on the water-cement ratio measured by the slump value of a cone
of the mixture. If the mixture had excess or insufficient water, one would not expect the
concrete to be strong. Subsequently, there should be a relationship with the methods of
curing the concrete (which should enhance its strength if properly done) and also the
ultimate density.

The model we propose is of a probabilistic rather than deterministic; that is, there is
a certain amount of error in predicting one variable that cannot be explained in terms
of other variables. Even if we incorporate all conceivable variables (and eliminate any
instrumental, observational, and recording errors), there will still be some modeling error,
called the measurement error; this is attributable to our incomplete knowledge of the
physical processes involved or to factors beyond our control. We proceed from simple to
multiple regression in a systematic search for an optimal relationship with a minimum
error of prediction. For this purpose we use correlation analysis and the analysis of variance
introduced in Chapter 5.

The assumptions we make concern linearity in the model equations and some properties
in the series of modeling errors such as normality in distribution which is essential for
the statistical tests, homogeneity of variance, and independence—serial and with respect
to the response variable. We also assume that the model is fully specified by including
all relevant variables and excluding those that are irrelevant. An important part of the
analysis is the verification that these assumptions are satisfied, by using graphical methods
and appropriate tests. There are other issues we deal with such as outliers in regression,
influential observations, and high leverage points.

Cases arise, however, in which strong dependencies between the exploratory variables,
called multicollinearity, influence the estimates of the regression coefficients with ad-
verse effects upon application of the model. Ridge regression is devised to counteract
this problem. Our discussion extends to alternative methods in other situations where
the assumptions of a linear regression model are not met such as transformations to

326
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linearity, general and generalized linear models, nonlinear regression, and nonparametric
methods.

There are instances when we consider several variables simultaneously without initially
identifying one variable as the response variable. In such situations we are interested in the
interdependence between a number (or groups) of variables rather than the dependence
of one variable on others, which we investigate in regression. This interdependence is
what we consider when we apply multivariate analysis. We discuss principal component
and factor analyses, which reduce the variables to a few components or factors, thus
minimizing the parameters and the dimensions of the representative matrix. There are
similarities and common objectives in the approaches, as seen, for instance, when we find
linear combinations of the original variables. We then consider cluster analysis which
finds, wherever possible, different groups or clusters, with similar individual items, from
the given observations of multivariate phenomena.

The effects of correlation over distances are often important to civil and environmental
engineers. An example is the relationship between storm rainfall measured at different
locations in a catchment, which influences the design of a storm-sewer system. We use
spatial correlation and the complementary technique of the variogram for the purpose.

6.1 SIMPLE LINEAR REGRESSION

In common with workers in other fields, scientists and engineers relate one variable to
two or more other variables for purposes of prediction, optimization, and control. Such
relationships are expressed in the form of mathematical equations. Regression, as it is
called, is indeed the most commonly used technique in statistics. If applied with care and
correct interpretation, it can be a boon for a wide spectrum of users. It may, however, be
misused at times. This section is confined to the simple case of linear regression of two
variables.

Our objective is to investigate the relationship between a random variable and another
variable. One starts with an initial assumption of a straight-line relationship. This takes
the form

Y = β0 + β1x + ε, (6.1.1)

where Y is an observable random variable, x is an observable nonrandom variable, and
β0 and β1 are (fixed and) unknown parameters, also called regression coefficients; β0 is
the intercept and β1 is the slope. The regression is that of Y on x . We call Y the response
variable and x , which we have observed, the explanatory variable. These are sometimes
referred to as the dependent and independent variables, respectively, but then we need to
remind ourselves that such an interpretation is not applicable in the probabilistic sense;
also the x variable is termed alternatively as the input, regressor, or predictor variable. The
unobservable random variable ε represents the difference between Y and the deterministic
component, β0 + β1x ; it is usually called the error term. If we assume that x is a precise
observation, the error accounts for extraneous or unknown or unmeasured factors that
influence Y . It is then called the measurement error. The model is formulated so that
E[ε] = 0. We also assume that the errors have a constant variance for all x and they are
independent. Other assumptions and conditions, which we shall come to later, are needed
to specify the model completely.

As an example of regression, let us reconsider the data of Table E.1.2, with the com-
pressive strength of concrete at 28 days as the response variable Y and the density of
concrete as the explanatory variable x , both of which have been observed. We discussed
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the relationship in Examples 1.28 and 1.29 and referred to the scatter diagram of Fig.
1.4.1. This is a plot of corresponding pairs of observations (xi , yi ), i = 1, 2, . . . , n, in a
two-dimensional coordinate system. Such a graph is helpful as an indicator of the type of
association between the variables. For the data cited, the relationship is not a particularly
strong one but is seen to be linear, as noted in Chapter 1. That is, there is much scatter, but
the points can be considered to be located randomly above and below a straight line (as
defined shortly) that passes through the cluster. In cases such as this, we find that a density
of concrete which is higher (lower) than the average density tends to be associated with a
compressive strength that is higher (lower) than the average strength; however, it is also
seen that some high values of one kind are paired with average values of the other kind.1

If the locations of the points tend on average to follow a curve, a nonlinear relationship
may be a feasible alternative, but, on the other hand, if they are spread over the entire
plot it indicates the lack of any relationship. Graphs such as Figs. 1.4.1 and 1.4.2 are an
essential part of the procedure adopted by engineers. They are indeed complementary
to the regression analysis that follows. In this aspect there is a striking similarity to the
probability plots and the goodness-of-fit criteria of Chapter 5.

In situations that conform to Eq. (6.1.1), it is reasonable to write the following linear
conditional relationship:

E[Y | X = x] = β0 + β1x . (6.1.2)

This conditional expectation denotes a regression that is linear. In practice a linear relation-
ship may be an approximation. For the data cited—concrete strengths and densities—we
have statistical justification for such an assumption. This arises from our postulation of
a bivariate normal distribution in Example 4.32, which we confirmed from the normal
marginal distributions as in Examples 5.31 and 5.37 and the estimated correlation coeffi-
cient of 0.44 in Example 1.29.

Note that the linearity in the context of a statistical regression model for the mean of
Y (corresponding to a particular x) is defined with respect to the unknown parameters β0

and β1. For instance, E[Y | X = x] = β0 + β1x2 is a linear function of β0 and β1; we can
also see that E[Y | X = x] is a linear function of x2 but not of x , in this case, unlike in
Eq. (6.1.2).

It is clear that the expected values of Y fall on a straight line as defined by the conditional
relationship of Eq. (6.1.2) with respect to the observations x ; that is, the mean of Y is
β0 + β1x for a particular x . For this purpose it does not matter whether x is the observed
outcome of a random process or is known and fixed by the experimenter. The slope β1 is
the change in the mean of Y for a unit increase in x . How Y fluctuates at a particular value
of X is governed by the variance of the random variable ε. This is illustrated in Fig. 6.1.1
for a general case.

6.1.1 Estimates of the parameters

Our first task is to estimate the unknown parameters from observations of the two variables
Y and x . So far, we have not said anything about the probability distribution of ε. Although
distributions are sketched in Fig. 6.1.1, these are not important for our initial objective.

1 In 1885, Francis Galton, an anthropologist and meteorologist born in Birmingham, England, called this behavior
a regression (which means “stepping back”) toward mediocrity (or toward the mean, as we now call it) in reference
to the relationship between the heights of sons and fathers, and it led to the current usage of regression.
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Fig. 6.1.1 Graphical representation of the simple regression model.

As shown in Fig. 6.1.2, for the strengths and densities of concrete listed in Table E.1.2
and plotted originally in Fig. 1.4.1, we can draw a straight line to pass through the cluster
of points to provide a “best fit” by eye. But “eyeball fitting” seldom provides the best
estimates of the parameters, as indicated by the probability plots of Chapter 5. We could
minimize the absolute deviations from the straight line, but their sum is not a convenient
quantity from the mathematical point of view.2 Instead we can minimize the sum of
squared deviations from the mean to solve for the parameters, as suggested by Karl Gauss
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Fig. 6.1.2 Simple linear regression plot of concrete test data; four examples of estimated errors
(residuals) are shown.

2 Likewise, we recall that the mean absolute deviation was not preferred as a measure of dispersion in Chapter 1
for theoretical reasons [Eqs. (1.2.4) and (1.2.5)].
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of Germany about 200 years ago and independently by others such as A. M. Legendre of
France, after Euler of Switzerland. Then we follow what is known as the method of least
squares. This is the most commonly used procedure.

Suppose we have n pairs of observations (xi , yi ), i = 1, 2, . . . , n. For the model spec-
ified by Eq. (6.1.1), the sum of the squared deviations (or vertical distances on the plot)
from the population regression line with intercept β0 and slope β1 is given by

S2 =
n∑

i=1

ε2
i =

n∑
i=1

(yi − β0 − β1xi )
2. (6.1.3)

The least squares solutions for the unknown parameters are found by minimizing S2.
Accordingly, these are obtained from the solutions to ∂S2/∂β0 = 0 and ∂S2/∂β1 = 0.
Hence,

−2
n∑

i=1

(yi − β̂0 − β̂1xi ) = 0 and −2
n∑

i=1

(yi − β̂0 − β̂1xi )xi = 0.

These least squares equations can be solved simultaneously because they are linear with
respect to β0 and β1. Hence,

β̂1 =
∑n

i=1 yi xi − (∑n
i=1 xi

) (∑n
i=1 yi

) /
n∑n

i=1 x2
i − (∑n

i=1 xi
)2 /

n
=

∑n
i=1 (yi − ȳ)(xi − x̄)∑n

i=1 (xi − x̄)2
(6.1.4)

and

β̂0 =
∑n

i=1 yi

n
− β̂1

∑n
i=1 xi

n
= ȳ − β̂1 x̄, (6.1.5)

where

ȳ =
∑n

i=1 yi

n

x̄ =
∑n

i=1 xi

n
.

In Eq. (6.1.4), the first expression seems to be relatively accurate but if the numbers
are large and n is large roundoff errors may occur. The second expression is therefore
recommended under such situations.

The definitions of the following terms for the sum of squares and cross-products are
useful for computations in regression:

Sxx =
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i −

( n∑
i=1

(xi )

)2/
n, (6.1.6a)

Syy =
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

y2
i −

( n∑
i=1

(yi )

)2/
n, (6.1.6b)

and

Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1

xi yi −
( n∑

i=1

xi

)( n∑
i=1

yi

)/
n. (6.1.6c)
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One can, for instance, write the second expression in Eq. (6.1.4) for the slope parameter
as

β̂1 = Sxy

Sxx
. (6.1.7)

Definition and properties: A simple linear regression model that relates a random response
Y to an explanatory variable x takes the form

Y = β0 + β1x + ε,

where β0 and β1 are the intercept and slope parameters, respectively, and ε is the random error
term. Least squares estimates of the parameters are obtained from n pairs of observations (xi ,
yi ), i = 1, 2, . . . , n, as

β̂1 =
∑n

i=1 yi xi − (∑n
i=1 xi

) (∑n
i=1 yi

) /
n∑n

i=1 x2
i − (∑n

i=1 x2
i

) /
n

=
∑n

i=1 (yi − ȳ)(xi − x̄)∑n
i=1 (xi − x̄)2

= Sxy

Sxx

and

β̂0 =
(

n∑
i=1

yi

)/
n − β̂1

(
n∑

i=1

xi

)/
n = ȳ − β̂1 x̄,

where ȳ = (
∑n

i=1 yi )/n,

x̄ =
(

n∑
i=1

xi

)/
n,

Sxx =
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i −

(
n∑

i=1

(xi )
2

)/
n.

Similarly, Syy is defined and

Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1

xi yi −
(

n∑
i=1

xi

)(
n∑

i=1

yi

)/
n.

Example 6.1. Simple linear regression model for concrete strengths. From Table E.1.2
with observations x and y for concrete density and strength, respectively, the following
summaries are obtained:

n = 40; x̄ = 2445 kg/m3; ȳ = 60.14 N/mm2;

Sxx = 9977; Syy = 980.8; Sxy = 1365;

[using the first expressions of Eq. (6.1.6)]. Hence,

β̂1 = Sxy

Sxx
= 1365

9977
= 0.1368

and

β̂0 = ȳ − β̂1 x̄ = 60.14 − 1365

9977
× 2445 = −274.4.

The negative value of the intercept is linked to the low value of the coefficient of correlation
in the regression (+0.44); it is a reflection of the inadequacy of the simple regression model.
The fitted model, used to obtain a mean response, is as follows:

Ŷ = −274.4 + 0.1368x .

This is shown in Fig. 6.1.2 together with the sample data points.
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6.1.2 Properties of the estimators and errors

Recall that Eqs. (6.1.1) and (6.1.2) hold when x is a constant (or the known outcome of
a random variable X ) and Y is a random variable. Equation (6.1.1) is mainly centered
around the so-called errors ε, which are postulated to have a zero mean and a constant
variance σ 2 and are also independent of each other. For inferential purposes we must also
assume that they are normally distributed, that is, ε ∼ N (0, σ 2); but this assumption may
not be critical for large samples because of the Central Limit Theorem.3 We also assume
that the errors are independent of the x values. It follows that the Y are also independent
of each other. The conditional variance of Y is therefore

Var[Y | X = x] = Var[β0 + β1x + ε] = σ 2 (6.1.8)

and from Eq. (6.1.2), Y ∼ N (β0 + β1x, σ 2).

6.1.2.1 Properties of the estimators of the regression parameters
The least squares estimators β̂0 and β̂1 given by Eqs. (6.1.5) and (6.1.4), respectively, are by
their nature random variables. We noted that the relationships are linear. The properties of
these estimators are of practical use in making inferences. For example, it can be shown as
follows [using Eq. (6.1.3) and observations (xi , yi ), i = 1, 2, . . . , n] that β̂1 is an unbiased
estimator of the slope parameter β̂1. Treating the responses Yi as random variables and
the xi as constants, as before, we have from Eq. (6.1.4),

β1 =
∑n

i=1 (xi − x̄)(Yi − Ȳ )∑n
i=1 (xi − x̄)2

=
∑n

i=1 Yi (xi − x̄) − Ȳ
∑n

i=1 (xi − x̄)∑n
i=1 (xi − x̄)2

.

The second term in the numerator on the right-hand side is zero. Hence from Eq. (6.1.7)
and because the errors and x values are assumed to be independent,

E[β̂1] = 1

Sxx
E[Yi (xi − x̄)] = 1

Sxx
E[(β0 + β1xi + εi )(xi − x̄)]

= 1

Sxx

{
E

[
β0

n∑
i=1

(xi − x̄)

]
+ E

[
β1

n∑
i=1

xi (xi − x̄)

]
+ E

[ n∑
i=1

εi (xi − x̄)

]}
= 1

Sxx
(0 + β1Sxx + 0) = β1. (6.1.9a)

We can similarly obtain the variance of β̂1 as follows recalling that, under the model
assumptions, the Yi are independent and have a constant variance σ 2:

Var[β̂1] = Var

[∑n
i=1 Yi (xi − x̄)

Sxx

]
= 1

S2
xx

σ 2
n∑

i=1

(xi − x̄)2 = σ 2

Sxx
. (6.1.9b)

Also, the estimator β̂i can be shown to have minimum variance, and, because it is linear, it
is called the BLUE of β1, that is, the best (signifying minimum variance) linear unbiased
estimator.4 By similar arguments one can show that β̂0 is the BLUE of β0.

Let us now consider the mean response to a given value of X , say, x0, which from
Eq. (6.1.2) becomes E[Y | X = x0] = β0 + β1x0. An unbiased estimator is given by

μ̂Y |X=x0 = β̂0 + β̂1x0. (6.1.10a)

3 See Chapter 4 and Appendix A.6.
4 See, for example, Casella and Berger (2002, pp. 544–548).
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It follows from Eq. (6.1.5); we can write this as

μ̂Y |X=x0 = Ȳ − β̂1 x̄ + β̂1x0 = Ȳ + β̂1(x0 − x̄). (6.1.10b)

The variance of the estimated mean response is given by

Var[Ŷ | X = x0] = Var[Ȳ ] + (x0 − x̄)2Var[β̂1] + 2(x0 − x̄)Cov[Ȳ , β̂1].

The Yi are independent and have a constant variance σ 2. Thus,

Var[Ȳ ] = 1

n
Var[Yi ] = σ 2

n
.

Also, it can be shown that Cov[Ȳ , β̂1] is zero.5 Therefore,

Var[Ŷ | X = x0] = σ 2

n
+ (x0 − x̄)2 σ 2

Sxx
. (6.1.11)

Hence, the estimated mean response to a given value of x , say, x0, is distributed (by the
Central Limit Theorem) as

μ̂Y |X=x0 ∼ N

[
β0 + β1x0, σ

2

(
1

n
+ (x0 − x̄)2

Sxx

)]
. (6.1.12)

For the special case x0 = 0, the random variable μ̂Y |X=x0=0 is the estimator of β0, the
intercept parameter, with distribution

β̂0 ∼ N

[
β0, σ

2

(
1

n
+ x̄2

Sxx

)]
. (6.1.13)

6.1.2.2 Properties of the errors
To estimate the properties of the errors one uses the differences between the observations
and the fitted values, or

ε̂i = yi − (β̂0 + β̂1xi ).

These are called the residuals. Geometrically, they are the vertical distances from the
plotted points to the databased straight line as shown in Fig. 6.1.2. The residuals have a
mean of zero. This follows from

n∑
i=1

ε̂i =
n∑

i=1

[yi − (β̂0 + β̂1xi )] =
n∑

i=1

[yi − (ȳ − β̂1 x̄ + β̂1xi )]

=
n∑

i=1

(yi − ȳ) − β̂1

n∑
i=1

(xi − x̄) = 0 − β̂1 × 0 = 0. (6.1.14a)

It can also be shown as follows, using the foregoing results, that the residuals and the
values of the explanatory variable are not correlated:

n∑
i=1

(xi − x̄)ε̂i =
n∑

i=1

(xi − x̄)(yi − ȳ) − β̂1

n∑
i=1

(xi − x̄)(xi − x̄)

= Sxy − β̂1Sxx = Sxy − Sxy = 0. (6.1.14b)

For estimating the variance of the errors using the residuals, we use the divisor
(n − 2) because two degrees of freedom are already lost in estimating β0 and β1. To

5 See, for example, Subsection 3.3.3 and Wackerly et al. (2002, p. 546).
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put it differently, after one calculates any (n − 2) residuals the remaining two residuals
are fixed by the constraints set by Eq. (6.1.14a) and (6.1.14b). Hence

σ̂ 2 = 1

n − 2

n∑
i=1

ε̂2
i = 1

n − 2

n∑
i=1

(yi − β̂0 − β̂1xi )
2. (6.1.14c)

Also, from Eqs. (6.1.4) to (6.1.7),

σ̂ 2 = 1

n − 2

n∑
i=1

[(yi − ȳ) − β̂1(xi − x̄)]2

= 1

n − 2

n∑
i=1

[(yi − ȳ)2 + β̂2
1 (xi − x̄)2 − 2β̂1(yi − ȳ)(xi − x̄)]

= 1

n − 2

(
Syy − S2

xy

Sxx

)
. (6.1.14d)

Either Eq. (6.1.14c) or (6.1.14d) can be used for estimating the error variance, with
consideration for possible roundoff errors.

Definitions and properties: Variances of estimators and error variance. The variances
of the slope and intercept parameters are as follows:

Var[β̂1] = σ 2

Sxx

and

Var[β̂0] ∼ σ 2

(
1

n
+ x̄2

Sxx

)
.

An unbiased estimator of the error variance is given by

σ̂ 2 = 1

n − 2

n∑
i=1

ε̂2
i = 1

n − 2

n∑
i=1

(yi − β̂0 − β̂0xi )
2

= 1

n − 2

(
Syy − S2

xy

Sxx

)
.

6.1.2.3 Graphs and residuals
In our assessment of the fit of the linear model, we make the widest possible use of the resid-
uals, which measure the unknown model errors. We must try to verify whether they meet
the assumptions made. The main assumptions are (1) constant variance and normality in
distribution of the residuals, (2) independence among the residuals, and (3) independence
between the residuals and the values of the explanatory variable, x . Graphical methods
usually provide confirmation that there are no shortcomings or systematic defects in our
model, and are supplemented by statistical tests when necessary. They begin with a scatter
plot of the two variables as we had in Chapter 1 (Figs. 1.4.1 and 1.4.2) or we may relate
different explanatory variables. Other graphs are based on the ordinary residuals or some
associated variables. The normal probability plot is used for indicating departures from
normality in the residuals, as we did in Subsection 5.8.2. This may show, for instance,
a heavy-tailed distribution or the presence of some unexpected values called outliers or
influential observations; these outliers tend to violate the assumptions made and unduly
influence the fitting of the model. In some cases, the graphs may indicate the need for
a transformation of the response variable. For example, an increase of variance of the
residuals suggests the need for a square-root transformation. (More about this follows.)
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Fig. 6.1.3 Index plot of residuals for regression of concrete strengths and densities.

These aspects of graphical diagnostics, including influential observations and the need
for model changes, will be examined in Section 6.2. The discussion here is confined to
the basic plots and assumptions.

Example 6.2. Properties of the residuals of linear regression model applied to concrete
data. The 40 residuals ε̂i = yi − (β̂0 + β̂1xi ) are determined from the data of Table 1.2.1
and the parameters estimated in Example 6.1. Here we examine their independence and
distributional properties.

To determine whether the residuals are related to each other (in a case like this where there
may be time-dependency between the observations), we firstly make an index plot of the resid-
uals (that is residual against observation number). Secondly, we plot the relationship ε̂i versus
ε̂i−1. This type of plot is relevant when the observations are made at regular intervals of time.
These two plots are shown in Figs. 6.1.3 and 6.1.4, respectively. Although the data are by no
means perfect (there is evidence of some runs in Fig. 6.1.3), the plots do not show any signifi-
cant autocorrelation in the residuals.6 Such a relationship would result in a trend in Fig. 6.1.4.

−12

−8

−4

0

4

8

12

−12 −8 −4 0 4 8 12

Antecedent residual

C
ur

re
nt

 r
es

id
ua

l

Fig. 6.1.4 Plot of residual versus antecedent residual.

6 To test whether the residuals are serially related see Durbin and Watson (1951). The test is given by, for
example, Draper and Smith (1998, Section 7.2) and Montgomery and Runger (1994). However, this only shows
whether there is a particular type of dependence—that of a first-order autoregressive model.
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Fig. 6.1.5 Normal probability plot of residuals from regression of concrete strengths and
densities.

As given earlier, Sxx = 9977; Sxy = 1365; Syy = 980.8. From Eq. (6.1.14d) the variance of
the errors is estimated as

σ̂ 2 = 1

38

(
980.8 − 13652

9977

)
= 20.89.

Thus the estimated standard deviation is σ̂ = √
20.89 = 4.57. Only two of the 40 residuals

are outside the range −2σ̂ to +2σ̂ , that is, −9.14 to +9.14. The coefficient of skewness of
the residuals is −0.1633, and the coefficient of kurtosis is 2.79; these are in accordance with
the normal assumption. A normal probability plot is drawn as shown in Fig. 6.1.5. It does not
indicate any outliers or untoward behavior. From the graph and the foregoing statistics, we
see that the distribution of the residuals is close to normality. (We may apply the Kolmogorov-
Smirnov test as an additional verification.) Figure 6.1.6 is a plot of the residuals ε̂i against
the densities of concrete xi .

The dispersion of the points indicates that the errors, as estimated by the residuals, are
independent of the explanatory variable, which is one of the assumptions made. Likewise, we
can infer the independence by producing a plot of the residuals ε̂i against the fitted values ŷi . It
is reasonable to assume from Fig. 6.1.6 that the variance is constant; that would not be the case
if there were a much larger spread above and below one part of the horizontal axis than another.
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Fig. 6.1.6 Plot of residuals versus concrete densities.
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6.1.3 Tests of significance and confidence intervals

In this subsection we apply the methods of Sections 5.3 and 5.4 for inferential purposes.
For instance, the significance of the regression can be tested through the slope parameter
β1.

6.1.3.1 Slope parameter
To test whether the slope parameter is equal to a constant, say, β∗, we declare

H0: β1 = β∗

and

H1: β1 �= β∗

as the null and alternative hypotheses, respectively. In this way a two-sided alternative is
assumed. Note that the errors are independent and distributed as ε ∼ N (0, σ 2) and the Yi

are independent and distributed as Yi ∼ N (β0+ β1xi , σ 2). As regard the estimator β̂1, it
is seen from Eq. (6.1.4) that this is linear with respect to the Yi . Hence, from Eq. (6.1.9a)
and (6.1.9b), β̂1 ∼ N (β1, σ

2/Sxx ). It follows therefore from Eq. (6.1.9) that, under the
null hypothesis,

β̂1 − β∗

σ/
√

Sxx
∼ N (0, 1).

It can also be shown that (n − 2)σ̂ 2/σ 2 ∼ χ2
n−2, which is a chi-squared distribution with

n − 2 degrees of freedom.7 In addition, this is independent of [(β̂1 − β∗)/(σ/
√

Sxx )]. Thus
on consideration of the properties of Student’s t distribution as given in Appendix A.7,

T = β̂1 − β∗

σ̂ /
√

Sxx
∼ tn−2. (6.1.15)

This becomes our test statistic. If we set β∗ to zero, we can then test the significance of
the regression model as will be shown in Example 6.3.

A 100(1 − α) percent confidence interval for β1 is found in

Pr

[
β̂1 − tn−2,α/2

σ̂√
Sxx

≤ β1 ≤ β̂1 + tn−2,α/2
σ̂√
Sxx

]
= 1 − α.

Tests and confidence intervals for the intercept β0 are based on Eq. (6.1.13). Also of
practical interest are a confidence interval for the mean value of Y , say, when X = x0,
and a prediction interval for a future value of Y . They are based on distributional and
independence properties that are similar to those of the estimator β̂1 .

6.1.3.2 Confidence interval for mean value of Y
For a given value of the explanatory variable, say, X = x0, the population of Y values has an
estimated mean β̂0 + β̂1x0 that is normally distributed as specified by Eq. (6.1.12), under
the given assumptions. In usual geometric terms, confidence limits for the (population)
mean value of Y , β0 + β1x0, will be equispaced vertically above and below the regression

7 See, for example, Mood et al. (1974, pp. 489–491) or Casella and Berger (2002, p. 554).
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line. Thus a 100(1 − α) percent confidence interval for the mean value of Y , say, when
X = x0, follows from:

Pr[β̂0 + β̂1x0 − tn−2,α/2σ̂
√

(1/n) + (x0 − x̄)2/Sxx ≤ β0 + β1x0

≤ β̂0 + β̂1x0 + tn−2,α/2σ̂
√

(1/n) + (x0 − x̄)2/Sxx ] = 1 − α. (6.1.16)

We are 100(1 − α) percent confident that the specified interval includes the unknown
mean, β0 + β1x0.

6.1.3.3 Prediction interval for a future value of Y
We next consider the 100(1 − α) percent prediction interval for an unobserved or future
value of Y , say when X = x0 which is wider than that for the mean value of Y , as shown
shortly. From Eq. (6.1.1), the variance of a new observation or predicted value Y0 of Y
(which is independent of previous observations) when X = x0 is obtained from Eq. (3.3.23)
as follows:

Var[Y0] = Var[β̂0 + β̂1x0] + Var[ε0],

because Cov[ε0, β̂0 + β̂1x0] = 0 from the assumptions made. Substituting for the first
term on the right from Eq. (6.1.11) and because Var[ε0] = σ 2, we write

Var[Y0] = σ 2

n
+ (x0 − x̄)2 σ 2

Sxx
+ σ 2 = σ 2

[
1 + 1

n
+ (x0 − x̄)2 1

Sxx

]
.

The foregoing variance is thus an extension of that for the mean value of Y [Eq. (6.1.11)];
it is greater because of the increased uncertainty. As before, the mean value is given by
Eq. (6.1.10a). The 100(1 − α) percent prediction interval for a future or unknown value,
say, Y0 of Y when X = x0, follows from:

Pr[β̂0 + β̂1x0 − tn−2,α/2σ̂
√

1 + (1/n) + (x0 − x̄)2/Sxx ≤ Y0

≤ β̂0 + β̂1x0 + tn−2,a/2σ̂
√

1 + (1/n) + (x0 − x̄)2/Sxx ] = 1 − α. (6.1.17)

We are 100(1 − α) percent confident that the specified interval includes the unknown
random variable Y0 corresponding to X = x0.

Definitions and properties: Confidence intervals. A 100(1 − α) percent confidence inter-
val for β1 follows from

Pr[β̂1 − tn−2,α/2σ̂ /
√

Sxx ≤ β1 ≤ β̂1 + tn−2,α/2σ̂ /
√

Sxx ] = 1 − α.

A 100(1 − α) percent confidence interval for the mean value of Y , say, when X = x0, follows
from

Pr[β̂0 + β̂1x0 − tn−2,α/2σ̂
√

(1/n) + (x0 − x̄)2/Sxx ≤ β0 + β1x0

≤ β̂0 + β̂1x0 + tn−2,α/2σ̂
√

(1/n) + (x0 − x̄)2/Sxx ] = 1 − α.

A 100(1 − α) percent prediction interval for a future value of Y , say, Y0 when X = x0, follows
from

Pr[β̂0 + β̂1x0 − tn−2,α/2σ̂
√

1 + (1/n) + (x0 − x̄)2/Sxx ≤ Y0

≤ β̂0 + β̂x0 + tn−2,a/2σ̂
√

1 + (1/n) + (x0 − x̄)2/Sxx ] = 1−α.
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Example 6.3. Test of significance of simple linear regression model applied to concrete
data. This is effectively a test on the slope parameter. The null and alternate hypotheses are

H0: β1 = 0.

H1: β1 �= 0.

Level of significance: α = 0.05.

Calculations: n = 40, Sxx = 9977, and from Examples 6.1 and 6.2, β̂1 = 0.1368, σ̂ 2 =
20.89, that is, σ̂ = 4.57. Under the null hypothesis it follows from Eq. (6.1.5) that the t
statistic for the test is

β̂1

√
Sxx/σ̂ = 0.1368 ×

√
9977/4.57 = 2.99.

From Table C.2, this has a probability of nonexceedance of around 0.999.
Decision: We reject the null hypothesis: β1 = 0.

Example 6.4. Confidence interval for the mean value and a prediction interval of a
future value of compressive strength. By using the foregoing relationships, a confidence
interval can be given to the mean value of compressive strength for a given value of con-
crete density using the data of Table E.1.2. For the 95% confidence and prediction intervals,
we note from Table C.2 that t38,0.025 = 2.026. The confidence limits for the mean concrete
strength, for a given value of density x , is found as follows, using the summaries given in
Examples 6.1 to 6.3:

−274.4 + x × 0.1368 ± 2.026 × 4.57 ×
√[

1

40
+ (x − 2445)2

9977

]
.

For example, if x = 2450 kg/m3, the 95% confidence interval for the mean strength is given
by

(59.22, 62.30).

Similarly, one can give the 95% prediction limits for a future value Y0 of compressive strength
from a given value of density x :

−274.4 + x × 0.1368 ± 2.026 × 4.57 ×
√[

1 + 1

40
+ (x − 2445)2

9977

]
.

For example, if x = 2450 kg/m3, a 95% prediction interval is given by

(51.38, 70.14).

The 95% confidence intervals are shown in Fig. 6.1.7. We see that the intervals widen on
either side of the mean value x̄ = 2445 kg/m3 (arising from the last term under the square-root
sign) and also, as expected, the prediction limits are throughout wider than the confidence
limits.

6.1.4 The bivariate normal model and correlation

In previous sections the regression analysis was based on the assumption that the random
variable Y is a linear function of x , which is fixed by the experimenter or, alternatively, is
the known outcome of a random variable. In many applications, however, in which both
X and Y are treated as random variables, we do not differentiate between the predictor
and response variables. In such cases we consider that the observations come from a
population with a bivariate pdf f (x , y). It is convenient to assume that the joint distribution
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Fig. 6.1.7 Scatter diagram of concrete data with fitted regression line, 95% confidence limits
(inner lines) and prediction limits (outer lines).

is bivariate normal as discussed in Subsection 4.3.1, a condition that is sometimes reached
by transformation of the variables.

We recall from Eq. (3.3.27) that the coefficient of linear correlation is defined as

ρ = Cov[X, Y ]

σXσY
,

where −1 ≤ ρ ≤ +1. The conditional distribution of Y when X takes a valuex is normal
with conditional expectation

E[Y | X = x] = μY + ρ
σY

σX
(x − μX ). (6.1.18)

Note that in the bivariate normal model the regression is linear, whereas in the simple re-
gression model linearity was assumed. The intercept and slope parameters [corresponding
to Eq. 6.1.2] are, respectively,

β0 = μY − ρ
σY

σX
μX and β1 = ρ

σY

σX
.

The conditional variance of Y [corresponding to Eq. (6.1.8)] is

Var[Y | X = x] = σ 2
Y (1 − ρ2), (6.1.19)

which is independent of x .

For example, investigating whether X and Y are independent is equivalent to testing
whether ρ = 0 (under the normality assumption). For a set of paired data, xi , yi , i =
1, 2, . . . , n, the maximum likelihood estimator of the coefficient of linear correlation is
given by

r =
∑n

i=1 (xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

∑n
i=1 (yi − ȳ)2

≡ Sxy√
Sxx × Syy

, (6.1.20)
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which is called the sample correlation coefficient (or Pearson’s product-moment correla-
tion coefficient). If we compare this with the estimator for the slope parameter in simple
regression, as given by Eq. (6.1.7),

β̂1 = r

√
Syy

Sxx
. (6.1.21)

Thus the slope and correlation coefficient have the same sign.
To test whether ρ = 0, we use the following approximation8:

1

2
ln

1 + r

1 − r
∼ N

(
1

2
ln

1 + ρ

1 − ρ
,

1

n − 3

)
. (6.1.22)

This expression may suffice even for moderate sample sizes, say, n = 30. Thus the random
variable

Z =
√

n − 3

2
ln

(1 + r )(1 − ρ)

(1 − r )(1 + ρ)

is approximately N (0, 1) distributed.

Definition and properties: Significance of correlation. The test statistic used is Z =√
n − 3/2 ln[(1 + r )(1 − ρ)/(1 − r )(1 + ρ)] which is approximately N (0, 1) distributed,

where n is the number of observations; also, r and ρ are the sample and population correlation
coefficients.

Example 6.5. Testing for positive correlation of concrete densities and strengths.
The null hypothesis H0: ρ = 0.
The alternate hypothesis H1: ρ > 0.
Level of significance: α = 0.05.

Calculations: For the data of Table E.1.2, Sxx = 9977, Syy = 980.8, Sxy = 1365, and
n = 40. Hence, from Eq. (6.1.18)

r = Sxy√
Sxx × Syy

= 1365√
9977 × 980.8

= 0.436

and under the null hypothesis

z =
√

37

2
ln

1.436

0.564
= 2.85.

The critical region for a one-tailed test is from Table C.1: z > z0.01 = 2.33.
Decision: The null hypothesis of no correlation is rejected. We conclude that there is a

positive relationship between the concrete densities and strengths.

When there is significant positive correlation between two variables as in Example 6.5,
it does not necessarily imply causality. We can only conclude that there is a linear trend
between the variables; a positive change in one causes a positive change in the other when
ρ > 0. If a significant test shows that the null hypothesis of ρ = 0 cannot be rejected, then
we conclude that the variables are independent with reference to the linear model; there
may, however, be some other type of association. On the other hand, for variables with no
association, ρ = 0.

8 The transformation was originated by R. A. Fisher; see, for example, Stuart and Ord (1987, pp. 532–533).
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6.1.5 Summary of Section 6.1

In this Section we have examined the basic aspects of simple linear regression. From
our physical evidence we called x the known predictor variable and Y the unknown
response variable. The data we have examined have a linear relationship, which justifies
our assumption of linearity. There is another point. If for some physical reason the predictor
and response variables are interchanged, the regression changes from one of Y on x to one
of X on y; the straight line then has a different slope and intercept, which we can easily
define from the foregoing relationships. Furthermore, our discussion has not included
other methods of model specification when our basic assumptions are not met, such as
weighted least squares.9 We shall deal with such problems and their possible solutions in
Section 6.2.

6.2 MULTIPLE LINEAR REGRESSION

In Section 6.1 we discussed simple linear regression between two variables. We found, for
instance, that the compressive strength of a concrete at 28 days is related to its density. If
we carry our investigations further, we find that the strength is related to the water-cement
ratio and also to other variables, such as the methods of curing the concrete. Likewise, an
engineer planning the water resources of a region finds it useful to establish a relationship
between the runoff from a catchment and the rainfall input. In addition, one includes
catchment area, altitude, length of mainstream, and other factors as explanatory variables.
Elsewhere, a soils engineer establishes trends in the strengths of soils over different strata.
These are examples where the equation contains more than one explanatory variable. The
procedure is known as multiple regression.

In considering the problem, we cannot view all the variables simultaneously as we do
in a simple (two-dimensional) graph. When there are three variables, a three-dimensional
surface can be drawn to illustrate the variability and the fit. With more variables, however,
we need to adopt mathematical modeling for the purpose. The analysis is through linear
algebra, which provides a compact notation.

One should bear in mind that the exact relationship between variables is usually of a
very complex nature. With our linear model and the ensuing least squares fit, as in the case
of simple regression, we try to find a simplified but best possible solution on the basis of
certain assumptions.

Our strategy begins with formulating the problem. An appropriate set of the explanatory
(regressor) variables are chosen and arranged in descending order of considered physical
importance. The model assumptions are specified. We then fit the model by least squares.
This is followed by the validation of the model and the assumptions made. The procedure
includes hypothesis testing made on parameters both individually and collectively. An-
other important aspect is the use of numerous graphical diagnostics, which can be highly
revealing. In addition, if there are one or more sets of observations that exert a strong
influence on the parameters or predictions, further tests are made prior to discarding them.
These steps constitute an iterative procedure that can lead to a partial systematic elim-
ination or possible changes in the chosen set of explanatory variables if some of them
are not contributing significantly to the regression. In addition, one may see a need for
a transformation of the response variable. If the validation, which includes the linearity
assumption, is acceptable we evaluate the fit. A poor fit will require further iterations and
modifications or perhaps a different model.

9 See, for example, Draper and Smith (1998, pp. 223–229); see also Problem 6.10.
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Strong dependencies in the explanatory variables can cause instability in the parameters.
Ridge regression is devised to find solutions. Our discussion extends to alternative methods
in other situations where the assumptions of a linear regression model are not met. These
include transformations to linearity, as already mentioned, general and generalized linear
models, accommodation of outliers through robust statistics and other means, nonlinear
regression and nonparametric methods.

6.2.1 Formulation of the model

A multiple linear regression model takes the form

Y = β0 + β1x1 + β2x2 + · · · + βp−1x p−1 + ε, (6.2.1)

where Y is the response variable and there are p − 1 explanatory variables x1, x2, . . . ,
x p−1, with p parameters (regression coefficients or constants) β0, β1, β2, . . . , βp−1. The
error (innovation) term ε plays the same role as in the simple linear model. It is assumed to
be independently and identically distributed with mean 0 and variance σ 2. For hypothesis
testing and the setting of confidence limits, we also assume that ε is normally distributed;
alternative distributions of ε are discussed in Subsection 6.2.11. The model is thus repre-
sented in the p-dimensional hyperspace of the variables. The parameters β1, β2, . . . , βp−1

are sometimes called partial regression coefficients because β j , for example, represents
the mean change in Y per unit change in x j while all the other x variables are held con-
stant. As in the simple model, the linearity of a multiple regression model is defined with
respect to the regression coefficients. As before, we assume that the explanatory variables
are known and are error-free but the response variable is treated as a random variable.

6.2.2 Linear least squares solutions using the matrix method

The first objective is to estimate the p unknown parameters β0, β1, β2, . . . , βp−1. We
represent these by a (p × 1) vector β (that is, a column vector). The random errors and
the response variables are represented by (n × 1) vectors, denoted by ε and Y, respec-
tively. Estimation of the unknown error variance σ 2 follows in the next subsection. The
observations xi j are contained in the (n × p) matrix:

X =

⎡⎢⎢⎢⎣
1 x11 x12 . . . x1p−1

1 x21 x22 . . . x2p−1
...

...
...

. . .
...

1 xn1 xn2 . . . xnp−1

⎤⎥⎥⎥⎦ . (6.2.2)

This is sometimes called a carrier matrix because it includes the p − 1 explanatory vari-
ables and, according to the specification given by Eq. (6.2.1), has a column of 1s to cater
to the constant β0.

Thus the multiple regression model is written as

Y = Xβ + ε. (6.2.3)

The vector of mean values E[Y] of Y is

E[Y] = Xβ. (6.2.4)

For estimation purposes let us revert briefly to the procedure adopted in Subsection
6.1.1 [see Eq. (6.1.3)]. Suppose we have n sets of observations of all the variables
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(yi , xi1, xi2, . . . , xip−1), i = 1, 2, . . . , n. The least squares solution is obtained by min-
imizing

S2 =
n∑

i=1

ε2
i =

n∑
i=1

(yi − β0 − β1xi1 · · · − βp−1xip−1)2 (6.2.5)

with respect to the unknown parameters β0, . . . , βp−1. Thus, as before, the sum of squared
errors is partially differentiated with respect to each of the unknown parameters and
equated to zero. This gives the following p linear equations:

nβ̂0 + β̂1

n∑
i=1

xi1 + β̂2

n∑
i=1

xi2 + · · · + β̂p−1

n∑
i=1

xip−1 =
n∑

i=1

yi

β̂0

n∑
i=1

xi1 + β̂1

n∑
i=1

xi1xi1 + β̂2

n∑
i=1

xi1xi2 + · · · + β̂p−1

n∑
i=1

xi1xip−1 =
n∑

i=1

yi xi1

...

β̂0

n∑
i=1

xip−1 + β̂1

n∑
i=1

xi1xip−1 + β̂2

n∑
i=1

xi2xip−1 + · · · + β̂p−1

n∑
i=1

xip−1xip−1 =
n∑

i=1

yi xip−1.

(6.2.6)

These are called the normal equations and provide the p estimators, β̂0, β̂1, β̂2, . . . , β̂p−1

of the parameters.
The matrix representation of the Eq. (6.2.6) is XTXβ̂ = XTy, where T denotes transpose

and y is a (n × 1) vector of observed Y values. If the (p × p) matrix XTX, which is
symmetric, can be inverted (see the next illustration) the least squares solution to the
unknown parameters is

β̂ = (XTX)−1XTy, (6.2.7)

which is a (p × 1) vector of fitted parameters.
Thus the vector of estimated mean values of Y is given by

ŷ = Xβ̂. (6.2.8)

As in the simple linear regression model, the residuals

ε̂ = y − Xβ̂, (6.2.9a)

which constitute a (n × 1) vector of differences between the observed and estimated mean
values of Y are taken as estimators of the errors

ε = Y−Xβ (6.2.9b)

and are used in the assessment of the model.

Definitions and properties: Multiple regression. The model is written as Y = Xβ + ε,
where the vector Y denotes the response variable, X is a matrix of explanatory variables, β

is a vector of parameters, and ε is the vector of errors.
Least squares estimates of parameters are given by the (p × 1) vector β̂ = (XTX)−1XTy.

Example 6.6. Multiple regression on stream basin characteristics. Table E.6.1 gives
some characteristics of 20 stream basins in the Valtellina region of northern Italy. Physical
evidence supports the hypothesis that in this area mean annual runoff is related to the mean
annual rainfall and also to the mean elevation of the basin. The statistical significance of these
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relationships is considered in subsequent subsections. To formulate the model, therefore, we
can treat mean annual runoff as the response variable Y and the mean annual rainfall and the
mean elevation as explanatory variables X1 and X2, respectively. Observed values are listed
in columns 2–4 of Table 6.2.1; some of the entries in columns 5–12 are used here and in
subsequent examples. Thus,

X =

⎡⎢⎢⎢⎣
1 1350 2329
1 1621 1593
...

...
...

1 1283 2206

⎤⎥⎥⎥⎦ and y =

⎡⎢⎢⎢⎣
1654
1374

...
1023

⎤⎥⎥⎥⎦ .

XTX =
⎡⎣ 1 1 . . . 1

1350 1621 . . . 1283
2329 1593 . . . 2206

⎤⎦
⎡⎢⎢⎢⎣

1 1350 2329
1 1621 1593
...

...
...

1 1283 2206

⎤⎥⎥⎥⎦
=

⎡⎣ 20 29,596 33,724
29,596 45,361,666 48,105,718
33,724 48,105,718 65,828,584

⎤⎦ = (say)

⎡⎣ a b c
b e f
c f g

⎤⎦ ,

taking into account the symmetry of the square (p × p) matrix (XTX).
The determinant of this matrix is d = aeg + 2bcf − af 2 − b2g − c2e. If the determinant is

zero, the matrix is called singular and it does not have an inverse. If (XTX) is nonsingular, its
inverse is the transpose of the matrix of which the elements are the signed cofactors divided
by the determinant. The inverse is thus given by

(XTX)−1 =
⎡⎣ (eg − f 2)/d (c f − bg)/d (b f − ce)/d

(c f − bg)/d (ag − c2)/d (bc − a f )/d
(b f − ce)/d (bc − a f )/d (ae − b2)/d

⎤⎦
=

⎡⎣ 3.1121632701 −0.0015096654229 −0.00049114006481
−0.0015096654229 0.00000083028568222 0.0000001666520403
−0.00049114006481 0.00000016665204030 0.00000014501742117

⎤⎦ .

Also,

XTy =
⎡⎣ 1 1 . . . 1

1350 1621 . . . 1283
2329 1593 . . . 2206

⎤⎦
⎡⎢⎢⎢⎣

1654
1374

...
1023

⎤⎥⎥⎥⎦ =
⎡⎣ 25,661

38,852,792
45,285,738

⎤⎦ .

Therefore,

β̂ = (XTX)−1XTy =
⎡⎣ −1035.1

1.0664
0.4390

⎤⎦ .

Hence the fitted model, used to obtain a mean response, is as follows:

Ŷ = −1035.1 + 1.0664x1 + 0.4390x2.

Note that roundoff errors will cause differences in solutions to Examples 6.6 and through
6.16. Many software programs are available to find solutions that account for roundoff
errors and nonsingularities.10

10 See the discussion in Example 6.6. For matrixes in statistics and linear algebra, see, for example, Nicholson
(1990), Graybill (1983), or Strang (1980). Incidentally, note that the dimensions of the matrix (XTX)–1 are
reduced by 1 if the transformations yi − ȳ, xi1 − x̄1, and so on, are made (see Problems 6.8 and 6.12).
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6.2.3 Properties of least squares estimators and error variance

6.2.3.1 Expectations of the least squares estimators
The least squares estimators β̂0, β̂1, β̂2, . . . , β̂p−1 are unbiased estimators of the multiple
regression parameters β0, β1, β2, . . . , βp−1. This can be shown as follows using the as-
sumption that the errors are independent of the explanatory variables. From Eq. (6.2.6),
E[β̂] = E[(XTX)−1XTY]. As in the simple regression model, we treat the Y values as the
random variables and the X values as known or fixed. Therefore,

E[β̂] = (XTX)−1XT E[Y]. (6.2.10)

Hence by using Eq. (6.2.4), E[β̂] = (XTX)−1XTXβ. We note that (XTX)−1(XTX) = I, a
(p × p) identity matrix (with 1s in the leading diagonal and 0s elsewhere). Therefore,

E[β̂] = β. (6.2.11)

6.2.3.2 Covariance matrix of the least squares estimators
The covariances of the least squares estimators can be expressed as the elements of a
matrix C as follows:

C =

⎡⎢⎢⎢⎣
Var[β̂0] Cov[β̂0, β̂1] . . . Cov[β̂0, β̂p−1]

Cov[β̂0, β̂1] Var[β̂1] . . . Cov[β̂1, β̂p−1]
...

... . . .
...

Cov[β̂0, β̂p−1] Cov[β̂1, β̂p−1] . . . Var[β̂p−1]

⎤⎥⎥⎥⎦ . (6.2.12a)

By definition [see Eq. (3.3.24)], C = E[(β̂ − β)(β̂ − β)T]. From Eqs. (6.2.7), (6.2.10),
and (6.2.11), and because (XTX)−1 is symmetric,

C = E[(XTX)−1XT(Y − E[Y])(Y − E[Y])TX(XTX)−1].

The errors represented by ε = Y − E[Y] [see Eqs. (6.2.3), (6.2.4), and (6.2.9b)] are
assumed to have a zero expectation and a common variance σ 2 as stipulated earlier. Also,
because the errors are mutually independent,

E[(Y − E[Y])(Y − E[Y])T] = σ 2I,

which is a (p × p) matrix with the diagonal elements equal to σ 2 and the off-diagonal
elements equal to zero. It follows that

C = σ 2(XTX)−1XTX(XTX)−1 = σ 2(XTX)−1. (6.2.12b)

The quantities σ 2c′
i i —where c′

i i , i = 0, 1, . . . , p − 1, are the diagonal elements of the
(XTX)−1 matrix—are the variances of the estimators of the regression parameters; they
are used in making inferences on the parameters and for setting confidence limits, as will
be shown.

6.2.3.3 The error variance
Because the error variance σ 2 is unknown, we use the residuals for estimation as given by
Eq. (6.2.9a). The residual sum of squares is estimated as

SSE =
n∑

i=1

(yi − ŷi )
2.

In matrix notation this is represented as

SSE = (y−Xβ̂)T(y−Xβ̂)

= yTy−β̂
T
XTy−yTXβ̂ + β̂

T
XTXβ̂.
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Prior to Eq. (6.2.7) we noted that XTXβ̂ = XTy. Furthermore, the scalar quantity yTXβ̂

is equivalent to its transpose β̂
T
XTy. Therefore, the residual sum of squares is

SSE = yTy − β̂
T
XTy. (6.2.13a)

Because p parameters need to be estimated, an unbiased estimator of σ 2 is

σ̂ 2 = SSE

n − p
= yT y − β̂XTy

n − p
. (6.2.13b)

Confidence limits can be obtained on σ 2 because the variable (n − p)σ̂ 2/σ 2 is χ2
n−p

distributed on consideration of the assumptions of independence and normality (see Sub-
section 5.3.5).

Definition and properties: Error variance. The residual sum of squares is

SSE = yTy−β̂XTy,

after estimating p parameters from n sets of observations. An unbiased estimator of σ 2 is

σ̂ 2 = yTy − β̂X
T
y

n − p
.

Example 6.7. The error variance and confidence limits. From Eq. (6.2.13a), the residual
sum of squares is SSE = yTy − β̂XTy. As given in Table 6.2.1,

yTy =
n∑

i=1

y2
i = 34,986,383.

In addition, from Example 6.6

β̂
T
XTy = [−1,035.1 · · · 1.0664 · · · 0.4390]

⎡⎣ 25,661
38,852,792
45,285,738

⎤⎦ = 34,747,164.

Hence,

SSE = 34,986,383 − 34,747,164 = 239,219.

From Eq. (6.2.13b) the residual variance (which estimates σ 2) is

σ̂ 2 = 239,219

17
= 14,071.7.

As stated, (n − p)σ̂ 2/σ 2 has a χ2
n−p distribution.

To establish 95% confidence limits for σ 2, we note that from Table C.3 χ2
17,0.975 = 7.56

and χ 2
17,0.025 = 30.2. Therefore,

Pr

[
239,219

30.2
≤ σ 2 ≤ 239,219

7.56

]
= 0.95.

Hence,

Pr[7921 ≤ σ 2 ≤ 31,643] = 0.95.

We are therefore 95% confident that the interval (7921, 31,643) includes the variance σ 2.
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6.2.4 Model testing

As stated in the introduction, multiple regression is an iterative procedure. One starts
with a chosen set of explanatory variables arranged in a decreasing order of physical
importance. Then if we follow the commonly used backward elimination procedure, we
test the significance of these variables starting with the last. Changes are made, where
necessary, following the results of the tests. The changes may involve the exclusion of
some variables and the inclusion of others.

Significance tests applied to the multiple regression model range from the application
of the F test to the model with a chosen number (p − 1) of explanatory variables to
individual tests on the model parameters. As in the case of the simple linear model, the
assumptions made concern the errors represented by the term ε, in Eq. (6.2.1). We have
assumed that the errors are mutually independent with a common N (0, σ 2) distribution
and also that the errors are independent of the explanatory variables. It is part of the test
procedure to verify the assumptions made.

6.2.4.1 Initial significance tests on the regression
After estimating the parameters of the model, we should try to find evidence of a linear
relationship between the response and a subset of the explanatory variables, as already
mentioned, which we can consequently use in forecasting. For the initial significance test,
the hypotheses are

Null hypothesis H0: βi = 0, for all i, i = 1, 2, . . . , p − 1

and

Alternate hypothesis H1: βi �= 0, for one or more i, i = 1, 2, . . . , p − 1.

The total sum of squares of the observations of the response variable is the sum of squared
deviations from the mean:

Syy =
n∑

i=1

(yi − ȳ)2

= yTy −
(∑n

i=1 yi
)2

n
. (6.2.14)

This can be separated into two parts, Syy = SSR + SSE which are respectively the
sum of squares due to the regression and the sum of squares due to the errors. From
Eq. (6.2.13a), SSE = yTy − β̂XTy. Therefore,

SSR = β̂XTy −
(∑n

i=1 yi
)2

n
. (6.2.15)

Under the null hypothesis, SSR/σ 2 ∼ χ2
p−1, where σ 2 is the common variance of the errors

and p − 1 is the number of explanatory variables (that is, there are p parameters including
β0); also, SSE/σ 2 ∼ χ2

n−p. From the F distribution of Appendix A.8 and Subsection 5.4.5,
on the assumption that the Y and X variables have a multivariate normal distribution,

SSR/p − 1

SSE/(n − p)
∼ Fp−1,n−p. (6.2.16)

The expression on the left, denoted F , is called the ratio of the means of the two respec-
tive sums of squares (as in Table 5.7.1 for ANOVA). The null hypothesis is rejected if
F > Fp−1,n–p,α which is the F value with numerator and denominator degrees of freedom
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Table 6.2.2 ANOVA table for testing significance in multiple linear regression with p parameters
including β0 in vector β using n observations.

Source of Degrees of
variation freedom Sum of squares Mean square F value

Regression p − 1 SSR = β̂
T
XTy − (

∑n
i=1 yi )2/n MSR = SSR/(p − 1) F = MSR/MSE

Residual n − p SSE = yTy − β̂
T
XTy MSE = SSE/(n − p)

Total n − 1 SSyy = yTy − (
∑n

i=1 yi )2/n

of p − 1 and n − p, respectively, and probability of exceedance α. A summary of the
procedure is given in Table 6.2.2.

Definitions and properties: Sums of squares and ANOVA. The total sum of squares from
n observations is

Syy = yTy −
(∑n

i=1 yi

)2

n
.

The estimated regression and error sums of squares are, respectively,

SSR = β̂XTy −
(∑n

i=1 yi

)2

n
and SSE = yTy − β̂XTy;

with ratio of means

SSR/p − 1

SSE/(n − p)
∼ Fp−1,n−p,

where p − 1 is the number of explanatory variables.

Example 6.8. Significance of regression of basin characteristics as given in Table
E.6.1. A test is made on the multiple regression for which the parameters were estimated in
Example 6.7.

Null hypothesis H0: βi = 0, for i = 1, 2.

Alternative hypothesis H1: βi �= 0, for i = 1, 2 or for i = 1 or for i = 2.

Level of significance: α = 0.05.

Calculations: The residual sum of squares as computed in Example 6.7 is SSE = 239,219.
Also, the residual mean square, which is the estimated error variance (or residual variance)

is

σ̂ 2 MSE = 239,219

17
= 14,071.7.

From Table (6.2.1) and Eq. (6.2.14), the total sum of squares is

SSyy =
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

y2
i −

(∑n
i=1 yi

)2

n
.

= 34,986,383 − 25,6612

20
= 2,062,037.

Hence, the sum of squares due to the regression is

SSR = SSyy − SSE

= 2,062,037 − 239,219 = 1,822,818.
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Table 6.2.3 ANOVA table for multiple regression of runoff with rainfall and
elevation.

Source of Degrees of
variation Sum of squares freedom Mean square F value

Regression 1,822,818 2 911,409 64.8
Residual 239,219 17 14,072

Total 2,062,037 19

The mean square due to regression is

MSR = 1,822,818

2
= 911,409.

The F value is thus 911,409/14,072 = 64.8. Results are summarized in Table 6.2.3.
From Table C.4 the significant value is F2,17,0.05 = 3.85 (approximately). The rejection

region is F > F2,17,0.05 = 3.85.
Decision: We reject the null hypothesis because the computed F value is in the rejection

region. We decide that the mean annual runoff is linearly related to the mean annual rainfall
or the mean elevation of the basin or to both variables.

6.2.4.2 Significance tests and confidence limits on a regression parameter
It is also useful to make hypothesis tests on each of the regression parameters. This
enables us to eliminate one or more of the chosen explanatory variables if they do not
make a significant contribution to the regression sum of squares.

Let us follow arguments similar to those in Subsection 6.1.3 leading to Eq. (6.1.15) and
use Eq. (6.2.12b) on the basis of the assumptions made. We see that the statistic

T = (β̂i − βi )√
σ̂ 2c′

i i

, (6.2.17)

where c′
i i , i = 0, 1, . . . , p − 1, are the diagonal elements of the (XTX)−1 matrix—has a

t distribution with n − p degrees of freedom. This equation is used for a significance test
on a regression parameter βi , i = 0, 1, . . . , p − 1. However, this is only a partial test on
the parameter itself (which is a partial regression coefficient for a particular explanatory
variable) because the estimate of the parameter depends on all the explanatory variables
used in the model as seen from Eq. (6.2.7).

Following Eq. (6.2.14) and as in Subsection 6.1.3, the 100(1 − α) percent confidence
interval for a regression parameter βi , i = 0, 1, . . . , p − 1, is found from the following
relationship:

Pr
[
β̂i − tn−p,α/2

√
σ̂ 2c′

i i ≤ βi ≤ β̂i + tn−p,α/2

√
σ̂ 2c′

i i

] = 1 − α. (6.2.18)

If the confidence interval includes zero, it indicates that the corresponding variable can be
eliminated from the equation.

Definitions and properties: The 100(1 − α) percent confidence interval for regression
parameters βi , i = 0, 1, . . . , p − 1 is found from the relationship:

Pr
[
β̂i − tn−p,α/2

√
σ̂ 2c′

i i ≤ βi ≤ β̂i + tn−p,α/2

√
σ̂ 2c′

i i

]
= 1 − α,

where c′
i i , i = 0, . . . , p − 1, are the diagonal elements of the (XTX)−1 matrix.
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Example 6.9. Significance tests on regression parameters. Firstly, we test the parameter
β1 as follows:

Null hypothesis H0: β1 = 0.
Alternative hypothesis H1: β1 �= 0.
Level of significance: α = 0.05.
Calculations: From the null hypothesis using Eq. (6.2.17) and substituting from Examples

6.6 and 6.7,

t = β̂1√
σ̂ 2c′

11

= 1.0664√
14071.7 × 0.0000008303

= 9.868.

From Table C.2, t17,0.025 = 2.110.
Decision: We reject the null hypothesis. The conclusion is that the first explanatory variable,

mean annual rainfall, contributes significantly to the model for mean annual runoff.
Secondly, the parameter β2 is tested as follows:

Null hypothesis H0: β2 = 0.
Alternative hypothesis H1: β2 �= 0.
Level of significance: α = 0.05.

Calculations: From the null hypothesis, using Eq. (6.2.17) and substituting from Examples
6.6 and 6.7, the test statistic is computed as

t = β̂2√
σ̂ 2c′

22

= 0.4390√
14071.7 × 0.0000001450

= 9.717.

From Table C.2, t17,0.025 = 2.110. The rejection region is therefore t > t17,0.025 = 2.110.
Decision: We reject the null hypothesis. The conclusion is that the second explanatory

variable, mean elevation above sea level, contributes significantly to the model for mean
annual runoff.

Example 6.10. Construction of confidence intervals on regression parameters. Using
Eq. (6.2.18) and substituting from Example 6.6, we can construct 95% confidence intervals
on β0, β1, and β2, respectively, as follows:

(
−1035 − t17,0.025

√
14,071 × 3.112163, −1035 + t17,0.025

√
14,071 × 3.112163

)
;(

1.0664 − t17,0.025

√
14,071.7 × 0.0000008303, 1.0664 + t17,0.025

√
14,071.7 × 0.0000008303

)
;

and(
0.4390 − t17,0.025

√
14,071.7 × 0.0000001450, 0.4390 + t17,0.025

√
14,071.7 × 0.0000001450

)
.

From Table C.2, t17,0.025 = 2.110. Hence the 95% confidence intervals are (−1477, −593),
(0.8383, 1.2945), and (0.3437, 0.5343) for β0, β1, and β2, respectively.

6.2.4.3 Significance tests on a set of parameters
As noted, a significance test on each of the parameters is an approximate procedure. An
alternative procedure is to use a statistic that has the F distribution, as in the case repre-
sented by Eq. (6.2.16) to test a set of parameters; note that this too is based on assump-
tions such as the multivariate normal distribution of the variables. In the modification, the
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denominator remains the same. The numerator in the F ratio is, however, changed so that
it represents the difference between� the sum of squares due to the regression when a full set of variables is included and� the sum of squares when a chosen partial set of variables is eliminated from the

regression.

Let the original model contain p − 1 explanatory variables (that is there are p param-
eters, including β0) arranged in descending order of importance. As stated, we make the
choice through physical considerations. Suppose we wish to test that the last m variables
do not make a significant contribution to the regression. Then the two hypotheses are

Null hypothesis H0: βp−m = βp−m+1 = · · · = βp−1 = 0.

Alternate hypothesis H1: βi �= 0, for at least one i, i = p − m, p − m + 1, . . . , p − 1.

Also, let

SSR,p−1 be the sum of squares due to the regression using all p − 1 explanatory vari-
ables,

SSR,p−m−1 be the sum of squares due to the regression using the first p − m − 1
explanatory variables, and

SSE,p−1 be the sum of squared residuals using all p − 1 explanatory variables.

We have m and n − p numerator and denominator degrees of freedom, respectively.
Then

(SSR,p−1 − SSR,p−m−1)/m

SSE,p−1/(n − p)
∼ Fm,n−p. (6.2.19)

Definitions and properties: F test on a set of regression parameters. The test statistic is

(SSR,p−1 − SSR,p−m−1)/m

SSE,p−1/(n − p)
∼ Fm,n−p.

Here SSR,p−1 and SSR,p−m−1 are the sums of squares due to the regression using all p − 1
and the first p − m − 1 explanatory variables, respectively. Also SSE,p−1 is the sum of squared
residuals using all p − 1 explanatory variables. We have m and n − p numerator and denom-
inator degrees of freedom, respectively.

Example 6.11. Significance of contribution of a partial set of explanatory variables to the
regression. A test is made on the multiple regression for which the parameters were estimated
in Example 6.6. Suppose we wish to determine whether the second explanatory variable, mean
basin elevation, makes a significant additional contribution to the linear regression of mean
annual runoff using initially the first explanatory variable, mean annual rainfall.

Null hypothesis H0: β2 = 0.
Alternate hypothesis H1: β2 �= 0.
Level of significance: α = 0.05.

Calculations: The denominator of the left-hand side of Eq. (6.2.19) is the residual sum
of squares; as computed in Example 6.7 it is SSE = 239,219 with 17 degrees of freedom.
The numerator is (β TXTy)2 − (β TXTy)1 [which follows from Eq. (6.2.15)], which is the
difference in this case between

(a) a scalar quantity obtained using both explanatory variables and hence three parameters
in the β vector, and

(b) a scalar quantity obtained using the simple linear regression model for runoff based
only on mean rainfall and hence two parameters in the β vector.
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From Example 6.7,

(β̂
T
XTy)2 = 34,747,164.

For the simple regression model, we estimate the slope-parameter from Eq. (6.1.4) and
Table 6.2.1 as

β̂1 = n
∑n

i=1 yi xi − (∑n
i=1 xi

) (∑n
i=1 yi

)
n

∑n
i=1 x2

i − (
∑n

i=1 xi )2

= 20 × 38,852,792 − 29,596 × 25,661

20 × 45,361,666 − 29,5962
= 0.5619

and the intercept from Eq. (6.1.5) as

β̂0 = ȳ − β̂1 x̄ = 1,283.05 − 0.5619 × 1,479.8 = 451.55

Thus,

(βTXTy)1 = β̂0

n∑
i=1

yi + β̂1

n∑
i=1

yi xi = 451.55 × 25,661 + 0.5619 × 38,852,792

= 33,418,608.

Hence, from Eq. (6.2.19), the sample F value is

34,747,164 − 33,418,608

14,017.7
= 94.4.

From Table C.4 the significant value is F1,17,0.05 = 4.50 (approximately). The rejection region
is therefore F > F1,17,0.05 = 4.50.

Decision: We reject the null hypothesis because the computed F value is in the rejection
region. We decide that the mean elevation makes a significant contribution to the multiple
linear regression of mean annual runoff.

It is interesting to verify a corollary given at the end of Appendix A.8, that is, if X ∼ tn−p,
X2 ∼ F1,n−p. From Example 6.9, t = 9.717 for the test of significance of the parameter
β2, the partial regression coefficient for the second explanatory variable. We note that
t2 = 9.7172 = 94.4 is equivalent to the F value calculated above which is also a test on
the significance of the second explanatory variable.

The iterative model testing procedure extends to Subsections 6.2.5 (model adequacy),
6.2.6 (residual plots), and beyond as necessary.

6.2.5 Model adequacy

6.2.5.1 Coefficient of determination
From the sums of squares defined in ANOVA, Table 6.2.2, one can define a measure of
model adequacy by the statistic

R2 = SSR

SSyy
. (6.2.20)

This is the ratio of the sum of squares due to regression to the total sum of squares; it
is sometimes called the coefficient of multiple correlation; or simply, R2. It gives the
proportion (or fraction) of the variability of the response variable that is accounted by
the explanatory variables. Tests of hypotheses, however, should be used to determine the
explanatory variables to be included in the regression. In simple regression the coefficient
is equivalent to the square of the correlation coefficient. High values of R2 obtained by
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transformation may not indicate the best approach if one does a comparison for different
transformations.11

Example 6.12. Coefficient of determination. From Table 6.2.3, the sample coefficient of
determination for the multiple regression model is obtained as

r 2 = 1,822,818

2,062,037
= 0.884.

This shows that 11.6% of the variation is not accounted for by the regression.
For the simple regression model using only the mean annual rainfall, the numerator term

in the above coefficient is obtained as follows from Table 6.2.2, the results of Example 6.11,
and Table 6.2.1.

SSR = β̂
T
XTy − (

∑n
i=1 yi )2

n

= 33,418,608 − 25,6612

20
= 494,262.

For the simple linear regression model, therefore,

r 2 = 494,262

2,062,037
= 0.2397.

This shows that only about 24% of the variability of the regression is explained by the mean
annual rainfall. The corresponding product-moment correlation coefficient is r = √

0.2397 =
0.49.

6.2.6 Residual plots

The formulation of the regression model Y = Xβ + ε and consequent tests of hypotheses
are dependent on the assumptions made. In all of this the error term ε plays a central
role. We assume that it is independently, identically, and normally distributed. Also, it
is assumed to be independent of X. However, the only practical way of measuring the
model errors is to use the residuals represented by the vector ε̂ = y − Xβ̂ [as given by Eq.
(6.2.9a)] to estimate the errors. This is a reiteration of our discussion in Subsection 6.1.2.

Graphical diagnostics form an essential part of the verification of a multiple regression
model. They enable summary inferences to be made. Apart from the scatter plots of the
variables that we have seen in Chapter 1 and in this chapter, these inferences concern the
residuals. As in the case of simple regression, graphical methods provide evidence that no
deficiencies or systematic defects are present in the multiple linear regression model. If the
observations are recorded in time, an index plot (time sequence) of the residuals is made.
The normal probability plot is used as before for indicating departures from normality.12

11 In fact R2 is misleading when we compare regressions involving different numbers of explanatory variables
(Healy, 1984). There are other measures of model adequacy. Akaike’s criterion, for instance, is sometimes used
to decide on the order of a regression by choosing p, the number of parameters, to minimize the prediction error,
based on the residual mean square, given a natural sequence for the introduction of successive predictors. See
Draper and Smith (1998, pp. 138–140) or, in water resources, Helsel and Hirsch (1992).
12 The half-normal (also called the folded-normal) plot is sometimes drawn as an aid for detecting unusual
observations. The method is useful when the signs of the residual are not important. The variable takes only
positive values (see Subsection 4.2.6, truncated normal) and has cdf

F (x) =
∫ x

0

√
2

π
exp(−y2/2)dy.

Accordingly, the absolute values of the residuals are plotted. Normal and half-normal plots are compared by
Draper and Smith (1998). Sparks (1970) gives an algorithm for the distribution, and graphical displays are shown
by Atkinson (1981).
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Fig. 6.2.1 Normal probability plot of residuals from multiple regression.

With at least 30 items, we would also draw a stem-and-leaf plot or, with more observations,
a histogram. Plots of the residuals against the y and x variables, including explanatory
variables that are not used in the regression, bring out possible shortcomings in the model
and would indicate methods of overcoming them. For instance, we should know whether
all the explanatory variables are suitable and whether, by extending our search, there are
other variables that could be included. A particularly important aspect to be studied is
the presence of any influential observations that unduly influence the estimation of the
parameters. This follows shortly.

Example 6.13. Properties of the residuals of linear regression model applied to basin
characteristics. The residuals ε̂i = yi − ŷi are determined after fitting the model and are
shown in the last column of Table 6.2.1. We examine their independence and distributional
properties.

In order to determine whether the residuals are normally distributed, a normal probability
plot of residuals is drawn as shown in Fig. 6.2.1.

It is seen that the residuals are close to normality in distribution. (Curvatures at the ends
which may indicate a uniform or other nonnormal distribution are not indicated here.)

Figure 6.2.2 shows a plot of the residuals ε̂i against the fitted runoff ŷi .
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Fig. 6.2.2 Plot of residuals against fitted runoff.
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Fig. 6.2.3 Plot of residuals against observed runoff.

A curvature in the general structure of the residuals would mean that the linearity assump-
tion does not hold. There is sufficient indication here that the residuals are random because
of the horizontal spread. It is reasonable to assume that the variance is constant. This would
not be the case if there was a much larger spread above and below one part of the horizontal
axis (through the zero residual) than another, such as the left and right parts or the middle and
end parts; alternatively the variance could have varied from one side of the plot to the other.
In such situations a possible remedy is to transform the response variable. More about this
follows.

The evidence, however, is inconclusive because even if some of the assumptions are in-
correct this plot may seem to represent random behavior.13 We should therefore pursue with
additional graphical diagnostics. Figure 6.2.3 shows a plot of the residuals ε̂i against the
observed runoff yi . In addition, Fig. 6.2.4 is a plot of the residuals ε̂i against mean annual
rainfall xi1. These confirm the random behavior seen in Fig. 6.2.2.

Figure 6.2.5 shows the residuals from the simple linear regression of mean annual runoff
y and mean annual rainfall x1 plotted against mean elevation x2, as in Table 6.2.1.

This figure clearly shows a trend line indicating the need to include mean elevation x2 as
an explanatory variable. After inclusion of this variable in the multiple regression, Fig. 6.2.6
is drawn to show that the residuals ε̂i (which are numerically the same as in Figs. 6.2.1 to
6.2.4) have no relationship also with mean elevation x2.

In Figs. 6.2.1 to 6.2.4 and Fig. 6.2.6, the lowest point appears to be separated from the
rest of the plotted points. This corresponds to the last set of observations (station 20), and
as shown in Table 6.2.1 the residual has a value of −278.372. Whether this is an influential
observation, and whether there are any other influential observations or outliers that are latent
will be examined in the next subsection.

6.2.7 Influential observations and outliers in regression

In Section 5.9 we discussed how unexpectedly high or low values, called outliers, can
unduly influence the estimation of the parameters of a probability model unless one iden-
tifies and deals appropriately with them. Likewise in regression analysis there can be some
uncharacteristic observations that can have an excessive influence on the estimates of the
parameters and the tests of hypotheses [as we had thought when we viewed the position of

13 See, for example, Ghosh (1987).
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Fig. 6.2.4 Plot of residuals against mean annual rainfall.
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Fig. 6.2.5 Plot of residuals from simple regression of mean annual runoff and mean annual
rainfall against mean elevation.
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Fig. 6.2.6 Plot of residuals from multiple regression against mean elevation.
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the last row of observations (station 20) in Table 6.2.1 which seems to be a remotely placed
point in Figs. 6.2.1 to 6.2.4 and Fig. 6.2.6]. This section deals with such observations.
We examine whether they can be classed as influential, which means that by removing
them there will be a significant change in the estimates of the parameters. Our diagnosis is
based on the leverage matrix, the use of standardized residuals, and a measure of influence
called Cook’s distance.14

6.2.7.1 The leverage matrix
For a set of n observations, we define the n × n leverage matrix H by substituting the
solution of the vector of estimated parameters [Eq. (6.2.7)] in the vector of estimated
expected values of the response variable [Eq. (6.2.8)]. That is,

ŷ = Xβ̂ = X(XTX)−1XTy = Hy. (6.2.21)

Sometimes H is called the hat matrix because it puts a “hat” (circumflex) on y. Note that
H is formed solely by the X values. Thus, when one premultiplies the vector of observed
Y values by the leverage matrix H, one obtains the vector of fitted values of Y estimated
by the least squares method.

From Eq. (6.2.9a) the residuals ε̂ are related to H as follows:

ε̂ = y − Xβ̂ = (I−H)y, (6.2.22)

where I is an n × n identity matrix. Also because the leverage matrix H and the residuals
matrix I − H are symmetrical and idempotent, that is, H2 = H, the following relationships
hold:

σ̂ 2 = ε̂Tε̂

n − p
= yT(I − H)y

n − p
, (6.2.23a)

Var[ŷ] = σ 2H, (6.2.23b)

Var[ε̂] = σ 2(I − H), (6.2.23c)

and

Cov[ε̂, ŷ] = σ 2H(I − H) = 0. (6.2.23d)

It is because of the last property that points in the plot of residuals against fitted values,
shown in Fig. 6.2.2, appear as a horizontal spread if the model assumptions are met (see
also Fig. 6.1.6).

We denote the diagonal elements of the leverage matrix H by

hi = xi (XTX)−1xT
i , (6.2.23e)

where xi is the i th row of X. Then if the off-diagonal elements are denoted by hi j , from
Eq. (6.2.21) the i th fitted value and the observed values of Y have the relationship

ŷi =
n∑

j=1

hi j y j = hi yi +
∑
j �=i

hi j y j , for i = 1, 2, . . . , n.

14 Originated by Cook (1977).
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Hence,

∂ ŷi

∂yi
= hi , for i = 1, 2, . . . , n.

We can therefore say that hi is a measure of the effect each value yi has on its own
prediction, that is, the determination of ŷi . Furthermore, it is seen from Eq. (6.2.23c) that
a point with a high value of hi has low variance and at the maximum value, hi = 1, the
residual is zero and the fitted model becomes irrelevant. Similarly, we can interpret hi j as
the effect of the j th observation on the prediction of ŷi . For these reasons H is termed the
leverage matrix and hi is termed the leverage.

The elements of H are constrained as follows:

0 ≤ hi ≤ 1 (6.2.24a)

and

−0.5 ≤ hi j ≤ 0.5. (6.2.24b)

It can also be shown that the average value of hi is p/n, where p is the number of
parameters.15 Even moderately high values, say,

hi ≥ 2.5p

n
,

signify that the i th point has high leverage. The constant in the numerator of this fraction
becomes 2 or 1.5 if p exceeds 5 and 14, respectively.16 If one or more of the hi are around
or greater than the suggested critical value, we may also evaluate the leverage measure

h′
i = hi

1 − hi
, (6.2.25)

which is unbounded and is hence more sensitive to highly leveraged observations. This
is the ratio of the variances of the fitted value of the response variable and the residual
[as seen from Eq. (6.2.23b) and (6.2.23c]. It represents the distance of the i th point in the
regression from the centroid of the other points.

6.2.7.2 Standardized residuals
For comparative purposes in the assessment of the magnitudes of residuals, it is useful to
compute the standardized residuals

ri = ε̂i√
σ̂ 2(1 − hi )

, (6.2.26a)

i = 1, 2, . . . , n, obtained by dividing the residuals ε̂i by the square root of the estimated
variance arising from Eq. (6.2.23c). The ri are also called the internally Studentized
residuals.

The alternate term externally Studentized residuals denotes residuals obtained by using
the estimated error variance σ̂ 2

(i) computed after deletion of the contribution of ε̂i . That is,

ti = ε̂i√
σ̂ 2

(i)(1 − hi )
(6.2.26b)

15 See, for example, Stuart and Ord (1991, p. 1080).
16 See, for example, Chatterjee and Hadi (1988, p. 101) and Atkinson (1985, p. 18); however, Draper and Smith
(1998, p. 207) “de-emphasizes” the use of leverages because of conflicting opinions on their role.
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where

σ̂ 2
(i) = (n − p)σ̂ 2 − ε̂2

i /(1 − hi )

n − p − 1
. (6.2.26c)

For normally distributed errors, the ti have a tn−p distribution.
The ri are sometimes used in place of the ordinary residuals ε̂i in plots such as Figs. 6.2.1

to 6.2.6. The standardization can be advantageous and will enable influential observations
to be more easily seen. They are highlighted somewhat more in the case of externally
Studentized residuals ti .

6.2.7.3 Cook’s distance
We noted that the hi are based solely on the X matrix as seen from Eq. (6.2.21). A
more representative measure of detecting influential observations is provided by Cook’s
distance

Ci = (β̂(i) − β̂)TXTX(β̂(i) − β̂)

pσ̂ 2
, (6.2.27)

where β̂(i) represents the vector of p estimated parameters after deleting the i th case. A
large value of Ci signifies a corresponding influence exerted by the i th case. This measure
can be shown to be equal to

Ci = r2
i hi

p(1 − hi )
. (6.2.28a)

It is seen that Cook’s distance incorporates the leverage measure h′
i = hi/(1 − hi ) of Eq.

(6.2.25), and the internally Studentized residual ri of Eq. (6.2.26a). The divisor (1 − hi )
in Eq. (6.2.28a) aids calibration by means of a confidence region.17 In practice, however,
values of Ci greater than 1 are considered to be large, as a rule of thumb.

6.2.7.4 Other statistics related to Cook’s distance
DFFITS, for instance, can be obtained from Cook’s distance Ci as follows:

DFFITSi =
√

Ci pσ̂ 2

σ̂ 2
(i)

(6.2.28b)

where σ̂ 2
(i) is defined by Eq. (6.2.26c). The modification Ai to DFFITS by Atkinson (1985)

is another example:

Ai = DFFITSi

√
(n − p)

n
. (6.2.28c)

There are other modifications such as the one by Chatterjee and Hadi (1988). As in the
case of Cook’s distance, one considers values greater than 1 to be large.

17 See, for example, Chatterjee and Hadi (1988, pp. 118–119).
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Table 6.2.4 Residuals, leverages, and Cook’s distances of basin characteristics

Index êi ri hi hi/(1 − hi ) Cook’s d

1 227.1876 2.0158 0.0961 0.1063 0.1440
2 −18.7111 −0.1631 0.0634 0.0677 0.0006
3 −50.9097 −0.4553 0.1102 0.1239 0.0086
4 30.1667 0.2642 0.0726 0.0782 0.0018
5 125.5582 1.1012 0.0749 0.0809 0.0327
6 114.0029 1.0045 0.0833 0.0909 0.0306
7 −78.3501 −0.7614 0.2464 0.3269 0.0632
8 77.2879 0.7037 0.1416 0.1650 0.0272
9 70.1633 0.7927 0.4425 0.7938 0.1663

10 −125.222 −1.1994 0.2243 0.2891 0.1386
11 −28.0140 −0.2859 0.3168 0.4637 0.0126
12 110.4192 0.9699 0.0776 0.0841 0.0264
13 76.9872 0.6667 0.0510 0.0537 0.0080
14 −21.9446 −0.2054 0.1881 0.2316 0.0033
15 −122.177 −1.0699 0.0720 0.0776 0.0296
16 −36.6723 −0.3248 0.0927 0.1022 0.0036
17 −82.7697 −0.7449 0.1214 0.1382 0.0256
18 37.1154 0.3698 0.2830 0.3947 0.0180
19 −25.8075 −0.2368 0.1549 0.1834 0.0034
20 −278.372 −2.4580 0.0872 0.0956 0.1925

6.2.7.5 Outliers in regression
An approximate method of detecting a single outlier in regression is obtained by means
of the highest absolute internally Studentized residual, rmax, from Eq. (6.2.26a) following
a method used in simple regression involving simulation.18 The test statistic is

T (xi , yi ) = max
i

|ri | ≡ rmax (6.2.29a)

and one finds Cα such that, conditional to the presence of no more than one outlier,

Pr[T (xi , yi ) > Cα] ≤ α. (6.2.29b)

Then the i th observation is declared an outlier if T (xi , yi ) > Cα . An approximation to Cα

is given by

Cα =
√

(n − p)F

n − p − 1 + F
, (6.2.29c)

where F ≡ F1,n–p–1,α/n , with n being the number of observations and p the number of
parameters. (The F value has 1 and n − p − 1 degrees of freedom in the numerator and
denominator, respectively, and is exceeded with probability α/n.)

Example 6.14. High leverage and influential observations. For the basin characteristics
of Table E.6.1 (excluding the last two columns) and listed in Table 6.2.1, the residuals ε̂i ,
internally Studentized residuals ri , the leverage hi , the leverage measure h′

i = hi/(1 − hi ),
and Cook’s distances Ci are given in Table 6.2.4.

The leverages and leverage measures are also shown in the index plot, Fig. 6.2.7.

18 See Tietjen et al. (1973).
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Fig. 6.2.7 Index plot of leverages from residuals of basin characteristics. hi is the i th diagonal
element of the leverage hat matrix.

The 9th point has hi = 0.4425, which is the highest leverage in Table 6.2.4. This exceeds the
approximate 95% probability point for high leverage, which is 2.5p/n = 7.5/20 = 0.375.
In the next column, the leverage measure h′

i = hi/(1 − hi ) = 0.7938 for the 9th point which
is more than double the value for the second ranked point (18th point) of this column. On
examination of the data presented in Table 6.2.1, the high leverage measure for the 9th point
is attributable to the very low value of mean elevation, 144 m, which is remote from the other
values of elevation.

In order to verify the possible influence exerted by the 9th point, we reestimate the pa-
rameters of the regression model after deleting the 9th row from the data set of Table 6.2.1.
Hence we obtain

β0(9) = −1152, β1(9) = 1.1073, β2(9) = 0.4688.

These are within the 95% confidence limits computed from the full sample in Example 6.10
as (−1477, −593), (0.8383, 1.2945), and (0.3437, 0.5343), respectively.

Also, let us delete the 9th row and calculate the predicted value of mean annual runoff for
mean annual rainfall of 1000 mm and an elevation of 2000 m, for example. We thus obtain
ŷ1000,2000(9) = 892.6 mm (as we shall see in Example 6.16 which follows shortly, this is very
close to the value of 909.2 obtained without deleting the 9th row).

We can also compare the variances of the residuals and the variances of the estimated
parameters to find that the differences are not large. We conclude that the 9th point has no
significant influence on the regression.

Finally, we have confirmation from Cook’s statistic, which takes values of 0.1663 and
0.1925 for the 9th and 20th points, respectively; these are much lower than the (rule-of-
thumb) critical value of 1.0. Furthermore, calculations of the modified statistics DFFITS and
Ai , as given by Eq. (6.2.28b) and (6.2.28c), respectively, for the 20th point give values of
0.5229 and 0.4961, respectively, which are well below the limit of 1.0.

In the following example we shall check for outliers using the internally standardized
residuals in column 3 of Table 6.2.4:

Example 6.15. Outliers in regression. In Figs. 6.2.1 to 6.2.4 and Fig. 6.2.6, it is seen that
the lowest point is a possible outlier. We noted from Table 6.2.1 that this is the 20th point,
with the highest absolute residual ε̂i of 278.372. This point has also the highest absolute
internally standardized residual ri , that is, rmax = 2.458, as seen in Table 6.2.4. A hypothesis
test is made with respect to this point.
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Null hypothesis H0: (x1,20, x2,20, y20) �= outlier.
Alternative hypothesis H1: (x1,20, x2,20, y20) = outlier.
Level of significance: α = 0.10.

Partly because the test is not accurate and partly because we need to give ourselves an
extra chance of declaring an outlier without incorrectly rejecting it, we use a higher level of
significance α than is usual. (This increases the chance of a Type I error, that is, an incorrect
rejection, noting that we thereby reduce β, the probability of making a Type II error, that is
an incorrect acceptance.)

Calculations: The rejection region is rmax > C0.10, where

C0.10 =
√

(n − p)F

n − p − 1 + F
,

from Eq. (6.2.29c), in which F ≡ F1,16,0.10/20 ≈ 11.5 after substituting n = 20, p = 3, and
interpolating from Table C.4. Hence,

C0.10 =
√

17 × 11.5

16 + 11.5
= 2.67.

Decision: We do not reject the null hypothesis because rmax = 2.458 < C0.10.

6.2.7.6 Discussion
From Example 6.14 we note that a high leverage point, such as the 9th point examined
here, need not be influential, although one suspects that a high leverage point is usually
influential. Influence (as meant here) is measured with respect to the changes, caused
by the omission of this point, to the error variances, the variances and estimates of the
regression parameters, and the predictions of future observations. Not all of these are
significantly affected in some cases. As given in the last column of Table 6.2.4, Cook’s
distance is a very useful measure for influential observations. High leverage means that a
point appears as an outlier in the X space but not necessarily in the total X, Y space where
the regression may, in some instances, cause it to have a low residual or otherwise reduce
its influence. Thus, the 9th point in Fig. 6.2.7 has an internally Studentized residual of
0.7927 compared to rmax = 2.458 for the 20th point as seen in Table 6.2.4. The 20th point
appears as an outlier in Figs. 6.2.1 to 6.2.4 and 6.2.6 but in Example 6.15 we rejected
the hypothesis, albeit by a small margin. Proceeding further, we find that the externally
Studentized residual t20 = −2.927, which is significantly high. On the other hand, the
20th point has very low leverage as seen in Table 6.2.4. This tells us that an outlier (or
one which seems to be of the type as in this case) need not be a high leverage point or
an influential one. A row of observations (as in Table E.6.1) can of course have all three
characteristics. With a wide range of diagnostics to consider, users can decide which rows
of observations require further scrutiny.

6.2.8 Transformations

The iterative procedure may not result in an acceptable model with respect to the as-
sumptions made as verified by means of residual analysis and various tests of hypotheses.
These assumptions include constant variance and normality in distribution of the residuals
and a linear structure in the residuals. We emphasized before that a key role is played by
residual plots. If there is a violation, the next step would be to consider a transformation
of the response variable. As a first step, logarithmic, reciprocal, square root, or cube root
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transformations can be tried. A particular method is to use the Box-Cox parametric family
of power transformations, given here in the more general form:

y(λ, α) = (y + α)λ − 1/λ, for λ �= 0,

= ln(y + α), for λ = 0. (6.2.30)

As discussed here, suitable values of the parameters λ and α are found which produces
normality in Y and hence in the residuals.

In the case of a single parameter, λ, one plots a normal probability plot for various values
of the parameter and selects the value for which a straight line is obtained; simultaneously
one seeks confirmation by searching for the maximum correlation between the vertical
and horizontal variables of the normal probability plot. In the general case just given, a
suggested procedure is to plot log likelihoods for different values of the power parameter λ

and repeat the procedure for the shift parameter α to find the maximum likelihood values
and hence the optimal values of the parameters; in case α is close to zero one may decide
to have only a single parameter, λ.19

One may also investigate the extension of the X variables by taking squares and cross
products (thereby fitting a conic surface rather than a plane when p = 3) and the effects on
the residual plots. If outliers are present, we must examine the data carefully and look for
possible errors. If they are not erroneous observations, it may be possible to accommodate
the outliers by means of a suitable transformation. The assumption of linearity, however,
could be violated as evidenced by a curvature in the plot of residuals against fitted values
of the response. In such cases a new approach is required. More about this follows.

6.2.9 Confidence intervals on mean response and prediction

6.2.9.1 Mean response
The confidence interval on the mean response when the explanatory variable in a simple
linear regression takes a value, say, X = x0 was defined by Eq. (6.1.16) using the estimated
mean, its variance, and the t statistic. Likewise, we can determine the mean response when
the p − 1 explanatory variables take the following values, for instance: x1 = a1, x2 =
a2, . . . , x p−1 = ap−1. For this set of values, the mean response is E[Y | x = a] = aβ

where a = [1 . . . a1. . . a2. . . ap−1] [in which the unit value on the left, as defined by Eq.
(6.2.2), corresponds to the intercept]. This is estimated by, say,

μ̂Y | x=a = aβ̂. (6.2.31)

The estimator is unbiased because

Ê[Y | x = a] = E[β̂0] + a1 E[β̂1] + · · · + ap−1 E[β̂p−1] = aβ = E[Y | x = a].

The variance of the mean response is estimated [using Eq. (3.4.30)] as follows:

Var[Y | X = a] =
p−1∑
i=0

a2
i Var[β̂i ] + 2

p−1∑
i=1

p−1∑
j=1, j �=i

ai a j Cov[β̂i , β̂ j ],

where a0 = 1. Then from Eq. (6.2.12a) and (6.2.12b),

Var[Y | x = a] = [a(XTX)−1aT]σ 2. (6.2.32)

19 See also Atkinson (1985, Chapters 6–9) and Dolby (1963).
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Hence, by substituting the residual variance σ̂ 2 for the unknown error variance σ 2, we
have the Student’s t variable

T = aβ̂ − aβ̂√
σ̂ 2a (XTX)−1aT

∼ tn−p.

This can be used in hypothesis testing and also to specify a 100(1 − α) percent confidence
interval on the mean response. The confidence limits are found from

Pr
[
aβ̂ − tn−p,α/2

√
σ̂ 2a(XTX)−1aT ≤ E[Y | xa] ≤ aβ̂ + tn−p,α/2

√
σ̂ 2a(XTX)−1aT

]
= 1 − α. (6.2.33)

6.2.9.2 Prediction interval for a future value of Y
Let the explanatory variables take values as just given. From Eqs. (6.2.4) and (6.2.31), the
expectation of Y0 is given by

E[Y0 | x = a] = aβ.

The variance of Y0 [obtained from Eq. (3.4.30)] is as follows:

Var[Y0 | x = a] = Var[aβ̂] + Var[ε0],

because Cov[aβ̂, ε0] = 0 by the assumptions made. Substituting from Eq. (6.2.32) for the
first term on the right-hand side and because Var[ε0] = σ 2,

Var[Y0 | x = a] = σ 2[1 + a(XTX)−1aT].

Hence, we can construct a 100(1 − α) percent prediction interval on the future or unknown
value Y0. This follows from

Pr[aβ̂ − tn−p,α/2

√
σ̂ 2[1 + a(XTX)−1aT]

≤ Y0 ≤ aβ̂ + tn−p,α/2

√
σ̂ 2[1 + a(XTX)−1aT]] = 1 − α. (6.2.34)

Definition and properties: (a) 100(1 − α ) percent confidence interval on the mean re-
sponse when the p − 1 explanatory variables take values given by a = [1 . . . a1. . . a2. . . ap−1],
respectively [with an initial unit value representing the intercept, as defined by Eq. (6.2.2)].
This is found from

Pr
[
aβ̂ − tn−p,α/2

√
σ̂ 2a(XTX)−1aT ≤ E[Y | x = a] ≤ aβ̂ + tn−p,α/2

√
σ̂ 2a(XTX)−1aT

]
= 1 − α.

(b) 100(1 − α ) percent prediction interval on Y0 is found from

Pr
[
aβ̂ − tn−p,α/2

√
σ̂ 2[1 + a(XTX)−1aT]

≤ Y0 ≤ aβ̂ + tn−p,α/2

√
σ̂ 2[1 + a(XTX)−1aT]

]
= 1 − α.

Example 6.16. Confidence intervals on mean response and predicted value. Suppose
we are planning to utilize the resources of a basin with mean annual rainfall of 1000 mm at a
mean elevation of 2000 m, and without any prior knowledge of the runoff, from the region in
which the basin characteristics are given in Table 6.2.1. We proceed as follows to construct
confidence limits on the mean response.

From Eq. (6.2.31),

aβ̂ = [1 1000 2000]

⎡⎣ −1035.14
1.0664
0.4390

⎤⎦ = 909.2.
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For the estimation of the variance of the mean response

a(XTX)−1 = [1 1000 2000]

×
⎡⎣3.1121632701 −0.0015096654229 −0.00049114006481

−0.0015096654229 0.00000083028568222 0.000000166520403
−0.00049114006481 0.000000166520403 0.00000014501742117

⎤⎦
= [0.6202177176 − 0.0003460757 − 0.0000344531].

From Eq. (6.2.32) therefore, the variance of the mean response is estimated as

σ̂ 2[a(XTX)−1aT]

= 14071.7[0.6202177176 −0.0003460757 −0.0000344531]

⎡⎣ 1
1000
2000

⎤⎦
= 14071.7 × 0.2052358 = 2888.0.

From Table C.2 of Appendix C, t17,0.025 = 2.11. Therefore, the 95% confidence interval on the
mean response, with a = [1 1000 2000] representing the vector of explanatory variables,
is found from the relationship

Pr[909.2 − 2.11
√

2888.0 ≤ E[Y | x = a] ≤ 909.2 + 2.11
√

2888.0] = 1 − α.

Thus the confidence limits are (796, 1022).
Similarly, one can give a prediction interval to a value Y0 of mean annual runoff with

a = [1 1000 2000] representing the vector of explanatory variables.
The 95% prediction interval is found from the relationship

Pr
[
909.2 − 2.11

√
14071.7 (1 + 0.2052358) ≤ Y0

≤ 909.2 + 2.11
√

14071.7 (1 + 0.2052358)
]

= 1 − α.

Thus the prediction limits are (634, 1184).

6.2.10 Ridge regression

The procedure called ridge regression was suggested by A. E. Hoerl in the 1960s to
overcome problems caused by strong dependencies between explanatory variables used
in multiple regression; such a situation is referred to as a multicollinearity. This yields
a singular XTX matrix and, consequently, estimates of parameters become unstable. The
remedy is to increment the diagonal elements of the matrix by some constant, and the
problem lies with the choice of the constant. The minimum increment is chosen through
graphical or other means so that the set of parameters is stabilized. The technique is an
alternative to the least squares procedure, and as practiced it is empirical. It arose from
Hoerl’s work on ridge analysis of higher dimensional quadratic response surfaces. This was
devised to find an engineering solution to the optimization of industrial processes involving
more than two or three explanatory variables; it is desirable to a numerical optimization of
the estimated function, which has drawbacks. There is a parallel between the illuminating
graphics of the effects of all factors viewed simultaneously in ridge analysis and the
behavior of the graphs of each of the regression constants in ridge regression as the
diagonal elements of XTX are incremented by equal amounts (as shown later).

Let us assume that the response and the explanatory variables are standardized by
subtracting their individual means and dividing by the individual square root of the sum
of squared differences from the mean. It will be easily seen that the off-diagonal elements
of XTX will then be correlation coefficients and the diagonal elements will be 1s. The
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presence of multicollinearity can be detected firstly from the determinant of the XTX
matrix in its correlation form. If the X variables are totally unrelated, the determinant is 1
and, at the other extreme, a value of 0 signifies full dependency, a property that the elements
of the matrix will show. Secondly, a diagnostic tool is provided by the eigenvalues of XTX
which are the roots of

|XTX − λI| = 0 (6.2.35)

(where | · | denotes the determinant) and given by λ1, λ2, . . . , λk , where k is the number
of explanatory variables. An eigenvalue which is nearly zero is an indicator of multi-
collinearity, and so will a high ratio of the highest and lowest eigenvalues, say, greater
than 99.

Based on the results of the preceding tests, we may decide to eliminate one or more of
the explanatory variables and choose others. However, quite often we find that data are
limited and we need all the available information. So we keep all the variables and make
some adjustment to the parameters if their estimates are in an unstable region, through
ridge regression. As discussed, the application of ridge regression is an extension of Eq.
(6.2.7). The algorithm is given by

β̂(θ ) = (XTX + θI)−1XTy. (6.2.36)

This is the basic form, and usually 0 < θ < 1. We try to keep θ as low as possible in order
to minimize the bias caused by its introduction. The method is thus highly subjective and
should be used with care, when the situation demands.20

Example 6.17. Ridge regression of some basin characteristics. Table E.6.1 gives some
characteristics of stream basins on the left bank of the river Po, in northern Italy. Our objective
is to apply a multiple regression model for estimating the mean annual runoff in stream basins
in the area, as in previous examples. However, for the sake of this exercise, let us assume that
the only available data are, apart from the runoff in column 3, the area of basin measured
above the observation station, the length of the longest flow path, and the mean elevation as
listed in the last three columns (in reverse order). We therefore use the last three data columns
as values of three explanatory variables to form the X matrix in the regression. As discussed
above, the data sets that include the annual runoff in column 3, which we treat as the response
variable y, are standardized as follows:

xi j = bi j − b̄ j√∑n
i=1 (bi j − b̄ j )2

, for i = 1, 2, . . . , n and j = 1, 2, 3.

In this equation, bi j denotes the i th value of the j th basin characteristic, which has a sampling
mean b̄ j . Also, n = 20. The 3 × 3 XTX matrix gives the correlations of the three basin
characteristics in the order stated earlier as follows:

XTX =
⎡⎣ 1.0000 0.9788 −0.0214

0.9788 1.0000 −0.0708
−0.0214 −0.0708 1.0000

⎤⎦ .

It is seen that the variable area has a correlation of 0.9788 with the longest flow path but its
correlation with the altitude is −0.0214. In addition, the correlation between the longest flow
path and altitude is −0.0708.

20 Examples are given by Montgomery and Ringer (1994, Section 10.13). See Marquardt and Snee (1975) and
Hoerl and Kennard (1970, a and b). Draper and Smith (1998, Chapter 17) give additional references including
different methods of estimating θ .
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Fig. 6.2.8 Ridge trace of basin characteristics.

The determinant of the matrix is 0.0395, obtained as discussed in Example 6.6. The low
determinant and the high value of one of the correlation coefficients indicate unstable estimates
of the parameters. This is confirmed by the eigenvalues of the XTX matrix as defined by Eq.
(6.2.35), which are as follows: 1.9830, 0.0200, and 0.9970. (It is seen that these sum to 3: the
number of explanatory variables; there is more about eigenvalues in the next section.) The
ratio between the highest and lowest eigenvalues is 99.15, which is high. Hence (by our rule
of thumb), there is justification for a ridge regression.

The inverse of the matrix is given by

(XTX)−1 =
⎡⎣ 25.16 −24.72 −1.21

−24.72 25.28 1.26
−1.21 1.26 1.06

⎤⎦ .

We applied Eq. (6.2.36) for 0 < θ < 0.50 and the results are given in Table 6.2.5. This also
shows the rate of change (derivative) of the variables within the limits studied. Figure 6.2.8
shows the ridge trace.

We find that the parameter for elevation undergoes little change, whereas the parameters
for area and longest flow path, the highly correlated variables, undergo rapid changes initially.

In choosing an optimum solution, we try to find a sufficiently low value of θ for which
the solutions are not within the unstable region. With the help of Fig. 6.2.8 and Table 6.2.5,
we make θ = 0.05. Hence the fitted model, used to obtain a mean response, is as follows:

Ŷ = 0.08 x1 − 0.30 x2 + 0.43 x3.

6.2.11 Other methods and discussion of Section 6.2

Regression methods are used in prediction, interpolation, and data fitting. It is important
to note that such uses are valid only within the limits of the data used in the calibration
of the model. One should critically examine any spurious relationships that may arise in
an analysis. As noted in Chapter 1, one may find that two variables are correlated because
they are associated with a third variable and not on account of any physical relationship
between the first two.
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Table 6.2.5 Estimates for ridge regression.

θ β (area) Rate of change β (longest flow path) Rate of change β (elevation) Rate of change

0 0.527 −0.756 0.427
0.005 0.401 −25.137 −0.63 25.291 0.431 0.822
0.01 0.318 −16.746 −0.545 16.88 0.433 0.402
0.015 0.258 −11.951 −0.485 12.073 0.434 0.164
0.02 0.213 −8.955 −0.44 9.069 0.434 0.017
0.035 0.128 −4.541 −0.353 4.644 0.432 −0.194
0.05 0.079 −2.731 −0.303 2.829 0.428 −0.274
0.075 0.033 −1.437 −0.254 1.53 0.42 −0.32
0.1 0.006 −0.877 −0.225 0.968 0.412 −0.331
0.15 −0.023 −0.414 −0.191 0.501 0.396 −0.322
0.2 −0.038 −0.232 −0.172 0.316 0.38 −0.303
0.25 −0.047 −0.143 −0.159 0.224 0.365 −0.283
0.3 −0.053 −0.093 −0.149 0.171 0.352 −0.264
0.4 −0.059 −0.042 −0.135 0.115 0.327 −0.229
0.5 −0.062 −0.018 −0.126 0.086 0.306 −0.201

We demonstrated that residual plots play a major role in the diagnostics, such as in
the verification of model assumptions. Residuals should be normally distributed. Plots of
residuals against predicted values of the response variable should show constant variance
and a linear pattern; possible remedies are weighted least squares and nonlinear regression.
Transformations of the explanatory variables and inclusion or exclusion of some of them
can be judged on the basis of residuals against response variables.

We have confined this section to linear multiple regression in which least squares
solutions are found for the unknown parameters. Influential observations and outliers
have been examined. It should be noted that the presence of more than one outlier will
cause masking, and this means a distortion in the residuals caused by the outliers left in
the sample of observations; however, more than one notion of masking has emerged.21

Robust statistics are expected to provide the answer to the problem of accommodation of
outliers. The performances of such methods are not generally affected when outliers are
present.22 Robust methods can also be used to improve the performance of the diagnostic
procedures. One method, which is highly robust but inefficient, is the least median squares
(LMS) method of Rousseeuw; the fitting poses some difficulties.23 The estimation of β̂ is
made through the minimization of median squared residuals.

Robust methods include weighted least squares estimators24 called M-estimators for
regression coefficients.25 This method is a recommended alternative to the transforma-
tion of variables when the variance of the residuals increases or decreases in a horizontal
direction on a residual plot; the property is called heteroscedasticity (which is not evi-
dent in the case studied: see Fig. 6.2.2 or 6.2.4) as opposed to the classical property of
homoscedasticity.

21 Lawrance (1995) discusses the subject and also the role of the hi j (off diagonal) elements of the leverage
matrix.
22 Huber (1981).
23 See Rousseeuw and Leroy (1987, Chapters 3 and 4); see also cautionary note by Hettmansperger and Sheather
(1992). The procedure is available in many statistical computer packages.
24 See Draper and Smith (1998, Chapters 9 and 25).
25 See Mason et al. (1989, Section 28.2).
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In recent years there has been more interest in the general linear model which dates
back to the work of Gauss and others in the nineteenth century. Originally, the theory of
algebraic invariants sought to identify those quantities in systems of equations that are un-
affected by linear transformations of the variables in the system. The general linear model
is an extension of the linear multiple regression model for a single response (Y ) variable.
It goes beyond the basic model because linear transformations or linear combinations of
multiple-dependent variables are made possible. Thus multivariate tests of significance
can be used. Another advantage is that one can find a solution to the normal equations
when the explanatory (X ) variables are not linearly independent and the inverse of the
XTX does not exist (because of which we used ridge regression, somewhat subjectively).
Another extension is the generalized linear model. This model is based on the general-
ization of normality in the assumptions made by using the exponential family, of which
the normal distribution is a member. Also, the homoscedasticity assumption, that is, the
assumption on the equality of the variances of the individual observations, is relaxed. One
uses the generalized least squares regression function (when the disturbances are said to
be nonspherical) to provide the best linear unbiased estimator of the expected value of the
response. We noted that in the standard regression model (with spherical disturbances),
one uses the classical least squares regression function as the estimator.26

In some practical situations, the conditions for a linear regression model may not hold,
and diagnostics such as a curvature in the plot of residuals against fitted values may indicate
the need for a nonlinear model of the type:

Y = h(x, θ ) + ε,

based on multidimensional data where h is some nonlinear function with respect to un-
known parameters θ . Some examples of nonlinear models are as follows:

(1) Y = α exp(β x + γ x2 + ε),
(2) Y = α xβε,
(3) Y = 1

1+exp(α+βx) ,

(4) Y = α
α−β

(exp−βx − exp−αx ).

In the first two examples, the models can be transformed to polynomial and linear types,
respectively, by taking natural logarithms. We can apply the transformation ln[(1/Y ) − 1]
in the third. These are called intrinsically nonlinear because of possible transformations.
In the fourth case a transformation is not possible and the model is called intrinsically
nonlinear.27

Some of the least squares iterative methods for nonlinear models are based on the
Gauss-Newton, steepest descent, and Marquardt algorithms.28

At a somewhat less sophisticated level, nonparametric methods of regression have
been adopted in recent years. They are not restricted in application by assumptions such
as linearity and normality in distribution. Also, one can treat the relationship between
the explanatory variables and the response variable as unknown. This approach allows a

26 See, for example, McCullagh and Nelder (1989), Elian (2000), Goldberger (1962), and the introduction by
Stuart and Ord (1994). The GLIM package was developed by the Working Party on Statistical Computing of the
Royal Statistical Society to provide a framework for the fitting of generalized linear models.
27 For an introduction see Draper and Smith (1998, Chapter 24), Mason et al. (1989, Section 26.1), and Ratkowsky
(1983).
28 See Dutter and Huber (1981), Stuart and Ord (1991, pp. 1089–1090), Hougaard (1988), Atkinson (1985,
p. 228), and Kennedy and Gentle (1980, Chapter 10). Box (1966) discusses some abuses of regression.
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wider exploration and may reveal hidden structures in the data than are otherwise possible.
However, for higher dimensions, the complexity of the possible structure will increase at
faster rates, a property which R. E. Bellman called “the curse of dimensionality,” and it
arises because data are sparse and multicollinearity prevails.29

6.3 MULTIVARIATE ANALYSIS

Multiple regression, as we have seen in Section 6.2, is concerned with the variations
of one (response) variable and how they can be explained by means of other (explana-
tory) variables which are related to it physically or in any other plausible way. In mul-
tivariate analysis, on the other hand, one considers the relationships between three or
more variables that are initially treated as equally important; data analysis involves sev-
eral observations or measurements of each variable (or individual). Electronic computers
have accelerated the use of such methods, which require extensive data handling and
mathematical techniques—more than other aspects of statistics. The approach involves
looking for simple methods of representing a complex set of variables while retaining
most of the information contained in them. For instance, we can verify whether two so-
called components suffice to represent three or more variables. The investigation includes
ways of classifying the variables into groups or clusters and the relationships between
groups. In this section we introduce principal components, factor analysis, and cluster
analysis.

6.3.1 Principal components analysis

The aim of principal component analysis is to explain the variance-covariance structure
in multiple data sets using a few linear combinations of the original variables. The main
objectives are data reduction and interpretation.

Principal components analysis came into practical use about 60 years ago in education
psychology. Since then it has found favor in many areas, including some of the pure
and applied sciences. The technique is devised to transform, say, p correlated X variables,
which are known or observed, into an equal number of uncorrelated (orthogonal) Z indices.
These are linear functions of the original variables. The first index accounts for as much
of the variance of the original variables as possible, subject to conditions stipulated in this
subsection. The second index retains as much of the remaining variance as possible. This
continues to the pth index, which has the smallest fraction of the original variance. These
Z indices are called principal components. The objective is to use a number of components
that are less than p to account for most of the variation in the original p variables; thereby,
some economy is achieved. One expects this to happen when the correlation structure of
the X variables is strong.

Given n measurements in each of the X variables, which are p in number, we can
represent the p principal components in matrix notation as

Z = XA (6.3.1)

29 See, for example, Hettmansperger (1984) for inferences based on rank tests; see, in general, Takezawa (2005)
who traces the dependence of a response variable on one of several exploratory variables without specifying
initially the model type or structure, using different methods such as smoothing splines and kernel estimation;
Mendenhall and Sincich (1995) discuss some aspects.
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in which Z and X are n × p matrices and A is a p × p matrix of coefficients. For example,
if n = 4 and p = 3 we can write the system as⎡⎢⎢⎣

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z41 Z42 Z43

⎤⎥⎥⎦ =

⎡⎢⎢⎣
X11 X12 X13

X21 X22 X23

X31 X32 X33

X41 X42 X43

⎤⎥⎥⎦
⎡⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦ . (6.3.2)

In general, the j th principal component Z j is given by

z j = Xa j , for j = 1, 2, . . . , p. (6.3.3)

in which z j is an n× 1 (column) vector and a j is a p × 1 (column) vector of coefficients.
For example, if p = 3, as in Eq. (6.3.2), the system is represented by

[z1 z2 z3] = X[a1 a2 a3].

Then the second principal component Z2, as given by the second column of the Z matrix
of Eq. (6.3.2), for instance, is related to the X variables with n = 4 through the second
vector of coefficients a2 as follows:

z2 =

⎡⎢⎢⎣
Z12

Z22

Z32

Z42

⎤⎥⎥⎦ =

⎡⎢⎢⎣
X11a12 + X12a22 + X13a32

X21a12 + X22a22 + X23a32

X31a12 + X32a22 + X33a32

X41a12 + X42a22 + X43a32

⎤⎥⎥⎦ .

In the same way the kth principal component is related to the n × p matrix of X variables
through the kth (column) vector of coefficients ak .

Let us assume that the X variables are deviations from their respective means. The
total variance of X is defined as the sum of the variances of the p individual X variables.
The variance-covariance matrix of X can be defined by , a p × p matrix of coefficients
σi j ; i, j = 1, 2, . . . , p. In practice  is estimated by the sample covariance matrix C:

C = XTX/(n−1) =

⎡⎢⎢⎢⎣
c11 c12 . . . c1p

c21 c22 . . . c2p
...

... . . .
...

cp1 cp2 . . . cpp

⎤⎥⎥⎥⎦ (6.3.4)

in which the elements are defined as follows:

ci j = 1

n − 1

n∑
k=1

Xkj Xki . (6.3.5)

In order to make the principal components independent of the units of the X variables,
let us modify the X matrix so that the X variables which are deviations from the respec-
tive means are divided by the respective standard deviations [considering each column
separately as in Eq. (6.3.2)]. Hence C becomes the sample correlation matrix. However,
because the new X variables have unit variance only asymptotically, these operations are
not recommended for small samples (Press, 1972, p. 294).

From Eq. (6.3.3), the variance of the j th principal component is given by

Var[z j ] = Var[Xa j ] = aT
j Var[X]a j , for j = 1, 2, . . . , p.

This is estimated by aT
j Ca j . Hence, for the first principal component,

Var[z1] = aT
1 Ca1. (6.3.6)
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We proceed as follows by maximizing the variance of the first principal component, and
then the second, and so on. In this way we can have, depending on the correlations between
the Z and the X variables, fewer than p significant principal components. Accordingly,
we estimate the A coefficients by maximizing the right-hand side of Eq. (6.3.6). This is
subject to the orthogonality condition

aT
1 a1 = 1, (6.3.7)

that is, a2
11 + a2

12 + · · · + a2
1p = 1. (It is seen that without the condition one can increase

the variance by increasing one or more of the coefficients.)
Using the Lagrange multiplier λ1 with the constraint of Eq. (6.3.7), let us maximize the

following:

P = aT
1 Ca1 + λ1(1 − aT

1 Ia1)

(in which we have incorporated the p × p identity matrix I, which has 1s in the leading
diagonal and 0s elsewhere). Thus,

∂ P

∂a1
= 2Ca1 − 2λ1Ia1 = 0.

(This result follows from the multiplication of the vectors and matrices taking account of
the symmetry of the C matrix.) Hence,

(C − λ1I)a1 = 0. (6.3.8)

A nontrivial solution to λ1 is obtained from

|C − λ1I| = 0 (6.3.9)

(where |·| denotes the determinant). Also, if we premultiply Eq. (6.3.8) by aT
1 it follows

from Eq. (6.3.6) that

aT
1 Ca1 = λ1 = Var[z1]. (6.3.10)

We continue the maximization with respect to the vector a2 subject to the constraint
aT

1 a1 = 1. There is an additional constraint aT
1 a2 = 0, imposed because of the condition

that the Z components are uncorrelated (orthogonal); that is, Z1 is uncorrelated with Z2,
and in the same way Z3 has no correlation with Z1 and Z2, and so on. Similarly, the
maximization is repeated for the third and other principal components. It is seen that
(regardless of the number of additional constraints) solutions correspond directly with Eq.
(6.3.9). Thus, we can extend the result from the first principal component to all principal
components. Accordingly, the λ ’s are obtained from the roots of

|C − λI| = 0. (6.3.11)

The λ’s are called the eigenvalues (also called latent or characteristic roots) of the matrix
C. From Eq. (6.3.10) and so on, these are shown to be the estimated variances of the re-
spective principal components. The analysis of principal components is mainly concerned
with the eigenvalues of the sample covariance or correlation matrix. The correspond-
ing a vectors are called the eigenvectors (also called latent or characteristic vectors) of
matrix C.

We can generalize the result of Eq. (6.3.10) as follows:

ATCA = D, (6.3.12)
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Table 6.3.1 Correlation matrix of water pollution data.

BOD NO3-N NH3-N

BOD 1 0.65 0.515
NO3-N 0.65 1 0.415
NH3-N 0.515 0.415 1

where D is a diagonal matrix the diagonal elements of which are the eigenvalues of C.
Also, from Eq. (6.3.3), the covariance between the standardized X variables and the j th
principal component is

Cov[X, z j ] = Cov[X, Xa j ] = Ca j

(which is a p × 1 vector). It follows from the foregoing that this covariance is equivalent
to λ j a j . Hence, if we consider the i th row of X variables and the j th principal component,

Cov[xi , z j ] = λ j ai j .

The correlation between the i th row of X variables and the j th principal component is
given by

Cor[xi, zj] = Cov[xi, zj]√
Var(zj)

= ai j

√
λ j . (6.3.13)

This follows from Eq. (6.3.10) and also because the X variables are standardized.30

Example 6.18. Principal components analysis of water quality data. Table E.6.2 gives
three sets of water quality measurements at 38 stations, separated by distances of 1 km, on
the Blackwater River, England. The respective means and standard deviations as given at the
bottoms of the columns are used to transform the three columns of data sets into standardized
units. The correlation matrix is given in Table 6.3.1.

The variables are arranged according to the magnitudes of the correlation coefficients.
If X , Y , and Z represent BOD, NO3-N (nitrates), and NH3-N (ammonia), respectively, the
eigenvalues are the solutions of the following equation (based on the correlations cxy and so
on) obtained from Eq. (6.3.11):

| C − λI | = (1 − λ)3 − (1 − λ)
(

c2
xy + c2

xz + c2
yz

)
+ 2cxycxzcyz = 0

= (1 − λ)3 − 0.86001(1 − λ) + 0.27808.

After substituting from Table 6.3.1, this is solved by the Newton-Raphson method.31 The
eigenvalues are ranked in descending order and given in the top row of Table 6.3.2.

It is seen from the eigenvalues that the first principal component accounts for 2.059/3.0 =
69% of the total variance in the three variables. The first two components account for (2.059 +
0.605)/3.0 = 89% of the total variation. The eigenvectors, which are the A coefficients for
each vector a j corresponding to the ranked eigenvalue λ j , are obtained from the solutions of
Eq. (6.3.8), applied similarly to all components, for each pair of vector, and eigenvalue. For
the first vector,⎡⎣ 1 − λ1 cxy cxz

cxy 1 − λ1 cyz

cxz cyz 1 − λ1

⎤⎦ ⎡⎣ a11

a21

a31

⎤⎦ =
⎡⎣ 0

0
0

⎤⎦ .

30 Equation (6.3.13) is used, in the relationship between A and matrix R of correlations between the X variables
and the principal components Z , in factor analysis of Subsection 6.3.2.
31 See also Harris (1985, pp. 381–385) for solutions to a cubic equation.
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Table 6.3.2 Eigenvalues and eigenvectors of water pollution
data.

λ j , j = 1, 2, 3 2.059 0.605 0.336

a1 j , j = 1, 2, 3 0.616 0.205 0.761
a2 j , j = 1, 2, 3 0.585 0.529 −0.615
a3 j , j = 1, 2, 3 0.529 −0.824 −0.205

These equations are solved simultaneously for the first eigenvector substituting appropriate
correlation coefficients from Table 6.3.1, and similarly the second and third vectors are found
using corresponding eigenvalues from the first row of Table 6.3.2. The resulting a vectors are
shown in Table 6.3.2, by the respective columns below the top row of eigenvalues.

The first two principal components are found using Eq. (6.3.3), noting that each column of
X values is initially transformed to a mean of zero and a standard deviation of 1 (see statistics
at the bottom of Table E.6.2). The two principal components are given in Table 6.3.3.

(As a matter of interest we can verify that the sample correlation coefficient between the first
and second principal components is as low as 0.000008. Similarly, the correlation between
the first and second and the second and third components are −0.000009 and 0.000010,
respectively.)

Although Z1 and Z2 are uncorrelated, there are some local features which can be seen in
Fig. 6.3.1.

About 50% of the stations, namely, 16–35, have low negative values of Z2, above −0.43,
but Z1 varies from −1 to +0.9, approximately. The group 8–14 has values of Z1 from 0.6 to
2.1 but Z2 is low, varying from −0.9 to −0.65, approximately. Stations 2, 3, 4, and 5 have
positive values of Z1 and Z2.

There are several general-purpose computer packages that can be used in principal
component analysis; these packages require the data matrix and some simple instructions.
As seen in the preceding example, it is possible to reduce the number of variables to
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Fig. 6.3.1 Plot of first two principal components of river quality data. Station numbers are given
beside the points.
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Table 6.3.3 First and second principal components of water
pollution data.

Station Z1 Z2

1 −5.2711 0.0082
2 2.6453 2.5931
3 1.3385 2.1698
4 0.3795 1.8678
5 0.1618 1.0231
6 −0.4163 0.9664
7 −0.5868 0.3585
8 2.1124 −0.8958
9 1.8720 −0.8730

10 1.6105 −0.8083
11 1.3650 −0.7830
12 1.0948 −0.7190
13 0.8692 −0.6829
14 0.6436 −0.6468
15 −0.6209 −0.8199
16 0.9162 −0.2939
17 0.7563 −0.3277
18 0.5841 −0.3187
19 0.4155 −0.3063
20 0.2879 −0.3251
21 0.8912 −0.2288
22 0.7202 −0.2257
23 0.5406 −0.1763
24 0.3734 −0.1698
25 0.2222 −0.1559
26 0.0711 −0.1419
27 −0.4093 −0.4257
28 −0.2076 −0.0997
29 −0.3513 −0.0791
30 −0.4826 −0.0542
31 −0.6263 −0.0336
32 −0.7254 −0.0407
33 −0.8530 −0.0126
34 −0.9521 −0.0198
35 −1.0760 0.0117
36 −2.3635 0.2050
37 −2.4242 0.2254
38 −2.5048 0.2349

a fewer number of components that have a high proportion of the original variance.
Attempts have been made to remove the subjective element from the choice of the number
of components. For example, the scree test is a plot of eigenvalues against the order of
the principal components; one decides to curtail the number components from the point at
which the plot levels off on the right; in geology, scree pertains to the debris collected on
the lower part of a rocky slope. However, interpretation of principal components is often
difficult. Using factor analysis, which follows, we extend the case study and attempt to
find interpretations by rotating the principal components.
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6.3.2 Factor analysis

Factor analysis is a procedure similar to principal components analysis. They are both
powerful explorative tools. It was devised by Charles Spearman around 1904 following a
study of the correlations among various school examination results. The objective in both
cases is to describe a set of, say, p variables X1, X2, . . . , X p through a smaller number
of m factors or components, which are related by a set of coefficients. In factor analysis
the variables are transformed using a particular algorithm. This is equivalent to a rotation
of the axes of reference. We aim to find factors that are highly related to one or more of
the X variables but not to the others and in this way a set of factors (smaller in number
than the original variables) are found that accounts for most of the variation in the array
of data. The rotation can also be applied to the principal components, as shown here.

The basic relationship in factor analysis is as follows:

Xi =
m∑

j=1

bi j Fj + εi , (6.3.14)

where Xi is the i th variable standardized so that the mean is zero and the standard deviation
is unity; where bi j , j = 1, 2, . . . , m are called the factor loadings, −1 < bi j < +1; where
Fj , j = 1, 2, . . . , m are the mutually uncorrelated common factors, which also have zero
mean and unit variance; and where εi is a factor specific to the i th variable, which has a
mean of zero and is uncorrelated with the other factors.

It follows that

Var[Xi ] =
m∑

j=1

b2
i j + Var[εi ].

The sum of the squares of the factor loadings and the second term on the right-hand
side, which has no relationship with the common factors, are called the communality
and specificity (or uniqueness), respectively, of the variables Xi . Further, it can be easily
verified that

Cor[Xi , X j ] =
m∑

k=1

bikb jk .

Thus, the correlation between the variables is related to the corresponding factor loadings.
In factor analysis, a common practice is to ignore the last term in Eq. (6.3.14)—which

concerns the specific or unique factors—and to consider only the common factors. In this
way, we can write the relationship between the factors and X variables as

F = XH, (6.3.15)

where F is n × p matrix of factor scores, X is an n × p matrix of observations standardized
for each of the p variables (as in principal components analysis), and H is a p × p matrix
of factor score coefficients.

For F to be orthogonal, it can be shown as follows that

H = AD−1/2, (6.3.16)

where A is defined by Eq. (6.3.1) and D−1/2 is diagonal matrix in which the nonzero
elements are the reciprocals of the square roots of the eigenvalues of the covariance
matrix C, defined by Eq. (6.3.4). Thus from Eqs. (6.3.15) and (6.3.16),

FTF = D−1/2ATXTXAD−1/2.
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Hence, from Eqs. (6.3.4) and (6.3.12), this simplifies to

FTF = (n − 1)I,

thus showing the orthogonality of F.
We can incorporate the principal components by relating Eqs. (6.3.1) and (6.3.15) using

(6.3.16) as follows:

F = XAD−1/2 = ZD−1/2. (6.3.17)

Because of this relationship, which simply involves a set of p constants, the correlations
between the X variables and the factors F are the same as those between the variables
X and the principal components Z . It follows from Eq. (6.3.13) that we can write this
correlation matrix as

R = AD1/2 (6.3.18)

(where D1/2 is a diagonal matrix in which the nonzero elements are the square roots of
the eigenvalues of the correlation matrix C). The matrix R—which gives the correlations
between the principal components (columns) and the standardized X variables (rows)—is
sometimes called the factor loading matrix. It has the property that

RRT = AD1/2D1/2AT = ADAT = C

[which can be obtained by premultiplying Eq. (6.3.12) by A and postmultiplying it by
AT, noting the orthogonality of the A matrix, which follows from Eq. (6.3.7), that is,
ATA = AAT = I]. Also, if R is subject to an orthogonal rotation such as RP (where P is
orthogonal, that is, PTP = I), the result is the same.

From Eq. (6.3.18) and by premultiplying Eq. (6.3.12) by A and because of the orthog-
onality of the A matrix,

R = ADD−1/2 = CAD−1/2 = CH

[using Eq. (6.3.16)]. That is,

H = C−1R. (6.3.19)

On account the correspondence between the factors F and the principal components
Z , as in Eq. (6.3.17), the effect of an orthogonal rotation RP on the principal components
(which changes the correlations with the X variables) and the corresponding factors are
the same. We may therefore investigate changes to the principal components. This will
enable us to make comparisons with the unrotated components (as in Example 6.18).
The rotation should be such that meaningful physical interpretations are possible from the
resulting components. As in the following example, we aim to have some high correlations
between the X variables and the rotated principal components and some low correlations
between others.

The original principal components can be written as

Z = XA = XHD1/2 = XC−1RD1/2,

obtained from Eqs. (6.3.1), (6.3.16), and (6.3.19). An orthogonal rotation will change R
to RP, as stated. Thus the rotated components are given by

Zr = XC−1RPD1/2. (6.3.20)
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It follows from Eqs. (6.3.4) and (6.3.18) and then (6.3.16) and (6.3.19) that

ZT
r Zr = D1/2PTRTC−1XTXC−1RPD1/2

= (n − 1)D1/2PTD1/2ATC−1RPD1/2

= (n − 1)D1/2PTD1/2ATAD−1/2PD1/2 = (n − 1)D,

which shows that the rotated principal components are uncorrelated.

Example 6.19. Rotation of principal components analysis (factor analysis). In Example
6.18, a principal components analysis was applied to the water quality measurements at 38
stations on the Blackwater River, England, given in Table E.6.2. In this example we apply the
following orthogonal rotation to the principal components

P =
⎡⎣ 1/

√
2 1/

√
2 0

−1/
√

2 1/
√

2 0
0 0 1

⎤⎦ .

(It is seen that, as necessary, PTP = I.) As stated, the purpose is to make the correlations
between some of the variables and the components high and the others low, so that we can
make a few of the new components accountable for most of the variation in the data sets.

The elements of matrix A are given in the three lower rows of Table 6.3.2. From Eq. (6.3.18)
and the eigenvalues of the upper row of Table 6.3.2, the factor-loading matrix is obtained as

R = AD1/2 =
⎡⎣ 0.883 0.160 0.441

0.839 0.411 −0.356
0.759 −0.641 −0.119

⎤⎦ .

For the rotation specified earlier, this becomes

RP =
⎡⎣ 0.512 0.737 0.441

0.302 0.884 −0.356
0.989 0.083 −0.119

⎤⎦ .

The correlation matrix C of the water pollution data is given in Table 6.3.1. Its inverse is
(following the procedure in Example 6.6)

C−1 =
⎡⎣ 1.979 −1.042 −0.587

−1.042 1.757 −0.193
−0.587 −0.193 1.383

⎤⎦ .

Hence,

C−1RPD1/2 =
⎡⎣ 0.168 0.381 0.761

−0.276 0.598 −0.615
1.448 −0.380 −0.205

⎤⎦ .

From Eq. (6.3.20), the rotated principal components are given by Zr = XC−1RPD1/2.
These are (partly) presented in Table 6.3.4. The key to the interpretation of the rotated principal
components is the matrix RP, which gives the correlations between the rotated components
(columns) and the X variables (rows). It is seen that the first rotated component accounts
for the variation of the third variable, ammonia (NH3-N), of Table E.6.2. The second rotated
component has no relationship with the ammonia but has fairly close relationships with the
other two, BOD and nitrates. The third rotated component is poorly correlated with any of
the variables and can therefore be ignored. These findings can be verified by comparing, for
example, the high, low, and intermediate values in the columns of Table E.6.2 with those of
the appropriate columns of Table 6.3.4.

The correlations between the first two standardized Z variables and the three X variables
are indicated in Fig. 6.3.2; see the first two columns of the preceding matrix R. The rotation
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Table 6.3.4 Rotated first and second principal components of
water pollution data

Station Z1r Z2r

1 −3.738 −2.014
2 −1.513 2.847
3 −1.884 2.047
4 −2.169 1.466
5 −1.220 0.785
6 −1.555 0.524
7 −0.883 0.029
8 2.662 0.176
9 2.463 0.100

10 2.193 0.046
11 1.987 −0.031
12 1.712 −0.089
13 1.506 −0.150
14 1.299 −0.211
15 0.631 −0.818
16 1.031 0.143
17 0.962 0.058
18 0.829 −0.001
19 0.693 −0.057
20 0.628 −0.120
21 0.929 0.180
22 0.804 0.116
23 0.612 0.082
24 0.486 0.023
25 0.360 −0.025
26 0.235 −0.073
27 0.266 −0.458
28 −0.017 −0.150
29 −0.145 −0.191
30 −0.271 −0.223
31 −0.399 −0.264
32 −0.460 −0.307
33 −0.587 −0.336
34 −0.647 −0.379
35 −0.776 −0.404
36 −1.939 −0.761
37 −2.008 −0.770
38 −2.078 −0.794

RP is equivalent to a rotation of the axes by 45◦, and the rotated axes are shown. We can note
(from matrix RP and Fig. 6.3.2) the very close relationship between X3, ammonia (NH3-N),
and the first rotated principal component Z1r . We also see the poor association of this variable
with the second rotated principal component Z2r , which is associated in varying degrees with
nitrates (NO3-N) and biological oxygen demand (BOD) of the two preceding columns of
Table E.6.2, representing X2 and X1, respectively.

Numerous types of algorithms with orthogonal factor rotations have been used to obtain
the desired final results (see, for example, Cooper, 1983, and in particular the varimax
method originally devised by Kaiser, 1958, which we have used here). The basic idea is
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Fig. 6.3.2 Rotation for factor analysis; Z1, Z2 are original axes; Z1r and Z2r are rotated axes.

to standardize the factor loadings and maximize the sum of their squares separately for
each factor. For the conditions of maximum variance, the factor loadings (which are the
correlations between the rotated factors and the X variables) tend to be close to unity or
zero with a minimum of intermediate values.

Under the so-called oblique rotation, on the other hand, correlations are permitted
between factors to obtain loadings close to unity or zero. However, this approach is
apparently less common in practice.

The varimax and other methods are described by Harman (1976), and computer software
is widely available.

6.3.3 Cluster analysis

In principal component and factor analysis, the aim was to find linear combinations of
a set of variables such that one ends with a few components or factors that represent
most of the variation in the original set. There is another branch of multivariate analysis
associated with data reduction, in which one groups objects into classes so that there is
some similarity between the objects in a given class. Cluster analysis (originated in 1939
by R. Tryon) is the simplest procedure of this kind. There are many advantages in cluster
analysis. Most commonly it can be applied to define groups objectively, without using
strict mathematical definitions.

Cluster analysis is a step-by-step fusion of individuals in which firstly one group is
formed, then another, and so on; with the gradual merging of groups already formed
one ends with only one group. The result is termed a dendogram (from the Greek word
dendron—tree), but this is the end result of only one approach. There are many algorithms
proposed for cluster analysis. We shall deal with only the nearest neighbor method.

We start with the calculation of distances from each individual to all the other individuals
in the set. Initially there are groups of one throughout. The closest pair is joined; if the
distance is the same as that to another individual, then all three are merged simultaneously
and this is applicable to more than three individuals separated by equal distances. The
next smallest pair or group is formed and so on. Groups gradually merge until there is
only one united family. This procedure is called an agglomeration in order to differentiate
from the other method of cluster analysis, called division.

In practice, an individual may have more than one attribute, and thus distances must
take account of all these attributes. The measure of distance adopted is the generalized
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Fig. 6.3.3 Dendrogram for stations 1–10, measuring water quality data, based on first two
principal components.

Euclidean distance. For example, if there are p variables, Z1, Z2, . . . , Z p that quantify
the attributes, this distance between individuals i and j is given by

di j =
√√√√ p∑

k=1

(zik − z jk)2. (6.3.21)

If p = 2, we have the distance resulting from the use of Pythagoras’ theorem. This is
the most commonly used measure; there are alternatives, such as the squared Euclidean
distance, given in the references cited at the end of this chapter.

In order to do a cluster analysis, one possible approach is to start with a principal com-
ponent analysis of the set. If two principal components can explain most of the variation
in the data sets, we can then see how the individuals sort themselves into groups. This is,
however, adopted only as a guide, and one should be warned that it may produce results
different from a direct analysis of the data. The principal components may not be fully
representative of the properties to be considered.

Example 6.20. Cluster analysis of principal components. In Example 6.18, a principal
component analysis was applied to the water quality observations at 38 stations on the Black-
water River, England, given in Table E.6.2. The first two principal components are given in
Table 6.3.3 and plotted in Fig. 6.3.1, which also shows the individual stations. In this example,
we initially make a cluster analysis of the first 10 and the last 11 stations. This is based on
the first two principal components and the nearest neighbor method [Eq. (6.3.21)].

Taking only the first ten stations and if only two clusters are to be considered, station 1 is
on its own and the second cluster is formed by the remaining nine stations (see Fig. 6.3.3).
Proceeding further, we can divide this second cluster into two so that stations 8, 9, and 10
form a cluster on their own, and this will give us three clusters. If six clusters are required,
then stations 1–4 will form four different clusters (see Fig. 6.3.1) and the remaining six are
subdivided into two as shown.

Figure 6.3.4 gives the dendogram for stations 28–38. It shows that stations 36–38 form
one cluster because of their close proximity (as evident from Fig. 6.3.1) and the remaining
eight stations will form a second cluster if only two clusters are to be considered. On the other
hand, if five clusters are required then we have stations 28–30 forming the first cluster. The
other four clusters are formed as follows: stations 31 and 32; stations 33 and 34; station 35
on its own; and stations 36, 37, and 38 in the last cluster.

Finally, let us do a cluster analysis of all 38 stations measuring water quality (using the
first two principal components listed in Table 6.3.3). The dendogram is shown in Fig. 6.3.5.
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Fig. 6.3.4 Dendrogram for stations 28–38, measuring water quality data, based on first two
principal components.

The results are quite close to those obtained from Figs. 6.3.3 and 6.3.4. The small differences
arising can be attributed to the data from stations 11 to 27, not taken into account before. If
we are forming only two clusters, then station 1 is on its own and the other stations act as
one with an amalgamation distance of 1.383. Near the other extreme, we have 13 clusters
at an amalgamation distance of 0.283: The largest cluster has stations from 21 to 35 with
the exception of 27. (See Fig. 6.3.1, with respect to the principal components.) The second
largest group is formed by stations 8–14 (with a maximum distance of 0.280). Stations 16–20
form the next group (with a maximum distance of 0.174). Stations 36, 37, and 38 form the
closest group (with a maximum distance of 0.083). The other nine stations 1–7, 15, and 27
are each on its own.

Several potential benefits can result from this particular study. For instance, we may con-
sider that station 1 needs scrutiny to determine why it gives different results. These may arise
from errors of instrumentation or measurement. Although the distances between the stations
are equal, some of them such as 36–38 may be combined as seen originally in Fig. 6.3.1.

Because methods of cluster analysis are not based on mathematical definitions, they are
not strictly inferential. As mentioned before, principal components should only be used as
a preliminary assessment of the similarities or dissimilarities of the individuals. Neverthe-
less, this case study has highlighted additional advantages of principal component analysis,
because their configuration, seen with respect to the measurement stations in Fig. 6.3.1, has
been beneficial for other methods of multivariate analysis, such as, factor and cluster analy-
ses. Furthermore, principal component analysis can be used as a supplementary method of
eliminating explanatory variables in regression analysis that do not sufficiently explain the
variation present.

6.3.4 Other methods and summary of Section 6.3

Our coverage of multivariate methods is by no means exhaustive. We have not, for instance,
discussed discriminant function analysis. This is a method of separating into two or more
groups, wherever possible, using available data. In this respect it is similar to cluster
analysis. However, as in principal component analysis, we find linear combinations of the
original variables for our purpose. This is also the approach in canonical correlation in
which one divides the individuals into two groups and then finds the correlation between
them. Furthermore, multidimensional scaling is a method of finding distances between
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Fig. 6.3.5 Dendrogram for 38 stations measuring water quality.

individuals and is thus an alternative to cluster analysis without going into geometrical
relationships.32

Of the three methods discussed here, principal component analysis is probably the most
widely used procedure. However, by itself such a method may sometimes give results that
are not straightforward for interpretation. We have seen that factor analysis, which is an
alternative form of principal component analysis, can be useful for interpretation. Cluster
analysis, on the other hand, shows similarities between individuals or indicates how some
are different from others. Its practical benefits through the use of the dendogram were
indicated.

6.4 SPATIAL CORRELATION

In previous sections we considered the correlation between random variables that are
applicable in regression or in multivariate analysis. In this section we discuss some aspects
of spatial correlation. This enables us to see how variables such as pollutant loads measured
at different points in space are related. More importantly from the practical viewpoint,
such relationships can be used for estimating values at sites where no measurements are
taken.

A sample of data may consist of observations taken in one, two, or three dimensions.
Measurements of water quality along a river are taken in one dimension. On the other
hand, rainfall and other meteorological variables are measured at particular points, but
collectively they comprise a two-dimensional random field. This also applies to remote
sensing where picture elements (pixels) are used in areal surveys (as discussed in Chapter
2; see, for example, Fig. 2.1.5) for observing hydrological data over a region. Pollution
in groundwater is sometimes treated as a three-dimensional problem because it can occur
over different levels.

32 For more details of these methods see, for example, Sharma (1996) and Krzanowski and Marriott (1994).
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Spatial correlation as discussed in this section concerns a field of two or three di-
mensions. The tools that we use for the measurements of spatial characteristics are the
semivariogram and the spatial correlation coefficient.

6.4.1 The estimation problem

In spatial estimation, a basic question is that, given a set of observations of a variable Zi

and the coordinates of the points of observation, what are the values taken by the variable
at a point, say, k, where data are unavailable? The approach differs from regression in
that local features can affect the solution. On the global scale, however, all measurements
should be considered. Thus the first approximation would be to take the arithmetic mean
of observations: z1, z2, . . . , zn:

z̄k = 1

n

n∑
i=1

zi .

However, as in most infilling and prediction problems, some measurements (in the vicinity
of the point investigated, or sometimes elsewhere) are more closely related to the true value
at point k than others. Accordingly, we take a weighted mean

ẑk =
n∑

i=1

λi zi ,

where λi , i = 1, 2, . . . , n; the so-called weights are such that
∑n

i=1 λi = 1. The method
of Kriging is used to find a solution to the optimal values of the weights. We shall return
to this procedure later but initially we define spatial correlation and the variogram.

6.4.2 Spatial correlation and the semivariogram

The mean of an integrated stochastic process Z (u) such as rainfall or some water quality
aspect, E[Z (u)], is the mean of all possible realizations of the process at points u ≡ (x ,
y). The process is said to act over a random field. Additionally, the differenced random
process Z (u) − E[Z (u)] represents departures of the original process from the mean at the
points considered. The study of such processes is based on the identification of appropriate
characteristics of regularity; one of the main characteristics is termed stationarity, in the
context of stochastic processes, which is defined shortly.

The association of the values taken by the process Z (u) at two points u1 and u2 within
a given area is represented by the spatial covariance function,

Cov [u1, u2] = E {(Z (u1) − E [Z (u1)]) (Z (u2) − E [Z (u2)])}
= E [Z (u1)Z (u2)] − E [Z (u1)] E [Z (u1)] . (6.4.1)

If u1 ≡ u2 ≡ ui (say), this becomes the variance, the square root of which

σ (ui ) = (Var[Z (ui )])
1/2 = {E[(Z (ui ) − E[Z (ui )])

2]}1/2 (6.4.2)

is the standard deviation of the process at the given point.
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The alternative definition, which is commonly used in the estimation problems referred
to earlier, is that of the semivariogram,

� [u1, u2] = 1

2
Var [Z (u1) − Z (u2)]

= 1

2
E{(Z (u1) − Z (u2) − E [Z (u1)] + E [Z (u2)])2}. (6.4.3)

It follows from Eqs. (6.4.1) and (6.4.3) that

Cov [u1, u2] = Cov [u2, u1] and � [u1, u2] = � [u2, u1] , respectively.

The difference between these functions is that the covariance is a direct function of the
association between two variables, whereas the semivariogram measures the disassocia-
tion.

Under first-order stationary conditions, one obtains

E [Z (u1)] = E [Z (u2)] = constant. (6.4.4a)

With the additional conditions of second-order stationarity,

Var [Z (u1)] = Var [Z (u2)] , (6.4.4b)

Cov [u1, u2] = Cov [u1 − u2] , (6.4.4c)

and

� [u1, u2] = � [u1 − u2] (6.4.4d)

for any two points u1 and u2 within the given area. If the first three of the above equations for
stationarity hold, we say there is homogeneity of the mean and the variance-covariance
function. The second property of a random field is that of isotropy. It means that the
spatial relationships given in terms of the covariance [Eq. (6.4.1)] or the semivariogram
[Eq. (6.4.3)] are not conditioned by the vector of distance h = u1− u2 but depends only
on the absolute value of the distance. Thus,

Cov(h) = Cov(h) (6.4.5)

and

�(h) = �(h). (6.4.6)

There is also the theoretical hypothesis of ergodicity, which is required for the estimation of
the characteristics of the process (and hence of the random field) based on its realizations.
This is applicable if the estimates of its moments taken from the available realizations
converge in probability to the theoretical moments, when the available sample increases.
Hence, under ergodicity one realization will suffice for the estimation of these moments.
In practice we assume that this property exists (except in some particular cases).

Proceeding further, the correlation function is defined as the normalized covariance
function:

R [u1, u2] = Cov [u1, u2] / [σ (u1)σ (u2)] , (6.4.7)

which is bounded in the interval [−1, +1].
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6.4.3 Some semivariogram models and physical aspects

We assume that the conditions of stationarity and isotropy hold. Two characteristics of
the empirical semivariogram should be considered. First, as the separation distance h
increases, the variogram tends to approach a constant value. This limiting state is called
the sill. It is reached at a distance, say, a, known as the radius of influence; as h increases
beyond h = a, the theoretical variogram is constant. Second, it is seen from Eqs. (6.4.3)
and (6.4.6) that �(0) = 0; that is, at very close distances the disassociation between values
of the variable approaches zero. In practice, however, at very small separation distances the
empirical semivariogram can be significantly different from zero, reflecting some local
effects. This is called the nugget effect (arising from original applications in the gold-
mining industry). In the case of rainfall this effect is more evident if one considers hourly
data and measurements at shorter time intervals.

The simplest type of semivariogram model is the linear model

�(h) = A0δ(h) + A1h, for 0 ≤ h < a, (6.4.8)

= A0 + A1a, for h ≥ a,

where,

δ(h) = 1, for h > 0,

= 0, for h = 0;

a the radius of influence or correlation distance; A0 models the discontinuity at the origin
called the nugget effect; and A1is the slope in the linear model.

A closer fit to empirical semivariograms may be obtained using the exponential model:

�(h) = A0δ(h) + w

[
1 − exp

(
−h

a

)]
, for 0 ≤ h < a (6.4.9)

= A0 + w(1 − 1/e), for h ≥ a,

where e = 0, 2.71828 . . . , and w is a constant.
The spherical model can provide a better approximation:

�(h) = A0∂(h) + w

2

[
3

h

a
−

(
h

a

)3
]

, for 0 ≤ h < a,

= A0 + w, for h ≥ a. (6.4.10)

The empirical semivariogram is defined, under isotropic conditions, as

γ̂ (h) = 1

2n

n∑
i=1

[zi (u) − zi (u + h)]2 (6.4.11)

for n observations of Z (·) at two points separated by a distance h. Each observation
may represent a cumulative total over a time period, say T . Likewise, spatial correlation
between the two points is estimated from field measurements by

r (h) =
∑n

i=1 [zi (u) − m̂(u)] [zi (u + h) − m̂(u + h)]∑n
i=1 [zi (u) − m̂(u)]2 ∑n

i=1 [zi (u + h) − m̂(u + h)]2 , (6.4.12)

where m̂(u) and m̂(u + h) are the sample means of the observations at the two points.
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Fig. 6.4.1 Semivariogram versus distance for total annual rainfall from 43 rain gauges around
Milan, Italy.

Example 6.21. Spatial correlation of rainfall data. A study was made of the spatial cor-
relation in annual rainfall measured at 43 gauges in an area of approximately 150,000 km2 in
the Lombardia region, around Milan, in northern Italy. The data span a period of 58 years. The
area is relatively flat. Figure 6.4.1 shows the semivariogram fitted by an exponential model.

Although some scatter is shown, as commonly found, the variability is constant throughout
the measured region. The spatial correlation is shown in Fig. 6.4.2.

An exponential function is fitted to these points after excluding negative values. From the
above pairs of stations, ten groups were formed depending on the proximities of the separating
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Fig. 6.4.2 Coefficient of correlation versus distance for annual total rainfall from 43 gauges
around Milan, Italy.
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Fig. 6.4.3 Semivariogram for grouped pairs of rain gauges around Milan, Italy.

distances. Calculations for the semivariograms and spatial correlations were made on grouped
data, taking mean distances between groups. The results are shown in Figs. 6.4.3 and 6.4.4.
It is seen that the empirical semivariogram and spatial correlation functions for grouped data
can be approximated by straight lines, which is expected from the nature of Figs. 6.4.1 and
6.4.2.

The study was extended to the Valtellina subcatchment of the Po basin, situated in the
mountainous part of the Lombardia region in northern Italy. There were 34 items of data
for each of 28 rain gauges in the area. These data were extreme values represented by seven
consecutive days of rainfall during the highest flood per year for the period 1927–1967.
As in the case of Figs. 6.4.3 and 6.4.4, divisions were made on the basis of distances apart.
However, for these data sets, four further subdivisions were made with respect to the directions
of the vectors joining the pairs of stations. The purpose was to verify whether the isotropy
assumption holds. The results are shown in Figs. 6.4.5 and 6.4.6.

One can say that, considering the large fluctuations that empirical semivariograms generally
show, the assumption of isotropy is not unreasonable.
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Fig. 6.4.4 Coefficient of correlation versus average distance for grouped pairs of rain gauges
around Milan, Italy.
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Fig. 6.4.5 Semivariogram versus average distance for grouped pairs of rain gauges from the
Valtellina region of northern Italy; four different directions, ten groups of pairs.

6.4.4 Spatial interpolations and Kriging

The methods just described above can be extended to spatial interpolations where data
are not available. Given, for instance, n realizations of the process Z (u) at points
ui , i = 1, 2, . . . , n, we need to obtain a linear estimate Ẑ (uk) at the point uk . The lin-
ear combination

Ẑ (uk) =
n∑

i=1

λi Z (ui ) (6.4.13)

is considered to be an optimum estimate if the coefficients λi , i = 1, 2, . . . , n are such that
they sum to one and the estimator is unbiased and has minimum variance. This best linear
unbiased estimator is given the acronym BLUE. Only data within the radius of influence
are considered. Furthermore, it is a common practice to estimate the coefficients in Eq.
(6.4.13) using the semivariogram after fitting a theoretical function, such as those specified
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Fig. 6.4.6 Coefficient of correlation versus average distance for grouped pairs of rain
gauges from the Valtellina region of northern Italy; four different directions, ten groups
of pairs.
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by Eqs. (6.4.8) to (6.4.10). The method is called Kriging, named after D. G. Krige who
worked in the South African mining industry.33

The optimum solution is found as in the case of principal components (Subsection
6.3.1) by using the Lagrange multiplier. The results are summarized here. In an isotropic
field with estimated semivariogram values γ̂ (hi j ) between points i and j at distances
hi j , the estimated weights, λ̂ j , j = 1, 2, . . . , n, are found by solving the following n + 1
simultaneous equations:

n∑
j=1

λ̂i γ̂ (hi j ) + λ = γ̂ (hik), i = 1, 2, . . . , n,

n∑
j=1

λ̂i = 1, (6.4.14)

where, clearly, γ̂ (hi j ) = 0 for i = 1, 2, . . . , n; k denotes the point where there is no data;
and λ is the Lagrange multiplier. One of the models described in Subsection 6.4.3,
or a suitable alternative, is used for estimating the semivariogram at stated distances
hi j .

Example 6.22. Groundwater. The quality of groundwater is measured by an indicator at
three wells, A, B, and C, which are defined in a two-dimensional field as follows:

East 1 km East 1.5 km
North 1 km A B
North 2 km C K

An estimate is required at point K.
The separation distances are calculated and are given in the following table with the water

quality indicator Z as measured at the three wells:

A B C K z (mg/L)
A 0 0.5 1.0 1.12 12
B 0.5 0 1.12 1.00 15
C 1.0 1.12 0 0.50 10
K 1.12 1.00 0.5 0 –

The semivariogram has a sill value of 4.5 (mg/L)2 at a radius of influence of 2.0 km and
a low point of 0.5 (mg/L)2. Using this data, the following linear model [Eq. (6.4.8)] is
fitted:

γ̂ (h) = 0.5 + 2h.

This gives the following semivariogram values in (mg/L)2 for the respective pairs at distances:

A B C K
A 0 1.5 2.5 2.74
B 1.5 0 2.74 2.5
C 2.5 2.74 0 1.5
K 2.74 2.5 1.5 0

33 See also Cressie (1991) and Journel and Huijbregts (1978) who give the original theory. Details of this
procedure and theory are found in the work of Bacchi and Kottegoda (1995). Applications in groundwater
and surface water hydrology are given by Virdee and Kottegoda (1984) and Kassim and Kottegoda (1991),
respectively.
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From Eq. (6.4.14) the following equations are obtained:

λ + 0λ̂1 + 1.5λ̂2 + 2.5λ̂3 = 2.74,

λ + 1.5λ̂1 + 0λ̂2 + 2.74λ̂3 = 2.5,

λ + 2.5λ̂1 + 2.74λ̂2 + 0λ̂3 = 1.5,

and

λ̂1 + λ̂2 + λ̂3 = 1.

The solutions are λ = 0.611, λ̂1 = 0.030, λ̂2 = 0.297, and λ̂3 = 0.673.

Hence, at point K,

Ẑk = 0.030 × 12 + 0.297 × 15 + 0.673 × 10 = 11.5 mg/L.

The method of estimation described in this section is called ordinary Kriging, which
is based on certain conditions. When the assumption of stationarity is not justifiable, the
method of universal Kriging is commonly adopted. If there is a sloping surface, that is, a
spatial trend, a local flat region or a similar type of nonstationarity, as seen in the scatter of
data points, a transformation to stationarity is possible. A polynomial function is generally
used to model the average values of the scatter points. The function is called the drift term.
Kriging is then applied to the residuals as given by the differences between the drift term
and observed scatter points. Estimated values are obtained from the sum of the interpolated
residuals and the drift term.

6.4.5 Summary of Section 6.4

In this section we have discussed methods of estimating spatial association and disas-
sociation. These are the correlation function and the semivariogram, respectively. Some
examples have been provided. The scatter in the points is a common feature and this can be
much more than in the scatter diagrams used in regression. Hence confidence intervals can
be quite wide. It is usual practice to fit theoretical functions for purposes of applications.
The semivariogram is commonly used for estimation purposes by the methods of Kriging.

6.5 SUMMARY OF CHAPTER 6

The focus of this chapter, to a large extent, is on methods of regression. Simple regression
includes estimation and plotting methods, which are an essential part. Also included are
testing of hypotheses and establishment of confidence limits. Linear multiple regression
is covered in detail with many aspects of model testing, verification, and revalidation.
In the methods of simple and multiple regression, we have emphasized the importance
of graphical diagnostics which supplement statistical tests. The assumptions are given
at each stage, and it is essential to verify whether these are met in order to validate the
model. This is done with the aid of plots, analysis of variance, and numerous other tests.
A particular feature in regression is the investigation of influential observations, such as
points of high leverage, and outliers. Regarding the last aspect, the approach adopted here
is necessarily different from that in probability plotting, covered in Chapter 5, because of
the regression relationships. Ridge regression can be helpful, as shown, when estimates
of parameters are unstable. However, as indicated, it is a subjective procedure; it should
be used in special cases where there is no alternative and with an awareness of different
solutions to the problem.
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In multivariate analysis, we have highlighted principal component analysis which is
apparently used more often than the other methods. However, direct interpretation of the
results may sometimes be difficult. The associated procedure of factor analysis can be
helpful as indicated. The methods are similar in many respects, and thus in our water
quality example we applied factor rotation to principal components. In grouping methods,
we have featured cluster analysis and the application of the dendogram. The usefulness
of principal components as a guide to clustering is demonstrated.

The estimation of spatial association and disassociation measured by the correlation
function and the semivariogram, respectively, are presented in the last section. The ex-
amples cited may seem to show some uncertainties in the plots as seen sometimes in
the scatter diagrams of regression. However, methods of grouping are suggested and as-
sumptions such as isotropy are verified graphically. The methods of Kriging are used for
estimating missing values.
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PROBLEMS

6.1. Dissolved oxygen. The following observations of dissolved oxygen (DO) were
made with respect to time of travel downstream from a point of regulation in a river:

Time of travel (days) 0 0.6 1.1 1.7 1.9 2.4 2.8 3.3 3.7
DO (ppm) 0.39 0.37 0.31 0.28 0.27 0.25 0.20 0.17 0.16

Fit a linear regression, using DO as the response variable, and estimate the pa-
rameters. Calculate the coefficient of determination. Does a straight line provide a
reasonable fit?

6.2. Population growth. A small city has doubled in population in 9 years. The following
approximate counts have been made during the period:

Year 1 2 3 4 5
Population in 1000s 100 107 115 124 135

Year 6 7 8 9 10
Population in 1000s 146 158 171 185 200

Plot the data. Determine the sample correlation coefficient. Decide whether a linear
model provides a good fit or whether there should be a transformation of the re-
sponse variable (population). Give 95% confidence limits for the mean or expected
population in year 15 if growth patterns do not change.

6.3. Water quality. For the water quality measurements on the River Ouse at Clapham,
England, data given in Problem 1.15 (Chapter 1) determine the linear regression
equation by least squares using phosphate as the explanatory variable. Comment on
the model and the results.

6.4. Correlation of low flows. The lowest annual flows measured, in cubic meters per
second, at stations X and Y on the Jackson and Cowpasture rivers, respectively, in
the United States are to be correlated in order to extend the shorter record at station
Y. A simple linear regression model is to be used. The following summary statistics
have been computed over a 12-year period:
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Sum X = 28.77; Sum Y = 28.23; Sum XX = 73.14; Sum YY = 71.20; Sum XY =
71.53.

(a) Find least squares estimates of the parameters.
(b) What is the standard error of the residuals?
(c) Estimate the coefficient of correlation.
(d) Find approximate 95% confidence limits for the population correlation coefficient.

6.5. Extension of steel wires. Ten steel wires of diameter 0.5 mm and length 2.5 m were
extended in a laboratory by applying vertical forces of varying magnitudes. Results
are as follows:

Force (kg) 15 19 25 35 42 48 53 56 62 65
Increase in length (mm) 1.7 2.1 2.5 3.4 3.9 4.9 5.4 5.7 6.6 7.2

(a) Estimate the parameters of a simple linear regression model with force as the
explanatory variable.

(b) Find 95% confidence limits for the two parameters.
(c) Test the hypothesis that the intercept is zero.
(d) What are the conclusions?

6.6. Rainfall-runoff relationship. Table E.7.2 gives 61 years of rainfall and runoff (see
columns 6 and 7) at Pontelagoscuro, on the Po River, in northeast Italy. Fit a simple
regression model. Test the hypothesis that the slope is zero. Comment on the results.
Suggest methods of forming a multiple regression model and the inclusion of other
measurements that can enhance the relationship.

6.7. Asbestos concentrations. M. J. Keifer, R. M. Buchan, T. J. Keefe, and K. D. Blehm
(1987), “A predictive model for determining asbestos concentrations for fibres less
than five millimeters in length,” Environ. Res., Vol. 43, pp. 31–38, give the following
data for PCM (phase contrast microscopy) and SEM (scanning electron microscopy)
concentrations:

Filter PCM SEM Filter PCM SEM

1 3.14 7.79 16 0.41 1.86
2 2.61 6.85 17 0.77 2.90
3 3.03 7.60 18 1.63 4.92
4 4.03 9.29 19 3.99 9.22
5 7.82 14.8 20 2.94 7.44
6 5.61 11.72 21 1.02 3.54
7 4.23 9.61 22 1.67 5.00
8 0.62 2.49 23 6.33 12.76
9 1.09 3.71 24 2.38 6.42

10 0.73 2.79 25 1.93 5.34
11 0.70 2.71 26 6.29 12.70
12 7.92 14.94 27 3.77 8.86
13 2.50 6.64 28 4.50 10.04
14 1.91 5.50 29 4.54 12.10
15 4.98 10.78 30 0.48 2.08

Plot the data with PCM as the explanatory variable. Estimate the parameters of a
simple linear regression model and show the straight line and the 95% confidence
limits. Comment on the model. For a future value of PCM = 8.5, give the predicted
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value of SEM and the 95% prediction interval. Data used with permission from the
Academic Press, Orlando, FL and the authors.

6.8. Alternative least squares. Rewrite the multiple regression model with two explana-
tory variables subtracting the sample means from each of the variables. Hence write
equations for the matrix and parameters.

6.9. Road rutting. The rate of cutting of road ruts was measured with properties of
asphalt and road materials in 31 experiments by J. W. Gorman and R. J. Toman
(1966), “Selection of variables for fitting variables to data,” Technometrics, Vol.
8, pp. 27–51. The following is a modified and reduced form of the equation with
specified variables and residual sums of squares (RSS):

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε,

where y = log (change of rut depth per million wheel passes)

x1 = log (viscosity of asphalt)
x2 = percent asphalt in surface course
x3 = percent asphalt in base course
x4 = percent fines in surface course

Explanatory variables
used in equation RSS

0 11.058
1 0.607
2 0.499
3 0.498
4 0.475

Determine the “best” form of equation to use. (Many more variables are used in the
original work.)

6.10. Weighted least squares. The simple linear regression model

Y = β0 + β1x + ε

is modified so that the variance of Y depends in the magnitude of the x as

σ 2(Yi | xi ) = σ 2
i , i = 1, 2, . . . , n.

Rewrite the least squares equations.

6.11. Trend in precipitation. Annual precipitation in millimeters at Saracay in the
Puyango Basin, Ecuador, are given in the last column of Tables E.10.1. By us-
ing an appropriate regression equation, test the hypothesis that there is a decreasing
trend in the precipitation.

6.12. Extending flow records. The River Oba in western Nigeria has been gauged near
Imo and a 5-year record is available. Also, 60-year records are available for monthly
rainfalls measured in the cities of Illorin and Ibadan with estimates of evaporation
losses during the same period. It is proposed to extend the Imo flow record Q by
correlating with the Illorin (current R, antecedent RA) and the Ibadan (current S)
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residual rainfalls over the 5-year period of flow observations. A multiple regression
model is to be used. The following statistics are provided for the four monthly
variables (in Imperial units):

Standard
Variable Mean deviation

R 1.58 2.73
RA 1.58 2.73
S 1.45 2.40
Q 55.75 111.68

The following are the sums of squares and cross-products of deviations from the
mean:

R R A S Q

R 441.49 160.04 197.80 9,426.61
R A 160.04 441.49 176.21 13,005.22
S 197.80 176.21 340.16 10,642.07
Q 9,426.61 13,005.22 10,642.07 735,890.35

(1) Write the four normal equations from which the parameters are estimated.
(2) If the variable RA is not taken into account,

(a) estimate the parameters,
(b) estimate the standard error of estimate of Q from R and S, and
(c) estimate the coefficient of determination.

6.13. Salinity data. The following are part of the salinity data reported by D. Ruppert and
R. J. Carroll (1980), “Trimmed least squares estimation in the linear model,” J. Am.
Stat. Assoc., Vol. 75, pp. 828–838, for water during the spring season in Pamlico
Sound, NC USA:

Index 1 2 3 4 5 6 7 8 9

Salinity 7.6 7.7 4.3 5.9 5.0 6.5 8.3 8.2 13.2
Lagged salinity 8.2 7.6 4.6 4.3 5.9 5.0 6.5 8.3 10.1

Discharge 23.01 23.87 26.42 24.87 29.90 24.20 23.22 21.86 22.27
Trend 4 5 0 1 2 3 4 5 0

Index 10 11 12 13 14 15 16 17 18

Salinity 12.6 10.4 10.8 13.1 12.3 10.4 10.5 7.7 9.5
Lagged salinity 13.2 12.6 10.4 10.8 13.1 13.3 10.4 10.5 7.7

Discharge 23.83 25.14 22.43 21.79 22.38 23.93 33.49 24.86 22.69
Trend 1 2 3 4 5 0 1 2 3

Index 19 20 21 22 23 24 25 26 27 28

Salinity 12.0 12.6 13.6 14.1 13.5 11.5 12.0 13.0 14.1 15.1
Lagged salinity 10.0 12.0 12.1 13.6 15.0 13.5 11.5 12.0 13.0 14.4

Discharge 21.79 22.04 21.03 21.01 25.87 26.29 22.93 21.31 20.77 21.39
Trend 0 1 4 4 0 1 2 3 4 5
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The biweekly average salinity is given in milligrams per liter with salinity lagged
2 weeks, discharge in cubic millimeters per second, and trend as a dummy variable
for the time period.
(a) Estimate the parameters for a linear model with salinity as the response variable.
(b) Determine the “best” form of model.
(c) Determine Cook’s distances and leverage measures.
(d) Test for any outliers.
(e) Comment on the foregoing results (c and d).
Data used with permission from the Journal of the American Statistical Association,
Copyright (1980) by the American Statistical Association. All rights reserved.

6.14. Hald cement data. The following is a part of the data reported by A. Hald (1952),
Statistical Theory with Engineering Applications, John Wiley and Sons, New York,
p. 647, for the heat-generated H in calories per gram, during hardening, for a type
of cement as a function of four additives. The table gives H and four additives A1,
A2, A3, and A4.

Item H A1 A2 A3 A4

1 78.5 7 26 6 60
2 74.3 1 29 15 52
3 104.3 11 56 8 20
4 87.6 11 31 8 47
5 95.9 7 52 6 33
6 109.2 11 55 9 22
7 102.7 3 71 17 6
8 72.5 1 31 22 44
9 93.1 2 54 18 22
10 115.9 21 47 4 26
11 83.8 1 40 23 34
12 113.3 11 66 9 12
13 109.4 10 68 8 12

Complete a ridge analysis and write a predictive equation for H.

(Data used with the kind permission of the author.)

6.15. Principal components. The following covariance matrix C was computed in a
study of catchment characteristics of a river basin:⎡⎣ 3.67 −4.93 2.08

−4.93 98.1 −3.01
2.08 −3.01 2.01

⎤⎦ .

Determine the eigenvalues and the eigenvectors, and comment on the results.

6.16. Nitrates in river. For the data given in Table E.6.2, where water quality is given at
1-km intervals, draw a semivariogram of the nitrate values, h = 1, 2, . . . , 30. What
type of model is suggested?

6.17. Salinity of groundwater. The following salinity observations were recorded in 25
wells in a coastal aquifer, in milligrams per liter. The wells are spaced at distances
of approximately 1 km in the NS and EW directions.
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10.5 9.3 10.4 9.1 10.0
9.2 10.1 11.1 10.2 10.3

11.2 10.8 10.2 11.5 11.5
10.9 9.5 11.5 11.0 12.0
11.1 10.5 11.0 10.7 12.5

(a) Determine the semivariogram under conditions of isotropy.
(b) Determine the semivariograms in the NE-SW and NW-SE directions.
(c) Comment on the results.

6.18. Linear semivariogram model. The following data are used for the semivariogram
of the grouped data of Fig. 6.4.3. Fit a linear model by regression.

Item km Semivariogram

1 15.8 43,423.3
2 27.2 43,886.0
3 36.0 55,604.7
4 44.0 51,576.5
5 52.2 55,397.1
6 61.6 65,899.6
7 72.4 65,089.6
8 85.6 73,292.7
9 103.2 67,044.6
10 131.9 68,610.7
11 166.1 88,218.9

6.19. Exponential semivariogram model. The following data are used for the semivari-
ogram of the annual rainfall data of Fig. 6.4.1. Fit an exponential model stating any
assumptions made. If one takes account of the results from Example 6.21, what can
be said about the properties of the annual rainfall in the region?

Item km Semivariogram Item km Semivariogram

1 8.3 37,851.9 47 58.6 64,391.7
2 11.7 35,326.8 48 59.8 68,915.5
3 13.6 68,326.4 49 60.4 102,468.4
4 14.9 48,446.3 50 61.0 49,045.3
5 16.1 31,541.6 51 62.1 41,186.5
6 17.5 41,053.2 52 63.3 49,151.1
7 18.7 49,047.8 53 65.2 79,739.4
8 20.2 33,951.9 54 66.5 66,704.0
9 21.4 45,263.4 55 67.6 71,922.7
10 22.5 53,088.1 56 69.0 52,255.0
11 23.8 34,547.4 57 70.0 94,147.4
12 25.1 51,042.2 58 71.1 64,181.3
13 26.1 39,733.1 59 72.6 62,752.7
14 27.0 49,519.7 60 74.0 56,775.6
15 28.2 32,489.5 61 74.9 49,858.3
16 29.5 55,755.0 62 75.6 75,493.2
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Item km Semivariogram Item km Semivariogram

17 30.8 47,523.9 63 77.0 58,419.7
18 31.6 31,275.0 64 78.6 48,015.3
19 32.2 56,937.5 65 80.8 81,717.9
20 32.9 51,891.9 66 82.4 84,134.3
21 33.9 51,271.0 67 84.2 59,251.8
22 35.0 56,113.3 68 85.8 68,939.1
23 36.2 53,660.4 69 87.3 89,176.8
24 37.1 77,947.4 70 88.6 63,794.1
25 37.9 38,722.0 71 90.6 66,877.4
26 38.8 53,830.4 72 92.3 97,726.8
27 39.9 60,068.5 73 94.1 56,009.0
28 41.0 62,769.7 74 96.9 51,560.0
29 41.9 61,731.6 75 98.4 72,857.7
30 42.7 36,311.1 76 100.6 58,023.1
31 43.6 47,268.9 77 102.4 81,231.9
32 44.1 27,706.2 78 104.9 51,767.3
33 44.6 75,630.6 79 107.5 88,162.3
34 45.3 40,477.0 80 110.6 60,517.2
35 46.1 64,279.0 81 113.5 83,272.4
36 47.0 48,014.5 82 116.1 62,780.6
37 47.9 48,837.3 83 119.1 72,207.9
38 48.7 55,357.7 84 122.0 88,796.7
39 50.3 56,927.1 85 126.3 71,400.8
40 51.8 70,026.0 86 130.2 58,951.1
41 52.5 49,162.2 87 134.3 81,787.8
42 53.4 43,975.7 88 138.9 75,341.3
43 54.4 38,393.8 89 144.9 57,169.7
44 55.0 72,487.2 90 155.1 49,060.9
45 55.7 63,407.0 91 166.1 88,218.9
46 57.1 71,495.0

6.20. Exponential model. Repeat the Kriging analysis of the groundwater quality exam-
ple of Example 6.22 replacing the linear model by an exponential model stating any
assumption made. Estimate the value at K. Comment on the models and the results.
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Chapter 7

Frequency Analysis of Extreme Events

Civil and environmental engineers are often concerned with natural hazards. Extreme
events, such as floods, hurricanes, and earthquakes, can take many human lives and cause
billions of dollars in damages. Paradoxically, one also needs to address the consequences of
unusually low streamflows, which can result in high pollutant concentrations. Additionally,
engineers must design buildings to withstand high winds and maritime structures to cater
for abnormally high sea waves. The survival of a given system depends on its capability
to resist those extreme conditions it can be subject to—and not simply the typical values.
Therefore, the management and design of civil and environmental systems should account
for the likelihood of rare events.

Given an adequately large sample of river flows, pollutant loadings, sea levels, earth-
quake intensities, or wind velocities, for instance, a probability distribution could be
determined for a particular site to some level of precision. However, the availability of
data of extreme values is usually restricted to less than 100 observations. Thus, one is
unable to estimate directly the frequencies and magnitudes of extreme events, such as
large floods or destructive earthquakes, the design values of which may have exceedance
probabilities of less than 0.001. Nevertheless, an engineer is expected to use his or her
practical knowledge of the processes involved to obtain the best estimate of the risks
involved.

Engineers are aware of the uncertainties associated with the probability distributions
of natural phenomena or those involving human beings. Even if one knows the parent
distribution, in a hypothetical case, its functional representation remains a problem. One
can select an appropriate probability model in a practical situation, considering the data
available, to describe the phenomenon of interest, and then estimate the parameters and
assess the risks involved. But how does one cope with the nonstationarities that often
prevail and the associated outliers discussed in Chapters 1, 5, and 6?

The largest value of an event, such as a flood, tornado, or earthquake, can be critical
to a given system, as already mentioned. The capacity of a system may likewise depend
on extremes, such as the strength of the weakest of many elementary components. A
failure may occur when a supply system is incapable of meeting the target demand as a
result of low availability of the supplied resource or because the quality of this resource
is insufficient to meet a standard. Processes that produce low rainfalls, river flows, lake
levels, or groundwater levels involve variables of which the smallest value in a sequence
may be critical. Therefore, the search for the frequency distribution of extreme events
must also include the distribution of the smallest values.

The first section of this chapter deals with the statistics that represent the frequencies
of the largest or smallest random variables. In the second section, probability models

405
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commonly used to represent extreme events are presented and discussed. Engineering
applications of extreme-value analysis are introduced in the third section.

7.1 ORDER STATISTICS

In Section 1.2, some numerical summaries of data were introduced. Statistics of random
variables were discussed in Section 3.2; it was noted therein that the sample moments are
physically meaningful statistics. The concept of order statistics was introduced in Sub-
section 5.8.1, and some related properties are studied in this section. These order statistics
play an important role in statistical inference and are linked to population quantiles as
sample moments are to population moments. Moreover, order statistics which represent
data often contain a meaningful experimental content.

7.1.1 Definitions and distributions

Consider a random sample of size n of a variate X with known distribution FX (x).
The sample can be viewed as a sequence of random variables, X1, X2, . . . , Xn .
If these variates are arranged in order of increasing magnitude, a new sequence
is obtained, say, X (1), X (2), . . . , X (n), where X (1) = min(X1, X2, . . . , Xn), and X (n) =
max(X1, X2, . . . , Xn). Then X (1), X (2), . . . , X (n) are defined as order statistics. It must
be noted that the order statistics are clearly not independent, for if X (i) ≥ x , then clearly
X (i+1) ≥ x . In this section, we seek the marginal and joint distribution and some functions
of order statistics.

Definition: Order statistics. Let X1, X2, . . . , Xn denote a random sample of size n from
a cumulative distribution function FX (x). Then X (1) ≤ X (2), . . . ≤ X (n)—where the X (i)s are
the Xi s arranged in ascending order—are the order statistics corresponding to that random
sample. The X (i)s are statistics because they are functions of the random sample and are in a
stated order.

For given x , let Li = I(−∞,x](Xi ); that is, Li = 1 if Xi ≤ x and 0 otherwise. Thus, the
random variable Z = ∑n

i=1 Li represents the number of variates Xi not exceeding x , and
Z has a binomial distribution with parameters n and FX (x). There is equivalence between
the two events {X (k) ≤ x} and {Z ≥ k}; that is, if the kth-order statistic is less than or
equal to x , then the number of Xi less than or equal to x is greater than or equal to k,
and the converse follows. Therefore, the marginal cumulative distribution of an arbitrary
order statistic, say, X (k), with k = 1, . . . , n, is given by

FX (k) (x) = Pr[X (k) ≤ x] = Pr[Z ≥ k] =
n∑

j=k

(
n
j

)
[FX (x)] j [1 − FX (x)]n− j . (7.1.1)

This result provides the marginal distribution for many applications, such as the maximum,
Xmax = X (n), and the minimum, Xmin = X (1), of a random sample X1, X2, . . . , Xn . These
are

FX (n) (x) =
n∑

j=n

(
n
j

)
[FX (x)] j [1 − FX (x)]n− j = [F(x)]n, (7.1.2)
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and

FX (1) (x) =
n∑

j=1

(
n
j

)
[FX (x)] j [1 − FX (x)]n− j = 1 − [1 − FX (x)]n, (7.1.3)

respectively.1

Example 7.1. Urban storm drainage. Following an ancient practice, the design of storm
drains in Italy is sometimes based on the third annual maximum value of rainfall intensity
recorded in a standard period of n years. For instance, the outlet channel of the municipal
sewer system of a town in southern Italy was designed to drain a storm of average intensity
38 mm/h lasting 35 minutes. This was the third highest value recorded over a period of
25 years. Further data analysis indicated that annual maximum storm intensity at that site, X ,
is exponentially distributed with mean 20 mm/h for this duration. The engineer is interested
in estimating the probability that the third highest storm in a period of 25 years exceeds the
selected design value. That is, the cdf of X (25−3+1) = X (23) is required. From Eq. (7.1.1),

FX(23) (x) =
25∑

j=23

(
25
j

)
[FX (x)] j [1 − FX (x)]25− j

=
25∑

j=23

(
25
j

)
[1 − e−0.05x ] j [e−0.05x ]25− j ,

so that,

FX(23) (38) = 300 × 0.024 × 0.022 + 25 × 0.020 × 0.150 + 1 × 0.017 × 1 = 0.256,

and

Pr[X (23) > 38] = 1 − FX(23) (38) = 1 − 0.256 = .744

is the required probability.

If one assumes that the Xi of the random sample X1, X2, . . . , Xn are continuous and
come from a pdf fX (·), the pdf of X (k) is obtained by differentiating the right-hand side
of Eq. (7.1.1). This yields

fX (k) (x) = n!

(k − 1)!(n − k)!
fX (x)[FX (x)]k−1[1 − FX (x)]n−k . (7.1.4)

The marginal density of the maximum, Xmax = X (n), and the minimum, Xmin = X (1), of
a random sample X1, X2, . . . , Xn are thus given by

fXmax (x) = n fX (x)[FX (x)]n−1 and fXmin (x) = n fX (x)[1 − FX (x)]n−1,

respectively. Similarly, one can determine the joint density of X (k) and X (h) for 1 ≤ k <

h ≤ n. This pdf is given by

fX (k),X (h) (y, x) = n! [FX (y)]k−1[FX (x) − FX (y)]h−k−1[1 − FX (x)]n−h

(k − 1)!(h − k − 1)!(n − h)!
fX (y) fX (x)

(7.1.5)

1 Note that Eqs. (7.1.2) and (7.1.3) are also determined in Chapter 3 by using the concept of a function of random
variables. See Eqs. (3.4.12) and (3.4.15).
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Fig. 7.1.1 Pdfs of annual maximum 35-minute rainfall intensity and the third highest annual
maximum in 25 years.

for y < x , and, for y ≥ x , it is zero.2 In general, the joint pdf of order statistics,
X (1), X (2), . . . , X (n), can be written as

fX (1),...,X (n) (x1, . . . , xn) =
{

n! fX (x1) · · · fX (xn), for x1 < x2 < · · · < xn,

0, otherwise.
(7.1.6)

Any set of marginal densities can be obtained from Eq. (7.1.6) by integrating out the
unwanted variables.

Example 7.2. Urban storm drainage. Consider again the third maximum X (23) in 25 years
for maximum annual 35-minute average rainfall intensity X of Example 7.1. From Eq. (7.1.4),

fX(23) = 25!

(23 − 1)!(25 − 23)!
0.05e−0.05x [1 − e−0.05x ]23−1[e−0.05x ]25−23,

= 345 e−0.15x (1 − e−0.05x )22,

which is shown in Fig. 7.1.1.

During the early years of civil engineering practice, the design variable was often based
on the most extreme event among past observations. For example, a spillway designed to
pass a flood 50–100% larger than the largest recorded flood in a period of, say, 25–50 years,
was considered adequate. Then one should evaluate the probability that such a design will
successfully meet its intended function in the future. Let X (n) denote the largest among
n subsequent outcomes of a variable, and X ′

(m) the largest of m previous observations of
this variable, say, X ′

1, . . . , X ′
m . Because

Pr
[
X (n) ≤ X ′

(m)

] =
∞∫

z=0

Pr
[
X (n) ≤ z

]
Pr

[
z < X ′

(m) ≤ z + dz
]
,

it follows that

Pr
[
X (n) ≤ X ′

(m)

] =
∞∫

0

[FX (z)]nm[FX (z)]m−1 fX (z)dz = m

∞∫
0

[FX (z)]n+m−1d FX (z).

Hence,

Pr
[
X (n) ≤ X ′

(m)

] = m

n + m
. (7.1.7)

2 See Mood et al. (1974, p. 253) and David and Nagaraja (2003, Section 2.2).
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The complementary probability, that is, the previously observed largest value will be
exceeded in n subsequent observations is given by

Pr
[
X (n) > X ′

(m)

] = n

n + m
. (7.1.8)

Note that as n tends to infinity, the ratio n/(n + m) tends to unity. This shows that in the
absence of physical constraints, the probability of exceeding a previously observed largest
value approaches 1 if the period of observation is sufficiently long.

This approach can be extended to the more general problem of determining the proba-
bility that the kth value X ′

(k) (counted from the lowest value) will be exceeded r times in
n future observations. Denoting this probability by pr |m,k,n , one obtains

pr |m,k,n = k

n + k − r

(
m
k

)(
n
r

)
(

n + m
n + k − r

) . (7.1.9)

For example,

p0|m,m,n = m

n + m
,

which is equivalent to Eq. (7.1.7). [This is the probability that a previously observed largest
value, in m observations, will not be exceeded in n future observations—as obtained by
substituting 0 for r and m for k in Eq. (7.1.9).]

Example 7.3. Flood control design. Suppose that a flood control structure is designed to
accommodate the largest flood observed over the last 66 years. The engineer must determine
the lifetime of this structure for a survival probability of 90%. From Eq. (7.1.7),

Pr
[

X (n) ≤ X ′
(66)

]
= 66

n + 66
= .9.

Hence n = (66 − 0.9 × 66)/0.9 ≈ 7 years.

Equation (7.1.9) also gives the probability that r among n future observations are smaller
than the kth smallest value among m previous observations (that is, when k is counted
from the top). In this case, Eq. (7.1.8) is also the probability that in n future observations
there will be at least one value that is smaller than the previously observed smallest value.

7.1.2 Functions of order statistics

In many engineering applications some functions of order statistics are required. The sam-
ple mean, the sample median, and the sample range can provide meaningful information
of system behavior in several practical problems.

As defined in Subsection 1.2.1, the sample mean is 1/n
∑n

i=1 Xi . The sample median
is defined as the middle-order statistic if n is odd and the average of the middle two-order
statistics if n is even. The range is defined as X (n) − X (1).

If the sample size is odd, then the pdf of the sample median is obtained from Eq. (7.1.4);
for example, we can let n = 2l + 1, where l is some positive integer, and then compute
by using Eq. (7.1.4) the density of X (l+1), the sample median. If the sample size is even,
say, n = 2l, then the sample median is (X (l) + X (l+1))/2, the distribution of which can be
obtained by a transformation, starting with the joint density of X (l) and X (l+1) which is
obtained from Eq. (7.1.5).
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The distribution of Rn = X (n) − X (1), the sample range, can be derived by observing
that Eq. (7.1.5) yields the joint density of X (1) and X (n) given by

fX (1),X (n) (y, x) = n![FX (x) − FX (y)]n−2

(n − 2)!
fX (y) fX (x),

with y < x . Therefore, one obtains the density of Rn as the difference between two random
variables.3 This can be done by putting r = x − y and then integrating; that is,

fRn (r ) =
+∞∫

−∞
fX (1),X (n) (x − r, x)dx

=
+∞∫

−∞

n![FX (x) − FX (x − r )]n−2

(n − 2)!
fX (x − r ) fX (x)dx .

Hence,

fRn (r ) = n(n − 1)

+∞∫
−∞

fX (y)[FX (y + r ) − FX (y)]n−2 fX (y + r )dy.

The cdf of Rn can be found by integrating the above density over the appropriate range
Rn ≥ 0; that is,

FRn (r ) = n

+∞∫
−∞

fX (y)[FX (y + r ) − FX (y)]n−1dy. (7.1.10)

This result may also be obtained by noting that

n fX (y)dy[FX (y + r ) − FX (y)]n−1

is the binomial probability conditional to y; that is, the probability that one of the Xi s is
in the interval (y, y + dy) and all of the n − 1 remaining Xi are in (y, y + r ). Equation
(7.1.10) has several applications, such as sizing and operation of reservoirs.

Example 7.4. Tank capacity. It is observed that the hydraulic head X in a tank can vary
uniformly each day from a = 0 to b = 5 units, that is, from empty to full capacity of the
tank. For a uniform(a, b) distribution, one obtains from Eq. (7.1.10) after integration (see,
for some guidance, Wilks, 1962, p. 236)

FRn (r ) = n

(
r

b − a

)n−1

− (n − 1)

(
r

b − a

)n−1

.

Hence for a uniform(0, 5) distribution,

FRn (r ) = n
( r

5

)n−1
− (n − 1)

( r

5

)n−1
.

This is plotted in Fig. 7.1.2 for different values of n.
It is seen that for large n, say, greater than 100, the cdf of the range tends to be a step

function of the upper bound, which is the hydraulic head corresponding to full capacity of
the tank.

3 See Section 3.4.
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Fig. 7.1.2 Cdfs of sample range for increasing number of sampling variates with common
uniform distribution.

Certain functions of order statistics are also statistics and may be used to make statistical
inferences. For example, both the sample median and the midrange, (X (1) + X (n))/2, can
be used to estimate the mean of the population.

7.1.3 Expected value and variance of order statistics

In certain engineering applications the expected value and the variance can provide useful
information of system behavior. If fX (·) is continuous, the means or expected values of
Yk , the kth-order statistics, can be determined from

E
[
X (k)

] =
+∞∫

−∞
x fX (k) (x)dx = n

(
n − 1
k − 1

) +∞∫
−∞

y[FX (y)]k−1[1 − F(x)]n−kd FX (y),

(7.1.11)

which is obtained by substituting Eq. (7.1.4) for the marginal density of the kth-order
statistic.

Example 7.5. Expected frequency of observations. The relative frequencies of a set of
random variables arranged in ascending order can be interpreted as a set of random uniform
(0, 1) variates. From Eq. (7.1.11),

E[X (k)] = n

(
n − 1
k − 1

) +∞∫
−∞

xxk−1(1 − x)n−kdx =
n

(
n − 1
k − 1

)
(n + 1)

(
n
k

) = k

n + 1

is the expectation of the frequency of the kth-ordered variable. This result implies that the
order statistics divide the area under the curve fX ( ) into n + 1 parts, each with expected
value 1/(n + 1), where fX (x) is standard uniform.4 The above sampling frequency is often
referred to as Weibull plotting position (which refers to the probability at which each x(i)

should be plotted in a graph of x versus Pr[X > x]).5 Note that the corresponding return
period is (n + 1)/(n + 1 − k).

4 This is in view of the probability integral transformation discussed in Chapter 8, on simulation.
5 Plotting positions are discussed in Chapter 5.
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Fig. 7.1.3 Decrease of dimensionless expected minimum delay with the number of daily arrivals.

The expectation of the maximum, Xmax ≡ X (n), of a random sample X1, X2, . . . , Xn

can be found by substituting n for k in Eq. (7.1.11), thus obtaining

E[Xmax] = n

+∞∫
−∞

x[FX (x)]n−1 fX (x)dx . (7.1.12)

Similarly, for the minimum, Xmin ≡ X (1), one gets

E[Xmin] = n

+∞∫
−∞

x[1 − FX (x)]n−1 fX (x)dx . (7.1.13)

Example 7.6. Minimum flight delay. An airport is designed to receive a given daily number
of flights, say, n. Let the interarrival time between two successive flights be Pareto distributed
with parameter θ > 1, and lower bound x0. Thus,

FX (x) = 1 −
( x0

x

)θ

.

The expected minimum delay is given by Eq. (7.1.13); that is,

E[Xmin] = n

+∞∫
x0

x

[
1 − 1 +

( x0

x

)θ
]n−1

θ

x0

( x0

x

)θ+1
dx

= n

+∞∫
x0

θ

(
x

x0

)1−θ (n−1)−θ−1

dx = nθ

nθ − 1
x0.

This is shown in Fig. 7.1.3, where E[Xmin]/x0 is plotted against n for different values of θ .
It can be observed that increasing the number of daily arrivals, n, yields the expected delay

that defines the lower bound.

The variance of X (k), the kth-order statistic, can be determined from

Var[X (k)] =
+∞∫

−∞

(
x − E

[
X (k)

])2
fX (k) (x) dx, (7.1.14)
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and, for k < h, the lag(h − k) covariance from

Cov
[
X (k), X (h)

] =
+∞∫

−∞

+∞∫
−∞

(
u − E

[
X (k)

])(
v − E

[
X (h)

])
fXk ,Xh (u, v) du dv, (7.1.15)

which can be computed by substituting Eqs. (7.1.4) and (7.1.5) for the marginal and the
joint density of the kth-order statistics, respectively.

The variance of the maximum, Xmax ≡ X (n), of a random sample, X1, X2, . . . , Xn , can
be found by substituting n for k in Eq. (7.3.17), thus obtaining

Var[Xmax] =
+∞∫

−∞

⎛⎝x − n

+∞∫
−∞

u[FX (u)]n−1 fX (u)du

⎞⎠2

fX (x)n[FX (x)]n−1 dx .

(7.1.16)

Similarly, for the minimum, Xmin ≡ X (1), one gets

Var[Xmin] =
+∞∫

−∞

⎛⎝x − n

+∞∫
−∞

u[1 − FX (u)]n−1 fX (u)du

⎞⎠2

fX (x)n[1 − FX (x)]n−1dx .

(7.1.17)

Example 7.7. Minimum flight delay. Consider again Pareto-distributed interarrival time
of flight arrivals of Example 7.6. The variance of the minimum delay is given by Eq. (7.1.17);
that is,

Var[Xmin] =
+∞∫

x0

⎧⎨⎩x − n

+∞∫
x0

u

[
1 − 1 +

(
x0

u

)θ
]n−1

θ

x0

(
x0

u

)θ+1

du

⎫⎬⎭
2

nθ

x0

(
x0

x

)nθ+1

dx

=
[

nθ

nθ − 2
−

(
nθ

nθ − 1

)2]
x2

0 .

Note that Var[Xmin] exists only for θ > 2/n.

Because the range is a linear function of the order statistics, its expectation can be
simply determined as

E[Rn] = E[Xmax] − E[Xmin]

= n

⎛⎝ +∞∫
−∞

x[FX (x)]n−1 fX (x)dx −
+∞∫

−∞
x[1 − FX (x)]n−1 fX (x)dx

⎞⎠ .

(7.1.18)

Note that

E[X ] =
0∫

−∞
xd FX (x) −

+∞∫
0

xd[1 − FX (x)] =
+∞∫
0

[1 − FX (x)]dx −
0∫

−∞
FX (x)dx .
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Equation (7.1.18) can also be written as

E[Rn] =
+∞∫

−∞

{
1 − [FX (x)]n − [1 − FX (x)]n

}
dx . (7.1.19)

The variance of the range can be similarly found.

Example 7.8. Hurst phenomenon. In range analysis it is advantageous for practical pur-
poses to calculate the difference between the maximum D+

n and minimum D−
n of the accu-

mulated departures from the sampling mean X̄n of observations X1, X2, . . . , Xn . This gives
the adjusted range as

R∗
n = max

1≤i≤n

(
i∑

j=1

X j − i X̄n

)
− min

1≤i≤n

(
i∑

j=1

X j − i X̄n

)
= D+

n + |D−
n |.

In order to compare the results from different observed sequences, the range is divided by the
standard deviation Sn estimated by

Sn =
√∑n

i=1 (Xi − X̄n)2

n

to give the adjusted rescaled range

R∗∗
n = R∗

n

Sn
.

Of greater significance is the relationship

E[R∗∗
n ] = cnH ,

where H is termed the Hurst exponent. This is deemed to be a constant for an observed
sequence, and c is another constant, which was taken as (1/2)H in the original work by Hurst
(1951) on long-term capacity of reservoirs. For natural sequences observed by Hurst, the
value of H varies from 0.46 to 0.96, with a mean of 0.73 and a standard deviation of 0.09.
However, for a sequence of independent random variables with finite variance, the asymptotic
result

E[R∗∗
n ] =

(
π

2

)0.5

n0.5

holds regardless of the distribution. The asymptotic value of H = 0.5 can also be proved
to hold for various types of mutually dependent sequences of random variables. The fact
that values of H 	= 0.5 are found in observed natural sequences—whereas for a normal (or
gamma) sequence the asymptotic value of H is 0.5—is referred to as the Hurst phenomenon.
Sometimes this has been interpreted as a transient effect, because for finite sequences the
asymptotic value of 0.5 is reached only when n is much larger than the sample sizes usually
found in practice. However, analysis of some exceedingly long geophysical time series has
yielded values of H in the range 0.7–0.9. Consequently, this phenomenon was attributed to the
effect of long-range dependence or memory, and some time series were modeled accordingly.
In current practice, it is more plausible to attribute the Hurst effect to nonstationarity (by
which we mean that there is variability in time of the mean and other statistical properties)
in a physical process. See the application of nonstationary modeling using Gibbs sampling
in Example 10.13.
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7.1.4 Summary of Section 7.1

It is considered that a detailed discussion of order statistics is a necessary prelude to
the study of extreme values. We have shown some of the important properties of order
statistics in this section. Functions, expected value, and variance are discussed. Examples
are given here on the practical use of order statistics.

7.2 EXTREME VALUE DISTRIBUTIONS

Extreme value theory, which is used in storm, flood, wind, sea waves, and earthquake
estimation, dates back to the pioneering works by Fréchet (1927) and Fisher and Tippett
(1928). This theory was extensively developed by Gumbel (1958) following the extremal
type theorem originated by Gnedenko (1943).

7.2.1 Basic concepts of extreme value theory

According to the theory of extreme values, the largest or smallest value from a set of
independent identically distributed random variables tends to an asymptotic distribution
that only depends on the tail of the distribution of the basic variable. Let X1, X2, . . . , Xn

denote a set of independent random variables with a common distribution FX (x), where x
is an observed value and n is the number of equispaced data points within a fixed period
of 1 year. Also, let X (1), X (2), . . . , X (n) represent the ordered set of the same variables,
with X (1) ≤ X (2), . . . ≤ X (n). From Eq. (3.4.12) or (7.1.2), the distribution of Xmax = X (n)

is given by

FXmax (x) = [FX (x)]n.

As n increases indefinitely, this distribution approaches zero for every finite x in the
domain of X . Therefore, standardization is necessary for the derivation of the limiting
distribution. If Yn = (X (n) − bn)/an , where an > 0 denotes a scaling constant and bn is a
location constant, then this limiting distribution must be one of the three following types:

Type I: FY (y) = exp(−e−y), −∞ < y < +∞. (7.2.1a)

Type II: FY (y) =
{

exp(−y−γ ), y > 0;
0, y ≤ 0.

(7.2.1b)

Type III: FY (y) =
{

exp[−(−y)γ ], y < 0;
1, y ≥ 0.

(7.2.1c)

Here γ > 0 denotes a positive constant, and Y is the asymptote of Yn (that is, taken when
n tends to infinity). The existence of these three asymptotic forms of the distribution of
extremes relies on the stability postulate, which states that if X has an extreme value
distribution, the maximum of n independent observations of X has the same distribution,
but with different location and scale parameters. Thus, the solution of

[FX (x)]n = FX

(
x − bn

an

)
,

where an and bn are functions of n, yields all the possible limiting forms of FX (x) as n
tends to infinity.

Necessary and sufficient conditions that a set of random variables belongs to each of
the three domains of attraction were given by Gnedenko (1943) and in simpler form by
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Fig. 7.2.1 Pdfs of asymptotic distributions for largest extreme values.

de Haan (1976). Further, the assumption that the Xi s are independent can be relaxed.6 If
FX (x) is strictly monotonic and continuous, a sufficient condition for convergence to the
Type I asymptotic form of the largest value is given by

lim
x→ω

d

dx

[
1 − FX (x)

fX (x)

]
= 0, (7.2.2)

where ω denotes the upper bound7 of X , and fX (x)/[1 − FX (x)] is called the hazard
function.8 The pdfs and the cdfs of the extreme value distributions are shown in Figs. 7.2.1
and 7.2.2, respectively. Henceforth, we refer to these asymptotic distributions as EV1,
EV2, and EV3.
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Fig. 7.2.2 cdfs of asymptotic distributions for largest extreme values.

6 For a sequence of identically distributed random variables, the Type I, II, and III distributions are the only
limiting distributions, provided that there is no long-range dependence of high-level exceedances (Leadbetter,
1991).
7 If X is not bounded, the limit must be obviously taken for x tending to infinity. However, Eq. (7.2.2) can be
useful for physically bounded variables (see, for example, Eliasson, 1994).
8 This is extensively used in reliability theory (see Chapter 9).
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Example 7.9. Limiting case for an exponentially distributed variate. Let X be an expo-
nentially distributed variate with cdf FX (x) = 1 − e−λx , for x ≥ 0. From Eq. (7.2.2),

lim
x→+∞

d

dx

[
1 − FX (x)

fX (x)

]
= lim

x→+∞
d

dx

[
e−λx

λe−λx

]
= lim

x→+∞
d

dx

[
1

λ

]
= 0.

Therefore, the exponential distribution has the EV1 as its corresponding limiting extreme
value distribution.

If FX (x) is strictly monotonous and continuous, the sufficient condition for convergence
to the EV2 distribution is

lim
x→+∞ x

fX (x)

1 − FX (x)
= γ, (7.2.3)

with γ > 0 denoting a constant. The pdf and cdf of the EV2 distribution are also shown
in Figs. 7.2.1 and 7.2.2, respectively.

Example 7.10. Limiting case for a Pareto distributed variate. Let

FX (x) = 1 −
(a

x

)θ

,

for x > x0 > 0, with θ > 0. From Eq. (7.2.3),

lim
x→+∞

x
fX (x)

1 − FX (x)
= x

θaθ x−θ−1

aθ x−θ
= θ.

Therefore, Xmax converges to the EV2 distribution.

The sufficient condition for convergence of a bounded random variable X to the EV3
distribution is

lim
x→+ω

(ω − x)
fX (x)

1 − FX (x)
= γ, (7.2.4)

where γ > 0 denotes a constant, ω is the upper bound of X , and FX (ω) = 1. The pdf and
cdf of the EV3 distribution are also shown in Figs. 7.2.1 and 7.2.2, respectively.

Example 7.11. Limiting case for a reflected power-distributed variate. Let FX (x) =
1 − a(b − x)γ , with x ≤ b, a > 0, and γ > 0. Examples include the uniform distribution,
where γ = 1 and the triangular pdf, where γ = 2. Since FX (b) = 1, and FX (x) < 1 for every
x < b, b is the upper bound of X . Thus,

lim
x→∞

(ω − x)
fX (x)

1 − FX (x)
= lim

x→b
(b − x)

γ a(b − x)γ−1

a(b − x)γ
= γ.

Therefore, the reflected power distribution has the EV3 as its corresponding limiting extreme
value distribution.

As noted above, the limiting distribution depends on the general way in which the ap-
propriate tail of the underlying distribution, FX (x), behaves. Examples of distributions
yielding EV1 extreme variates are exponential, gamma, Weibull, normal, lognormal, lo-
gistic, and EV1 itself. Examples of distributions yielding EV2 variates are Pareto, Student’s
t , Cauchy, log-gamma, and EV2 itself. Finally, examples of distributions yielding EV3
variates are reflected-power, uniform, beta, and EV3 itself. However, the convergence to
a limiting case can be quite slow in some cases.
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In many applications, the probability model is used in the inverse form, because a
specified probability of nonexceedance q is selected and the design value is evaluated as
the qth quantile of the design variate. For the standard EV1 distribution,

y = − ln(− ln q), (7.2.5)

from Eq. (7.2.1a) with FY (y) = q . To compare with other types, we can write the qth
quantile of the standard EV1 variate as

ξq,EV1 = − ln(− ln q) = y. (7.2.6)

For the EV2 distribution, one gets ξq,EV2 = exp(y/γ ), and for the EV3 distribution,
ξq,EV3 = exp(−y/γ ). Accordingly, the general formulation of extreme value distributions
in the inverse form can be written as

ξq = 1 − exp(−ky)

k
, (7.2.7)

where y is often referred to as a reduced, or standard Gumbel variate; it is a surrogate
of the probability of nonexceedance, q . By substituting the series expansion of exp(−ky)
and then dividing by k, the special case k = 0 leads to the linear relationship for ξ against
y that characterizes the EV1 distribution as given by Eq. (7.2.6). The EV2 distribution
is applicable when k < 0 and, if k > 0, the EV3 distribution is signified. Therefore, the
probability distribution given in inverse form by Eq. (7.2.7) is called the general extreme
value (GEV) distribution, which can be written as

FY (y) = exp[−(1 − ky)1/k]. (7.2.8)

The GEV distribution is sometimes referred as the von Mises-Jenkinson distribution in the
determination of the probability model of the unknown distribution of the largest value
data within a generalized framework; see von Mises (1936) and Jenkinson (1969). We
shall return to the GEV distribution in Subsection 7.2.5.

Example 7.12. Quantiles of extreme value distributions. Since y is a surrogate of the
probability of nonexceedance, one can compare the quantiles arising from the three dif-
ferent types of the extreme value distributions as represented by Eq. (7.2.8). For exam-
ple, if q = 0.9 is the required design level, the corresponding reduced variate is, from
Eq. (7.2.5),

y = − ln[− ln(0.9)] = 2.250,

which is also the quantile for the EV1 distribution. If, for example, k = −0.25, the corre-
sponding quantile for the EV2 distribution is found from Eq. (7.2.7), resulting in

ξ0.9,EV2 = 1 − exp(0.25 × 2.250)

(−0.25)
= 3.021 > y.

Because of the positive exponential form, ξEV2 increases faster than for the EV1 distribution.
Therefore, the EV2 distribution can be represented by a curve that is concave upward on the
(y, ξ ) plane. For k = 0.25, one has, from Eq. (7.2.7),

ξ0.9,EV3 = 1 − exp(−0.25 × 2.250)

0.25
= 1.721 < y.

Because of the negative exponential form, the EV3 distribution can be represented by a curve
that is concave downward on the (y, ξ ) plane, as shown in Fig. 7.2.3.
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Fig. 7.2.3 Relationship between the qth quantile, ξq , and the reduced variate, y, for the three
asymptotic extreme value distributions.

7.2.1.1 Smallest value distributions
In some applications, the asymptotic distribution of interest is that of the smallest value.
To this effect, one notes that the distributions of the largest and smallest values are related
by the principle of symmetry first introduced by Gumbel (1958). If X denotes a variate
with pdf fX (x), the variate X∗, whose pdf is the mirror image of fX (x), has the property
1 − FX (x) = FX∗ (−x), as shown in Fig. 7.2.4. Thus, [1 − FX (x)]n = [FX∗ (−x)]n . From
Eq. (7.1.3),

[1 − FX (x)]n = 1 − FX (1) (x) = 1 − FXmin (x)

is the probability of exceedance of the smallest value of X , and [FX∗ (−x)]n is the proba-
bility of nonexceedance of the largest value of X∗; that is,

1 − FXmin (x) = FX∗
max

(−x). (7.2.9)

The corresponding pdfs are also related by

fXmin (x) = fX∗
max

(−x). (7.2.10)

Using the principle of symmetry, the asymptotic distribution of the smallest value of a
random variable can be determined from the distribution of its largest value by reversing
the sign and taking the complementary probabilities.

x

F X (x )

f X (x )f X* (−x)

F X* (−x)

Fig. 7.2.4 Principle of symmetry.
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Example 7.13. Smallest value distribution from an exponentially distributed vari-
ate. Consider an exponentially distributed variate X with fX (x) = λ exp(−λx), for x ≥ 0.
The pdf of the corresponding mirror image of X , say, X∗ is

fX∗ (y) = fX (−y) = λ exp[−λ(−y)] = λeλy,

for y ≤ 0, and its cdf is given by

FX∗ (y) = 1 − FX (−y) = 1 − 1 + eλy = eλy,

for −x = y ≥ 0 . For a sample of size n of X , one gets

1 − FXmin (x) = FX∗
max (−x) = [FX∗ (−x)]n = e−nλx ,

for x ≥ 0. It follows that the probability of exceedance of the smallest value is the same as
the cdf of the largest value of X∗.

Consider, for example, the smallest value from a variate W with pdf fW (w) = λ exp(λw),
for w ≤ 0 and λ > 0. The largest value of the mirror image of W , say, W ∗, with pdf fW∗ (w) =
fW (−w) = λ exp(−λw), has the EV1 distribution. Therefore, the cdf of the smallest value of
W will be given by

FWmin (w) = 1 − FW∗
max (−w) = 1 − exp(eλw ),

for w ≤ 0; this is defined as the EV1 distribution of the smallest value.

Through the principle of symmetry the following three asymptotic distributions of the
smallest value are found:

EV1: FZ (z) = 1 − exp(−ez), −∞ < z < +∞. (7.2.11a)

EV2: FZ (z) =
{

1 − exp[−(−z)−γ ], z < 0;
1, z ≥ 0.

(7.2.11b)

EV3: FZ (z) =
{

1 − exp(−zγ ), z > 0;
0, z ≤ 0.

(7.2.11c)

Here γ > 0 is a constant, and Z denotes the linearly standardized smallest value of a
sample of size n from a random variable under a linear transformation, for n tending to
infinity. The pdfs and cdfs of the three asymptotic smallest value distributions are shown
in Figs. 7.2.5 and 7.2.6, respectively.

The criteria of convergence to one of the three types of asymptotic distributions of
the smallest value are similar to those applicable to the determination of that of the
largest value. If FX (x) is strictly monotonous and continuous, the sufficient condition for
convergence to the EV1 distribution of the smallest value is

lim
x→+∞

d

dx

[
FX (x)

fX (x)

]
= 0, (7.2.12)

where fX (x) and FX (x) denote the pdf and cdf of the variable. For the EV2 distribution
of the smallest value,

lim
x→+∞ − x

fX (x)

FX (x)
= γ, (7.2.13)
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Fig. 7.2.5 Pdfs of asymptotic distributions for smallest extreme values.

with γ > 0 denoting a constant. For the EV3 distribution of the smallest value,

lim
x→ε+

(x − ε)
fX (x)

FX (x)
= γ, (7.2.14)

where ε denotes the lower bound of X . Note that it is possible for the largest value
distribution of a variable to belong to one asymptotic form, whereas its smallest value
distribution can belong to another asymptotic form.

Example 7.14. Limiting cases for a Rayleigh distributed variate. Consider a ran-
dom variable X with pdf fX (x) = (x/σ 2) exp[−x2/(2σ 2)], for x ≥ 0. Thus, FX (x) = 1 −
exp[−x2/(2σ 2)].

The application of the convergence criterion of Eq. (7.2.2) for the EV1 largest value
distribution yields

lim
x→+∞

d

dx

[
1 − 1 + e−x2/(2σ 2)

(x/σ 2)e−x2/(2σ 2)

]
= lim

x→+∞
d

dx

(
σ 2

x

)
= − lim

x→+∞
σ 2

x2
= 0.
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This shows that the largest value of X follows the EV1 distribution. The application of the
convergence criterion of Eq. (7.2.14) yields

lim
x→ε+

(x − ε)
fX (x)

FX (x)
= lim

x→0+
(x − 0)

(x/σ 2)e−x2/(2σ 2)

1 − e−x2/(2σ 2)
= lim

x→0+
(x2/σ 2)

ex2/(2σ 2) − 1

= lim
x→0+

2

ex2/(2σ 2)
= 2,

which indicates that the smallest value distribution from a Rayleigh variate converges to the
EV3 smallest value distribution.

Note that the derivation of the extreme value distribution requires that the underlying
distribution of the variable is known. In many engineering applications, one finds that only
extreme value data are available. The determination of the appropriate type of the extreme
value distribution is then made without any information on the underlying variable, based
on some prior knowledge on the physical process or inferred from the data. Although the
GEV approach provides a framework to determine the appropriate model of extreme value
data, it is often difficult to infer this model from the small samples usually available in
applications. Furthermore, the convergence to a limiting case can be quite slow. Finally,
the three asymptotic forms presented here are not exhaustive, because distributions exist
whose largest value or smallest value distributions do not converge to one of the three types
discussed here. Nevertheless, these distributions are useful to analyze extreme events from
observed data and provide a framework to predict future outcomes.

7.2.2 Gumbel distribution

The EV1 distribution was extensively developed and applied to extreme values by Gumbel
(1935, 1941); therefore, it is often referred to as the Gumbel distribution. This distribution
results from any underlying distribution of the Xi s of the exponential type. The exponential
is the obvious candidate, but also the upper tail of other distributions (say, the gamma,
the Weibull, the normal, the lognormal, the logistic, and the EV1 itself) converge to
the exponential form for large values of the variable. Accordingly, the initial density,
fX (x) = d FX (x)/dx , can be approximated to the form λe−λx ; this leads to the probability
of nonexceedance of 1 − e−λx , which can be substituted for FX (x) in Eq. (7.1.2) to obtain

FXmax (x) = [F(x)]n = (1 − e−λx )n. (7.2.15)

By changing the location and scale, Eq. (7.2.15) can be written as

FXmax (x) =
[

1 − 1

n
exp

(
− x − b

α

)]n

, (7.2.16)

where α and b are the dispersion (or scale) and location parameters. Taking the limit of
the right-hand side of Eq. (7.3.16) as n tends to infinity,

FXmax (x) = exp[−e−(x−b)/α], (7.2.17)

which is the Gumbel distribution function. The corresponding pdf is

fXmax (x) = 1

α
exp

[
− x − b

α
− e−(x−b)/α

]
, for −∞ < x < +∞. (7.2.18)

The above result is asymptotic, being approximately true for any large value of n. The
engineer may argue, for instance, that the annual maximum flow in a river has such an
extreme value distribution because it is the largest daily flow or that the annual maximum
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height of waves in a harbor represents the largest of some unknown large number of storms
in a year. This distribution also arises from the theory of point processes if one assumes
that storms occur as Poisson arrivals and that an independent exponentially distributed
random variable is associated with each such arrival.9

The location parameter b is the mode of the distribution, because d f (x)/dx = 0 for
x = b. The parameter α is a measure of dispersion, as already stated, and it only depends
on the variance of Xmax. The parameter b is a measure of location that depends on both
the variance and the mean. The moment-generating function is found to be MXmax (t) =
exp(bt)�(1 − αt), for t < 1/α. Hence, the mean and the variance of Xmax are

E[Xmax] = μ = b + neα, (7.2.19)

and

Var[Xmax] = σ 2 = π2a

6
, (7.2.20)

where ne denotes the Euler constant, approximately equal to 0.5772. The skewness coef-
ficient is 1.1396, and the kurtosis coefficient is 5.400.

If the first two moments of Xmax are known, the values of the parameters α and b can
be determined by the method of moments from the mean, μ, and the variance, σ 2, of the
extreme value population. From Eqs. (7.2.19) and (7.2.20), one obtains

α =
√

6

π
σ, (7.2.21)

and

b = μ − neα = μ − ne

√
6

π
σ. (7.2.22)

This method can be used if a finite sample of the values taken by Xmax is available: such
as the annual maximum river flows for a period of n years. One may compute the values
of the parameters α and b by estimating the mean and the variance of the population based
on this sample.

Example 7.15. Estimation of Gumbel distribution for storm rainfall data. The mean
and standard deviation of annual maximum hourly rainfalls estimated from a 58-year record
available from 1931 to 1988 at Genoa University, Italy, listed in Table E.7.1, are 48.16 and
23.76 mm, respectively. (The collected data are correct to the nearest tenth of a millimeter;
we have made these statistics more accurate merely for subsequent comparisons.) From
Eq. (7.2.21),

â =
√

6

π
σ̂ = 0.780 × 23.76 = 18.52 mm

is the estimated scale parameter of the Gumbel distribution by the method of moments. From
Eq. (7.2.22), the location parameter is estimated as

b̂ = μ̂ − neα̂ = 48.16 − 0.5772 × 18.52 = 37.47 mm.

In Fig. 7.2.7, the cdf of the EV1 distribution with the above estimates of α and b is shown,
where the Gumbel or reduced variate is used to represent the frequency level. This distribution
is also compared with that of the observed data using the Weibull plotting position (see
Example 7.5).

9 See renewal and point processes in Subsection 4.2.2.5.
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Quantiles of the Gumbel distribution can be easily obtained by introducing the new
(dimensionless) variable Y = (Xmax − b)/α, which is a standardized EV1 variate with
α = 1 and b = 0, because FY (y) = exp(−e−y). Therefore, the qth quantile of Xmax can
be evaluated as

ξq = b − α ln

[
ln

(
1

q

)]
= b + αy, (7.2.23)

where y is the reduced variate of Eq. (7.2.5). The cartesian plane with coordinates y and
ξ is useful to represent the behavior of the EV1 distribution. Because this distribution
plots as a straight line, it is often referred to as a Gumbel probability plot, as shown in
Fig. 7.2.8.
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Another type of standardization can be introduced by combining Eq. (7.2.23) with
Eqs. (7.2.19) and (7.2.20) to obtain an inverse formulation similar to that usually adopted
for the normal distribution. Thus,

ξq = μ − σ

{√
6

π

[
ne + ln

(
ln

1

q

)]}
= μ + σ K , (7.2.24)

where K is called the frequency factor (Chow, 1951); this plays the same role as the
standard normal deviate, because it is a (nonlinear) function of the probability of nonex-
ceedance. The design value of a given EV1 distributed largest value variate has to be
selected on the basis of a specified return period, say, T . As shown in Subsection
4.1.4, the return period is related to the probability of exceedance of the variate as
T = 1/ Pr[Xmax > x]. Therefore, the T -year event will be given by the qth quantile of
Xmax for q = 1 − 1/T . When the parameters α and b are known, Eq. (7.2.23) yields

xmax(T ) = b − α ln[ln(1/q)] = b − α ln

[
ln

(
T

T − 1

)]
, (7.2.25)

where xmax(T ) denotes the required design value. Also, from Eq. (7.2.24),

xmax(T ) = ξq = μ − σ

{√
6

π

[
ne + ln

(
ln

1

q

)]}

= μ − σ

{√
6

π

[
ne + ln

(
ln

T

T − 1

)]}
, (7.2.26)

in which the mean, μ, and the standard deviation, σ , are used to predict the design value,
and, as already stated, ne ≈ 0.5772 is the Euler constant.

Example 7.16. Storm rainfall prediction using Gumbel distribution. Consider again
the annual maximum hourly rainfall totals recorded at Genoa University. Substituting the
estimates of Example 7.15 for α and b in Eq. (7.2.25) gives the 10-year hourly design storm
as

xmax(10) = ξ0.9 = 37.47 − 18.52 × ln

(
ln

1

0.9

)
= 79.1 mm.

Figure 7.2.9 shows how the required quantile of Xmax can be predicted as a function of y or
T on a Gumbel probability plot.

Note that the probability of nonexceedance q, the return period T , the reduced variate y,
and the frequency factor K , are mutually related. For instance, the Gumbel variate can be
written as a function of the return period, T , as follows:

y = − ln

[
− ln

(
1 − 1

T

)]
,

which can be approximated by using MacLaurin’s theorem10 as

y = − ln

[
1

T
+ 1

2

(
1

T

)2

+ · · ·
]

≈ ln

(
T 2

T + 1/2

)
,

if only two terms are used. By dividing T 2 by (T + 1/2) one gets

y ≈ ln(T − 0.5),

10 Note that ln(1 − x) = − ∑∞
k=0 (xk+1)/(k + 1), as shown by Eq. (4.1.6b).
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if T is large. For T > 10 years, the error in this approximation is less than 0.5%. For instance,
if the 100-year hourly design storm is required,

xmax(100) = ξ0.99 = 37.47 − 18.52 × ln

(
ln

1

0.99

)
= 122.6648 mm.

And by the approximate method

xmax(100) = ξ0.99 ≈ 37.47 + 18.52 × ln(100 − 0.5) = 122.6649 mm,

which is very close to the exact method.

The method of moments is a convenient procedure for providing estimates of parameters
from a sample of extreme value data. The maximum likelihood (ML) procedure yields,
on the other hand, asymptotically minimum variance estimates which are asymptotically
unbiased, but it requires iterative computations. Alternatively, the method of probability
weighted moments provides satisfactory parameter estimates for the Gumbel distribution
(see Example 3.21).

Example 7.17. Parameter estimation for the Gumbel distribution by the methods of
maximum likelihood and probability weighted moments. Substituting Eq. (7.2.18) for
fX (x) in Eq. (3.2.25) the log-likelihood function becomes

ln L = −
∑ xi − b

α
−

∑
exp

(
− xi − b

α

)
− n ln α,

where xi , i = 1, . . . , n is the sample of the largest value data, and all summations are taken
for i = 1, . . . , n, the size of sample. The partial derivatives of ln L are

∂ ln L

∂α
=

∑ xi − b

α2
−

∑ xi − b

α2
exp

(
− xi − b

α

)
− n

α
,

and

∂ ln L

∂b
= n

α
−

∑ 1

α
exp

(
− xi − b

α

)
.

The ML estimators, α̃ and b̃, of the parameters are obtained by setting ∂ ln L/∂α = 0 and
∂ ln L/∂b = 0. From the second equation,

exp

(
b̃

α̃

)
= n∑

exp(−xi/α̃)
,

which is used in the first equation to obtain, after simplifying,

α̃ = x̄ −
∑

xi exp(−xi/α̃)∑
exp(−xi/α̃)

,

where x̄ denotes the arithmetic mean of the sample. This equation has α as the only unknown,
and it must be solved by using numerical iteration. A very simple method (alternative to
Newton-Raphson, for instance) is to estimate an initial value of α by the method of moments,
and then to substitute it in the right-hand side of this equation, to obtain the next trial value.
The third value of α can be made equal to the weighted average of the first and second, and
the equation is used again to obtain a fourth value; here, the most recent value is given a
greater weight. The procedure is repeated until there is no significant difference, and the final
value is substituted for α̃ in

b̃ = α̃ ln

[
n∑

exp(−xi/α̃)

]
.
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Let us consider the 58-year record of annual maximum hourly rainfall at Genoa University,
Italy (see Table E.7.1). The sample mean is 48.16 mm, and the scale and location parameters
estimated by using the method of moments are 18.52 and 37.47 mm, respectively (see Example
7.15). The first iteration is made by using α = 18.52 mm, which yields a second value of
α = 14.30 mm. The new initial value is obtained by using weights of 0.25 for the first, and
0.75 for the second, so obtaining

α = 18.52 × 0.25 + 14.30 × 0.75 = 15.36 mm,

which yields α = 15.47 mm. The new initial value is computed as

α = 15.36 × 0.25 + 15.47 × 0.75 = 15.44 mm.

It is seen that the value obtained from the right-hand side of the equation in α is again 15.44
mm, which is thus taken as the ML estimate of the scale parameter. The ML estimate of the
location parameter is

b̃ = 15.44 × ln

(
58

4.89

)
= 38.37 mm.

Following the procedure shown in Example 3.21, the values of the pwms are found to be
M0 = 48.16 mm (equal to the arithmetic mean) and M1 = 30.32 mm, respectively, The
corresponding parameter estimates are

α̂ = 2M1 − M0

ln 2
= 18.01 mm,

and

b̂ = M0 − neα̂ = 48.16 − 0.5772 × 18.01 = 37.77 mm.

It is seen that the pwm estimates are very close to those estimated by the method of moments
(α = 18.52 mm and b = 37.47 mm; see Example 7.15). The similarities are seen in Fig. 7.2.9.
On the contrary, the ML estimates of α and b are substantially different. For small samples,
it can be argued that the ML procedure gives undue weight to the smaller values; although
this may not be a fair criticism, it should be noted that engineers looking for practical means
of extrapolation tend to give more attention to the larger values in the data.

The Gumbel distribution of the smallest value arising from an initial variate with an
exponential tail can be determined by using the principle of symmetry. The resulting cdf
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Fig. 7.2.9 Gumbel predictions of annual maximum hourly raindfall depth at Genoa University,
Italy.
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is given by

FXmax (x) = 1 − exp[−ex−b/α], (7.2.27)

and the corresponding pdf is

fXmax (x) = 1

α
exp

[
x − b

α
− e(x−b)/α

]
, for −∞ < x < +∞, (7.2.28)

where α and b are the scale and location parameters, respectively. The mean of Xmin is
given by

E[Xmin] = b − neα, (7.2.29)

where ne ≈ 0.5772 denotes the Euler constant. The variance of Xmin is the same as that
for Xmax, given by Eq. (7.2.20). The skewness and the kurtosis coefficients are again two
constants, equal to 1.1396 and 5.400, respectively, as for Xmax.

If the first two moments of Xmin are known, the values of the parameters α and b can
be determined from the mean, μ, and the variance, σ 2, of the extreme value population.
From Eq. (7.2.20) one gets

α =
√

6

π
σ. (7.2.30)

And from Eq. (7.2.29)

b = μ + neα = μ + ne

√
6

π
σ. (7.2.31)

This method can be used if a finite sample of the values taken by Xmin is available, such
as the annual minimum river flow for a period of n years at a particular site. One can
compute the values of the parameters α and b by estimating the mean and the variance of
the population based on this sample. Alternatively, the methods of maximum likelihood
and probability weighted moments can provide satisfactory results.

Example 7.18. Low-flow analysis using Gumbel distribution. The mean and standard
deviation of annual minimum flow in the Po River at Pontelagoscuro, Italy, recorded from
1918 to 1978 (see Table E.7.2, column 3) are 554.6 and 190.5 m3/s, respectively. From
Eq. (7.2.30),

α̂ =
√

6

π
σ̂ = 0.780 × 190.5 = 148.5 m3/s

is the estimated scale parameter of the Gumbel distribution as fitted to the data by the method
of moments. From Eq. (7.2.31),

b̂ = μ̂ + neα̂ = 554.6 + 0.5772 × 148.5 = 640.3 m3/s.

The cdf of the EV1 distribution with these values of α and b is shown in Fig. 7.2.10, where
the Gumbel variate for the smallest value,

y∗ = ln[− ln(1 − q)],

is used to represent the frequency level. This distribution is also compared with the distribution
of observed data. The probability that Xmin ≤ 0 is given by

FXmin (0) = 1 − exp(−e−b̂/α̂) = 1 − exp(−e−4.313) = 1 − 0.987 = 0.013.

This is of course not possible for the Po River. Therefore, this distribution is not generally
suitable to model river flows and similar variables.
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Fig. 7.2.10 Gumbel probability plots of extreme value distributions of annual minimum flow in
the Po River at Pontelagoscuro, Italy.

7.2.3 Fréchet distribution

The EV2 distribution was first developed and applied by Fréchet (1927). Hence it is
often referred to as the Fréchet distribution. This distribution results from any underlying
distribution of the Pareto type, that is, in power form. Because the upper tail of other
distributions (for example, the Student’s t , the Cauchy, the log-gamma, and the EV2
itself) converges to the power form for large values of the variable, these distributions
have also the EV1 as limiting distribution. The cdf of the Fréchet distribution is of the
form

FXmax (x) = exp

[
−

( x0

x

)θ
]

, (7.2.32)

for x > 0, and the corresponding pdf is

fXmax (x) = θ

x0

( x0

x

)θ+1
exp

[
−

( x0

x

)θ
]

, (7.2.33)

where x0 > 0 denotes a scale parameter and θ > 0 is a shape parameter.
The moments of order r , which exist only for r < θ , are given by

E
[
Xr

max

] = xr
0�(1 − r/θ ); (7.2.34)

consequently,

E[Xmax] = x0�(1 − 1/θ ), for θ > 1, (7.2.35)

Var[Xmax] = x2
0 [�(1 − 2/θ ) − �2(1 − 1/θ )], for θ > 2. (7.2.36)

Since

V 2
Xmax

= �(1 − 2/θ )

�2(1 − 1/θ )
− 1, for θ > 2, (7.2.37)

the shape parameter only depends on the coefficient of variation (see Fig. 7.2.11).
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Fig. 7.2.11 Coefficient of variation versus the exponent (shape parameter) of the largest value
Fréchet distribution and of the smallest value Weibull distribution.

If the first two moments of Xmax exist and are known, the values of the parameters
x0 and θ can be determined from the mean, μ, and the variance, σ 2, of the extreme
value population. However, using the mean and the coefficient of variation V is relatively
straightforward, because Eq. (7.2.37) indicates that the shape parameter θ depends only on
V . After V is estimated (as the ratio of the sample standard deviation to the sample mean),
Eq. (7.2.37) must be solved via numerical iteration to find θ . Then, using Eq. (7.2.35),
one can estimate the value of the scale parameter,

x0 = μ

�(1 − 1/θ )
. (7.2.38)

If a finite sample of the values taken by Xmax is available—such as the annual maximum
wind velocity for a period of n years at a particular site—one can compute the values of
the parameters from those of the sampling mean and coefficient of variation.

Example 7.19. Estimation of Fréchet distribution for storm rainfall. Consider again
the annual maximum hourly rainfall of Table E.7.1. The sampling mean and coefficient of
variation are 48.16 and 0.493 mm, respectively, as in Example 7.15. The shape parameter of
the Fréchet distribution is found by using the method of moments. From Eq. (7.2.37)

�(1 − 2/θ̂ )

�2(1 − 1/θ̂ )
= 1 + 0.4932,

which is solved by numerical iterations to obtain

θ̂ = 3.62.

Then, from Eq. (7.2.38),

x̂0 = μ̂

�(1 − 1/θ̂ )
= 48.16

�(1 − 1/3.62)
= 38.15 mm.

Figure 7.2.7 shows the cdf of the Fréchet distribution with the above values of x0 and θ on
a Gumbel probability plot. An alternative graphical representation is shown in Fig. 7.2.12,
where the quantiles of the variate are plotted on the logarithmic scale.

It is seen that the Fréchet distribution plots as a straight line on the (y, ln ξ ) plane. This
gives a Weibull probability plot, as discussed shortly.
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Fig. 7.2.12 Log-Gumbel probability plots of extreme value distributions of annual maximum
hourly rainfall at Genoa University, Italy.

The inverse form of the Fréchet distribution is given by the quantile

ξq = x0(− ln q)−1/θ = x0 exp
( y

θ

)
, (7.2.39)

where q is the probability of nonexceedance. Because of the positive exponential form
for θ > 0, ξ increases faster than for the Gumbel distribution, when the reduced variate
y is increased. Therefore, the distribution can be represented by a curve that is concave
upward on a Gumbel probability plot. The quantile estimates of the Fréchet distribution
can be the design value for a given return period. Thus,

xmax(T ) = ξq = x0(− ln q)−1/θ = x0

(
ln

T

T − 1

)−1/θ

, (7.2.40)

where xmax(T ) denotes the required design value.

Example 7.20. Storm rainfall prediction using Fréchet distribution. Substituting the
values of 38.15 mm and 3.62 estimated in Example 7.19 for x0 and θ , respectively, in
Eq. (7.2.40) gives the 10-year hourly design storm:

x̂max(10) = ξ̂0.9 = 38.15 ×
(

ln
1

0.9

)−0.27

= 70.0 mm.

Note that this value is smaller than that predicted by the Gumbel distribution in Example
7.16. Conversely, the 100-year hourly design storm,

x̂max(100) = ξ̂0.99 = 38.15 ×
(

ln
1

0.99

)−0.27

= 132.1 mm,

is larger than that predicted by the Gumbel distribution. This is because the Fréchet distribution
is concave upward on a Gumbel probability plot.

Note that the Gumbel and Fréchet distributions are mutually related through the log-
arithmic transformation. If Xmax is a Fréchet-distributed variate with parameters x0 and
θ , the logarithmic transformation of Xmax will be a Gumbel variate with scale parame-
ter equal to 1/θ , and location parameter equal to ln x0. Because of this relationship, the
Fréchet distribution plots as a straight line on a Log-Gumbel probability plot. The Fréchet
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distribution of the largest value accounts for a lower bound of Xmax, say, ε < x0. The
corresponding cdf is written as

FXmax (x) = exp

[
−

(
x0 − ε

x − ε

)θ
]

, (7.2.41)

with x > ε, and x0 > ε. Since the smallest value Fréchet distribution is defined for nega-
tive values of the variable, this distribution is of little practical interest. Nevertheless, its
properties can be determined by using the principle of symmetry.

7.2.4 Weibull distribution as an extreme value model

The most useful applications of the EV3 (third asymptotic) distribution to practical prob-
lems deal with the smallest values. The cdf of this distribution [as given by Eq. (4.2.16)]
is

FXmin (x) = 1 − exp

[
−

( x

λ

)β
]

, x ≥ 0, (7.2.42)

where the scale parameter λ ≥ 0 is sometimes called the characteristic smallest value, and
the shape parameter β > 0 gives a measure of dispersion. The corresponding pdf is

fXmin (x) = β

λ

( x

λ

)β−1
exp

[
−

( x

λ

)β
]

, x ≥ 0. (7.2.43)

The r th-order moments of Xmin are given by

E
[
Xr

min

] = λr�(1 + r/β), (7.2.44)

which yields

E[Xmin] = λ�(1 + 1/β), (7.2.45)

and

Var[Xmin] = λ2[�(1 + 2/β) − �2(1 + 1/β)]. (7.2.46)

The coefficient of variation depends only on the shape parameter, that is,

V 2
Xmin

= �(1 + 2/β)

�2(1 + 1/β)
− 1; (7.2.47)

this relationship is plotted in Fig. 7.2.11.11

If the first two moments of Xmin are known, the values of the parameters λ and β can
be determined from the mean, μ, and the coefficient of variation, V , of the extreme value
population by solving Eq. (7.2.47) for β via numerical iteration. Then, using Eq. (7.2.45),
one can estimate the value of the scale parameter as

λ = μ

�(1 + 1/β)
. (7.2.48)

11 See also Table C.6. Table C.5 gives the gamma function.
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Fig. 7.2.13 Weibull probability plots of extreme value distributions of annual minimum flow in
the Po River at Pontelagoscuro, Italy.

Example 7.21. Low-flow analysis using Weibull distribution. The mean and coefficient of
variation of annual minimum flow data of Table E.7.2 are 554.6 m3/s and 0.343, respectively.
From Eq. (7.2.47),

�(1 + 2/β)

�2(1 + 1/β)
= 1 + 0.3432,

the numerical solution of which yields β̂ ≈ 3.195. Thus, λ̂ = 619.2 m3/s. The cdf of the
Weibull distribution with these values of λ and β is shown in Fig. 7.2.13, where the Gumbel
variate for the smallest value, y∗ = ln[− ln(1 − q)], is used to represent the frequency level
(Table C.6 gives β̂ ≈ 3.17).

Note that the two-parameter Weibull distribution plots as a straight line on the (y∗, ln ξ )
plane. It is also seen that the Weibull distribution provides a better fit of the observed distri-
bution than the Gumbel distribution.

In many applications of the smallest value distribution of a variate, one may be interested
in its lower limit. Introducing the lower bound ε of Xmin as a parameter, the cdf of the
Weibull distribution is modified as

FXmin (x) = 1 − exp

[
−

(
x − ε

λ − ε

)β]
, (7.2.49)

with x ≥ ε and λ > ε. The pdf of the shifted Weibull distribution is

fXmin (x) = β

λ − ε

(
x − ε

λ − ε

)β−1

exp

[
−

(
x − ε

λ − ε

)β]
, (7.2.50)

and the r th-order moments of (Xmin − ε) are given by

E[(Xmin − ε)r ] = (λ − ε)r�(1 + r/β). (7.2.51)

From Eq. (7.2.51), the mean and variance of Xmin are found as

E[Xmin] = ε + (λ − ε) �(1 + 1/β), (7.2.52)

and

Var[Xmin] = (λ − ε)2[�(1 + 2/β) − �2(1 + 1/β)]. (7.2.53)
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Fig. 7.2.14 Coefficient of skewness versus the exponent (shape parameter) of the smallest value
Weibull distribution.

The skewness coefficient, which is given by

γ1,Xmin = [�(1 + 3/β) − 3�(1 + 2/β)�(1 + 1/β) + 2�3(1 + 1/β)]

[�(1 + 2/β) − �2(1 + 1/β)]3/2
, (7.2.54)

only depends on the shape parameter, β (see Fig. 7.2.14).
In his studies on material strength in fatigue, Weibull (1939) assumed lower bounds,

denoted by ε, on strength and on the number of cycles before which no failure occurs.12

Example 7.22. Fatigue failure analysis using shifted Weibull distribution. After repeated
experiments, the observed number of cycles at failure of steel specimens under reversed
torsion for a given stress is found to be 477.1 on average, with a standard deviation of 36.4
and a skewness coefficient of 0.328. An engineer needs to estimate the lower bound for this
experiment by using the Weibull distribution of the smallest value. Therefore, the estimated
value of the skewness coefficient is used in Eq. (7.2.54) to determine the shape parameter of
the distribution. Accordingly, the numerical solution of

[�(1 + 3/β̂) − 3�(1 + 2/β̂)�(1 + 1/β̂) + 2�3(1 + 1/β̂)]

[�(1 + 2/β̂) − �2(1 + 1/β̂)]3/2
= 0.328

yields β̂ = 2.57. From Eq. (7.2.53),

(λ̂ − ε̂) = σ̂

[�(1 + 2/β̂) − �2(1 + 1/β̂)]1/2

= 36.4

[�(1 + 2/2.57) − �2(1 + 1/2.57)]1/2
= 98.2,

which is substituted for (λ − ε) in Eq. (7.2.52) to obtain

ε̂ = μ̂ − (λ̂ − ε̂) �(1 + 1/β̂) = 477.1 − 98.2 × �(1 + 1/2.57) = 389.9.

That is, the estimate of the lower bound or smallest value of the number of cycles at failure
for the steel specimens is 389.9.

Also, the scale parameter or characteristic smallest value is estimated as,

λ̂ = 98.2 + 389.9 = 488.1.

12 Since this distribution was also applied by Goodrich (1927) to hydrological data, it is sometimes referred to
as the Goodrich distribution.
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The inverse form of the Weibull distribution is given by

ξq = ε + (λ − ε)[− ln(1 − q)]1/β = ε + (λ − ε) exp

(
y∗

β

)
. (7.2.55)

Because of the positive exponential form for β > 0, ξq increases faster than for the Gumbel
distribution, when y∗ is increased. Therefore, the distribution can be represented by a curve
which is concave upward on a Gumbel probability plot for ε > 0. If ε = 0, this becomes a
straight line on a Weibull probability plot. The application of the Weibull distribution with
the lower bound to smallest value data of physical variates must be carefully considered.
For example, if the Weibull distribution is fitted to the low-flow data of Example 7.21,
with a skewness coefficient is 0.617, the parameters estimates obtained by the method of
moments are β̂ = 2.02, λ̂ = 601.9 m3/s, and ε̂ = 186.8 m3/s. Although the lower bound
(186.8 m3/s) is smaller than the smallest observed value of the 61-year sample (275 m3/s),
the existence of this bound should be supported by physical arguments. Nevertheless, as
expected, the introduction of a lower bound to the Weibull distribution gives a better fit
(see Figs. 7.2.10 and 7.2.13).

For completeness, let us consider also the cdf of the Weibull distribution of the largest
value. This can be written as

FXmax (x) = exp

[
−

(
λ − x

λ − ε

)β]
, (7.2.56)

for x ≤ λ, with λ denoting the upper bound of Xmax, ε a location parameter, and β > 0 a
shape parameter. The corresponding pdf is

fXmax (x) = β

λ − ε

(
λ − x

λ − ε

)β−1

exp

[
−

(
λ − x

λ − ε

)β]
, (7.2.57)

and the r th-order moments of (λ − Xmax) are given by

E[(λ − Xmax)r ] = (λ − ε)r �(1 + r/β), (7.2.58)

which can be used to derive the moments and the other statistics of Xmax. Because of the
upper bound λ, this distribution is seldom applied in practice.

7.2.5 General extreme value distribution

The general extreme value (GEV) distribution was applied by Jenkinson (1955 and 1969)
to identify the frequency distribution of the largest values of meteorological data when the
limiting form of the extreme value distribution is unknown. The basic form was introduced
in Eq. (7.2.8). Using three parameters, the cdf of the GEV distribution is given by

FXmax (x) = exp

{
−

[
1 − k(x − ε)

α

]1/k}
, (7.2.59)

where α denotes a scale parameter, ε a location parameter, and k is the shape parameter
introduced in Subsection 7.2.1, which determines the type of the asymptotic tail. We
discussed previously that for k < 0, the GEV represents an EV2 distribution and it is
defined only for x > (ε + α/k); for k > 0, this model becomes the EV3 distribution,
and it is defined only for x < (ε + α/k); the case of k = 0 corresponds to the Gumbel
distribution of Eq. (7.2.17) with scale parameter α and location parameter b.
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Fig. 7.2.15 Coefficient of skewness versus the exponent (shape parameter) of the GEV
distribution.

As in the case of the EV2 distribution, the r th-order moments exist only if k > −1/r .
The mean and variance of the GEV distribution are given by

E[Xmax] = ε + α

k
[1 − �(1 + k)], for k > −1, (7.2.60)

and

Var[Xmax] =
(α

k

)2
[�(1 + 2k) − �2(1 + k)], for k > −0.5, (7.2.61)

respectively. Therefore, the mean is not defined for k < −1, and the variance for k < −1/2.
The coefficient of skewness is given by

γ1,Xmax = sign(k)
−�(1 + 3k) + 3�(1 + k)�(1 + 2k) − 2�3(1 + k)

[�(1 + 2k) − �2(1 + k)]3/2
, for k > −1/3,

(7.2.62)

where sign(k) = +1 for k > 0 and sign(k) = −1 for k < 0, while it is not defined for
k < −1/3; therefore, one notes that the shape parameter only depends on the coefficient
of skewness if the third moment exists (see Fig. 7.2.15).

If the first three moments of Xmax exist and are known, the values of the three parameters
ε, α, and k can be determined from the mean, the variance, and the skewness coefficient
of the data. Since Eq. (7.2.62) indicates that k only depends on the coefficient of skewness
for k > −1/3, one can solve this equation in k by substituting the sampling skewness
coefficient. Then, from Eq. (7.2.61) the scale parameter is found as

α =
√

k2σ 2

�(1 + 2k) − �2(1 + k)
, (7.2.63)

where the sample variance is substituted for σ 2 = Var[Xmax]. Finally, the location param-
eter is computed from

ε = μ − α

k
[1 − �(1 + k)], (7.2.64)

where the sample mean is substituted for μ.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:22

Frequency Analysis of Extreme Events 437

Example 7.23. Estimation of GEV distribution for storm rainfall data. The mean, vari-
ance, and coefficient of skewness for the annual maximum of hourly rainfall total which are
estimated from the 58-year record at Genoa University, Italy (as given in Table E.7.1 and
used in Example 7.15) are 48.16 mm, 564.33 mm2, and 1.501, respectively. To estimate the
shape parameter of the GEV distribution by the method of moments, the sampling skewness
is used in Eq. (7.2.62), which is then solved for k by numerical iteration. Thus, k̂ = −0.05.
Then, from Eq. (7.2.63),

α̂ =
√

k̂2σ 2

�(1 + 2k̂) − �2(1 + k̂)
=

√
0.0025 × 564.33

�(1 − 0.10) − �2(1 − 0.05)
= 17.27 mm,

and, from Eq. (7.2.64),

ε̂ = μ̂ − α̂

k̂
[1 − �(1 + k̂)] = 48.16 − 17.27

(−0.05)
[1 − �(1 − 0.05)] = 37.30 mm.

Note that the GEV distribution, as applied here, corresponds to the EV2 type. However,
the estimated k is very different from the value of −1/θ found in Example 7.19 where the
Fréchet distribution was used. This is because of the introduction of a location parameter ε.
Figure 7.2.7 shows the cdf of the GEV distribution with the above values of α, ε, and k as
plotted on a Gumbel probability plot; the same distribution is shown in Fig. 7.2.12 which is
a Weibull probability plot.

Example 7.24. Estimation of probability distribution for flood flow data. The GEV
distribution for storm rainfall data of Example 7.23 has a negative exponent, signifying that
it has a heavier tail than the exponential. This often occurs in the largest value analysis of
several physical variables, such as storm rainfall, temperature, flood discharge, and snow
cover. However, there are exceptions to the general rule when the skewness coefficient is not
significant. For example, consider the data of annual maximum flow in the Po River observed
at Pontelagoscuro, Italy, from 1918 to 1978 (see Table E.7.2). The mean, standard deviation,
and skewness coefficient of the data are 5408 m3/s, 4627 m3/s, and 0.0882, respectively.
If we fit a GEV distribution to this data the k value is 0.008. Because this is very close
to k = 0, a Gumbel distribution was fitted with α = 353.0 and b = 4626.9. The Gumbel
probability plot is shown in Fig. 7.2.16 for which the Weibull plotting position was used as in
Example 7.15.

The GEV distribution provides, as intended, a flexible model for extreme value data when
compared to the Gumbel and the Fréchet distributions. Note that wind velocities and sea wave
heights often display a lighter tail than the exponential.

The inverse form of the GEV distribution is given by

ξq = ε + α

k
[1 − (− ln q)k] = ε + α

k
[1 − exp(−ky)], (7.2.65)

providing the predicted qth quantile, which is required to determine the design value for
a specified probability of nonexceedance or return period. Figure 7.2.17 shows a plot of
(ξq − ε)/α against y for different values of k. As already emphasized, it is seen that the
curve is concave downward for k > 0, it is linear for k = 0, and it is concave upward for
k < 0. Note that, for k < 0, the rate of increase of (ξq − ε)/α with y is very sensitive to
the value of k.

The design value of a given GEV distributed random variable is associated with a given
return period of exceedance as follows:

xmax(T ) = ξ1−1/T = ε + α

k

[
1 −

(
ln

T

T − 1

)k]
, (7.2.66)

where xmax(T ) denotes the required design value.
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Fig. 7.2.16 Gumbel probability plot of annual maximum flow in the Po River at Pontelagoscuro,
Italy.

Example 7.25. Storm rainfall prediction using the GEV distribution. Substituting the
parameter estimates of Example 7.23 (k̄ = −0.05, α̂ = 17.27 mm, and ε̂ = 37.30 mm) for
k, α, and ε in Eq. (7.2.66) gives the estimated 10-year hourly design storm as

x̂max(10) = ξ0.9 = 37.30 + 17.27

(−0.05)

[
1 −

(
ln

10

9

)−0.05
]

= 78.4 mm.

This value is higher than that predicted by the Fréchet distribution (see Example 7.20), and it
is very close to that predicted by the Gumbel distribution (see Example 7.16), both of which
exclude the location parameter ε. Conversely, the 100-year hourly design storm,

x̂max(100) = ξ0.99 = 37.30 + 17.17

(−0.05)

[
1 −

(
ln

100

99

)−0.05
]

= 126.1 mm.

This is higher than that predicted through the Gumbel distribution, and it is lower than that
predicted by the Fréchet distribution, both of which exclude the location parameter ε.
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Fig. 7.2.17 Values of (ξq − ε)/α predicted by the GEV distribution for different values of
exponent k.
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In Examples 7.18 to 7.25 we used the method of moments. A consistent estimator for the
parameters of the GEV distribution is given by the method of maximum likelihood.13 Also,
the ML estimates are unbiased in large samples, and experience has shown that they do very
well with recorded observations. However, ML estimators cannot always be reduced to
simple formulas, so estimates must be calculated using numerical methods. Moreover, ML
estimators sometimes perform poorly when the distribution of the observations deviates
significantly from the fitted distribution. An alternative method is given by the method of
L-moments, introduced in Section 3.2. The parameters of the GEV distribution are related
to the first three L-moments as

L1 = ε + α

k
[1 − �(1 + k)], (7.2.67a)

L2 = α

k
(1 − 2−k)�(1 + k), (7.2.67b)

L3

L2
= 2(1 − 3−k)

(1 − 2−k)
− 3. (7.2.67c)

After the values of L1, L2, and L3 are estimated from the data, one can solve for k first from
Eq. (7.2.67c). An approximate explicit solution for −0.5 ≤ k ≤ 0.5 is given by Hosking
et al. (1985) as

k = 7.8590

(
2L2

L3 + 3L2
− ln 2

ln 3

)
+ 2.9554

(
2L2

L3 + 3L2
− ln 2

ln 3

)2

.

Then, the estimate of α is obtained from Eq. (7.2.67b) as

α = kL2

(1 − 2−k)�(1 + k)
.

Finally, the location parameter is found using Eq. (7.2.67a); that is,

ε = L1 − α

k
[1 − �(1 + k)].

7.2.6 Contagious extreme value distributions

Some extreme events can be described by the maximum (or minimum) value taken by
a sequence of a random number of random variables. Such a concept was introduced in
Section 3.4 (see Example 3.61) by using the concept of contagious distributions. In extreme
value theory, a number of equispaced data points is assumed. The approach adopted here,
however, is somewhat different, because a finite but random number of occurrences is
considered. Let X1, X2, . . . , X N denote a set of independent random variables with a
common distribution FX (x), where x is an observed value and N is the random number
of data points occurring within a fixed period of, say, 1 year. Examples are the number
of floods occurring at a site in a year, the annual number of earthquakes in a region,
and the number of high wind speeds. To define such events, a lower threshold must be
often introduced considering that, for instance, a flood event is defined by the peak flow
exceeding a given level. If pN (n) denotes the pmf of N , the cdf of Xmax can be derived

13 However, the maximum likelihood estimator may not exist for k > 1 (Smith, 1985).
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from that of the Xi s by weighting [FX (x)]n by pN (n) for all possible values n of N .
Thus,

FXmax (x) =
+∞∑
n=0

[FX (x)]n pN (n). (7.2.68)

A probabilistic model useful for counting the occurrences of extreme events is the
Poisson distribution. Under the assumption that N is Poisson distributed with pdf given
by Eq. (4.1.7), one has

FXmax (x) =
+∞∑
n=0

[FX (x)]n vne−v

n!
=

+∞∑
n=0

[v FX (x)]ne−v

n!

= e−v[1−FX (x)]
+∞∑
n=0

[v FX (x)]ne−v FX (x)

n!
,

where v denotes the mean number of occurrences in a given time period, such as 1 year.
The sum of the series on the right-hand side of the above equation is unity because the
pdf of a Poisson variate with parameter v FX (x) sums to unity over all its possible values.
Therefore,

FXmax (x) = e−v[1−FX (x)], (7.2.69)

where 1 − FX (x) = Pr[X > x] is the probability of exceedance of the underlying variable.
For example, if X is a shifted exponentially distributed variate, say,

FX (x) = 1 − exp[−λ(x − ε)], (7.2.70)

with λ > 0 denoting the scale parameter, ε the location parameter and x ≥ ε, the distri-
bution of Xmax is obtained from Eq. (7.2.69) as

FXmax (x) = exp[−ve−λ(x−ε)] = exp[−e−λ(x−ε−λ−1 ln v)]. (7.2.71)

This is a Gumbel distribution with scale parameter 1/λ, and location parameter equal to
ε + λ−1 ln v .

Example 7.26. Flood occurrence and peak discharge. In Table 1.1.1 the number of flood
occurrences a year recorded from 1939 to 1972 at the gauging station of Calamazza on the
Magra River, Italy, is reported. A flood occurrence is defined as the event of river discharge
exceeding 300 m3/s. Because 133 floods were observed in a period of 34 years, the average
number of floods per year is estimated as 133/34, that is, 3.91. Thus, the Poisson distribution
with v = 3.91 is taken to describe the count of annual flood occurrences at that site (see
Fig. 7.2.18).

The average discharge of the recorded peak flows exceeding 300 m3/s is 925 m3/s, and
flood discharge is assumed to be an exponentially distributed variate with scale parameter λ;
that is,

FX (x) = 1 − exp[−λ(x − 300)],

for x ≥ 300 m3/s, and FX (x) = 0 for x < 300 m3/s. Since E[X − 300] = 1/λ, the scale
parameter is estimated from

λ̂ = 1

(925 − 300)
= 1

625
= 0.0016 (m3/s)−1.
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Fig. 7.2.18 Cdf of the number of annual occurrences of flood flows exceeding 300 m3/s in the
Magra River at Calamazza between Pisa and Genoa, Italy.

Thus,

FX (x) = 1 − exp[−0.0016(x − 300)].

From Eq. (7.2.71), the cdf of maximum annual flood discharge is found as

FXmax (x) = exp{− exp[−0.0016(x − 300) + ln 3.91]} = exp
(−e−(x−1152)/625

)
,

with x > 300 m3/s. The observed flood flows exceeding a specified level are sometimes
referred to as a peaks over threshold (POT) series in Europe, and as a partial duration series
(PDS) in the United States. Data analysis shows that the accuracy of the Poisson assumption
to model flood occurrences increases with increasing threshold level.

Depending on the common distribution FX (x) of the Xi s, the other asymptotic types
of the largest value distribution can also be derived. If the Xi s have a common Pareto
distribution, say,

FX (x) = 1 −
(a

x

)θ

, (7.2.72)

with x > a, where θ > 0 is a shape parameter and a > 0 a scale parameter, Eq. (7.2.69)
yields

FXmax (x) = exp

[
−v

(a

x

)θ
]

= exp

[
−

(
av1/θ

x

)θ
]

, (7.2.73)

for x > a. This is the Fréchet distribution of Eq. (7.2.32) with shape parameter θ , and
scale parameter x0 = av1/θ , where x0 > 0. Similarly, the GEV distribution is found for
Xi s distributed according to a generalized Pareto distribution, say,

FX (x) = 1 −
[

1 − k

(
x − b

c

)]1/k

, (7.2.74)

with x > b for k < 0, and b ≤ x < b + c/k for k > 0, where k is a shape parameter,
c a scale parameter, and b a location parameter. Substituting Eq. (7.2.74) for FX (x) in
Eq. (7.2.69) yields Eq. (7.2.59) after some manipulations, where α = cv−k , and ε =
b + (1 − v−k)c/k. Note that for k = 0 the generalized Pareto distribution of Eq. (7.2.74)
is a shifted exponential distribution, which leads to a Gumbel distribution with scale and
location parameters equal to c and b + c ln v , respectively.
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Example 7.27. Hurricane winds. Suppose that a 24-year record of wind speeds is available
for a given area affected by hurricanes. The record contains the maximum wind speeds of nine
hurricanes, the average of which is 34 m/s and the coefficient of variation is 0.298. An engineer
wishes to determine the wind speed corresponding to a 50-year return period, and assumes that
the number of hurricanes per year is a Poisson-distributed variate. Thus, v̂ = 9/24 = 0.375.
If the wind speed is a Pareto-distributed variate, the mean and coefficient of variation are
related to the parameters of Eq. (7.2.72) as μ = aθ/(θ − 1) and V 2 = 1/[θ (θ − 2)]. Hence,
for θ > 0,

θ̂ = 1 + (1 + 1/V̂ 2)1/2 = 1 + (1 + 1/0.2982)1/2 = 4.5;

thus,

â = μ̂(θ̂ − 1)/θ̂ = 34 × (4.5 − 1)/4.5 = 26.4 m/s.

Therefore, the estimated scale parameter of the (truncated) Fréchet distribution of annual
maximum wind speed is given by

x̂0 = âv̂1/θ = 26.4 × 0.3751/4.5 = 21.2 m/s.

For q = 1 − 1/T = 1 − 1/50 = 0.98, y = 3.902. From Eq. (7.2.39),

x̂max(50) = x̂0 exp
( y

θ

)
= 21.2 exp

(
3.902

4.5

)
= 50.5 m/s

is the required wind velocity.

This approach has the advantage of accounting for the complete sequence of extreme
events associated with a given physical variable. An example is the highest wind velocity in
a thunderstorm event, which can be modeled as a Weibull-distributed variate (see Example
4.26). If thunderstorms occur as a Poisson process, substituting Eq. (4.2.16) for FX (x) in
Eq. (7.2.69) gives the extreme value distribution of annual maximum thunderstorm wind
speed as

FXmax (x) = exp

{
− exp

[
−

(
x

λ

)β

+ ln v

]}
, (7.2.75)

where λ > 0 and β > 0 are the scale and shape parameters of the underlying Weibull-
distributed maximum wind speed in a thunderstorm, respectively, and v is the average
number of thunderstorms in a year. It is seen that (Xmax)β is a Gumbel-distributed variate
with scale parameter λβ , and location parameter equal to λβ ln v . This distribution is
represented on a Gumbel probability plot by a curve which is concave upward for β < 1,
linear for β = 1, and concave downward for β > 1 (see Fig. 7.2.19).
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Fig. 7.2.19 Values of ξq/λ versus y + ln v predicted by the Poisson-Weibull largest value
contagious distribution for different values of exponent β.
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Extreme values of a design variable can also arise from the combined effect of more
than one physical variable. For example, the maximum annual flood in a river can be
caused by high runoff and snowmelt; and the maximum height of sea waves may be due
to the combined effect of astronomical tides and storm surges. Mixture distributions are
needed to model, for example, extreme wind speeds, if one must distinguish thunderstorm
winds from hurricane and tornado winds, which have different probability distributions.
Assuming m independent sequences of random variables, each of which is associated with
a Poisson-distributed occurrence process with parameter v j , j = 1, . . . , m, gives

FXmax (x) =
m∏

j=1

e−v j [1−FX j (x)]
, (7.2.76)

where FXi (x) denotes the common cdf of the j th component. For example, if two com-
ponents, say, the X1i s and X2i s, are considered that are shifted exponentially distributed
variates, the extreme value distribution is

FXmax (x) = exp
[ − e−λ1(x−ε1−λ−1

1 ln v1) − e−λ2(x−ε2−λ−1
2 ln v2)]

= exp
(
−e− x−b1

α1 − e− x−b2
α2

)
, (7.2.77)

where v1 and v2 denote the mean number of occurrences per year of the X1i s and X2i s,
respectively. This distribution is sometimes referred to as the two-component extreme
value (TCEV) distribution (see Rossi et al., 1984).

Example 7.28. Highest sea waves. An 11-year record of sea storms is available for the
Adriatic Sea in Venice, Italy. The annual maximum height of sea waves for eastern storms
(direction from 45◦ to 100◦ North) is a Gumbel-distributed variate with scale and location
parameters of 0.34 and 2.83 m, respectively. The same distribution is applied to sea wave
heights for northern storms (direction from 100◦ to 160◦ North), and the scale and location
parameters are estimated as 0.51 and 3.15 m, respectively. Denoting the annual maximum
height independent of storm direction by Xmax, Eq. (7.2.77) yields

FXmax (x) = exp
(−e−(x−2.83)/0.34 − e−(x−3.15)/0.51

)
.

This distribution is shown in Fig. 7.2.20 using a Gumbel probability plot.
Assuming that the highest record in a year independent of direction to be a Gumbel variate,

values of 0.43 and 3.62 m are estimated for the scale and location parameters, respectively.

Another type of contagious extreme value distribution is obtained for the extreme value
of variables with model parameters that are themselves random variables. (More about
this concept of parameters follows in Chapter 10.) For example, let the Xi s be Weibull-
distributed variates with common parameters β and λ; we model λ as a random variate
� with known pdf, say, f�(λ). Accordingly, the cdf of X is found using Eq. (3.4.41), and
the extreme value distribution is then determined from Eq. (7.2.68). Let f�(λ) = ηe−ηλ.
From Eq. (3.4.41)

FX (x) =
∞∫

0

{
1 − exp

[
−

(
x

λ

)β]}
ηe−ηλdλ. (7.2.78)

For Poisson-distributed occurrences with parameter v , one obtains

FXmax (x) = exp

⎡⎣−v

+∞∫
0

η exp

(
− xβ + ηλβ+1

λβ

)
dλ

⎤⎦ , (7.2.79)
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Fig. 7.2.20 Gumbel probability plot of annual maximum heights of sea waves in Venice.

which must be solved numerically to compute the probabilities of nonexceedance of
extreme values. This model might be applied, for instance, to highest sea waves, because
the height of the highest wave in a sea storm can be considered to be a Rayleigh variate
(β = 2) with parameter λ depending on the spectral properties of the storm. Assuming
that these properties vary randomly from one storm to another, one can take λ to be
outcome of an exponentially distributed variate � with scale parameter η, and use Eq.
(7.2.79) to evaluate the probabilities of nonexceedance of annual maximum sea wave
heights.

Example 7.29. Avalanche size. Snow has some complex properties such as density, cohe-
sion, and angle of internal friction. If snow falls continuously and accumulates over a long
slope, at some critical depth of snow, the frictional resistance of the sloping surface will be
overcome and movement of the snow mass will commence. An avalanche is a large mass of
snow that moves on a mountain slope causing destruction in its wake.

It is assumed that avalanches in a given mountain area occur as Poisson events and their
size (volume of detached snow) is an exponentially distributed variate X with parameter λ.
This parameter depends on local topography. Let us assume that it varies uniformly in a
particular study area from a = 0.001 m−3 to b = 0.01 m−3. Thus,

FX (x) =
b∫

a

1 − e−λx

b − a
dλ = 1 − e−ax − e−bx

(b − a)x
,

and the associated extreme value cdf is given by

FXmax (x) = exp

[
−v

e−ax + e−bx

(b − a)x

]
,

where v is the average number of avalanches occurring in the area in a year. If v = 9,
one has

FXmax (x) = exp

[
−9

e−0.001x + e−0.01x

(0.01 − 0.001)x

]
= exp

(
− e−0.001x + e−0.01x

0.001x

)
,

which is shown in Fig. 7.2.21 on a Gumbel probability plot. Note that this distribution plots
as a concave upward curve.
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Fig. 7.2.21 Gumbel probability plot of avalanche volume.

7.2.7 Use of other distributions as extreme value models

In some engineering applications no information is available on an underlying variable,
the largest or smallest value distribution of which may be required. Because a physical
variable can be the result of complex physical processes, the derivation of its extreme value
distribution should account for manifold factors affecting extreme events. In most cases,
it remains undetermined due to inadequate knowledge of these factors, so that an engineer
must infer it from the available extreme value data. Because the three asymptotic forms are
not exhaustive, and the convergence to a limiting case can be quite slow, other parametric
distributions should also be considered. Here the problem may be one of selecting a
distribution from among a number of contending mathematical models when no single
one is preferred on the basis of the physical characteristics of the phenomena. In practice,
lognormal, gamma, and Pareto distributions are among those that have been applied to
extreme value data.

The lognormal distribution, which is discussed in Subsection 4.2.7, has been success-
fully applied to largest values of hydrologic, meteorologic, and climatic data. One could
assume that these extremes result from the joint multiplicative action of a vast number of
meteorological and geographical effects. If this number is infinitely large, ln Xmax is the
sum of an infinite number of variables, and, accordingly, it is normally distributed by the
Central Limit Theorem and its extensions to the sum of dependent variables. However, it
is likely that the interactions of the contributory effects are manifold, such as of additive,
multiplicative, exponential, and power types. Therefore, the lognormal distribution can
provide only an approximation to real-world situations, just as when other theoretical
distributions are applied to extreme events.

The pdf of the lognormal distribution is given in Eq. (4.2.27). In practice, the shifted
lognormal distribution is often adopted as an extreme value model, where a location
parameter is introduced to account for the presence of an inner cutoff of the variate. The
cdf of the shifted lognormal distribution is given by

FXmax (x) =
x∫

ε

1

uσln(X−ε)

√
2π

exp

{
−1

2

[
ln(u − ε) − μln(X−ε)

σln(X−ε)

]2
}

du, (7.2.80)

with x > ε, where ε is the location parameter, μln(X−ε) is the mean of ln(Xmax − ε), and
σln(X−ε) is the standard deviation of ln(Xmax − ε). For ε = 0, the lognormal distribution is
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signified. This distribution is sometimes referred to as Gibrat-Galton distribution because
it was first introduced by Galton (1875) and it was applied to storm data by Gibrat (1932).
The inverse form is not explicit, so that numerical methods are used to find design values
for a specified probability of nonexceedance. By introducing the standard normal variate,
we can evaluate the qth quantile as

ξq = ε + exp
(
μln(X−ε) + �−1

q σln(X−ε)
)
, (7.2.81)

where �−1
q is the qth quantile of the standard normal variate. If the inner cutoff ε is

known from physical reasoning, the estimation of μln(X−ε) and σln(X−ε) by the method of
moments can be made by using Eq. (4.2.28). When ε too must be estimated from the data,
the method of moments can be developed as follows. Since the standard deviation and the
skewness coefficient of Xmax − ε equal those of Xmax, these are in turn estimated by the
corresponding sampling statistics. The skewness coefficient of Xmax can be thus written
as

γ1 = 3
σX−ε

μX−ε

+
(

σX−ε

μX−ε

)3

= 3
σX

μX−ε

+
(

σX

μX−ε

)3

= 3
σ

μ − ε
+

(
σ

μ − ε

)3

,

where μ, σ , and γ1 denote the mean, the standard deviation, and the skewness coefficient
of Xmax, respectively. The numerical solution of

γ1(μ − ε)3 − 3(μ − ε)2σ − σ 3 = 0, (7.2.82)

for ε yields the required estimate of the location parameter. From Eq. (4.2.28b),

σln(Xmax−ε) =
√

ln

[
1 +

(
σ

μ − ε

)2]
(7.2.83)

and

μln(Xmax−ε) = ln(μ − ε) − 1

2
ln

[
1 +

(
σ

μ − ε

)2]
. (7.2.84)

For ε = 0, Eqs. (7.2.83) and (7.2.84) provide the parameter estimates for the lognormal
distribution.

Example 7.30. Storm rainfall analysis using lognormal and shifted lognormal distri-
butions. An engineer wishes to compute the 100-year maximum hourly rainfall depth from
the data of Table E.7.1, for Genoa University, Italy, using the lognormal and shifted log-
normal models. The sample mean, standard deviation, coefficient of variation, and skew-
ness coefficient of the data are 48.16 mm, 23.76 mm, 0.493, and 1.501, respectively, as in
Example 7.23. For ε = 0, Eqs. (7.2.83) and (7.2.84) yield

σ̂ln(Xmax) =
√

ln(1 + 0.4932) = 0.467

and

μ̂ln(Xmax) = ln(48.16) − 0.5 ln(1 + 0.4932) = 3.766,

respectively. From Eq. (7.2.81), the estimated 100-year rainfall depth

x̂max(100)=exp
(
3.766 + �−1

0.99 × 0.467
)=exp(3.766 + 2.326 × 0.467)=127.9 mm.

If the shifted lognormal distribution is used, Eq. (7.2.82) is written as

1.501(48.16 − ε̂)3 − 3 × 23.76 × (48.16 − ε̂)2 − 23.763 = 0,
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Fig. 7.2.22 Gumbel probability plots of annual maximum hourly rainfall at Genoa University,
Italy.

the numerical solution of which yields ε̂ = −2.75 mm. This value is substituted for ε in
Eqs. (7.2.83) and (7.2.84) to obtain

σ̂ln(Xmax−ε) =

√√√√ln

[
1 +

(
23.76

48.16 + 2.75

)2]
= 0.444,

and

μ̂ln(Xmax−ε) = ln(48.16 + 2.75) − 1

2
ln

[
1 +

(
23.76

48.16 + 2.75

)2]
= 3.832.

Note that the estimated negative value of the location parameter is physically unrealizable
and should be set to zero (but is included here merely for comparative purposes). From
Eq. (7.2.81),

x̂max(100) = −2.75 + exp(3.832 + 2.326 × 0.444) = 126.8 mm.

The cdfs of the lognormal and the shifted lognormal models are shown in Fig. 7.2.22. Both
distributions are concave upward on the Gumbel probability plots shown.

The gamma distribution14 is sometimes used in the analysis of observed extreme value
data. Introducing an inner cutoff level usually improves the fit to the data. The shifted
gamma distribution, which is also referred to as Pearson Type III distribution, is determined
by using the same procedure adopted above to derive the shifted lognormal distribution. If
ε denotes a location parameter, (Xmax − ε) is a gamma-distributed variate with cdf written
as

FXmax (x) =
x∫

ε

λr (u − ε)r−1

�(r )
exp[−λ(u − ε)]du (7.2.85)

14 See Subsection 4.2.3.
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with x > ε, where λ is a scale parameter, r is a shape parameter, and ε is a location
parameter.15 To obtain the qth quantile, numerical computations are required. This is
done by using the standard gamma distribution with cdf

FW (w) = G(w) =
w∫

0

�−1(r )zr−1 exp(−z)dz, (7.2.86)

which is widely tabulated.16 Thus,

ξq = ε + G−1
q (r )

λ
, (7.2.87)

where G−1
q (r ) denotes the qth quantile of the standard gamma variate (see Fig. 7.2.23).

If ε is known from physical reasoning, Eqs. (4.2.12) provide the shape and scale parame-
ters of the shifted gamma distribution from the mean and standard deviation of (Xmax − ε).
When ε must be estimated from the data, the estimators by the method of moments are

r = 4γ −2
1 , (7.2.88)

λ = 2

σγ1
, (7.2.89)

and

ε = μ − r

λ
= μ − 2σ

γ1
, (7.2.90)

respectively.

15 The pdf is given by Eq. (4.2.11) but a (x − ε) modification is necessary.
16 As shown in Subsection 4.2.3, one can use the tables of the chi-squared distribution (see Table C.3) or a
computer algorithm for the purpose.
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In applications to extreme value data, the logarithmic transformation of the variate is
often taken. The resulting distribution is known as the log-Pearson Type III distribution,
which was recommended previously for flood frequency analysis by the American Water
Resources Council (however, some recent publications by the U.S. Geological Survey are
based on the GEV distribution). The cdf of the log-Pearson Type III distribution is written
as,

FXmax (x) =
x∫

ε

λr (ln u − ε)r−1

u�(r )
exp[−λ(ln u − ε)]du, (7.2.91)

with x > ε, where λ denotes a scale parameter, r a shape parameter, and ε a location
parameter. The qth quantile is obtained from the corresponding quantile of the standard
gamma variate as

ξq = exp

[
ε + λG−1

q (r )

λ

]
. (7.2.92)

When ε is known, the estimation of λ and r by the method of moments can be easily
performed by computing the mean and standard deviation of ln(Xmax − ε). If it must
be estimated from the data, the parameter estimates by the method of moments can be
computed by substituting the sample mean, standard deviation, and skewness coefficient
of ln(Xmax) for μ, σ , and γ1, respectively, in Eqs. (7.2.88) to (7.2.90).

Example 7.31. Storm rainfall analysis using gamma, shifted gamma, and log-Pearson
Type III distributions. Consider again the data sample of Table E.7.1, for Genoa University,
Italy. The mean, standard deviation, and skewness coefficient of these data are 48.16 mm,
23.76 mm, and 1.501, respectively, as in Example 7.30. An engineer wishes to compute the
100-year maximum hourly rainfall depth using the gamma, shifted gamma, and log-Pearson
Type III models. The shape and scale parameters of the gamma distribution are estimated
by the method of moments by substituting the sample mean and standard deviation of Xmax,
respectively, for μ and σ in Eq. (4.2.12). Thus,

r̂ = μ̂2
X

σ̂ 2
X

= 48.162

23.762
= 4.11,

and

λ̂ = μ̂X

σ̂ 2
X

= 48.16

23.762
= 0.0853 mm−1,

respectively. For q = 0.99, the 99% quantile of the standard gamma variate is G−1
0.99(4.11) =

10.220; this can be approximated from Table C.3 (as shown in Example 4.23). This value is
used to estimate the 100-year rainfall depth for the gamma model. From Eq. (7.2.87),

x̂max(100) = G−1
q (r )

λ̂
= 10.220

0.0853
= 119.8 mm.

From Eq. (7.2.90), the location parameter ε of the shifted gamma distribution is estimated
using the mean, standard deviation, and skewness coefficient of Xmax. Thus,

ε̂ = μ̂ − 2σ̂

γ̂1
= 48.16 − 2 × 23.76

1.501
= 16.52 mm.

From Eq. (7.2.88),

r̂ = 4

γ̂ 2
1

= 4

1.5012
= 1.77,



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:22

450 Applied Statistics for Civil and Environmental Engineers

and, from Eq. (7.2.89)

λ̂ = 2

σ̂ γ̂1
= 2

23.76 × 1.501
= 0.0561 mm−1.

The estimated 100-year rainfall depth for the shifted gamma model is given by

x̂max(100) = 16.52 + G−1
0.99(1.77)

0.0561
= 16.52 + 6.212

0.0561
= 127.3 mm.

The mean, standard deviation, and skewness coefficient of ln(Xmax) are 3.775, 0.436, and
0.570, respectively, which are used to estimate the parameters of the log-Pearson Type III
distribution. From Eq. (7.2.88),

r̂ = 4

γ̂ 2
1,ln(Xmax)

= 4

0.5702
= 12.31;

from Eq. (7.2.89)

λ̂ = 2

σ̂ln(Xmax)γ̂1,ln(Xmax)
= 2.0

0.436 × 0.570
= 8.048;

and, from Eq. (2.7.90),

ε̂ = μ̂ln(Xmax) − 2σ̂ln(Xmax)

γ̂1,ln(Xmax)
= 3.775 − 2 × 0.436

0.570
= 2.247.

Thus,

x̂max(100) = exp

[
2.247 + G−1

0.99(12.31)

8.048

]
= e2.247+21.899/8.048 = 143.4 mm.

The cdfs of these models are shown in Fig. 7.2.22. It is seen that these distributions are
represented by curves that are concave upward on Gumbel probability plots.

Example 7.32. Goodness-of-fit in storm rainfall analysis. If the cdf of a random vari-
able is inferred from the available extreme value data, the comparison between observed
and theoretical frequencies on a probability plot can help in evaluating the goodness-of-fit.
Goodness-of-fit testing procedures are used (as shown in Chapter 5) to compare observed
and fitted cumulative frequencies. Consider again the maximum annual storm rainfall depths
of Table E.7.1. Table 7.2.1 shows the results of the chi-squared, Kolgomorov-Smirnov, and
Anderson-Darling tests for eight extreme value models fitted to this data by the method of
moments.

The tests reject the null hypothesis only in the case of one out of eight models. Although
goodness-of-fit testing procedures can help in discriminating among different mathemat-
ical models when no single one is preferred on the basis of the physical characteristics
of the phenomena, their capability to discriminate among extreme value models is often
poor.

7.2.8 Summary of Section 7.2

In this section we have provided a detailed discussion of distributions applicable to ex-
treme values. These range from the Gumbel to other extreme value models, such as
Frechét and Weibull. We have also introduced contagious distributions. We show how
specific distributions can produce extremes that conform to different types. We extend
the use of extreme value distributions to various natural hazards in the next section, in
addition to those discussed here. A summary of extreme value distributions is given in
Table 7.2.2.
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7.3 ANALYSIS OF NATURAL HAZARDS

7.3.1 Floods, storms, and droughts

Extreme value analysis of hydrological processes plays a relevant role in water resources
planning and analysis, because random variables describing storm rainfall, flood, and low
flows are essential to predict design values in engineering projects.17

The study of extreme values related to floods has a long history. Initially, ancient agricul-
tural nations which depended heavily on water flows realized the economic significance of
floods. Currently, the importance of this natural phenomenon has increased in modern in-
dustrialized countries. Water is a renewable and inexpensive source of energy. Impounded
in reservoirs or diverted from streams, it is essential for irrigating field crops. Furthermore,
one must have a sufficient knowledge of the quantity of water flow to control erosion. It
is widely accepted that life and property need to be protected against the effects of floods.
In most societies a high price is paid to reduce the possibilities of damages arising from
future floods. Indeed, the failure of a dam caused by overtopping is a serious national
disaster. To safeguard against such an event, engineers need to cater for the safe passages
of possible extremely rare floods.

The initial problem is that the historical record of flow data at any particular site does
not extend over an adequately long period. Therefore, some realistic way of extrapola-
tion is sought. One method is to use paleoflood data. However, such records are seldom
available at the site of interest. The study of outliers, which are unexpectedly high values,
provides clues of the tail behavior, so that the model can be applied to the type of events
that a reservoir spillway must be designed to accommodate. Unfortunately these items
are too few in many cases to estimate the parameters or to give a representation of the
underlying diverse population. Accordingly, they indicate possible upper limits and do not
usually provide probabilities of exceedance. The term regionalization is used to describe
regional methods that are applied using regional data. This approach provides a means of
extrapolating in space, where space is substituted for time. For this purpose, one defines a
homogeneous region, including the site in question, with many historical data series. There
are drawbacks firstly in defining a homogeneous region and secondly in accounting for
possible correlation between events at different sites. Solutions are often sought through
empirical methods. Faced with the difficulties encountered, the engineer should make use
of all information available, including single-site streamflow and rain gage data, regional
streamflow data, and any historic and paleoflood data.

It is common practice to choose a parent distribution such as the log-Pearson Type III,
or the general extreme value distribution (which have been used in the United States, and
the United Kingdom, respectively). As an aid to the choice, a histogram or probability
plot can be prepared for each site or a pooled plot for the region in order to perform a
goodness-of-fit analysis.18 Thus a regional curve can be obtained for extrapolating beyond
available sample sizes. Furthermore, one needs to make assumptions about the parameters
of the distribution of maximum flows at different sites.19

17 Extensive reviews of the methods used for analyzing extreme value hydrologic data are given by Kite (1988)
and Stedinger et al. (1992) among others.
18 Large measurement errors can occur in extreme flow data thus affecting the choice of an appropriate cdf of
maximum flows (Rosso, 1985). More importantly, there is often evidence of nonstationarity in the flow regime,
thus giving rise to outliers (Kottegoda, 1984) as already mentioned in the text; in Italy, the two-component
extreme value distribution (Rossi et al., 1984) has been used to resolve this problem.
19 For instance, we might consider the bootstrap applied in Chapter 3 with respect to bias reduction. However,
in relation to distributional assumptions, the procedure is not straightforward.
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To address the problems encountered, three principles have been suggested for improv-
ing extreme flood estimation (Committee on Techniques for Estimating Probabilities of
Extreme Floods, 1988). These principles can be summarized as: (1) substitution of space
for time; (2) introduction of a so-called structure into the model by incorporating spatial
stochastic dependence and relationships between regional parameters; and (3) focus on
the extreme right tails of empirical distributions.

In addition, extreme flood analysis should be accompanied by explicit uncertainty anal-
ysis. This includes assessment of model assumptions and errors arising from incorrect
models. Some aspects of uncertainty analysis, such as errors of Type I and Type II, are
discussed in Chapter 5. An assessment of the effects of alternative distributions may
be needed. Types of uncertainty analysis should include Bayesian methods as shown in
Chapter 10.

Example 7.33. Flood frequency estimation for rivers of Italy. The National Research
Council of Italy (2000) proposed regional curves for flood frequency analysis of the form

Q(T )

Qindex
= g(y; �),

where Q(T ) denotes the T -year annual maximum flood flow, y is the standard Gumbel
reduced variate, and Qindex is the index flood, which is taken as the mean annual flood. The
analytical form of function g(y; �) depends on the extreme value distribution adopted to fit
the regional random variable X = Q(T )/Qindex. This approach was pioneered by Natural
Environmental Research Council (1975) for rivers in the United Kingdom and is currently
adopted in several countries; see also Robson and Reed (1999).

Bocchiola et al. (2003) used the GEV distribution to accommodate flood data for Italian
rivers. Accordingly,

Q(T )

Qindex
= ε + α

k
(1 − e−ky),

where the reduced variate y corresponds with Q(T ). This is based on the assumption that
annual maximum floods are GEV-distributed with common coefficients of skewness and
variation, which are estimated from all rivers in the region (see Fig. 7.3.1 for North-West
Italy).
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If all records in Region C are used, these including rivers in the regions of Thyrrenian
Liguria and Northern Appennines, the parameter estimates are k = −0.276, α = 0.377, and
ε = 0.643.

Thus, if the 100-year flood is required,

y(100) = − ln

(
ln

T

T − 1

)
= − ln

(
ln

100

99

)
= 4.600,

so that

Q(100)

Qindex
= 0.643 − 0.377

0.276

(
1 − e0.276×4.600

) = 4.14.

The suggestion was to determine the index flood from basin characteristics (as in previous
studies in the United States and United Kingdom). For this purpose, one can use regression
analysis of Qindex against a number of independent variables representing these characteris-
tics, such as basin area, geomorphologic parameters, and basin soil index. For instance, if
one takes basin area in km2 (AREA) as the only explanatory variable describing catchment
characteristics, the following relationship was found with the flood index:

Qindex = 5.2 AREA0.75.

For the River Bisagno at la Presa in Liguria, for example, with a catchment area of 34.2 km2,

Qindex = 5.2 × 34.20.75 = 73.5 m3/s,

so that the 100-year flood can be estimated as

Q(100) = 5.17 × 73.5 = 304 m3/s.

This simple equation is inaccurate if used in this way. In fact, the estimated Qindex is 94.8 m3/s
from a record of 48 years. Alternatively, one can use the four-variable regression equation
determined for Region C:

Qindex = 0.21 AREA0.897RAIN0.678 ELEV−0.686 SHAP0.285.

In this equation, RAIN is the expected maximum annual hourly rainfall depth in mm, ELEV
is the average elevation of the drainage basin (from a 1:10,000 map) expressed in kilometers;
and SHAP is the dimensionless ratio of basin area to the squared mainstream length. Hence,
after substituting from available data,

Qindex = 0.21 × 34.20.897 × 41.180.678 × 0.413−0.686 × 0.4890.285 = 92.9 m3/s,

so that Q(100) = 4.14 × 92.9 = 385 m3/s. Although this regression provides here a rather
accurate estimate of Qindex, regression methods are usually affected by large uncertainties.
Therefore, methods involving hydrologic models are often used to estimate Qindex in order to
account for runoff generation processes occurring in the catchment.20

The frequencies of precipitation of various intensities and durations are used in the
hydrologic design of structures aimed at controlling storm runoff and floods, such as road
culverts, storm sewers, and small dams, and at preventing erosion and mass movements
on hill slopes. Rainfall frequency analysis provides values of cumulated rainfall at a point
in space for a specified return period and a continuous range of durations. Basin average
rainfall values are usually developed from point rainfall by introducing a reduction factor
for basin areas larger than a typical size of storm cells, say, 10 km2. For a site where
rainfall data are available, frequency analysis is performed by using an extreme value
probability model to represent the annual maximum of rainfall depth recorded over a

20 See, for example, Bocchiola et al. (2003).
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specified duration, say, t . The Gumbel, Fréchet, lognormal, log-Pearson Type III, and
GEV distribution with k < 0 are most frequently adopted.

Because some regularities arise for rainfall depths recorded over various durations,
the variability of storm depth x with duration t for a specified frequency level is often
represented by an empirical relationship in the form

xmax(T ; t) = ξq (t) = ct

tκ + f
, (7.3.1)

where xmax(T ; t) is the design rainfall depth associated with a return period T and duration
t , and c, κ , and f are parameters that depend on location and probability of nonexceedance
or return period.21 To estimate the parameters of the depth-duration-frequency curve
of Eq. (7.3.1), a common procedure is to initially determine the T -year quantiles of
annual maximum storm depth for a given number of durations; then a nonlinear regression
procedure is applied to relate these quantile values with the corresponding durations
according to Eq. (7.3.1). Because this method might yield contradictory results, κ and f
are sometimes constrained as constants for a given location, while c is allowed to vary with
the return period. However, this procedure is somewhat cumbersome, and it is affected by
a certain degree of subjectivity because of the selection of the durations and return periods
to be considered.

An alternative approach is based on the concept of scale invariance, which describes
a physical feature of rainfall fields. Accordingly, annual maximum rainfall depth Xmax

is parameterized by duration t , and the properties of the random variable Xmax(t) are
studied. Denoting by λ > 0 a scaling factor, scale invariance holds if the random variables
Xmax(λt) and λn Xmax(t) have the same probability distribution for tin ≤ t ≤ tout, and tin ≤
λt ≤ tout.22 Here, the values of tin and tout are the inner and outer cutoffs representing the
physical bounds for which scale invariance holds, and n > 0 is a scaling exponent. Thus,

ξq (λt) = ξq (t) λn. (7.3.2)

Without loss of generality, measuring time in units of tin, so that tin = 1, we can write

ξq (t) = ξq (1) tn,

for 1 ≤ t ≤ tout, since ξq (λt) = ξq (1)(λt)n = [ξq (1)tn]λ = ξq (t)λn . Because statistical
scale invariance also leads to the following scaling relationship for the r th-order
moments,

E
[
Xr

max(λt)
] = λrn E

[
Xr

max(t)
]
, (7.3.3)

the coefficients of variation, skewness, and kurtosis of Xmax(t) are independent of the
temporal scale, so that the variability of Xmax(t) with duration can be expressed by a
power law relating the mean annual maximum storm depth to the corresponding duration.
The resulting depth-duration-frequency curves of station precipitation can be expressed
as

ξq (t) = ξ ′
q μ1 tn, (7.3.4)

where ξ ′
q denotes the qth quantile of annual maximum storm depth normalized by its mean

for any duration in the range tin to tout, μ1 is the mean annual maximum storm depth for

21 For example, values of c = 0.55 mm/minute, κ = 0.82, and f = 6.57 minute0.82 are given by Wenzel (1982)
for a return period of 10 years in New York, NY.
22 Statistical scale invariance is defined as Pr[X (λt) ≤ x] = Pr[λn X (t) ≤ x] for any x of X , and it is denoted as
X (λt)dλn X (t) in compact form.
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Table 7.3.1 Estimated r th-order moments and scaling exponents with duration for the
observed annual maximum storm depth at Lanzada in Valtellina, Italy

Values of E[X ′r
max(t)], in mm

t , in hours r = 1 r = 3 r = 6 r = 12 r = 24 η(r ) rη(1)

1 14.00 21.45 30.35 42.10 59.13 0.457 0.457
2 211.21 484.65 961.85 1886.67 3704.01 0.910 0.913
3 3423.4 11660.0 31851.4 90313.4 245427.3 1.359 1.370
4 59589 301627 1103476 4624875 17168900 1.803 1.827
5 1113150 8442009 40033446 2.53E + 08 1.26E + 09 2.240 2.284

unit duration, and n is a scaling exponent that depends on location. Note that the curves
determined from Eq. (7.3.4) for different values of q plot as parallel straight lines on the
plane (t , ξ ) when using logarithmic scales. For example, if Xmax(t) is a GEV-distributed
variate,23 one obtains

xmax(T ; t) = ξq (t) =
[
ε + α

k
(1 − e−ky)

]
μ1 tn, (7.3.5)

where ε, α, and k are the location, scale, and shape parameters of the GEV distribution
estimated for the normalized annual maximum storm depth, μ1 is the mean value of
annual maximum storm depth for unit duration, and n is the scaling exponent. This can
be determined from the two values of the means of annual maximum storm depth for tin
and tout, the inner and outer cutoff levels.24

Example 7.34. Scaling depth-duration-frequency curves. Table 7.3.1 shows the sample
statistics for annual maximum rainfall totals recorded at Lanzada station in Valtellina, Italy,
for durations from 1 to 24 hours in a period of 50 years. To analyze the scaling properties of
these data, one must search for the exponent η(r ) in the relationship E[Xr

max(t)] ∝ tη(r ), as
shown in Fig. 7.3.2a.

Linear regression of ln E[Xr
max(t)] against ln t is performed for r = 1, . . . , 5, and the

resulting values of η(r ) are given in Table 7.3.1. Since η(r ) does not differ significantly
from nr, with n = η(1) = 0.457, one can assume Eq. (7.3.3) to hold exactly. The scaling
model of rainfall depth with duration is then developed by fitting the Gumbel distribution to
extreme value data for various durations divided by the corresponding mean for the specified
duration (see Fig. 7.3.2b). The resulting estimated values of the scale and location parameters
are α̂ = 0.191 and b̂ = 0.890, respectively. The scaling model of depth-duration-frequency
curves is thus written as

xmax(T ; t) = (b + αy) μ1tn, or xmax(T ; t) = (b1 + α1 y) tn,

where α1 = μ1α, and b1 = μ1b, the estimated value of μ1 from the above regression proce-
dure is 14.0 mm/h0.457. Thus,

xmax(T ; t) = (12.06 + 2.59y)t0.457

23 See, for example, Buishand (1989).
24 Burlando and Rosso (1996) suggest alternative methods for estimating μ1 and n, and provide an extension of
this method to multiscaling rainfall.
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Fig. 7.3.2 Annual maximum storm depth for Lanzada station, northern Italy: scaling of r th-order
moments with duration (a); distribution of normalized data (b), and scaling depth-duration-
frequency curves where points show the predicted quantiles for the specified durations (c).

is the predictive equation required to estimate design rainfall depth for a specified duration.
For example, if T = 5 years is the design return period, q = 0.8 and y = 1.500. The predicted
storm depth for a duration of 6 hours is then found as

xmax(5; 6) = (12.06 + 2.59 × 1.500) 60.457 = 36.36 mm.

This value is close to that of 35.0 mm, which is obtained by fitting the Gumbel distribution
to 6-hour duration data (see Fig. 7.3.2c).

The scaling concept can be useful in other hydrologic applications because it can rep-
resent complex variability using parsimonious statistical models. For instance, scaling
with drainage basin area can be used for flood frequency regionalization using the flood
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index method.25 Also, multiparametric scaling can be introduced to investigate the joint
variability of a random variable in space and time. For example, annual maximum precip-
itation over a drainage basin depends on both storm duration and the area covered by the
storm. Rainfall intensity over a given area generally decreases with increasing duration;
rainfall intensity averaged over a given duration generally decreases with increasing area.
Therefore, duration and area play a combined role in determining the outcomes of the
investigated variable. This can be modeled using the self-affine approach26 to represent
the intensity-duration-area-frequency curves of areal precipitation.27

Droughts and associated water shortages play a fundamental role in human life and their
analysis is needed in environmental and civil engineering. Low-flow statistics are used in
water supply planning to determine allowable water transfers and withdrawals, and they
are needed in allocating waste loads and in siting treatment plants and sanitary landfills.
Frequency analysis of low flows is necessary to determine minimum downstream release
requirements from hydropower, water supply, cooling plants, and other facilities.

Although a single variable is often sufficient to characterize maximum flood flows, the
definition of drought and low flows in rivers often involve more than one variable, such
as the minimum flow level, the duration of flows which are less than that level, and the
cumulated water deficit.28 To overcome the problem of evaluating the joint probability
of mutually related variates, a low-flow index can be used, such as the annual minimum
d-day consecutive average discharge with probability of nonexceedance q, say, ξq (d). For
instance, the 10-year 7-day average low-flow index, ξ0.1(7) is widely used with droughts
in the United States (d is 7 and q is taken to be 0.1). A preliminary step in performing low-
flow frequency analyses is the “deregulation” of the low-flow series to obtain “natural”
streamflows. Also, low-flow series should be subjected to trend analysis so that identified
trends can be reflected in frequency analyses. This includes accounting for the impact of
large withdrawals and diversions from water and wastewater treatment facilities, as well
as lake regulation, urbanization, and other factors modifying flow regime.

To estimate ξq (d) from streamflow records, one generally fits a parametric probabil-
ity distribution to the annual minimum d-day consecutive average low-flow data series.
The Gumbel distribution of the smallest value and the EV3 or Weibull distribution is
theoretically plausible for low flows, as shown in Example 7.21. Studies in the United
States and Canada have recommended the shifted Weibull, the log-Pearson Type III, log-
normal, and shifted lognormal distributions based on apparent goodness-of-fit. Moreover,
low-flow data can contain zero values, such as in some arid areas, where zero flows are
recorded more often than nonzero flows. Accordingly, the cdf of a low-flow index, say,
X has a probability mass at the origin, p0, and a continuous distribution for nonzero
values of X , which can be interpreted as the conditional cdf of nonzero values, say,
FX (x |x > 0). Thus,

FX (x) = p0 + (1 − p0)FX (x |x > 0).

The parameters of FX (x |x > 0) can be estimated by any procedure appropriate for com-
plete samples using only nonzero data, whereas the extra parameter p0 denotes the

25 See, for example, De Michele and Rosso (2002).
26 Statistical affinity is defined as X (λa t, λb A)dλ−H X (t, A) with a, b, and H denoting the scaling exponents.
Here X (t, A) is, for example, precipitation intensity delivered by a storm in t hours as averaged over an area of
A square kilometers (De Michele et al., 2001).
27 See, for example, De Michele et al. (2002).
28 Some flood problems, however, require one to evaluate the joint probability distribution of peak flow and
volume for the design flood (see, for example, Bacchi et al., 1992 and De Michele et al., 2005).
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probability that an observation is zero. If r nonzero values are observed in a sample
of n values of data, the natural estimator of the exceedance probability q0 = (1 − p0) of
the zero value or perception threshold is r/n, and p0 = 1 − r/n.

Example 7.35. Annual minimum 7-day flow. The mean and standard deviation of the 7-
day annual minimum flows in the Po River at Pontelagoscuro, Italy, recorded from 1918 to
1978 (see Table E.7.2, column 4) are 579.2 and 196.0 m3/s, respectively, and the skewness
coefficient is 0.338. The estimated values of the parameters of the Gumbel and Weibull
distributions of the smallest value fitted to this data by the method of moments are

α̂ = 152.8 m3/s, b̂ = 667.4 m3/s, and β̂ = 3.26, λ̂ = 646.1 m3/s,

respectively, where the same notation of Section 7.2 is used. If the shifted Weibull distribution
is used, one gets

β̂ = 2.556, λ̂ = 1007 m3/s, and ε̂ = −2803 m3/s

(which is unacceptable but given here for comparison).
These three cdfs are shown in Fig. 7.3.3 on a Weibull probability plot for the smallest value,

where the reduced variate y∗ = ln[− ln(1 − q)] is used to represent the frequency level. Note
that the fitted distributions are close to those fitted to the annual minimum daily flow. This
occurs because of the large drainage area of more than 70 × 103 km2.

For the Gumbel distribution, the estimated 10-year 7-day average low flow, ξ0.1(7), is given
by

ξ0.1(7) = ln[− ln(1 − 0.1)] × 152.8 + 667.4 = 323.5 m3/s.

For the Weibull distribution,

ξ0.1(7) = 646.1 × exp

{
ln

[− ln(1 − 0.1)]

3.25

}
= 323.3 m3/s,

However, for the shifted Weibull distribution we get the unacceptable result:

ξ0.1(7) = −2803 + (1007 + 2803) × exp

{
ln

[− ln(1 − 0.1)]

2.556

}
= −1223 m3/s,

given here for completeness.
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Regional regression procedures are employed at ungauged sites to estimate low-flow
statistics by using basin characteristics. In the simple drainage area method, for example,
one estimates a low-flow quantile for an ungauged river site draining an area of A as
(A/Ax )ξ q (d), where ξ q (d) is the corresponding low-flow quantile for a gauging station in
the vicinity which drains an area of Ax . This may be modified by a scaling factor (A/Ax )b,
b < 1, which is estimated by regional regression of quantiles for several gauged sites.

An alternative to d-day averages is the flow duration curve introduced in Subsection
1.1.6 and shown in Example 1.6. This gives the proportions of the time over the whole
record in which different daily flow levels are exceeded, but, unlike ξq (d), it cannot be
interpreted on an annual event basis.

An alternative to d-day averages is the flow duration curve introduced in
Subsection 1.1.6 and shown in Example 1.6. This gives the proportions of the time over
the whole record in which different daily flow levels are exceeded, but, unlike ξq (d), it
cannot be interpreted on an annual event basis.

7.3.2 Earthquakes and volcanic eruptions

Earthquakes pose a severe threat to the built environment. There can be more than 50
potentially destructive earthquakes annually. When they occur close to urban areas, the
consequences are catastrophic. Many types of improperly designed buildings collapse
and, further away, dams, bridges, and transport systems are destroyed.

The magnitude of an earthquake is a measure based on ground motion amplitude ob-
tained from seismographs at a specified distance from the rupture of the crust. A seismo-
graph is a recorded time series of the displacement, velocity, and acceleration experienced
by a particle at the site of the instrument. The associated science is termed seismology;
its field is mainly observational. A well-known measure of the strength of an earthquake
is the Richter scale, which takes a logarithmic basis and classifies earthquakes essentially
on a scale from 0 to 10.29

Alternative definitions of magnitude include the local magnitude and that determined by
seismic waves. The global seismic network can monitor earthquakes occurring anywhere
in the world with a magnitude larger than 4, and many regions in the world have dense
seismic networks that are capable of monitoring earthquakes as small as magnitude 2
or less. The intensity scale provides a primarily qualitative description of earthquake
effects, including human perception and effects on buildings, infrastructures, landscape,
and natural surroundings. For example, the Mercalli–Cancani–Sieberg (MCS) intensity
scale is used in southern Europe, the Medvedev–Sponheuer–Karnik (MSK) intensity scale
in central and eastern Europe, and the modified Mercalli (MMI) intensity scale in the
United States. Also, the European Macroseismic Scale (EMS), developed after significant
contributions by Italian seismologists, is probably a superior tool for describing intensity.
The epicentral intensity data are converted to magnitude using a linear relationship; for
example, epicentral intensities of 6 and 9 as measured in MMI units are associated with
magnitudes of 5 and 7, respectively. However, field data indicate that this relationship is
affected by a certain degree of uncertainty.

Statistical methods play an important role in seismology. Original work was done by
Jeffreys (1967), especially with regard to travel timetables. Later Bolt (1999) pioneered
the use of data from sensors along fault lines. Seismologists are involved with a number
of types of massive data sets with large variability; these include first arrival times, signal
duration, maximum amplitude, and oscillation periods. Their main concern is the risk.

29 No earthquakes with magnitudes greater than 9.5 have been observed.
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Although various statistical relationships have been used to relate the frequency of
occurrence of earthquakes to their magnitudes, the log-linear relationship by Gutenberg
and Richter (1944) is the most generally accepted method. This is written as log(v) =
log(a) − bx ; that is,

v = a10−bx , (7.3.6)

where v denotes the mean number of occurrences of earthquakes in a unit of time, say, a
year, with magnitude greater than x , and the values taken by parameters a and b depend on
the particular area. For example, worldwide data analysis yields a = 108, and b = 1, for
surface-wave magnitude based on surface waves with a period of 20 seconds (Turcotte,
1992). (Note that b is modified into b′ = b ln(10) = 2.3b when taking the natural loga-
rithms instead of logarithms to base 10.) Thus, about ten earthquakes exceeding magnitude
7 are expected each year around the world. A lower bound, say, Xmin, is often introduced to
represent the level of earthquakes below which there is no engineering interest or data are
insufficient, and an upper bound, say, Xmax, to represent the largest possible earthquake
considered for a particular zone. This modifies the Guttenberg-Richter law of Eq. (7.3.6)
to the truncated exponential recurrence relationship, which is written in the form

v = v0
e−b′(x−xmin) − e−b′(xmax−xmin)

1 − e−b′(xmax−xmin)
, (7.3.7)

where v0 is the number of earthquakes equal to the lower bound or larger.
Crustal deformation takes place at the boundaries between major surface plates, and

relative displacements would occur on well-defined faults, which are considered to have
memory. Because the Poisson model is memoryless, one could argue that this model is
inappropriate to account for the occurrences of earthquakes. However, the Poisson model
can be applied in many situations where fault memory actually exists; it is inappropriate
only if the elapsed time between significant events, with memory, exceeds the average
recurrence time between such events (Cornell and Winterstein, 1988). Assuming the annual
number of earthquakes in the study area to be a Poisson variate with mean v , the probability
that no earthquake occurs in a year with magnitude greater than x is e−v . This is also the
probability that the annual maximum magnitude does not exceed a value of X . Thus, the
cdf of annual maximum earthquake magnitude is

FXmax (x) = e−v = exp(−a e−b′x ). (7.3.8)

This is the Gumbel distribution of Eq. (7.2.11) with scale parameter 1/b′, and location
parameter b′−1 ln(a). For worldwide data, b = 1 and a = 108, the scale and location
parameters of the Gumbel distribution are 0.43 and 8, respectively (see Fig. 7.3.4).

This distribution is widely used to predict the annual maximum magnitude of earth-
quakes in a region. For example, values of b = 0.90 and a = 7.73 × 104 are estimated
from the catalog of earthquakes exceeding magnitude 6 in southern California for the
period 1850–1994 as reported by the Working Group on California Earthquakes Proba-
bilities (1995). Thus, the annual maximum of earthquake magnitude in this region can be
estimated using the Gumbel distribution with scale and location parameters of 0.48 and
5.4, respectively.30

30 These estimates are close to the estimated scale and location parameters of 0.49 and 5.8, respectively, by
Lomnitz (1974), from records of annual maximums of earthquake magnitude in southern California for the
period 1932–1962 (see Problem 7.16).
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Fig. 7.3.4 The Gutenberg-Richter law (a) and the corresponding probability distribution of
annual maximum earthquake magnitude (b). The dotted lines show the effect of truncation with
Xmin = 6 and Xmax = 10.

Example 7.36. Earthquake intensity in Rome. The Catalog of Italian earthquakes from
year 1000 to 1980 contains all the available historical information on earthquakes that occurred
in Italy during the past 1000 years. It also includes values of earthquake intensity in terms
of the Mercalli–Canconi–Sieber (MCS) index. Using the data of MCS intensity X for the
metropolitan area of Rome which are reported in Problem 1.22, one estimates the values of
b′ and a in Eq. (7.3.6) by performing the regression of ln v against x . Here v denotes the
observed number of earthquakes with intensity not less than x divided by the number of years
of observation, that is, 980. Accordingly, b̂′ = 1.10 and â = 4.21 are found. Note that only
intensities greater than 2 are considered (see Fig. 7.3.5).

Accordingly, the Gumbel distribution for the annual maximum earthquake MCS intensity
of Eq. (7.3.8) has parameters 1/b̂′ =0.91, and b̂′−1ln(â) =1.3 for this area. Because of linearity
between intensity and magnitude, the corresponding cdf of annual maximum magnitude can
be easily determined.

The total energy in the seismic waves generated by an earthquake can be related to its
magnitude by a log-linear relationship, such as log(E) = 1.44X+ 5.24, for E in Joules.
The strain release during an earthquake is proportional to the moment of the earthquake,
which can also be related to its magnitude by using either a heuristic linear relationship
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Fig. 7.3.5 Mean number of earthquakes per year for the metropolitan area of Rome with an MCS
intensity greater than a specified value.
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or a theoretical log-linear law. The area of the rupture is also related to the moment by a
power law.31

Example 7.37. Earthquake area of rupture. Assume that the moment z of an earthquake
is related to its magnitude x by

log(z) = d + cx and by log(z) = log(α) + ε log(w)

to the area of rupture w , where c, d, α, and ε are known parameters. Thus,

x = log(z)/c − d/c = ε log(w)/c + log(α)/c − d/c,

which is substituted for x in the Guttenberg-Richter law to obtain

log(v) = log(a) − bε log(w)/c − b log(α)/c + bd/c, that is, v = kw−θ ,

where θ = bε/c is a scaling exponent, and log(k) = log(a) − b log(α)/c + bd/c is a constant.
Using a value of 1.5 for both c and ε as indicated, for instance, by Kanamori and Anderson
(1975), the value of θ is found to be unity for worldwide data with b = 1. Therefore, the annual
number of worldwide earthquakes with area of rupture larger than w is inversely proportional
to the area of rupture. In zoning seismic risk, the value of the scaling exponent equals the
scale factor of the corresponding Guttenberg-Richter law, that is, θ = b. For instance, one
gets θ = 0.9 for southern California, and θ = 1.1/2.3 = 0.48 for the metropolitan area of
Rome.32 The corresponding cdf of the annual maximum area of rupture is

FWmax (w) = exp(−kw−θ ),

which is the Fréchet distribution with shape parameter θ , and scale parameter equal to k1/θ .

The assessment of seismic hazard for a given site requires the evaluation of ground
motion acceleration at that site (see Problem 1.1). This can be determined by combining
intensity or magnitude of earthquakes in the region with the attenuation of epicentral
magnitude or intensity for a specified probability distribution of the distance from the
epicenter. Therefore, one must determine the spatial distribution of epicentral distance for
the earthquakes of the region, which is dictated by active faults or point sources if they
are present in the region. Alternatively, a uniform or other probability distribution is used.

Volcanoes are the manifestation of a thermal process situated deep inside the earth from
which heat is not easily emitted by conduction and radiation. A volcano is formed as part of
the heat eviction process, where the earth’s crust opens and magma, a molten rock material
that results in igneous rocks on cooling, reaches out from enormous pressure chambers.
The magma comes out as lava usually accompanied by an avalanche of hot gases, steam,
ash, and rock debris. Some volcanoes seem to have erupted only once, whereas others are
known to have had several eruptions.

Because various types of volcanic eruptions require particular quantitative approaches, it
is considerably more difficult to quantify a volcanic eruption than an earthquake. Volcanoes
have a wide spectrum of sizes, and eruptions from a single volcano have many variations.
Some eruptions produce mainly ash, or tephra, whereas others yield primarily liquid rock,

31 The works by Cornell (1968) and McGuire (2005 are of seminal importance. Furthermore, the books by
Gutenberg and Richter (1954), Lomnitz (1974), Lomnitz and Rosenblueth (1976), Reiter (1990), Turcotte
(1992) and Vere-Jones (1992), among others, provide excellent reviews of probabilistic seismic analysis, and
give exhaustive references on these topics. These relationships can be used to determine the distribution of these
variables from that of magnitude using the concept of a function of a random variable. Also, Lomnitz (1994)
deals with earthquake predictions and Naeim (1989) provide improved seismic designs.
32 This is because of linearity between intensity and magnitude.
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Fig. 7.3.6 Mean number of volcanic eruptions per year with a volume of tephra larger than a
specified value.

or magma. The volume of tephra or magma in an eruption depends on circumstances that
are poorly understood. Using the volume of tephra as a measure of size, McLelland et
al. (1989) give frequency-volume statistics for volcanic eruptions during the period from
1975 to 1985 and for historic eruptions of the last 200 years. Using this data, Turcotte
(1992) shows that the mean number v of eruptions per year, with a volume of tephra larger
than x , varies according to a power law; that is,

v = cx−d , (7.3.9)

where d = 0.71, and c = 0.14 for the volume of tephra measured in cubic kilometers (see
Fig. 7.3.6).

Assuming that the number of eruptions in a year is a Poisson variate with mean v , the
probability that no eruptions occur in a year with tephra volume larger than x is e−v . This
probability is also the probability that the maximum tephra volume of a volcanic eruption
in a year does not exceed a value of x . Thus, the cdf of annual maximum tephra volume
is found as

FXmax (x) = e−v = exp(−cx−d ). (7.3.10)

This is the Fréchet distribution with shape parameter d and scale parameter c1/d .

7.3.3 Winds

About 70% of total claims by insurers concern windstorms. Hurricane Andrew, for in-
stance, devastated the Gulf Coast of United States in 2002 and led to a record sum of $17
billion in insurance losses. Consequent to different natural hazards, earthquakes and wind-
storms account for most human fatalities. In the design of tall structures and long-span
bridges, engineers provide resistance to counter the effects of high-speed winds.

Structural engineers use the extreme or fastest values of wind speed with return periods
such as 50 years for most permanent structures, 25 years for structures having no human
occupants or where there is a negligible risk to human life, and 100 years for structures
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with an unusually high degree of hazard of life and property in case of failure. Because
the probability law describing extreme wind speed applies to homogeneous micromete-
orological conditions, one must consider initially the averaging time, the height above
ground, and the roughness of the surrounding terrain before using a specified probability
law to represent wind data. If different sampling frequencies were used to collect the data,
the whole sample must be adjusted to a unique averaging time, such as a period of 5 min-
utes. If the anemometer elevation changed during the recording period, the data must be
adjusted to a common value (for example, 10 m above ground) using a logarithmic law to
represent vertical profile of wind speed. Similarity models must be used to adjust wind data
from different nearby locations to a common uniform roughness over a distance of about
100 times the elevation of the instrument; in addition, sheltering effects and small-scale
wind obstacles must be properly considered. Finally, in modeling extreme wind speeds the
engineer must also distinguish cyclonic winds from hurricane and tornado winds because
they follow different probability laws.33

In well-behaved climates (with a stationary distribution of extreme winds) the annual
maximum wind speed is often represented by the Gumbel distribution (ANSI/ASCE,
1988). Accordingly, Eq. (7.2.26) is used to predict design wind speeds based on the
estimated mean and standard deviation. For stations with very short records, the analysis
based on the annual maxima often yields poor design estimates, and the maximum wind
in each month is used instead. Thus, the design wind is predicted as

xmax(T ) = μm − σm

{√
6

π

[
ne + ln

(
ln

12T

12T − 1

)]}
, (7.3.11)

where μm and σm denote the mean and standard deviation of the sample of monthly max-
ima, respectively (assuming that there is no significant seasonal variation). An alternative
to the Gumbel distribution is the Fréchet distribution, although appreciable differences
are found only for large return periods, say, greater than 100 years. Because the Weibull
distribution was found to accommodate wind speed data for Europe (Troen and Petersen,
1989), one might also determine the extreme value distribution using either the contagious
distribution approach of Subsection 7.2.6 with a specified threshold or the probability dis-
tribution of continuous wind speed. Such data are usually available as a sequence of time
averages, for example, as 10-minute average wind speeds, and the cdf of the average wind
speed X is taken as

FX (x) = p0 + (1 − p0){1 − exp[−(x/λ)β]} (7.3.12)

for x ≥ 0, where λ and β denote the scale and shape parameters of the Weibull distribution
used to model nonzero values, and p0 is the probability of zero values. The cdf of annual
maximum wind speed Xmax is usually determined using one of two methods.34 The first
one assumes that there are m independent data in a year, so that

FXmax (x) = [FX (x)]m . (7.3.13)

Alternatively,

FXmax (x) = exp[−η fX (x)] (7.3.14)

33 Extensive reviews of methods for determining design wind speed can be found in the books by Simiu and
Scanlan (1986) and Liu (1991).
34 See, for example, Solari (1966).
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Fig. 7.3.7 Annual maximum wind velocity at Forlanini Airport in Milan, Italy. (a) Estimates of
parameters m and η. (b) Gumbel probability plot where the dotted line shows the EV1 distribution
fitted to the annual maximum values by the method of moments.

is used under the assumption that the data in the series are mutually independent.35 The
values of m and η are found by combining the observed frequencies of annual maxima
with the values of FX (x) and fX (x) computed for the xmax(i)s.36

Example 7.38. Extreme wind speed in Milan. The analysis of 10-minute average wind
speed data recorded at the Forlanini Airport in Milan, Italy, from 1951 to 1973 yields
p̂0 = 0.511 and λ̂ = 1.284 m/s, and β̂ = 0.836 (Lagomarsino and Solari, 1995). Using the
maximum annual data shown in Table E.7.4, one fits the values of m and η of Eqs. (7.3.13)
and (7.3.14) by computing the observed frequencies of the xmax(i)’s. From Eq. (7.3.13)

m = ln[FXmax (x)]

ln[FX (x)]
;

then

m̂ = 1

n

n∑
i=1

ln[i/(n + 1)]

ln[p0 + (1 − p0){1 − exp[−(xmax(i)/λ)β ]}] ,

which yields a value of m̂ = 1627 (see Fig. 7.3.7a).
From Eq. (7.3.14),

η = − ln[FXmax (x)]

fX (x)
;

then

η̂ = 1

n

n∑
i=1

ln[i/(n + 1)]

p0 + (1 − p0)(β/λ)(xmax(i)/λ)β−1 exp[−(xmax(i)/λ)β ]
.

This yields a value of η̂ = 3693 (see Fig. 7.3.7a). The Gumbel probability plot of Fig. 7.3.7b
shows the above probability models and Xmax ∼ Gumbel (2.21 m/s, 12.34 m/s) which one
obtains when fitting the EV1 distribution to the annual maximum data by the method of
moments.

35 Equation (7.3.14) descends from the crossing properties of a series of mutually independent identically
distributed variables.
36 Refined methods for estimation of m and η are discussed in Lagomarsino et al. (1992).
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In hurricane regions, the data are a mixture of hurricane and cyclonic winds, so that a sin-
gle probability law cannot adequately model these data.37 The extreme value distribution
results as a mixture between the two underlying distributions, such as the two-component
extreme value distribution of Eq. (7.2.77). For stations having a relatively long record of
hurricanes, say, longer than 50 years, it is often found that some years have more than
one value listed whereas in other years there are none.38 Therefore, one can apply the
contagious distribution approach to model extreme hurricane winds, where the number of
occurrences of hurricanes is a Poisson-distributed variate; and the Pareto distribution, for
example, is used to represent wind speed data (see Example 7.26). The resulting extreme
value distribution of annual maximum winds is

FXmax (x) = exp

[
−e− x−b1

α1 − v2

(a2

x

)θ
]

, (7.3.15)

where α1 and b1 are the scale and location parameters of Gumbel-distributed cyclonic
wind speed as estimated from the annual maxima of cyclonic winds, a2 and θ are the
scale and shape parameters of Pareto-distributed hurricane wind speed, and v2 is the mean
number of annual occurrences of hurricanes.

Example 7.39. Design wind speed. The number of annual occurrences of hurricanes in a
given location is a Poisson-distributed variate with mean 0.375, and the associated wind speed
is a Pareto-distributed variate with shape and scale parameters of 4.5 and 26.4 m/s, respectively
(see Example 7.27). The annual maximum cyclonic (thunderstorm) wind speed is a Gumbel-
distributed variate with mean and standard deviation of 27.5 and 4.3 m/s, respectively. Thus,
the corresponding scale and location parameters are 3.4 and 25.6 m/s, respectively. The cdfs of
extreme thunderstorm and hurricane winds are shown in Fig. 7.3.8 using Gumbel probability
plots.

From Eq. (7.3.15) the cdf of the annual fastest wind speed is found to be

FXmax (x) = exp

[
−e− x−25.6

3.4 − 0.375

(
26.4

x

)4.5]
,

which is also plotted in Fig. 7.3.8. Note that this equation cannot be inverted to compute a
required design value, for example, the 50-year design wind speed. A numerical solution is
therefore found for x with probability of nonexceedance taken as 0.98, so obtaining x̂max(50) =
50.8 m/s. Note that the corresponding quantiles for thunderstorm and hurricane winds are
38.7 and 50.5 m/s, respectively.

The estimation of the probability distribution of the annual maximum tornado wind
speed is affected by larger uncertainties than that achievable for well-behaved climates
and hurricane-prone regions because of the lack of tornado wind speed records.39 To find

37 See, for example, Gomes and Vickery (1977).
38 Because in most cases adequate data are not available, the procedure for performing statistical analysis of
hurricane wind speed is (1) to identify the geographical areas in which hurricanes that are capable of striking
the location (station) considered occur; (2) to set up a physically based simulation model with random variables
described through probability distributions estimated from the data gathered in the area of interest; (3) to generate
series of hurricanes using Monte Carlo simulation (see Chapter 8) in order to produce sufficient data for the
location considered; and (4) to fit an extreme value distribution of hurricane winds to the generated data. Further
developments of this procedure, first introduced by Russel (1971), are given by Batts et al. (1980), Delaunay
(1987), and Sánchez-Sesma et al. (1988) among others.
39 Because the area struck by an individual tornado is very limited, simulation of tornado winds is much more
difficult than that of hurricane winds, due to the length of time required (perhaps centuries) to get sufficient
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this distribution, the probability Pr[A] that a tornado strikes a particular location in a given
year is considered jointly with the conditional probability Pr[W |A] that this tornado has a
wind speed higher than x . Thus, Pr[A] Pr[W |A] is the probability that the annual maximum
tornado wind exceeds the value of x . Since areas of tornado paths are independent of the
tornado intensity, the cdf of the annual fastest tornado wind is usually estimated as Pr[A]
Pr[W ]; that is,

FXmax (x) = 1 − pA pW , (7.3.16)

where pA denotes the strike probability Pr[A] and pW the speed probability Pr[W ]. The
strike probability is generally evaluated from v0a/A0, where a is the average damage area
of a tornado, A0 is a reference area taken as a one-degree longitude-latitude square, and
v0 is the average number of tornadoes per year in the area A0. For example, the estimated
values of pA in the United States are reported over a five-degree longitude-latitude square
grid by Markee et al. (1974), where â is taken as 7.3 km2. The estimation of pW is
generally based on tornado classification associating wind speed with damage potential
and observed effects. For example, the wind speed of tornado gusts in the United States
is approximately a lognormal variate with a mean of about 43 m/s and a coefficient of
variation of 0.38 (Markee et al., 1974). Note that the annual fastest wind speed used in the
analysis of extratropical and hurricane winds must be adjusted by a multiplicative factor
of about 1.2 to account for wind speeds of tornado gusts.

An alternative approach is to consider the occurrence of a tornado in the location of
interest as a Poisson event with parameter v = v0a/A0. This gives

FXmax (x) = exp
{−v0a A−1

0 [1 − FX (x)]
}
, (7.3.17)

where FX (x) denotes the cdf of tornado wind speed, and v0, a, and A0 are regional
values.40

data for a given location. Moreover, there is a lack of anemometric data as a result of gauge failures at those
few stations that experience a tornado; the anemometer is often destroyed by such an event. Therefore, the
observations currently available are derived from scales of intensity based on structural damage in the areas hit
(see, for example, Wolde-Tinsae et al., 1985 and Fujita, 1985).
40 Developments of tornado wind-risk analysis are provided by Garson et al. (1975) and Twisdale and Dunn
(1978), among others.
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Example 7.40. Tornado wind speed in the United States. Power plants in the United States
must be designed against tornadoes with exceedance probability p of 10−7. The engineer must
determine the corresponding wind speed for power plants. In the state of Florida, the estimated
tornado strike probability is 1.5 × 10−3. Accordingly, the corresponding design intensity has
a probability of

pB = p/pA = 10−7/1.5 × 10−3 = 6.67 × 10−5.

Assuming that gust wind speed is a lognormal variate X with mean of 43 km/h and coefficient
of variation of 0.38, from Eqs. (7.2.83) and (7.2.84) one obtains σ̂ln(X ) = 0.367, and μ̂ln(X ) =
3.694. The required design quantile is then obtained as

ξ̂ = exp
[
μ̂ln(X ) + �−1

1−p1
σ̂ln(X )

]
= exp[3.694 + 3.821 × 0.367] = 164 m/s.

Note that this value is close to the design value of 160 km/h recommended by the U.S. Nuclear
Regulatory Commission for Region I (Eastern and Central United States) including Florida.

7.3.4 Sea levels and highest sea waves

Sea levels change continuously, taking a variety of scales. In particular, tides, arising
mainly from the gravitational pull of the moon, cause periodic variations. Tides generally
have periods of 12 hours but there can be 24-hour tides of smaller amplitudes. Waves
cause instantaneous quasi-cyclical changes in levees with amplitudes exceeding 10 m in
open seas. Wave action increases with storms. For example, the storm surge caused by
hurricane Katrina on 29 August 2005 in the southern United States reached a record height
of over 9 m. Such effects have to be accounted for in designs.

In offshore and coastal engineering, one should select an appropriate wave height for
design purposes. This requires a statistical analysis of extreme waves. Measurements of
heights of ocean waves have been taken since the 1960s, and a common procedure was
to fit a lognormal distribution to the observed data (Draper, 1963). Subsequently, digital
computers made it possible to simulate the largest storms that occurred at a particular site
using meteorological data. In such cases, the parts of the wave heights attributed to the
storm were estimated, and the peaks over a threshold method were used (Petrauskas and
Aagaard, 1971). The steps in the statistical procedure for extreme wave heights are (1)
to select appropriate data for, (2) to fit a suitable probability distribution to the observed
data, (3) to compute (extreme) values from the fitted distribution, and (4) to compute their
confidence intervals.41

Data selection is a primary issue in this type of analysis. Wave heights vary in time
as a continuous nonstationary process because of periodic (seasonal) variation. Waves
resulting from different physical processes should be modeled separately. In midlatitude
areas, for instance, high waves may arise from different causes, such as tropical and
extratropical storms. In other areas, there may also be differences, mostly because of
fetch (usually concerning maximum distance from land) limitations. One uses mixed
distributions in these conditions. Because of nonstationarity and mixed distributions, the
statistical analysis becomes difficult. Considering such uncertainties, extreme wave heights
from different seasons and different causes should be analyzed separately.

The peaks over a threshold method is generally used to select the sample from the full
data set of wave heights, because the number of annual maxima is most often too small

41 Extensive reviews of the methods used for analyzing extreme sea wave height data are reported by Muir and
El-Shaarawi (1986), Tawn (1993), and Mathiesen et al. (1994), among others.
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to make a reasonable extrapolation of extremes. The choice of the threshold is usually
made on a physical or meteorological basis. The use of weather charts is one method
of determining the number na of significant storm events per year; if there is a seasonal
variation in storms, the threshold is often obtained by stipulating that an average of less
than two storms (which could be a noninteger) are included for the season with only a few
storms in the storm peak data set.

The three-parameter Weibull distribution seems to provide an acceptable fit to significant
wave heights for most oceans and seas. The truncated distribution for storm peaks above
the threshold x0 is given by

FX |X>x0 (x) = FX (x) − FX (x0)

1 − FX (x0)
= 1 − exp

[
−

(
x − b

a

)c

+
(

x0 − b

a

)c]
, (7.3.18)

where a, b, and c are parameters to be estimated from the data. The values of c which
are most frequently found from data analysis range from 1 to 2 and many are close to 1.
Therefore, a truncated exponential distribution can be used as an approximation.42 The
T -year wave height is then computed as the value x satisfying

FX |X>x0 (x) = 1 − τ

T
, (7.3.19)

where τ is the average time between two subsequent storms.
Alternatively, one must consider the annual number of storm occurrences to be a random

variable. If Na is a Poisson-distributed variate with mean v , from Eq. (7.2.69) we obtain
the cdf of annual maximum wave heights as

FXmax (x) = exp{−v[1 − FX |X>x0 (x)]}

= exp

{
−v exp

[
−

(
x − b

a

)c

+
(

x0 − b

a

)c]}
. (7.3.20)

Example 7.41. Highest sea waves in the Adriatic Sea. Consider the data set of observed
highest sea waves above a threshold x0 of 2 m in the upper Adriatic Sea, given in Problem
1.23. This data include 18 independent storms recorded in a period of 13 months. One notes
that the truncated distribution of Eq. (7.3.18) can be written as

(κ − ln p)1/c = (x − b)/a,

where p is the probability of exceedance, and κ = [(x0 − b)/a]c is the normalization factor for
truncation. For a selected value of c, one plots the ordered observations against (κ − ln p)1/c

to fit the straight line interpolating these points, so determining the values of a and b by a trial-
and-error procedure (see Fig. 7.3.9a). Assuming c = 2, one obtains â = 1.7 m, b̂ = 1.3 m,
with κ̂ = [(2 − 1.3)/1.7]2 = 0.170. The fitted distribution is also shown in Fig. 7.3.9b as an
exponential probability plot.

The T -year wave height is then computed as the value of x satisfying Eq. (7.3.19); that is,

x(T ) = b + a[κ − ln(τ/T )]1/c,

where τ̂ = (13/18)/12 = 0.06 year. For T = 10 years, one gets

x̂(10) = 1.3 + 1.7

[
0.170 − ln

(
0.06

10

)]1/2

= 5.21 m.

42 See Subsection 4.2.5 and Eq. (4.2.17d). As regard the peaks over a threshold method (particularly with respect
to Pareto-distributed wind speeds of Subsection 7.3.3), Harris (2005) provides an interesting discussion.
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Fig. 7.3.9 Highest sea waves in the upper Adriatic sea in a period of 13 months: (a) observations
versus (κ − ln p)1/c, and (b) exponential probability plot.

Alternatively, the contagious Poisson model of Eq. (7.3.20) is considered. From this model
the design value is found from

x̂max(T ) = b + a

{
κ − ln

[
−v−1 ln

(
1 − 1

T

)]}1/c

.

The mean number of storm occurrences in a year is estimated as v̂ = 1/τ̂ = 16.2. Thus, for
T = 10,

x̂max(10) = 1.3 + 1.7

{
0.170 − ln

[
−0.06 × ln

(
1 − 1

10

)]}1/2

= 5.19 m,

which practically equals the previous estimate from the peaks over a threshold model.

More generally, one can consider the wave height X at a given time to comprise three
unobserved additive components: mean sea level U , tidal level W , and surge level S. The
mean sea level, which is a measure of the variability in the data of frequencies longer than
a year, varies as a result of changes in land and global water levels. For example, 100
years of data show that the mean sea level increases with a rate of 1–2 mm/year on the
global scale; also, the presence of interannual variations due to the Southern Oscillation
means that nonstationarity (of the mean) can no longer be modeled by a simple linear
trend in the Pacific Ocean. The deterministic astronomical tidal component, generated
by changing forces on the ocean produced by planetary motion, can be predicted from
a cyclic equation including global and local (site) constants. The random surge compo-
nent, generated by short-term climatic behavior, is identified as the X−U−W residual.43

Therefore, the probability distribution of Xmax, the annual maximum sea wave height,
must account for nonstationarity. Also, the extreme values of S may cluster around the
highest values of W , because extreme sea levels typically arise in storms that happen
to produce large surges at or around the time of a high tide. However, it is often as-
sumed that the astronomical tide does not affect the magnitude of a storm surge (as in the

43 For example, around the coast of Great Britain, Y appears to be linearly increasing (Woodworth, 1987), the
dominant cycle in the tide has a period of 12 hours and 26 minutes, and extreme sea levels typically arise in
storms which happen to produce large surges at or around the time of a high tide (Tawn, 1993).
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Example 7.42). It is then unlikely that the highest values of S coincide with the highest
values of W .

Example 7.42. Extreme sea levels. To account for the clustering of large values of the
underlying variables determining extreme sea levels, the family of limiting distributions of
Eqs. (7.2.1) is taken as [FY (y)]θ , with 0 ≤ θ ≤ 1 denoting the extremal index for the process.
This parameter is estimated by the amount of clustering among the extreme values of the
multicomponent process, and 1/θ is the limiting mean cluster size. The limiting distribution
is the generalized extreme value distribution of Eq. (7.2.59) with the same shape parameter of
the stationary case, whereas the scale and location parameters are modified by the dependence
components. Tawn (1992) suggested the evaluation of the cdf of the annual maximum surge
Smax as

FSmax (s) = F τθs
S (s) = exp

{
−

[
1 − ks(s − s0)

αs

]1/ks
}

,

for s > s0, where τ is the number of observations per year of hourly surges above a threshold
of s0, and θs is the extremal index for the hourly surge sequence. Thus,

FS(s) = exp

{
− 1

τθs

[
1 − ks(s − s0)

αs

]1/ks
}

.

The estimator of θs is the inverse of the sample mean of independent clusters in the surge
sequence, where the cluster maxima exceeds the threshold of s0. The cdf of Xmax is then
found as

FXmax (x) = Pr[St ≤ x − ut − wt for t ∈ τ ] =
[∏

t∈τ

FS(x − ut − wt )

]θ

,

where θs ≤ θ ≤ 1 is the hourly sea-level extremal index. (Note that U and W are as previously
defined and t is a point in time.) Estimation of θ is via the same approach as for θs but is
based on the hourly sea-level series. The design value ξq is found to satisfy

− θs

θ
log q = 1

τ

∑
t∈τi

[
1 − ks(ξ − s0 − ut − wt )

αs

]1/ks

,

which is solved numerically for ξq .
Multisite analysis generally yields more robust parameter and quantile estimates. For

example, Tawn (1993) analyzed a 34-year record of hourly sea levels for Port Adelaide in
south Australia, and estimated ξ̂0.99 = 2.48 m from site analysis, with a standard error of
0.12 m; from multisite analysis a corresponding value of 2.59 m was obtained with a standard
error of 0.07 m.

7.3.5 Summary of Section 7.3

In this section we have considered diverse types of natural hazards, of importance in civil
and environmental engineering, and demonstrated the practical use of extreme value distri-
butions. Applications range from floods and droughts to earthquakes, volcanic eruptions,
high winds, and sea waves and levels. For further elaborations and discussions of other
types of natural hazards, such as tsunamis, landslides, avalanches, and forest fires, see
Salvadori et al. (2007).
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7.4 SUMMARY OF CHAPTER 7

Civil and environmental engineers are often concerned with extreme events. Because of
the short length of observations usually available as a random sample of extreme values,
large uncertainties affect the properties of extremes. Order statistics provide the statistical
properties of the arranged outcomes of a variable, such as its maximum, minimum, and
range. Extreme value theory shows that the maximum or minimum of a sequence of
variates with a common distribution is distributed asymptotically according to a general
form. This is called the general extreme value distribution. It includes three asymptotic
types, which depend on the distribution of the underlying variables. Alternative models
for extreme values include contagious distributions based on random counting of extreme
events, and other parametric distributions, such as the lognormal, the gamma, and the log-
Pearson Type III, which also provide a satisfactory fit to extreme value data in some cases.
Theoretical developments are followed by 42 practical examples. As an aid to engineering
judgments, numerous probability plots are shown. However, we have not emphasized
the exact choice of a plotting position, because of uncertainties regarding the probability
distribution, and differences tend to be small as discussed in Chapter 5. Besides, there
are the effects of nonstationarity to consider, such as outliers (Section 5.9). As stated
before, engineers looking for practical means of extrapolation tend to give more attention
to the larger values in the data. See the application of the two-component extreme value
distribution in Example 7.28 and the case of extreme sea levels of Example 7.42; see also
nonstationary modeling in Example 10.13.

Current practices for analyzing extreme values of hydrological, seismic, volcanic, wind,
and sea-level variables concerning natural hazards are briefly outlined and discussed, tak-
ing account of nonstationarity where necessary. Continuing efforts toward better under-
standing of natural hazards should result in more realistic assessments.
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PROBLEMS

7.1. Observed frequency of maximum annual storm rainfall data. Consider the 58-
year data of maximum annual hourly storm depth reported in Table E.7.1.
(a) Find the expected frequency of nonexceedance of the largest recorded value.
(b) Find the theoretical probability of nonexceedance of this value resulting from

the fitted GEV distribution.
(c) Compute the plotting positions of the observations using the equation pi =

(i − 0.35)/n where i is the rank in increasing order and n is the number of
items of data. Compare the observed frequency estimates with these expected
frequencies and with the theoretical ones.

7.2. Hurst effect in hydrologic data. Using rescaled range analysis shown in Example
7.8 compute the Hurst exponents for annual rainfall and runoff in the Po River at
Pontelagoscuro, Italy (see data in Table E.7.2). Use equispaced values of ln n.

7.3. Minimum flight delay. An airport is designed to receive n daily flight arrivals. Find
the mean and variance of the expected minimum delay if the interarrival time X
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is a shifted exponentially distributed variate with scale parameter λ and location
parameter x0.

7.4. Flood Discharge. Consider the data of maximum annual flood flows in the Tevere
River at Ripetta, Italy, reported in Table E.5.8. Compute the 100-year flood discharge
using (a) the Gumbel distribution, (b) the GEV distribution, (c) the lognormal
distribution, and (d) the gamma distribution. Perform a goodness-of-fit test using the
chi-squared, Kolgomorov-Smirnov and Anderson-Darling tests. Consider α = .10

7.5. Depth-duration-frequency curves of storm rainfall. Consider the statistical sum-
maries of Table 7.3.1 for the annual maximum storm depth for various durations
observed at Lanzada, Italy. The estimated L-moments for the normalized annual
maximum storm depth (extreme value data divided for various durations divided by
the corresponding mean for the specified duration) are L1 = 1, L2 = 0.1330, and
L3 = 0.0182, respectively.
(a) Compute the parameters of the Gumbel distribution by the method of L-

moments and compare this distribution with that estimated in Example 7.34
by the method of moments.

(b) Compute the parameters of the GEV distribution by the methods of moments
and L-moments, and compare these distributions with the Gumbel model on a
Gumbel probability plot.

(c) Find the depth-duration-frequency curve for a return period of 100 years using
the GEV model estimated by the method of L-moments.

7.6. Dry spells. A period of days on which no rainfall is experienced continuously is
called a dry run if preceded and succeeded by one or more wet days. As shown
in Example 4.16, the run length X of a dry spell can be modeled as a log-series
distributed variate. Suppose that X has a mean of 5 days, so the estimated p is .07,
and the number of dry spells in a year is a Poisson variate with a mean of 40. Find
the cdf of the annual maximum run length of a dry spell. Compute the return period
of a dry spell 60 days long.

7.7. Highest sea wave in a storm. The highest sea wave X in a storm is modeled as
a Rayleigh-distributed variate with pdf fX (x) = (x/λ2) exp[−(x/λ)2/2]. Suppose
that parameter λ varies randomly from one storm to another, and assume that the
number of storms in a year with λ ≥ λ0 is a Poisson-distributed variate with mean
v . Find the cdf of the annual maximum sea wave height, Xmax, if λ − λ0 is an
exponentially distributed variate with parameter α.

7.8. Overflooding. The annual maximum flood discharge Xmax at a given river site is
a Gumbel-distributed variate with parameters α = 625 m3/s and b = 1152 m3/s.
The overflooding volume Y during a flood with peak discharge X exceeding a
value of ε = 2000 m3/s is modeled as an exponentially distributed variate with
mean c(X/ε)β , where c = 5 × 106 m3 and β = 0.5. Assume that N ∼ Poisson(v)
is the number flood events in a year with peak discharge exceeding ε with v = 2.1.
Find the cdf of the annual maximum overflooding volume, Ymax, and compute the
100-year overflooding volume.

7.9. Sea waves. Consider the data set of simulated highest sea waves above a threshold
in the upper Adriatic Sea of Problem 1.23. Find the 10-year design wave height
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resulting from the data set obtained by using calibration strategy no. 1, and that
for calibration strategy no. 2 (assume Poisson events and the shifted exponential
distribution to fit the data). Compare these values with that obtained from the analysis
of observed data reported in Example 7.41.

7.10. Maximum annual wind speed predictions. Find the probability distribution of
maximum annual wind speed and the 50-year wind velocity for (a) Cagliari and
(b) Pantelleria, Italy, by fitting the Gumbel distribution to the extreme value data
shown in Table E.7.3 using the method of moments.

7.11. Rescaling of wind speed estimates. The maximum annual wind speed X (t, z)
averaged over a period of length t that is recorded at ground elevation z in a particular
site with roughness length z0 scales as

X (λt, ηz) = X (t, z)

[
1 + 0.98c(λ)

ln(z/z0)

]
ln(ηz/z0)

ln(z/z0)
,

where t < 1, 0 < λ < 1, and η are two scaling factors, with c(λ) denoting a scaling
function, c(1) = 0. Suppose that the available records are averaged for 5 minutes,
say, λ = 1/12, for t in hours, with c(1/12) = 0.54, the gauging station (site A) is lo-
cated at elevation of z = 8 m in open terrain with z0 = 0.01 m, and the sample mean
and standard deviation of the annual maximum data are 15 and 3 m/s, respectively.
Reference wind speed X A is taken as the 10-minute average wind speed at a standard
elevation of 10 m, that is, X A = X (1/6 hour, 10 m), with η = 1.25, λ = 1/6, and
c(1/6) = 0.36.
(a) Find the cdf of annual maximum reference wind speed for site A using the

Gumbel distribution and the method of moments. To design a building located
in the downtown area, one must determine the 10-minute average wind speed at
a ground elevation of 50 m knowing that the roughness length for this location
(site B) is 0.3 m. The vertical profile of wind velocity is given by 2.5 u∗ ln(z/z0),
where u∗ denotes the friction velocity, which scales as u∗

B/u∗
A = (z0B/z0A)γ for

two sites A and B with different roughness length (see Fig. 7.P1). Therefore,
one must rescale the reference wind speed as

X B = X (t, zB) = X (t, z A)

ln(z A/z0A)

(
z0B

z0A

)γ

ln

(
zB

z0B

)
with t = 1/6 hour and γ = 0.07.
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(b) Find the cdf of annual maximum wind speed at zB = 50 m for site B using the
Gumbel distribution and the method of moments.

(c) Compute the 50-year design wind speed.

7.12. Wind speed prediction for Milan Park Tower. The 110-m Park Tower in Mi-
lan, Italy, is a steel tower built in 1933 on the occasion of the Fifth Trien-
nial Decorative Arts Exhibition. From 1951 to 1973 the following twelve thun-
derstorms were recorded by an anemometer located at the elevation of 108 m
with 10-minute average wind speed X exceeding the critical mean velocity of
20.18 m/s.

Date Wind direction Average velocity
(◦N) (m/s)

29/04/53 15 20.86
08/01/58 135 20.98
05/01/59 315 25.06
08/01/59 315 25.06
09/01/59 315 22.19
20/04/59 45 22.17
28/07/59 345 20.26
10/02/61 315 21.48
12/02/61 315 27.21
03/04/71 315 21.48
20/11/71 315 21.48
15/12/73 345 26.34

Find the cdf of the annual maximum 10-minute average wind speed if the probability
distribution of X is (a) exponential, and (b) Pareto, and compare the correspond-
ing extreme values for a return period of 50 years. Use a Gumbel probability plot
to compare these results with Xmax ∼ Gumbel(2.89 m/s, 15.79 m/s) which is ob-
tained by rescaling the extreme value data recorded at the Forlanini Airport station
[G. Ballio, S. Lagomarsino, G. Piccardo, and G. Solari (1999). “Probabilistic anal-
ysis of Italian extreme winds: Reference velocity and return criterion,” Wind Struct,
Vol. 2, no. 1, pp. 51–68].

7.13. Annual maximum wind speed in Pisa. Consider the following data set of 41 annual
maximum 10-minute average wind speeds at Pisa Airport, Italy:

year 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
m/s 15.43 15.43 15.37 15.43 22.03 18.52 16.46 18.00 19.55 19.03 18.00

year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
m/s 19.41 18.52 13.89 18 14.40 16.46 14.40 16.46 13.43 21.50 13.37

year 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
m/s 15.43 20.58 11.32 15.43 11.32 14.40 16.46 16.98 13.59 22.63 15.95

year 1984 1985 1986 1987 1988 1989 1990 1991
m/s 13.89 13.89 19.05 13.89 13.89 16.98 19.95 12.33

Use the Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests to com-
pare the observed and theoretical cumulative frequencies as predicted by the (a)
Gumbel, (b) Fréchet, (c) lognormal, (d) gamma, (e) GEV, ( f ) shifted lognormal,
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and (g) shifted gamma distributions. Discuss the decision of rejecting the null
hypothesis when applicable. Consider α = .01 and .05.

7.14. Design return period tornado wind speed. For the case study of Example 7.40,
compute (a) the return period of a design tornado wind speed of 160 m/s and (b)
the associated probability of exceedance using the contagious model of Eq. (7.3.17)
with X ∼ lognormal(43 m/s, 16.34 m/s) and v = 1.5 × 10−3.

7.15. Confidence limits of design values. Consider the Gumbel distribution given in in-
verse form by Eq. (7.2.26) where the sample mean and standard deviation μ̂X and σ̂X

are used to estimate the population mean and standard deviation, μ and σ , re-
spectively. Assuming that μ̂X and σ̂X are asymptotically normally distributed show
that

Var[ξ̂q ] = Var

[
π2

6
+ 1.1396(y − ne) + 1.1(y − ne)2

]
σ 2

n
,

where y denotes the reduced variate. This expression can be used to determine
the confidence interval by approximating the sample distribution of ξq as N ∼
(ξ̂q , Var[ξ̂q ]) and substituting the sampling variance for σ 2. Using this procedure,
compute the 95% confidence interval for the annual maximum hourly storm rainfall
predicted in Example 7.16. It can be shown that the variance of any estimator of a
parameter is larger than, or at least equal to, a theoretically specified variance known
as the Cramer-Rao lower bound, which makes use of the Cramer-Rao inequality
of Subsection 5.2.3. This method may be used to derive the variance of quantile
estimates from a given extreme value distribution.

7.16. Southern California earthquakes. Consider the ordered sample of magnitudes
of southern California annual maximum earthquakes from 1932 to 1962 reported
by C. Lomnitz (1974), Global Tectonics and Earthquake Risk, Elsevier Scientific
Publishing Company, New York.

4.9 5.3 5.3 5.5 5.5 5.5 5.5 5.6 5.6 5.6 5.8 5.8 5.8 5.9 6.0 6.0
6.0 6.0 6.0 6.0 6.2 6.2 6.3 6.3 6.4 6.4 6.5 6.5 6.5 7.1 7.7

Originally, the Gumbel distribution was fitted to these data, but other potential
candidates are the Fréchet and lognormal distributions. Use the Anderson-Darling
goodness-of-fit test to compare the observed and theoretical cumulative frequen-
cies as predicted by the (1) Gumbel, (2) Fréchet, (3) lognormal distributions. Con-
sider α = .05. Compare the theoretical and observed cdfs on a Gumbel probability
plot.

7.17. Historical records in extreme value analysis. One wishes to supplement the in-
formation available from an s-year sample of observed extreme value data with a
historical record of h years given that a perception threshold or detection limit was
exceeded l times. This occurs, for example, for paleoflood data, and also for water
quality data exceeding a prescribed level, for sea wave heights estimated by sailors,
and for earthquake intensity estimated from earthquake effects on landscapes. If
e denotes the number of observations that exceeded the threshold in the s-year
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Fig. 7.P2 Comparison of Gumbel probability plots of annual maximum hourly rainfall at Genoa
University, Italy, for gauge observations and censored records.

sample, a total of r = l + e observations exceeded this threshold for the n = s + h
years of record, which is referred to as a censored sample. The natural estimator
of the probability of exceedance of the detection threshold is r/n. If these r values
are indexed by j = 1, . . . , r , the reasonable plotting positions accommodating the
probabilities of exceedance within the interval (0, r/n) are

p j = r

n

(
j − η

r + 1 − 2η

)
,

where p j is the probability of exceedance of the j th observation arranged in descend-
ing order, and η is a value depending on the underlying distribution, say, η = 0.4.
Note that e observations that exceeded the threshold are counted among the r ex-
ceedances of that threshold. Plotting positions within (r/n, 1) for the remaining
(s − e) data in the s-year sample are

p j = r

n
+

(
1 − r

n

)(
j − η

s − e + 1 − 2η

)
,

for j = 1, . . . , s − e. For instance, consider the s = 58 years of data of maximum
annual hourly storm depth shown in Table E.7.1. Suppose that during a supplemen-
tary historical period of h = 98 years, the maximum annual hourly storm depth in
Genoa exceeded 100 mm in l = 5 years. The total length of the record is s + h = 156
years, and r = l + e = 5 + 3 = 8. The observed frequencies are thus modified as
shown in Fig. 7.P2, assuming that all historical storm depths exceeded the largest
observed value.

Fit the GEV distribution to the censored sample of maximum annual hourly storm
depth at Genoa University using L-moments.
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Consider the following data of annual maximum flood flows in m3/s for the Arno
River in Florence, Italy, with s = 40 years:

year 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
x 1642 — 1264 1130 1220 1780 1520 1100 1490 633 1350

year 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
x 1250 1345 1079 — 2068 na 978 1594 1206 1425 922

year 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
x 1780 937 1760 901 820 776 899 1600 1670 2070 1390

year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
x 1000 — — 1120 3540 — 1430 1120 738 540 428

year 1973 1974
x 385 1060

It is reported that the discharge in the Arno exceeded l = 3 times a threshold of about
2400 m3/s in a historical period of h = 145 years. None of these floods exceeded
the 1966 flood, which had a peak discharge of 3540 m3/s. Fit the GEV distribution
to the censored sample by the method of L-moments. Find the return period of a
flood with peak discharge exceeding 3000 m3/s.

7.18. Maximum local earthquake intensity and ground motion. Using the epicen-
tral intensity data in the Charleston area, South Carolina, from 1893 to 1984 the
following recurrence relationship is found:

log(v) = 1.02 − Y,

where v is the number of earthquakes with intensity larger than Y in a year [see
D. Amick, and P. Talwani (1986), “Earthquake recurrence rates and probability
estimates for the occurrence of significant seismic activity in the Charleston area:
The next 100 years,” in Proceedings of the Third Annual Conference on Earthquake
Engineering, Charleston, South Carolina, Vol. 1, pp. 55–64]. Find the cdf of annual
maximum earthquake intensity. Suppose that peak ground motion is related to local
site intensity as

log(Z ) = 0.3Y + 0.014,

where Z denotes the average horizontal peak acceleration in m/s2 peak [see M. D.
Trifunac, and A. G. Brady (1975), “On the correlation of seismic intensity scales
with peaks of recorded strong ground motion,” Bull. Seismol. Soc. Am., Vol. 65,
pp. 139–162]. Find the cdf of the annual maximum average horizontal component
of epicentral peak acceleration.

7.19. Ground motion acceleration in earthquakes. The horizontal peak ground motion
acceleration Z is a basic quantity in seismic hazard analysis at a particular site
(as discussed in Problem 1.1). It depends on different factors, because it increases
with the epicentral intensity Y of an earthquake and with its magnitude X , and it
decreases with the epicentral distance r of the site. The relationship between these
variables also depends on the geographic region, and it is determined using multiple
regression. Suppose that

log Z = 0.14Y + 0.24X − 0.68 log(r ) + 0.60,
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where Y is the epicentral intensity as measured in the modified Mercalli scale, r is
the epicentral distance in km, and Z is measured in meters per square second. This
relationship provides a good fit for data from the western United States [see J. R.
Murphy and L. J. O’Brian (1977), “The correlation of the peak ground acceleration
amplitude with seismic intensity and other physical parameters,” Bull. Seismol. Soc.
Am., Vol. 67, pp. 877–915]. Suppose that X is a Gumbel-distributed variate with
parameters α = 0.49 and b = 1.4 × 105, and X = 2Y/3 + 1. Evaluate the cdf of Z
at an epicentral distance of 100 km.

7.20. Ground motion acceleration in earthquakes. The horizontal peak ground motion
acceleration z is a basic quantity in seismic hazard analysis at a particular site. For a
magnitude-x earthquake that occurred at a distance u from a given site, an estimate
of z can be obtained as

z = AeBx

(u + C)2
.

Typical values are A = 1230, B = 0.8, C = 25 km for u in kilometers and z in
centimeters per square second [see, for example, N. M. Newmark and E. Rosen-
blueth (1971), Fundamentals of Earthquake Engineering, Prentice Hall, Englewood
Cliffs, NJ]. Suppose that, in a homogeneous area, the annual number of earthquakes
exceeding a given threshold x0 is a Poisson variate with mean v , and X − x0 has
an exponential distribution with scale parameter λ. If there are no recognized point
sources or active faults, one can assume the epicentral distance as U ∼ uniform(0, l),
with l denoting the maximum distance between two points in the given area. Show
that the annual maximum of Z follows the Fréchet distribution. This distribution
can be used to predict design values of horizontal peak ground motion acceleration
in this area.

7.21. Southern California earthquakes. Consider the magnitude data listed in
Table E.7.3.
(a) Check the Poisson assumption for the occurrence of earthquakes exceeding

magnitude 6 by fitting the exponential distribution to the interarrival time W .
Compare the observed and fitted cdf of W on an exponential probability plot.

(b) Compute the parameters of the Gutenberg-Richter law for type A zones, and
find the return period of a magnitude-7 earthquake assuming that magnitude is
bounded by Xmin = 6 and Xmax = 8.22.

7.22. Design return period of snow load. Snow load is evaluated as the product Z =
X W , with X denoting the depth of snow cover, and W its specific weight. Based on
a long record of observations of snow cover in the Italian Apennines, one models the
depth X of snow delivered by a snowstorm as X ∼ lognormal(0.32 m, 0.29 m). The
specific weight of snow W depends on weather and season, and one should model
snow pack dynamics to achieve accurate estimates of Z . However, measurements
of density and temperature of snow yield W ∼ lognormal(3500 N/m3, 800 N/m3).
Also, X and W are positively correlated with ρX,W = 0.60. If 4.7 snowstorms are
expected to occur in a year on average, show that the cdf of maximum annual snow
load (see Fig. 7.P3) can be written as

FZmax (z) = exp

{
−v

[
1 − �

(
z − μln(Z )

σln(Z )

)]}
,
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Fig. 7.P3 Gumbel probability plots of annual maximum snow depth and load.

with v = 4.7, μln(Z ) = 6.696, and σln(Z ) = 0.837. Note that

ρln(X ),ln(Y )σln(X )σln(Y ) = ln(1 + VX VY ρX,Y )

if ln(X ) and ln(Y ) have a bivariate normal distribution.
Find the return period for design values of (a) zmax = 8000 N/m2, and (b)

xmax = 2.15 m.
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Chapter 8

Simulation Techniques for Design

An engineering system can be studied by physical experiments using replications that
reproduce its essential features. For instance, wind tunnel experiments can be implemented
by loading the small-scale replication of a tower with specified design winds. Laboratory
channel experiments, performed by subjecting the hydraulic model of a harbor breakwater
to specified design waves, constitute another example. Such experiments with models are
assumed to simulate, that is, to reproduce the behavior of the (real-world) prototype.
Accordingly, one applies the physical laws of continuum and fluid mechanics to evaluate
the response of the prototype by rescaling the response from these experiments. This
approach can be extended to theoretical and numerical experiments. Thus, simulation
is generally defined as the process of replicating the real-world prototype based on a
set of assumptions and conceived models of reality. In practice, theoretical simulation is
performed numerically, and numerical experiments have become an increasingly popular
method to analyze engineering systems since the advent of digital computers; they are
also substituted for physical experiments in many applications. This is because numerical
experiments can allow a more detailed representation of the investigated system than that
achievable through a physical model, and they are often much cheaper. On the other hand,
numerical and physical experiments can be coupled; for example, laboratory channel
experiments can be performed by loading a hydraulic model with wave characteristics
generated from mathematical models of sea wave motion. Similar procedures can be
adopted in structural and geotechnical engineering.

The simulation process predicts the response or performance of a system using a pre-
scribed set of values for the system parameters or design variables. After repeated simula-
tions, one can assess the sensitivity of the system response to variations in the parameters or
variables. Alternative designs are thereby evaluated, and the optimal design is determined.

The method of Monte Carlo simulation is used when dealing with random variables.1

The procedure is usually repeated to generate a different set of values of the variables in
accordance with a specified probability distribution. In this way, a series of solutions is
obtained corresponding to different sets of values of the random variables. Such samples
are (statistically) similar to samples of experimental observations. The methods of sta-
tistical estimation and inference can then be applied. For the type of finite samples that
are commonly used, the results of Monte Carlo simulations have sampling variability.
Therefore, sampling theory should be utilized in designing a Monte Carlo experiment.

To perform a Monte Carlo simulation one needs to specify the probability distribution
of the variables involved, which must be known or assumed. Therefore, the generation of
outcomes from a prescribed probability distribution is a fundamental task in the simulation
process. This process is deterministic for a given set of generated variables; it describes
the relationships among system variables and parameters which define the response or

1 The term Monte Carlo is said to have been introduced by the physicist John Von Neuman as a code word
connected with his secret work on the atomic bomb at Los Alamos during World War II (Hammersley and
Handscomb, 1964).
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performance of the system. The uncertainties affecting these relationships and the random
relationships that may eventually occur are usually represented by additional or dummy
variables with known distributions.

We conclude with a discussion on sensitivity analysis and uncertainty analysis, as related
to simulation. The distinction between aleatory and epistemic uncertainty is made with im-
plications in model formulation, implementation and assessment, and in decision-making.

8.1 MONTE CARLO SIMULATION

8.1.1 Statistical experiments

Monte Carlo experiments have been known for many years. For instance, Buffon’s needle
problem, which may be used to compute the circumference π of a circle of unit diam-
eter (which is also the area of a circle of unit radius), dates back more than 200 years,
and its probabilistic generalization was made by Laplace in 1812 (Beckman, 1971). We
commence with an illustration of this problem in order to demonstrate the advantages of
simulation.2

Example 8.1. Computation of π . Consider a horizontal floor on which parallel lines are
drawn at equal distances a. A needle of length b, where b < a, is dropped at random on the
floor. Our initial problem is to find the probability that the needle will intersect a line. Let X
be a random variable that gives the distance of the midpoint of the needle to the nearest line,
with 0 < x ≤ a/2, and let Y be the variable which gives the acute angle between the needle
(or its extension) and the line.

The outcomes of X and Y are bounded as 0 < x ≤ a/2 and 0 < y ≤ π/2. Since Pr[x <

X ≤ x + dx] = (2/a)dx , and Pr[y < Y ≤ y + dy] = (2/π )dy, one obtains fX (x) = 2/a,
and fY (y) = 2/π . Noting that X and Y are independent, the joint pdf is the product of the
marginals, that is, fX,Y (x, y) = 4/(aπ ). From Fig. 8.1.1a, it is seen that the needle actually
crosses a line when X ≤ (b/2) sin Y .

The probability of this event is given by

p = 4

aπ

π/2∫
0

(b/2) sin y∫
0

dx dy = 2b

aπ
.

When this expression is equated to the frequency of hits (or crossings) observed in actual
(physical) experiments, accurate values of π can be obtained. First, we specify a and b < a
and assume an appropriate value of π . Then m independent pairs of X and Y that follow the
foregoing uniform distributions are generated numerically. Second, p is estimated as the ratio
between the random number N of those pairs (x, y) that satisfy x ≤ (b/2) sin y and the number
of trials m. Finally, π is computed as 2b/(ap), that is, 2bm/(aN ). The accuracy increases with
the number m of trials, as shown in Fig. 8.1.1b. It is seen that when m > 100, a stable value
of π is reached. Such experiments are called urn extractions and are used for generation.

Statistical simulation is a conceptualization of a trial-and-error procedure, as just demon-
strated, in terms of probability. It combines the notions of prior and posterior probabilities.

2 The value of π (= 3.14159 . . ., and currently known to more than 5 billion places) has fascinated mankind
since Babylonian times, notably Archimedes who evaluated the interval: 223/71 < π < 22/7, with the limits
averaging to about 3.1419. It can also be empirically measured by drawing a large circle and measuring its
diameter D and circumference π D; π is the first letter of the Greek words for periphery and parameter, that is,
circumference. The conventional method of calculating the constant is to use a mathematical equation such as

the symmetric formula of Sandow: π = �∞
n=1(1+(1/4n2−1))∑∞

n=1 1/(4n2−1)
(among equations by many others); subsequently in

2005, he produced a faster product equation for π/2.
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Fig. 8.1.1 Buffon’s needle problem: (a) sketch of the experiment and (b) results of simulation.

For instance, the relationship of π to the probability that Buffon’s needle intersects a line on
the floor is known a priori, that is, from system assessment. From subsequent experiments
using this system, the value of π is determined from the relative frequency of hits observed
in actual experiments, or the posterior probability. In some practical applications, the prior
probability is unknown or vaguely defined and thus one performs statistical experiments
to estimate its value as is done, for instance, in Monte Carlo integration.

Example 8.2. Monte Carlo integration. The definite integral of a function g(u) > 0 from
a to b—that is,

I =
b∫

a

g(u)du,

is the area bounded by the curve g(u) within the interval [a, b], as shown in Fig. 8.1.2.
Consider a rectangle embedding this area, and suppose that one were to throw darts at

the rectangle of area A = c(b − a, where c ≥ g(u) for a ≤ u ≤ b. Let n denote the (large)
number of darts thrown uniformly against this target. If N is the number of darts falling below

ba

c
V

U

0

g(u)

v 1

v 2

u 2 u 1

Hit

Miss

Area A

Fig. 8.1.2 Monte Carlo method of integration. Random points are chosen within the area A. The
integral of the function g(·) is estimated as the area of A rescaled by the fraction of random points
falling below the curve g.
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the curve g(u), the integral may be estimated as the area A multiplied by the fraction N/n of
random points that fall below g(u); that is,

I =
b∫

a

g(u)du ≈ c(b − a)
N

n
,

where p = N/n is the probability of a hit. Instead of throwing darts, one might generate n
pairs u and v of two independent uniformly distributed variates U and V , with a ≤ u ≤ b and
0 ≤ v ≤ c, respectively, and count the number N of pairs with v ≤ g(u). For an increasing
number of generated pairs, one expects that the value of the estimated integral approaches its
theoretical value. This method can also be used in the multidimensional case by picking n
random points, say, x1, . . . , xn , uniformly distributed in a multidimensional volume �. Then,
the basic theorem of Monte Carlo integration estimates the integral of a function g over � as

I =
∫
�

gd� = �〈g〉 ± Z ,

where Z is a random variable representing the error in the estimated integral, with zero mean
and standard deviation

σZ

√〈
g2

〉 − 〈g〉2

n
.

Here the angle brackets denote taking the arithmetic mean over the n sample points; that is,

〈g〉 = 1

n

n∑
i=1

g(xi ) and
〈
g2

〉 = 1

n

n∑
i=1

[g(xi )]
2.

There is no guarantee that the error is distributed as normal, so that the error term should
be taken only as a rough indication of probable error. Note that the implementation of this
method requires the generation of uniform random numbers in a specified domain, say, the
rectangle A or the hypervolume �.

The preceding examples show that statistical experiments can be performed to solve
problems that are not probabilistic by using random numbers generated from a parent
uniformly distributed variate, such as X and Y in Buffon’s needle problem, and U and V
in the Monte Carlo integration method for a function of a single variable. One can extend
this approach to systems described by probabilistic models. For example, to evaluate the
probability distribution of times spent waiting for a taxicab on a particular street, one can
perform numerical or physical experiments, such as urn extractions or on-the-road trials.
In numerical experiments, one can assume that the interarrival time of two subsequent
cabs is a uniformly distributed variate and can assume a specified probability that such a
cab will stop at the customer’s call.

Example 8.3. Logistic population growth. The logistic model is used in applied ecology
to represent the growth of a population in which the rate of growth is a net balance of births
and deaths. The logistic growth equation gives the rate of increase as

d X

dt
= X [ρB(X ) − ρD(X )],

where both the birth rate ρB and the death rate ρD are nonnegative functions of the population
size X . Let us assume that the birth rate is a linear decreasing function of X , say, ρB(X ) =
a1 − b1 X , and the death rate is a linear increasing function of X , say, ρD(X ) = a2 + b2 X ,
with a1, a2 > 0, and b1, b2 ≥ 0. The growth rate d X/dt is thus given by

d X

dt
= X [(a1 − a2) − (b1 + b2)X ] = X (r − s X ),
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which is the Verhulst-Pearl logistic equation with intrinsic rate of increase r = a1 − a2, and
the so-called saturation parameter s = b1 + b2. The events of interest constitute a sequence
of births and deaths. If we disregard the time elapsing between each event, there are two
possibilities for the next event: it may be a birth, event B, or a death, event D. If B occurs,
the population will increase from its present value x to x + 1; conversely, the population will
decrease from x to x − 1 if D occurs. The corresponding probabilities are proportional to the
birth and death rates as

Pr[B] ∝ XρB(X ) = a1 X − b1 X 2,

Pr[D] ∝ XρD(X ) = a2 X + b2 X 2.

Since these events are mutually exclusive and collectively exhaustive,

Pr[B] = p = (a1 X − b1 X 2)

[(a1 + a2)X − (b1 − b2)X 2]
,

Pr[D] = 1 − p = (a2 X + b2 X 2)

[(a1 + a2)X − (b1 − b2)X 2]
.

Suppose a1 = 0.7, a2 = 0.2, b1 = 0.0045, and b2 = 0.0005; this gives r = 0.5 and s =
0.005. The deterministic equation of growth rate becomes

d X

dt
= 0.5X − 0.005X 2,

so that the equilibrium size of the population (when dx/dt = 0) is r/s = 0.5/0.005 = 100.
To simulate the probabilistic growth of the population, that is, to generate a sequence of births
and deaths starting with a population of given size, say, x = 69, one must first calculate the
foregoing probabilities:

p = (0.7 × 69 − 0.0045 × 692)

[(0.7 + 0.2) × 69 − (0.0045 − 0.0005) × 692]
= 0.624,

1 − p = 1 − 0.624 = 0.376.

From a random number generator (or by other means), one then picks a number u uniformly
distributed in the range (0, 1]. If u ≤ p, the next event is a birth, so that the population
increases in size to 70; if u > p, the next event is a death, so that the population decreases
to 68. Once the event has happened and the population size is adjusted accordingly, one
calculates the new probabilities for the next event and proceeds as before. Table 8.1.1 lists a
short sequence of events generated using this procedure.

After the initial value of 69 is specified, the value of X in each row is obtained by altering
the value in the row above, according to the previous event, which may be a birth, B, or
death, D.

Example 8.4. Seepage under a dike wall. Figure 8.1.3 shows a river valley resting on a
homogeneous alluvial layer of porous material bounded by impervious rock. Supposing the
level of the groundwater table BL is constant at hg , the total river head is constant at hr so
that there is a head loss of hl = hr − hg . Also, the boundaries ABCDEFGHI and LMN are
impervious and there are no sinks in the flow. One superimposes a square grid, or lattice,
on the aquifer to study the movement of a particle of water at an interior point under a two-
dimensional random walk; in other words, this particle is made to move horizontally and
vertically from one point to another through the lattice.3 Whenever the particle meets one

3 In general, the path traversed during a random walk by a particle that moves in steps is determined by chance
either with respect to direction or with respect to distance or both direction and distance (like the steps of a
drunken sailor). Quite often, movement is assumed from one point to any of the nearest neighboring points, as
in the lattice assumed here, on an equally likely basis.
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Table 8.1.1 Simulation of logistic population growth

Step Population size, X Pr[B] Pr[D] u Event

1 69 0.624 0.376 0.730 D
2 68 0.627 0.373 0.170 B
3 69 0.624 0.376 0.824 D
4 68 0.627 0.373 0.689 D
5 67 0.631 0.369 0.386 B
6 68 0.627 0.373 0.872 D
7 67 0.631 0.369 0.595 B
8 68 0.627 0.373 0.606 B
9 69 0.624 0.376 0.648 D

10 68 0.627 0.373 . . . . . .
. . . . . . . . . . . . . . .

of the aforementioned impervious boundaries on its random walk in the limited zone, it is
reflected back. On the other hand, when it reaches the groundwater table or the river bed, the
path is terminated and values of hg and hr , respectively, are given to it. After n such random
walks from an interior point S (where n is large, say, greater than 400), suppose that ng paths
are assigned hg and nr paths are assigned hr , where n = ng + nr . We estimate the head at
point S:

hS = nghg + nr hr

ng + nr
.

Consider an interior node 0 and a particle at any of its neighboring grid points 1, 2, 3, or
4 in Fig. 8.1.3. The probability of a particle arriving at point 0 is obtained by weighting the
probabilities that it arrives at the four neighboring points. For the random walk, we assign
equal weights of 1/4, as shown. If the point 0 is on a boundary, such as point Q, then the

h = 3 m
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Fig. 8.1.3 Groundwater head under a dike wall in a river valley transect. The values in
parentheses are the next-step probabilities in the traced direction.
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weighting is adjusted to 1/4, 1/2, and 1/4, as shown. A Monte Carlo simulation of the random
walks from point 0 in Fig. 8.1.3 produced 423 paths that terminated at the groundwater table
boundary, and 577 paths that terminated at the river bed boundary. The groundwater table
boundary represents a total head of hg = 0 m, and the total head at the riverbed boundary is
hr = 3 m. Hence, the pressure head at 0 is

h0 = nghg + nr hr

n
= 423 × 0 + 577 × 3

423 + 577
= 1.73 m.

The elevation head at point 0, relative to the groundwater table, is 9 m. Hence, the pressure
in the water at point 0 is 9.81 × (9 + 1.73) ≈ 105 kPa.

Numerical experiments using random numbers can be used to simulate processes such
as population growth for births and deaths considered as chance occurrences, or the
growth of a random pattern on a lattice. Roulette wheels, such as those used at casi-
nos in Monte Carlo and elsewhere, were originally used in obtaining random numbers.
Since then investigators have tried coin tossing, urn extraction, numbers in a telephone
directory, and subsequently tables of random numbers (Rand Corporation, 1955). The
modern method is, of course, to use a computer routine; some techniques for generat-
ing random numbers are presented in the following section. However, most engineering
systems are modeled by random variables with distributions different from the uniform.
Then the unknown distribution of a design variable must be determined from known
distributions of other variates. The probability integral transform provides the theoretical
basis for stochastic simulation by generating random numbers from a specified probability
distribution.

8.1.2 Probability integral transform

Since the cdf of a continuous random variable X is a monotonic and continuous function
of x , FX (x) is a candidate for g(·) in the one-to-one transformation u = g(x) studied in
Section 3.4. Because u = g(x) = FX (x) is a nondecreasing function, the inverse function
x = ξ (u) can be defined for any value of u between 0 and 1 as the smallest x satisfying
FX (x) ≥ u (according to the definition of quantiles in Sub-subsection 3.2.1.6). Thus,
defining the random variable U = FX (X ),

FU (u) = Pr[U ≤ u] = Pr[FX (X ) ≤ u] = Pr[X ≤ ξ (u)] = FX (ξ (u)) = u,

for 0 < u < 1, FU (u) = 0 for u ≤ 0, and FU (u) = 1 for u ≥ 1. The pdf of U is thus given
by

fU (u) = d FU (u)

du
= 1,

for 0 < u < 1 and 0 elsewhere, signifying that U ∼ uniform (0, 1). The transformation
U = FX (X ) is called the probability integral transform. Figure 8.1.4 shows the relationship
between U and X .

Property: Probability integral transform. If a random variable X has continuous cdf
FX (x), the transformation U = FX (X ) yields U ∼ uniform (0, 1). Conversely, if U ∼
uniform (0, 1), then X = ξ (U ) has cumulative distribution function FX (x), if ξ (·) maps any
value of u into the smallest x satisfying FX (x) ≥ u.
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Fig. 8.1.4 Relationship between a uniform variate U and a variate X from an another distribution.

Engineering applications of statistical simulation methods involve the generation of
values of random variables. To obtain an outcome x of a variate X with continuous cdf
FX (x), one can generate a value u of a (0, 1) uniform random variate U . Then, the required
value of X is found by using the inverse cdf as

x = ξu, (8.1.1)

the uth quantile of the variate. For example, if X is an exponentially distributed variate
with parameter λ, the cdf

FX (x) = 1 − exp(−λx)

can be inverted to obtain

x = ξu = −λ−1 ln(1 − u) ≡ −λ−1 ln(u),

where u = FX (x); the last passage from ln(1 − u) to ln(u) follows from the fact that U ∼
1 − U when U ∼ uniform (0, 1). Accordingly, one generates a value u from a uniform
(0, 1) distribution and then computes the corresponding value x of X as the logarithmic
transformation of u rescaled by −1/λ.

Obviously, this method is straightforward when the cdf of X can be inverted.

Example 8.5. Peaks of sea waves. During a severe storm the height X of wave peaks at a
site are found to follow the Rayleigh distribution with pdf

fX (x) = (x/λ2) exp[−(x/λ)2/2],

with λ denoting a scale parameter depending on the characteristics of the energy spectrum of
the sea storm. To obtain a random outcome of X , its cdf

FX (x) = 1 − exp[−(x/λ)2/2]
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is inverted to obtain

x = λ[−2 ln(1 − u)]1/2 ≡ λ[−2 ln(u)]1/2,

where u is an outcome of a standard uniform variate.

The probability integral transform provides a basic concept in the application of statis-
tical simulation methods to engineering problems. In many cases, the engineer needs to
study the response of a system that is subject to a random input. However, the complexity
of system transformation between input and output does not facilitate the derivation of the
statistical properties of the output from those of the given input. If the transformation of
the input into the system output is known, the random output of the system is then found by
simulation; that is, by generating a sequence of outcomes of the input and then determining
the associated output of each outcome. The statistical properties of the system response
are studied by investigating the simulated sample of outcomes of the system output.

8.1.3 Sample size and accuracy of Monte Carlo experiments

In Monte Carlo integration it is seen that choosing n points uniformly and randomly
distributed in a multidimensional space leads to an error term that decreases as n−1/2,
because each new point sampled adds linearly to an accumulated sum of squares that will
become the variance, and the estimated error comes from the square root of the variance.
In designing a Monte Carlo experiment, one must determine how many simulations are
required to assess the system behavior. When simulation is used to evaluate the probability
p that some event occurs, such as unsatisfactory system performance, one must search for
the sample size required to obtain a specified accuracy of the estimated p. If N denotes the
observed number of occurrences of the event in a sample of size n, the obvious estimator
of p is the proportion N/n. When sequential simulations are independent of each other,
N is a binomial variate with parameters n and p. From Eq. (5.3.7), the standard error of
the estimated proportion is

σ p̂ =
√

p (1 − p)

n
, (8.1.2)

and for large n (say, n > 30 and np > 5), the sampling distribution is very nearly normal
with mean np and variance np(1 − p). In practice, the sample estimate p̂ is substituted
for p, and the 100(1 − α) percent two-sided confidence limits on the true value p given n
and an observed value of the estimator p̂ are determined as

p̂ − zα/2

√
p̂(1 − p̂)

n
and p̂ + zα/2

√
p̂(1 − p̂)

n
(8.1.3)

(where zα/2 denotes a standard normal variate that is exceeded with probability α/2). The
necessary sample size n to ensure that the 100(1 − α) percent confidence limits are within
100ε percent of the true value of p, where 0 ≤ ε ≤ 1; that is,

zα/2

√
p(1 − p)

n
≤ εp

is given by

n ≥ z2
α/2(1 − p)

ε2 p
. (8.1.4)
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Fig. 8.1.5 Simulation sample size n required to estimate the probability p of the design event
within 100ε percent of its true value with 100(1 − α) percent confidence.

Since n is a function of p, which is unknown before the experiment is performed, one
must estimate the value of p before the experiment. Figure 8.1.5 shows the increase of n
for decreasing p and different values of acceptable tolerance ε.

8.1.3.1 Antithetic variates
The accuracy of Monte Carlo simulations is closely related to the size of generated sam-
ples. However, the variance of simulation results can be reduced without increasing the
sample size. This can be done by variance reduction techniques based on the properties of
correlated samples. For instance, if X1 and X2 denote two unbiased estimators of a variable
X , one can combine these estimators to obtain a new estimator X∗ = (X1 + X2)/2—the
expectation of which, of course, is still

E[X∗] = E

[
X1 + X2

2

]
= E[X1] + E[X2]

2
= (X + X )/2 = X (8.1.5)

signifying that X∗ is unbiased. The corresponding variance is

Var[X∗] = Var

[
X1 + X2

2

]
= (Var[X1] + Var[X2] + 2Cov[X1, X2])

4
. (8.1.6)

If the estimators X1 and X2 are negatively correlated, that is, Cov[X1, X2] < 0, the variance
of X∗ will be smaller than that of (Var[X1] + Var[X2])/4 which occurs for independent
estimators. The antithetic variates method (Hammersley and Morton, 1956) is a simulation
procedure to ensure negative correlation between X1 and X2. This is done by generating a
sequence, say, u1, u2, . . . , un of independent standard uniform variates to obtain the size-
n estimator X1. The related sequence 1 − u1, 1 − u2, . . . , 1 − un is then used to obtain
another size-n estimator X2; the correlation between X1 and X2 is negative.4

4 Any improvement will depend on the particular case study. Numerous examples are given by Ang and Tang
(1984).
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Example 8.6. Storm rainfall total. The total amount of water Z delivered by a storm in a
given location was evaluated in Example 3.49 from an independent exponentially distributed
duration X and an average rainfall rate Y . Suppose our objective is to estimate the mean rainfall
total in a storm E[Z ] = E[XY ] by Monte Carlo simulation. Two sequences of n standard
uniform variates are first considered, say, u1, u2, . . . , un and ‘v1, v2, . . . , vn , respectively.
Hence,

xi = −μX ln(1 − ui ), i = 1, 2, . . . , n,

yi = −μY ln(1 − vi ), i = 1, 2, . . . , n,

where μX and μY denote the mean of X and Y , respectively. The outcomes of Z are then
found as

z1i = x1i y1i = μXμY ln(1 − ui ) ln(1 − vi ), i = 1, 2, . . . , n.

With the antithetic uniformly distributed variates one obtains

z2i = x2i y2i = μXμY ln(ui ) ln(vi ), i = 1, 2, . . . , n.

By combining the two sets one estimates the mean rainfall as

z∗ = 1

2
(z1 + z2) = 1

2n

n∑
i=1

(x1i y1i + x2i y2i ),

which has a variance of

Var[Z∗] = 1

4n2
nVar[X1Y1 + X2Y2].

From Eq. (3.4.28),

Var[(X1Y1 + X2Y2)] = Var[X1Y1] + Var[X2Y2] + 2Cov[X1Y1, X2Y2].

From Eq. (3.4.35),

Var[X1Y1] = Var[X1]Var[Y1] + Var[X1](E[Y1])2 + (E[X1])2Var[Y1],

Var[X2Y2] = Var[X2]Var[Y2] + Var[X2](E[Y2])2 + (E[X2])2Var[Y2].

Also,

E[X1] = E[−μX ln(1 − U )] = μX E[− ln(1 − U )]

= μX

⎡⎣ 1∫
0

− ln(1 − u) du

⎤⎦ = μX (1) = μX .

and

Var[X1] = Var[−μX ln(1 − U )] = μ2
X Var[− ln(1 − U )]

= μ2
X

⎧⎪⎨⎪⎩
1∫

0

[ln(1 − u)]2du −
⎡⎣ 1∫

0

− ln(1 − u)du

⎤⎦2
⎫⎪⎬⎪⎭ = μ2

X (2 − 1) = μ2
X .

Similarly, E[X2] = μX , Var[X2] = μ2
X , E[Y1] = E[Y2] = μY , and Var[Y1] = Var[Y2] = μ2

Y .
From Subsection 3.4.3,

Cov[X1Y1, X2Y2] = E[X1Y1 X2Y2] − E[X1Y1]E[X2Y2],

where

E[X1Y1] = E[X1]E[Y1] = μXμY ,

E[X2Y2] = E[X2]E[Y2] = μXμY ,
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and5

E[X1Y1 X2Y2] = E[μX ln(1 − U )μY ln(1 − V )μX ln(U )μX ln(V )]

= (μXμY )2 E[ln(1 − U ) ln(1 − V ) ln(U ) ln(V )]

= (μXμY )2 E[ln(1 − U ) ln(U )]E[ln(1 − V ) ln(V )]

= μ2
Xμ2

Y

⎧⎨⎩
1∫

0

[ln(1 − u)][ln(u)]du

⎫⎬⎭
⎧⎨⎩

1∫
0

[ln(1 − v)][ln(v)]dv

⎫⎬⎭
= μ2

Xμ2
Y

(
2 − π2

6

) (
2 − π2

6

)
= μ2

Xμ2
Y

(
2 − π2

6

)2

.

Thus,

Cov[X1Y1, X2Y2] = (μXμY )2

[(
2 − π2

6

)2

− 1

]
,

and

Var[(X1Y1 + X2Y2)] = (μXμY )2

{
3 + 3 + 2

[(
2 − π 2

6

)2

− 1

]}
= 4.252(μXμY )2.

The variance of estimator Z∗ is then determined as

Var[Z∗] = 1

4n2
nVar[X1Y1 + X2Y2] = 1.063

n
μ2

Xμ2
Y .

Note that simulating a single sample of length 2n yields a variance of

1

4n2
(2n)Var[XY ] = 1

2n

(
3μ2

Xμ2
Y

) = 1.500

n
μ2

Xμ2
Y ,

which is about 50% greater than that obtained using the antithetic variates technique.

Since Monte Carlo experiments are often used to compare the performance of different
design options, this type of experiment can be developed in a combined way to reduce
the standard error or variance of simulation results without increasing the sample size.
Let X A = g(A; Y1, . . . , Yk) denote the performance function of a design A, where A is
a set of design values, and the Yi are the random variables to be simulated in order to
estimate the system performance. Consider an alternative design B, the performance of
which is evaluated as X B = g(B; Y1, . . . , Yk) for a set B of design values. The difference in
performance between the two designs is X = X A − X B . It is expected that X A and X B are
highly correlated. To evaluate the mean value of X , the variance of this estimate is given by

Var[Ê[X ]] = Var[Ê[X A]] + Var[Ê[X B]] − 2Cov[Ê[X A], Ê[X B]]. (8.1.7)

This variance will be smaller than that corresponding to independent sampling of X A and
X B (which is the sum of the two individual variances) if Cov[X A, X B] > 0. Therefore,
one can use the same sequence of the standard uniform random variables to simulate the
performances of the two designs.

Example 8.7. Cantilever wood beam. The (maximum) deflection X of a cantilever wood
beam can be evaluated as

X = (Y + Z )l4

8E I
,

5 See, for example, Gradshteyn and Ryzhik (1994, Subsection 4.221, p. 558) for the integral that follows.
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with Y and Z denoting the distributed dead and live loads over the span length l of the beam, E
the modulus of elasticity, and I the cross-sectional moment of inertia, which, for a rectangular
beam, is given by

I = W H 3

12
,

where W and H are the width and depth of the cross section. Thus,

X = 3(Y + Z )l4

2EW H 3
.

Let us assume that Y ∼ N [4500 N/m, (0.1 × 4500 N/m)2], Z ∼ lognormal [5000 N/m,
(0.5 × 5000 N/m)2], and E ∼ N [1.2 × 1010 N/m2, (0.5 × 1.2 × 1010 N/m2)2]. An engineer
needs to evaluate two alternative designs, say, A and B. A 20-cm-wide and 30-cm-deep rect-
angular beam is considered in design A, and design B uses a 15-cm-wide and 40-cm-deep
rectangular beam. Because the actual dimensions can range within an interval of ±5 cm of the
nominal value in both cases, W and H are assumed to be uniformly distributed random vari-
ables. Accordingly, WA ∼ uniform (0.15 m, 0.25 m), HA ∼ uniform (0.25 m, 0.35 m), WB ∼
uniform (0.1 m, 0.2 m), and HB ∼ uniform (0.35 m, 0.45 m).

Let yi A, zi A, and ei A denote the random outcomes of Y , Z , and E required for the i th
simulation cycle of design A, and yi B , zi B , ei B the corresponding outcomes for design B.
First, to perform correlated simulations for the two designs, the same random outcomes are
used in each simulation cycle, that is, yi A = yi B , zi A = zi B , and ei A = ei B . Further,

wi A = 0.15 + 0.1ui ,

hi A = 0.25 + 0.1vi ,

wi B = 0.1 + 0.1ui ,

hi A = 0.35 + 0.1vi ,

where ui and vi are uniform (0, 1) random variates. The results from 500 simulation runs,
each with 100 cycles, are shown in Fig. 8.1.6a, with the estimated means of deflection for
designs A and B, and the expected differences X* between X A and X B .

The simulation procedure shows the variations in the estimated means. The estimated
variances and covariance of the estimates are accordingly computed as

Var[Ê[X A]] = 3.26 × 10−7 m2,

Var[Ê[X B]] = 9.61 × 10−8 m2,

and

Cov[Ê[X A], Ê[X B]] = 1.73 × 10−7 m2.

These are substituted in Eq. (8.1.7) to give

Var[Ê[X∗]] = 3.26 × 10−7 + 9.61 × 10−8 − 2 × 1.73 × 10−7 = 7.61 × 10−8 m2.

This value is compared with the sampling variance of

Var[Ê[X A] − Ê[X B]] = 7.55 × 10−8 m2,

which is found from the experiment.
Second, uncorrelated simulations are performed with yi A �= yi B , zi A �= zi B , and ei A �= ei B .

Also,

wi A = 0.15 + 0.1ui A,

hi A = 0.25 + 0.1vi A,

wi B = 0.1 + 0.1ui B,

hi A = 0.35 + 0.1vi B,
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Fig. 8.1.6 Results of 500 simulation runs of expected deflection for a cantilever wood beam by
using a size-100 sample for each run: (a) correlated and (b) independent simulations of the two
design alternatives.

where ui A, vi A, ui B , and vi B denote four uniform (0, 1) mutually independent random variates.
For this experiment,

Cov[Ê[X A], Ê[X B]] = 7.66 × 10−9 m2,

and

Var[Ê[X A] − Ê[X B]] = 5.78 × 10−7 m2.

The results of the uncorrelated simulation are shown in Fig. 8.1.6b. The correlated sampling
reduces the variance of the estimated difference in design performance by about 87%. Note
that from the results of the first experiment

Var[Ê[X A] − Ê[X B]] = Var[Ê[X A]] + Var[Ê[X B]]

= 3.26 × 10−7 + 9.61 × 10−8 = 4.22 × 10−7 m2,

which is somewhat smaller than 5.78 × 10−7 m2. The second experiment is not needed to
derive the result for the case of uncorrelated experiments.
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8.1.3.2 Control variates
The accuracy of estimation in Monte Carlo experiments can be increased in some cases
by substituting an indirect estimator Y ∗ for the original estimator X∗ of the variate X .
This is realized by introducing a control variate Z to represent, for instance, the perfor-
mance function of an approximated model of the system studied. For example, the indirect
estimator can be defined as

Y ∗ = X∗ − η(Z − μZ ), (8.1.8)

where η is a coefficient and μZ denotes the mean of Z , which is a random variable
correlated with X . Note that the approximate model must be superceded if possible, by
the determination of μZ by analytical methods. If X∗ is an unbiased estimator of X , then

E[X∗] = X,

E[Y ∗] = E[X∗] − η(E[Z ] − μZ ) = E[X∗] = X. (8.1.9)

This means that Y ∗ is also an unbiased estimator; the variance is given by

Var[Y ∗] = Var[X∗] + η2Var[Z ] − 2ηCov[X∗, Z ]. (8.1.10)

If 2ηCov[X∗, Z ] > η2Var[Z ], then Var[Y ∗] < Var[X∗], signifying that the indirect esti-
mator Y ∗ is more accurate than X∗. To maximize the variance reduction, one can select a
value of η such that Var[Y ∗] is minimized; that is,

∂Var[Y ∗]

∂η
= 2ηVar[Z ] − 2Cov[X∗, Z ] = 0,

or

η = Cov[X∗, Z ]

Var[Z ]
. (8.1.11)

By substituting the right-hand side of Eq. (8.1.11) for η in Eq. (8.1.10), one finds the
corresponding minimum Var[Y ∗] as

Var[Y ∗] = (
1 − ρ2

X∗,Z

)
Var[X∗], (8.1.12)

where ρX∗,Z is the correlation coefficient between X∗ and Z . It is seen that the reduction
in variance increases as ρX∗,Z increases; this means that Z should be highly dependent on
X∗ to ensure an effective reduction. This is usually obtained if the control model provides
a good approximation of the system.

8.1.4 Summary for Section 8.1

In this section we have introduced some basic concepts of simulation. Details of the proba-
bility integral transform have been given and variance reduction techniques are discussed.
The examples have shown how Monte Carlo experiments can be used in practice. We now
proceed to the generation of random numbers of specific distributions through the use of
computers.

8.2 GENERATION OF RANDOM NUMBERS

8.2.1 Random outcomes from standard uniform variates

The probability integral transform indicates that generation of uniform (0, 1) random
numbers is the basic generation process used to derive the outcomes from a variate with
known probability distribution. Current methods to generate standard uniform variates are
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deterministic, in the sense that systematic procedures are used after one or more initial
values are randomly selected. For example, system-supplied random number generators in
most digital computers are almost always linear congruential generators. This algorithm
is based on recursive calculation of a sequence of integers k1, k2, k3, . . . , each between 0
and m − 1 (a large number) from a linear transformation:

ki+1 = (aki + c)(modulo m). (8.2.1)

Here a and c are positive integers called the multiplier and the increment, respectively,
and the notation (modulo m) signifies that ki+1 is the remainder obtained after dividing
(aki + c) by m, where m denotes a (large) positive integer. Hence, denotingηi = Int[(aki +
c)/m], the corresponding residual is defined as

ki+1 = aki + c − mηi . (8.2.2)

Hence,

ui+1 = ki+1

m
= aki

m
+ c

m
− Int

[(
aki + c

m

)]
, (8.2.3)

where the ui are uniform (0, 1). Because these numbers are repeated with a given period,
they are usually called pseudorandom numbers. The quality of the results depends on the
magnitudes of the constants a, c, and m and their relationships, but the type of computer
used will impose constraints. Because the period of the cycle is not greater than m, and it
increases with m, the main criterion is that the period after which the original numbers are
unavoidably repeated should be as long as possible. In practice, m is set equal to the word
length, that is, the number of bits retained as a unit in the computer. Moreover, the constants
c and m should not have any common factors, and the value of a should be sufficiently
high. Because all possible integers between 0 and m − 1 occur after some interval of time,
regardless of the generator used, any initial choice of the seed k0 is as good as any other.

Example 8.8. Linear congruential algorithm. Suppose we assume low values for the
constants in Eq. (8.2.1): a = 5, c = 1, and m = 8. Let k0 = 1 be the seed for generating a
sequence of random integers ki , i = 1, 2, 3, . . .. For i = 1 one has

k1 = ak0 + c − mInt

[(
ak0 + c

m

)]
= 5 × 1 + 1 − 8 × Int

[(
5 × 1 + 1

8

)]
= 5 + 1 − 8 × Int(0.75) = 5 + 1 − 8 × 0 = 6,

and, from Eq. (8.2.3),

u1 = k1

m
= 6

8
= 0.75.

The second iteration yields

k2 = ak1 + c − mInt

[(
ak1 + c

m

)]
= 5 × 6 + 1 − 8 × Int

[(
5 × 6 + 1

8

)]
= 30 + 1 − 8 × Int(3.875) = 30 + 1 − 8 × 3 = 7,

u2 = k2

m
= 7

8
= 0.875.

The subsequent iterations yield the following sequence:

0.5, 0.625, 0.25, 0.375, 0, 0.125, 0.75, 0.875, 0.5, 0.625, 0.25, 0.375, 0, 0.125, 0.75,

0.875, 0.5, 0.625, 0.25, 0.375, 0, 0.125, 0.75, 0.875, 0.5, 0.625, 0.25, 0.375,

0, 0.125, . . . .
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Fig. 8.2.1 Trajectory of 100 sequentially generated standard uniform random numbers with
a = 5, c = 1, and m = 8 (solid line), and with a = 27 + 1, c = 1, and m = 235 (dotted line).

This is seen to be cyclic with a period of 8, because the underlined sequence of 8 values
is repeated indefinitely. It is demonstrated by plotting ui+1 against ui in Fig. 8.2.1.

Also shown in Fig. 8.2.1 are results from the generator a = 27 + 1, c = 1, and m = 235,
which yields a much larger period of cyclicity. This choice gives satisfactory results for binary
computers; and a = 101, c = 1, and m = 2b for a decimal computer with a word length b.

The advantage of the linear congruential method when applied through a digital com-
puter is the speed of implementation. Because only a few operations are required each
time, its use has become widespread. A disadvantage is that once the seed is specified, the
entire series is predictable.

The pseudorandom numbers generated by these procedures may be tested for uniform
distribution and for statistical independence. Goodness-of-fit tests, such as the chi-squared
and the Kolmogorov-Smirnov tests, may be used to verify that these numbers are uniformly
distributed. Both parametric and nonparametric methods, such as the runs test, can be used
to check for randomness between successive numbers in a sequence. In spite of the fact
that these procedures are essentially deterministic, pseudorandom numbers generated with
large m and accurate choices of a and c generally appear to be uniformly distributed, and
stochastically independent, so that they can be properly used to perform Monte Carlo
simulations. Algorithms to generate pseudorandom numbers, which closely approximate
mutually independent standard uniform variates, are a standard feature in statistical soft-
ware. Standard uniform random numbers are available as a system-supplied function in
digital computers, as well as in most customary computational and data management
facilities such as spreadsheets and data bases.6

By substituting c = 0 in Eq. (8.2.1) the multiplicative congruential generator

ki+1 = aki (modulo m) (8.2.4)

6 Extensive reviews of methods and computer routines for random number generation are given by Knuth (1981),
Bratley et al. (1987), and Press et al. (1992), among others.
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is obtained. This is a standard algorithm used in pocket calculators and digital computers.
The multiplier a and the modulus m should be well chosen as outlined before.7 Note that
for the multiplicative congruential generator the value of 0 is not allowed as the initial
seed, because it perpetuates itself, in contrast to any nonzero initial seed.

A more sophisticated algorithm uses a standard generator to compute the required
random values, but it shuffles the output to remove low-order serial correlations. In this
case, a random variable derived from the j th value in the sequence, I j , is the output—not
on the j th call but rather on a randomized later call, j + 32 on average. This algorithm
should pass nearly all statistical tests unless the number of calls becomes very large,
say, larger than m/20. If one needs longer random sequences, one can combine two
different sequences with different periods to obtain a sequence with period equal to the
least common multiple of the two periods. When these algorithms are implemented on a
digital computer, the execution time for the shuffled multiplicative congruential generator
is about 1.3 times larger than that required by the standard generator, while that required
by the two-component shuffled multiplicative congruential generator is about twice this
time.

It is seen that the error term in Monte Carlo integration decreases as n−1/2 when choosing
n points uniformly randomly distributed in a multidimensional space. From Eq. (8.1.2) the
standard deviation of the estimate of probability of an event of interest decreases as n−1/2

when n sequential mutually independent simulations are performed. One might search
for a faster decay of the error associated with simulation. For instance, if sample points
used for integration lie on a cartesian grid, and one samples each grid point exactly once
(in whatever order), the Monte Carlo method thus becomes a deterministic quadrature
scheme in which the fractional error decreases at least as fast as n−1, and even faster if the
function goes to zero smoothly at the boundaries of the sampled region or it is periodic
in the region. However, using a grid one must decide in advance how fine it should be,
and it is not convenient to sample until some convergence or termination criterion is
met. Therefore, one might search for an intermediate scheme—some way to pick sample
points that are random yet spread out in some self-avoiding way, avoiding the chance
of clustering that occurs with uniform random points. Quasi-random, or sub-random,
generators, which are based on deterministic algorithms to generate uniformly distributed
sequences of variates that maximally avoid each other, can be used for this purpose. An
example is shown in Fig. 8.2.2, where 100 and 400 pairs of standard uniform random
numbers (u, v) are compared with the same number of pairs generated as gridded uniform
random numbers in the unit square using a grid size δ of 0.1 and 0.05, respectively. These
points are determined by generating a pair of random numbers from two independent
uniformly distributed variates, U and V , for each grid cell, with (i − 1)δ ≤ u ≤ iδ and
( j − 1)δ ≤ v ≤ jδ, for i = 1, . . . , 10 and j = 1, . . . , 10. Note that the sample space is
covered much more uniformly by the gridded random points than by purely random ones.
The statistics of the two sequences (see Table 8.2.1) also show that the two coordinates of
a point are independent of each other in both cases. More sophisticated methods can be
developed using binary fractions.8 Although quasi-random sequences provide satisfactory

7 For example, the “minimal standard” generator of Park and Miller as reported by Press et al. (1992) is
based on the choices of a = 75 = 16807 and m = 231 − 1 = 2,147,483,647. The generator has a period of
231 − 2 ≈ 2.1 × 109, and it has seen much successful use. Since the product of a and m − 1 exceeds the
maximum value for a 32-bit integer, one can use an approximate factorization of m, such as m = ah + l, which
yields h = Int(m/a). Thus l = m (modulo a).
8 See Press et al. (1992) for a review of quasi-random generators and related references.
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Fig. 8.2.2 Points in a unit square generated as standard uniform random numbers (solid circles)
and as uniform random numbers on a uniform grid (empty circles) with size 0.1 (a) and 0.05 (b).

results when applied to problems of the Monte Carlo type,9 one should handle these
methods with great care and previously test all the statistical properties which are relevant
to the simulation of the system.

It seems a paradox that a deterministic machine like a computer is used to produce
random numbers.10 With reference to a digital computer, the program for the random
number generator should be supplemented by numerous tests as discussed earlier. An
additional test is that if two or more random number generators are used for the input of a
simulation, the outputs should not have any significant statistical differences. Furthermore,
there should be no relationship between the computer program for the random number
generator and that used by the engineer in simulation.

Table 8.2.1 Statistics of n pairs of standard uniform random numbers and of gridded
uniform random numbers in the unit square

Standard uniform Gridded uniform

Statistic Theoretical n u v u V

Mean 0.5 100 0.507 0.513 0.502 0.504
400 0.501 0.492 0.500 0.500

Variance 0.083 100 0.081 0.085 0.082 0.081
400 0.082 0.083 0.084 0.083

Skewness coefficient 0 100 0.030 −0.005 0.004 −0.033
400 −0.047 0.063 −0.004 −0.008

Correlation, ρU,V 0 100 0.026 −0.015
400 −0.010 0.001

9 For example, using the Sobol sequence (not presented here) makes the error in Monte Carlo integration to
decrease as n−1 if a smooth function is to be integrated, and as n−2/3 for a function with step discontinuities
(Press et al., 1992, p. 305).
10 According to von Neumann (1951), “Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin,” for “there is no such thing as a random number. There are only methods to produce
random numbers.”



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:24

506 Applied Statistics for Civil and Environmental Engineers

0

50

100

150

200

20 64

Reduced variate, y(a)

(b)

R
ai

nf
al

l d
ep

th
 (

m
m

)

Annual maximum hourly rainfall
at Genoa University, Italy

Simulation runs
from the GEV distribution

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250

X (58)

C
um

ul
at

iv
e 

re
la

tiv
e 

fr
eq

ue
nc

y

Simulated

Theoretical cdf

Fig. 8.2.3 Simulation of annual maximum hourly rainfall at Genoa University, Italy, using the
GEV distribution: (a) Gumbel probability plots of 50 simulations, each with 58 outcomes, as
compared with observations; and (b) simulated cumulative frequency of the largest value as
compared with its theoretical cdf.

8.2.2 Random outcomes from continuous variates

The probability integral transform yields the required outcome x of a random variable
X with continuous cdf FX (x) from a generated value u of the standard uniform variate
on 0 to 1. Accordingly, x is determined as the uth quantile of X . Obviously, the inverse
transform method is straightforward when the cdf of X can be inverted analytically, that
is, the inverse function is available as in the case of an exponential variate.

Example 8.9. GEV-distributed storm depth. The distribution of annual maximum hourly
storm depth at Genoa University in northwest Italy is estimated to have a GEV distribution with
parameters k = −0.05, α = 17.27 mm, and ε = 37.30 mm in Example 7.23. An individual
outcome from this population is found by substituting a standard uniform random number u
for the frequency level in Eq. (7.2.65). Thus,

x = ε + α

k
[1 − (− ln u)k] = 37.29 − 17.17

0.05
[1 − (− ln u)k].

Fifty simulation runs, each with n = 58 outcomes, are shown in Fig. 8.2.3a on a Gumbel
probability plot.

Monte Carlo simulations give an idea of possible sampling variability of a particular variate.
For instance, Fig. 8.2.3b shows the cumulative relative frequency curve for the largest value
of 58 outcomes in 50 runs; this is also compared with the theoretical cdf evaluated from
Eq. (7.1.2).
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Table 8.2.2 Summary of independent random numbers x generated from selected distributions

Distribution Parameters x

Standard normal
√−2 ln u1sin (2πu2) and

√−2 ln u1 cos (2πu2)

Standard beta α, β u1/α

1

/[
u1/α

1 + u1/β

2

]
, provided that u1/α

1 + u1/β

2 ≤ 1a

Standard gamma r for r > 1: − ln

(
r∏

i=1
ui

)
= −

r∑
i=1

ln ui , for integer r ; and, in

general, −
r ′+3∑
i=4

ln ui + (− ln u3) u1/ f
1

/[
u1/ f

1 + u1/(1− f )
2

]
, with

r ′ = Int(r ), f = r − r ′, and acceptance region as for beta;

for r < 1: if u1(e + r )/e ≤ 1, then x = [u1(e + r )/e]1/r , if
u2 ≤ e−x ; if u1(e + r )/e > 1, then x = − ln[(e + r )(1 − u1)/
(er )], if u2 ≤ xr−1; otherwise reject and repeat until acceptedb

Binomial n, p
n∑

i=1
ki , with ki = 1, if ui < p; and ki = 0, if ui ≥ p

Poisson v x such that
x∑

i=1
−v−1 ln (ui ) ≤ 1, and

x+1∑
i=1

−v−1 ln (ui ) > 1

Geometric p 1 + Int[ln u/ ln(1 − p)]

Negative binomial r , p r +
m∑

i=1
hi , with hi = 1, if ui ≥ p; hi = 0, if ui < p; and m is

the smallest integer such that r =
m∑

i=1
(1 − hi )

Note: u1, u2, . . . , ui , . . . denote uniform (0, 1) random numbers.
aSee Jöhnk (1964), also for gamma distribution.
bSee Ahrens and Dieter (1974).

The inverse transform method is effective if the quantile of the variate has an explicit
formulation in terms of probability of nonexceedance. However, many probability models
cannot be inverted analytically; examples are the normal, lognormal, beta and gamma dis-
tributions, among others. Because numerical computations to obtain the required quantile
may be cumbersome, other methods can be developed using the concept of a function
of a random variable and the theorem of total probability. A powerful alternative is the
rejection method using a procedure similar to that used in Monte Carlo integration. We
provide details of this procedure in this section.

When a random variable X can be expressed as a function of other random vari-
ates, say, X = g(Y1, Y2, . . . , Yk) and methods for generating Y1, Y2, . . . , Yk are available,
an outcome of X can be determined as X = g(y1, y2, . . . , yk), where (y1, y2, . . . , yk)
are random realizations of Y1, Y2, . . . , Yk . This method can be used to derive stan-
dard normal-, gamma-, and beta-distributed numbers, among others, as summarized in
Table 8.2.2.

Example 8.10. Standard normal random numbers. Let V and W denote two variates
defined as W = − ln U1, and V = U2, where U1 and U2 are two independent standard uniform
variates. As U1 and U2 are independent, the joint pdf of W and V is given by

fW,V (w, v) = fW (w) fV (v) = fU1 (e−w )

∣∣∣∣de−w

dw

∣∣∣∣ fU2 (v) = e−w ,
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as discussed in Section 3.4. If one writes W and V as W = [(Z1)2 + (Z2)2)]/2, and V =
(2π )−1 × tan−1(Z2/Z1), the pdf of the new variates Z1 and Z2 is written as

fZ1,Z2 (z1, z2) = JfW,V

(
z2

1 + z2
2

2
,

1

2π
tan−1

(
z2

z1

))
,

where the Jacobian J is given by

J =

∣∣∣∣∣∣∣
∂w

∂z1

∂w

∂z2
∂v

∂z1

∂v

∂z2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣

z1 z2−z2

2π
(
z2

1 + z2
2

) z1

2π
(
z2

1 + z2
2

)
∣∣∣∣∣∣ = 1

2π
.

Thus,

fZ1,Z2 (z1, z2) = 1

2π
exp

(
− z2

1 + z2
2

2

)
,

for −∞ < z1, z2 < +∞. This is the joint pdf of two independent standard normal variates, as
seen from Eq. (4.3.1) for ρ = 0. Inverting the above expressions for Z1 and Z2 as functions
of W and V , Z1 = (2W )1/2 cos(2πV ), and Z2 = (2W )1/2 sin(2πV ) are obtained. Hence,
substituting W = − ln U1 and V = U2 for W and V , respectively,

Z1 = (−2 ln U1)1/2 cos(2πU2),

and

Z2 = (−2 ln U1)1/2 sin(2πU2),

showing that a pair of independent standard normal variates can be generated using two
independent standard uniform variates. This is called the Box-Muller method and is commonly
used. Standard normal random numbers are used to generate normal and lognormal outcomes
to give a variate with known mean and variance.

8.2.2.1 Decomposition method
Using the theorem of total probability of Eq. (2.2.15), one can express the pdf of a variate
X as the weighted sum of a set of other density functions in the form

fX (x) =
m∑

i=1

fXi (x)pi , (8.2.5)

where fXi (x) = fX (x |Bi ), i = 1, . . . , m, is a set of component density functions and
pi = Pr[Bi ] is the probability or relative weight associated with fXi (x) for the i th com-
ponent Bi . A complex pdf fX (x) can be decomposed into a combination of simpler pdfs,
whose corresponding cdfs can be inverted analytically. Accordingly, the decomposition
method first generates a random number for the probability pi and the corresponding pdf
is selected; then, another random number is generated according to the selected pdf. Note
that m standard uniform random numbers must be generated to obtain the desired outcome.

Example 8.11. Ferry transportation. Two companies provide ferry transportation across
the Strait of Messina in southern Italy. The waiting time X of a ferry is distributed as a mixture
of two exponential distributions (see Fig. 8.2.4).

The pdf of this distribution, which is sometimes referred to as contaminated exponential
distribution, is given by

fX (x) = pλ1 exp(−λ1x) + (1 − p)λ2 exp(−λ2x),
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Fig. 8.2.4 Contaminated exponential distribution of waiting time X for ferry arrivals.

and its cdf is

FX (x) = p[1 − exp(−λ1x)] + (1 − p)[1 − exp(−λ2x)].

Since FX (x) cannot be inverted analytically, but fX (x) is the sum of two exponential densities
weighted by p and (1 − p), respectively, one can use the decomposition method to simulate
random waiting times. Accordingly, one first generates a standard uniform random number
u1. If u1 < p, the required outcome x of X is found by applying the inverse transform method
to the first component:

x = − 1

λ1
ln(1 − u2),

where u2 is another standard uniform random number. Conversely, if u1 ≥ p,

x = − 1

λ2
ln(1 − u2),

which is the random waiting time, found from the u2th quantile of the second component. For
example, let p = 0.7, λ1 = 0.8 h−1, and λ2 = 1 h−1. Suppose that u1 = 0.32, and u2 = 0.44.
Since 0.32 < 0.7, one gets

x = − 1

0.8
ln(1 − 0.44) = 0.725 hour.

8.2.2.2 Rejection method
The rejection method provides a general technique for generating outcomes from a variate
X with known and computable pdf fX (x), and it is not essential for the cdf to be computable.
This method is based on a simple geometrical concept, similar to that used in Monte Carlo
integration. The pdf fX (x) is shown in Fig. 8.2.5.

On the same graph, one draws another curve y = g(x) that has a finite area under it,
and it is such that g(x) ≥ fX (x) for all possible values of X . This is called the comparison
function and it lies everywhere above the original probability density function. In the
standard rejection method, one generates a random variable X from the density g(x)/α,
where α is the area under g(x). Then a standard uniform variate U is drawn and X is
accepted if U < fX (x)/g(x).

Suppose there is some way of choosing a random point in two dimensions that is
uniformly distributed in the area under g(x). If this point lies outside the area under the
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Fig. 8.2.5 Rejection method for generating a variate X from a distribution with known pdf.

original pdf fX (x), we reject it and proceed to another random chosen point. On the
contrary, if the point lies inside the area under fX (x), we accept it and take x as a random
number from X . This is because the accepted points are uniformly distributed in the area of
acceptance, which is a subset of the comparison area, so that their values have the desired
distribution. The fraction of points rejected depends on the ratio of the area under g(x) to
the area under fX (x), and not on the particular form of either function. If, for instance, the
area under g(x) is less than 1.5, less than one-third of the points will be rejected regardless
of how well g(x) fits fX (x).

Example 8.12. Standard gamma random numbers. One wishes to generate random num-
bers from the standard gamma distribution with pdf

fX (x) = xr−1e−x

�(r )
,

for a specified value of shape parameter r > 1. The form of this pdf is such that it can be
embedded using a comparison function derived from the standard Cauchy-distributed variate
W with pdf

fW (w) = [π (1 + w2)]−1,

and cdf

FW (w) = 1/2 + π−1arc tan w .

Thus, one takes

g(x) = c

[1 + (x − b)2/a2]
,

where a, b, and c denote three constants. The values of a, b, and c are selected in such a
way that g(x) is everywhere greater than fX (x), and the area under the curve (which depends
on the product ca) is as small as possible. One then applies the inverse transform method to
generate a value of W from a standard uniform random number u1 as z = tan[π (u1 − 1/2)].
This is used to compute a value of x as x = az + b; that is,

x = a tan[π (u1 − 1/2)] + b.
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The ordinate y of the random point on the (x, y) plane is then found as u2g(x), where u2 is
another standard uniform random number and is compared with the original pdf evaluated
at x . If

y = u2c

1 + tan2[π (u1 − 1/2)]

≤ 1

�[r ]

{
a tan

[
π

(
u1 − 1

2

)]
+ b

}r−1

e−a tan[π (u1−1/2)]−b = fX (x),

the value of x is accepted as a standard gamma random number; conversely, if y > fX (x), it
is rejected and another point (x , y) is generated. For example, if r = 2, one can take a = 2.01,
b = 2, and c = 0.3, as shown in Fig. 8.2.5. Note that to generate n random numbers using
this method, one requires more than 2n uniform(0, 1) random numbers. This technique can
be used for a large variety of variates with a bell-shaped pdf.11

8.2.3 Random outcomes from discrete variates

The inverse transform method can also be used to generate a random number from a
discrete distribution FX (xi ) by using a standard uniform random number u. The condition
FX (x(i−1)) < u ≤ FX (x(i)) gives the corresponding discrete random number as x(i), the
i th-ordered possible value of the random variable X . However, the generation of discrete
random numbers by this method requires the calculation of the cdf for all possible values
of the random variable or, at least, for many of them. Then, one will search for x(i) each
time a number u is generated.

Example 8.13. Binomial random numbers. One wishes to generate random numbers from
a binomial distributed variate with cdf

FX (x) =
x∑

k=0

(
n
k

)
pk (1 − p)n−k ,

for x = 0, 1, . . . , n. Also, let p = 0.2 and n = 5. Suppose that the random variate generated
from a uniform(0, 1) distribution is 0.8. Since

FX (1) =
1∑

k=0

(
5
k

)
0.2k(1 − 0.2)5−k = 0.737,

and

FX (2) =
2∑

k=0

(
5
k

)
0.2k(1 − 0.2)5−k = 0.942,

one has FX (1) < 0.8 ≤ FX (2), and the corresponding value of X is x = 2, as shown in
Fig. 8.2.6.

For large n, say, n > 30 and np > 5 the normal approximation can be used to generate
binomial random numbers, as given by Eq. (4.2.24a). If z denotes a standard normal random
number, one computes

x∗ = np + [np(1 − p)]1/2z,

11 See the more efficient method of Ahrens and Dieter (1974) in Table 8.2.2, with details by Devroye (1986,
pp. 401–428) who gives an evaluation of various techniques for nonuniform random number generation.
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Fig. 8.2.6 Generation of a binomial random number.

to obtain the corresponding value of the binomial variate as

x = 0, if x∗ ≤ 0,

x = n, if x∗ ≥ n,

x = x∗, if 0 < x∗ < n,

where x∗ is rounded off to the nearest integer.

Because the computation of the cdf of a discrete variate may be cumbersome in some
cases, other methods can also be used. For instance, one can use the rejection method
introduced for continuous variates. The pdf of a discrete variate can be viewed as a
sequence of Dirac delta functions of possible outcomes xi with an area of pX (xi ), but one
can spread the finite area in the spike at xi into the interval from xi to xi+1, thus defining a
sort of continuous density function f (x) as shown in Fig. 8.2.7. If a uniformly distributed
random point in the area upperly bounded by the comparison function also lies inside the
area bounded by f (x), the integer part of its abscissa is accepted as a discrete random
number; conversely, it is rejected.

Some discrete random variables can be interpreted as a counter of occurrences. One
can thus generate values from this variate by using the probability distribution of the
distance between occurrences or interarrival time. The discrete outcome is determined as
the terminator index of the random sum describing the cumulated distance or interarrival
time in a specified distance or period. This is the case, for instance, of the Poisson and
negative binomial distributed variates, as summarized in Table 8.2.2.

Fig. 8.2.7 Rejection method for generating an outcome from a discrete variate X with known pmf.
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Example 8.14. Poisson random numbers. The generation of random numbers from the
Poisson distribution with pmf

pX (x) = vx e−v

x!
,

is based on the knowledge that the distance between occurrences or interarrival time t is
exponentially distributed with mean 1/λwhereλ = v/t is the rate of occurrence.12 A sequence
of interarrival times ti , i = 1, 2, . . . , can thus be generated from the exponential distribution.
If

t1 + t2 + · · · ti−1 + ti ≤ t < t1 + t2 + · · · ti−1 + ti + ti+1,

one will take i as the appropriate value of the Poisson-distributed variate, because exactly i
occurrences are observed within the reference distance or period t . Accordingly, a Poisson
random number is generated as the value x such that

x∑
i=1

−
(

t

v

)
ln(ui ) ≤ t, or

x∑
i=1

−v−1 ln(ui ) ≤ 1,

and
x+1∑
i=1

−
(

t

v

)
ln(ui ) > t, or

x+1∑
i=1

−v−1 ln(ui ) > 1,

where the ui are a sequence of uniform(0, 1) random numbers. Note that for large v , say, v >

10, the normal approximation to the Poisson distribution might be used, that is X ∼ N (v −
0.5, v). Hence, x is generated from a standard normal random number z by computing13

x∗ = v − 0.5 + v1/2z.

The corresponding value of the Poisson variate is obtained as

x = 0, if x∗ ≤ 0;

x = x∗, if x∗ > 0,

where x∗ is rounded off to the nearest integer. This approximation is also a useful starting
point when using a rejection procedure.

8.2.4 Random outcomes from jointly distributed variates

If a simulation requires the outcome from a set of k stochastically independent variates, say,
X1, X2, . . . , Xk , the random numbers for each variate can be generated independently of
one another using the above methods. This is because the joint pdf is simply the product
of the marginals. Conversely, the outcome from a k-dimensional variate with mutually
dependent components can be generated in cascade using the concept of conditional
probability. From Eq. (2.2.12) and Subsection 3.3.2,

FX1,...,Xk (x1, . . . , xk) = FX1 (x1)FX2|X1 (x2|x1) · · · FXk |X1,...,Xk−1 (xk |x1, . . . , xk−1);

that is, the joint cdf can be written as the product of marginal and conditional cdfs.
Accordingly, a value x1 can be generated independently as the u1th quantile from the
marginal cdf of X1. With this value of x1, the conditional cdf of X2 given X1 is a function
only of x2, and hence a value x2 can be determined as the u2th quantile of the conditional

12 As discussed in Subsection 4.2.2.
13 See, also Example 4.30.
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cdf of X1 given X2. Using the values x1 and x2 already obtained, one computes x3 as the
u3th quantile of the conditional cdf of X3 given X1 and X2. This recursive procedure is
then carried out until the required set of dependent random numbers (x1, x2, . . . , xk) is
computed from a set of independent standard uniform random numbers (u1, u2, . . . , uk).
The effectiveness of the method is ensured by the straightforward application of the
probability integral transform, which is possible if the initial marginal and its associated
conditional cdfs can be inverted analytically.

Example 8.15. Bivariate normal random numbers. In Example 4.32, compressive
strength Y and density X of concrete are modeled using the bivariate normal pdf of
Eq. (4.3.1). It is seen that the conditional variate Y given X is a normal variate with mean

μY + ρ(x − μX )

(
σY

σX

)
,

and standard deviation

σY (1 − ρ2)1/2,

where μX , μY , σX , and σY denote the means and standard deviations of X and Y , respectively,
and ρ is the correlation coefficient between the two variates. Therefore, one can generate a
value x of X as

x = μX + z1σX ,

which is used to compute a value y of Y as

y = μY + ρ(x − μX )

(
σY

σX

)
+ z2σY (1 − ρ2)1/2,

where z1 and z2 are two independent standard normal random numbers.

8.2.5 Summary of Section 8.2

Methods of generating random variates from continuous and discrete distributions are
shown in this section. We commenced with different types of uniform random number
generators. The Box-Muller technique for normal variates and the generation of other
types such as gamma and Poisson variates are given. We demonstrate the use of the
decomposition and rejection methods of generation. The next section deals with the use
of simulation in design.

8.3 USE OF SIMULATION

Simulation methods can be applied to large and complex systems, which would require
large simplifications to be modeled using analytical methods. In such cases, more realistic
simulation models can be used. Furthermore, simulations are often the only means of
verifying or validating approximate analytical solution methods and of searching for a
solution to those statistical problems requiring cumbersome analytical developments or
those that are yet unsolved.

8.3.1 Distributions of derived design variates

Design variates of engineering systems are often derived from other variates for which ob-
servations are available. For example, the wind load on a tower is usually determined from
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wind speeds measured in the area; pollution loads in a river are the product of the com-
bined effects of wastewater discharges and natural flows; and flood flows in an ungauged
stream can be derived from observed storm and basin characteristics, and the elevation of
the levees designed to accommodate these flows is found from the relationship between
water depth and discharge. These relationships are deterministic if the transformation of
the observed variates and the adaptation in the design is known without uncertainties. Al-
ternatively, they are stochastic. This can occur because of unpredictable system behavior,
or it can be caused by uncertainties in modeling and parameterization. Analytical solu-
tion methods should be preferred to simulations because they provide general solutions.
However, their application is sometimes cumbersome, as previously stated, or one finds
that system complexity does not facilitate the development of analytical derivations, so
that simulation is the only tool to achieve practical results. A detailed description of a
system is possible through simulation, whereas oversimplifications of the system may be
required to develop analytical solutions. Also, simulation methods can be used to ver-
ify or validate those analytical approximations which are amenable for extrapolations or
generalizations.

Example 8.16. Pier scour. Pier foundations of bridges over water can be undermined by
local scour. The best-fit scour model for bridge piers proposed by Johnson (1992) gives the
scour depth X measured from the average channel bed to the bottom of the scour hole as

X = 2.02Y (b/Y )0.98 F0.21
r W −0.24,

where Y is the depth of flow just upstream of the pier, Fr is the upstream Froude number
(Fr = V/(gY )1/2, V and g denote the approach flow velocity and acceleration due to gravity,
respectively), W is sediment gradation (equal to d84%/d50%, the ratio between the 84% quantile
to the median sediment diameter), and b is the pier width. All these quantities are measured
in metric units. Using the Manning formula to compute the velocity for a wide rectangular
channel cross section,

V = (1/n)S1/2Y 2/3,

where n is the roughness coefficient and S is the slope. Hence, the Froude number is

Fr = V

(gY )1/2
= S1/2Y 1/6n−1g−1/2,

thus,

X = 2.02Y (b/Y )0.98(S1/2Y 1/6n−1g−1/2)0.21W −0.24,

which, after substituting 9.81 m/s2 for g, can be written as

X = 1.59b0.980Y 0.055 S0.105n−0.210W −0.240.

The estimation of Y , S, n, and W is affected by uncertainties. We propose to model all
these quantities as random variables. One can thus determine the probability distribution
of X by simulation if the probability distributions of Y , S, n, and W are known. For a
pier width of 2.5 m, suppose that sediment gradation W ∼ lognormal (4, 1.62), the slope
S ∼ N (0.002, 0.00042), the depth Y ∼ N (4.75 m, 1.22 m2), and the roughness coefficient n ∼
uniform (0.02, 0.04). Also, one can reasonably assume that Y , S, n, and W are independent of
each other. To perform each simulation, one will generate a standard uniform random number,
ui , and three independent standard normal numbers, z1i , z2i , and z3i . The i th outcome of the
roughness coefficient n is found by rescaling ui as

ni = 0.02 + (0.04 − 0.02)u1i ,
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and those of W , S, and Y are computed as

wi = exp(1.312 + 0.385z1i ),

si = 0.002 + 0.0004z2i , and yi = 4.75 + 1.2z3i

[note Eq. (4.2.2a) and (4.2.2b) for the uniform distribution and Eq. (4.2.28e) and the foregoing
equation for the lognormal distribution]. Figure 8.3.1a shows the sampling cdf FX (x) of the
scour depth resulting from the first 10, 100, and 1000 simulation cycles. It is seen that the
size-10 sample provides a rough approximation to the size-1000 sampling cdf, which is a
better approximation than that obtained from the size-100 sample. The estimated means
and standard deviations of the specified variates are shown in Fig. 8.3.1b and 8.3.1c for an
increasing number of simulation cycles. Note that the sampling means and standard deviations
of Y , S, n, and W estimated from 1000 simulation cycles practically overlap with those used
as inputs to the simulation procedure.

The 1000-cycle simulated mean and standard deviation of X are 3.39, and 0.36 m, respec-
tively. Note that the estimated mean is very close to the nominal value of 3.32 m determined
by substituting the mean values for the corresponding variates in the pier scour model. These
results can also be compared with the approximated mean and standard deviation, which are
computed by using Taylor’s series expansion about the means of independent variates (see
Section 3.4). The first and second partial derivatives of X with respect to each independent
variate are as follows:(

∂ X

∂y

)
μ

= 1.59 × 0.0551b0.980μ−0.945
Y μ0.105

S μ−0.210
n μ−0.240

W = 0.0325,(
∂ X

∂s

)
μ

= 1.59 × 0.1051b0.980μ0.055
Y μ−0.895

S μ−0.210
n μ−0.240

W = 0.0006,(
∂ X

∂n

)
μ

= −1.59 × 0.2100b0.980μ0.055
Y μ0.105

S μ−1.210
n μ−0.240

W = −23.21,(
∂ X

∂w

)
μ

= −1.59 × 0.2400b0.980μ0.055
Y μ0.105

S μ−0.210
n μ−1.240

W = −0.1989,(
∂2 X

∂y2

)
μ

= −1.59 × 0.0520b0.980μ−1.945
Y μ0.105

S μ−0.210
n μ−0.240

W = −0.0065,(
∂2 X

∂s2

)
μ

= −1.59 × 0.0940b0.980μ0.055
Y μ−1.895

S μ−0.210
n μ−0.240

W = −17863.8,(
∂2 X

∂n2

)
μ

= 1.59 × 0.2542b0.980μ0.055
Y μ0.105

S μ−2.210
n μ−0.240

W = 936.4,(
∂2 X

∂w2

)
μ

= 1.59 × 0.2975b0.980μ0.055
Y μ0.105

S μ−0.210
n μ−2.240

W = 0.0616,

where μY , μS, μn , and μW denote the means of Y , S, n, and W , respectively. From

Eq. (3.4.36),

E[X ] ≈ 3.32 + 0.5(−0.0065 × 1.22 − 17863.8 × 0.00042

+ 936.4 × 0.00582 + 0.0616 × 1.62) = 3.41 m,

and, from Eq. (3.4.37),

Var[X ] ≈ 0.03252 × 1.22 + 0.00062 × 0.00042 + (−23.21)2 × 0.00582

+ (−0.1989)2 × 1.62 = 0.1209 m2,

which yields an approximate standard deviation of 0.35 m. These approximations provide

rather accurate estimates of the mean and standard deviation of scour depth as determined
from simulation.
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Fig. 8.3.1 Simulation of scour depth X : (a) sampling cdf of X , (b) estimated mean, and (c)
standard deviation of involved variates.

8.3.2 Sampling statistics

The analytical solution to certain sampling problems is sometimes unmanageable. For
example, a design value is often determined as the qth quantile of the design variate;
therefore, one must assess the prediction limits of these values from a sample of obser-
vations. The standard error of estimates are not known for some distributions applicable
to engineering systems, and the asymptotic results cannot be applied to small samples.
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However, Monte Carlo experiments can be performed to determine these statistics, which
depend on the probabilistic model used to fit the data, the method used for estimating
its parameters, and the sample size. Further, one can use simulation to assess how the
presence of either systematic or random errors in observed data can influence the identi-
fication and the estimation of the probabilistic model fitted to these data. Other sampling
problems are also approached by simulation. For example, the sampling distributions of
the coefficients of variation and skewness are used in developing the index-flood method
in regionalizing flood flows in rivers of a homogeneous region. Because of the difficulties
in obtaining analytical solutions, it must be determined via simulation for most extreme
value distributions used in hydrological practice, such as the GEV, the TCEV, and the
log-Pearson Type III distributions.14

The results of Monte Carlo experiments aimed at determining the sampling proper-
ties of statistical estimates are often generalized by introducing best-fit equations to
relate the quantities involved. For example, one can search for the relationship of the
standard error of the qth quantile estimate to the probability of nonexceedance, sample
size, and parameter values for a specified distribution and a given method for parame-
ter estimation. When performing simulation runs for this purpose, one must define the
role of different quantities involved and design these runs to explore all possible val-
ues jointly taken by these quantities. The results should correspond to the deterministic
formulas obtained from field and laboratory experiments on physical and engineering
systems.

Example 8.17. Standard error of Gumbel quantile estimates. One can perform Monte
Carlo experiments to evaluate the performance of the qth quantile unbiased L-moment esti-
mator for the Gumbel distribution. These involve the following steps:

(1) Generate n size-m samples of EV1 random numbers as

xi j = b − α ln(− ln ui j ), for j = 1, . . . , m, and i = 1, . . . , n,

where the ui j denote a sequence of independent standard uniform random numbers.
(2) For each i th sample, estimate the values α̂i and b̂i of parameters α and b by the method

of L-moments.
(3) Compute the qth quantile for each estimated EV1 distribution as

ξ̂qi = b̂i − α̂i ln(− ln q), for i = 1, . . . , n.

(4) Compute the variance of the estimated quantile, that is,

Var[ξ̂q ] = 〈
ξ̂ 2

qi

〉 − 〈
ξ̂qi

〉2
,

where the angle brackets signify that the arithmetic mean is calculated over the sample
of n.

(5) Other measures of performance can be evaluated, such as the bias of the estimated
quantile,

〈ξ̂qi 〉 − [b − α ln(− ln q)]

and its root mean square error, that is,〈{
ξ̂qi − [b − α ln (− ln q)]

}2
〉1/2

.

14 See, for example, Chowdhury et al. (1991) and Vogel and McMartin (1991).
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Fig. 8.3.2 Confidence limits of quantile estimates.

The resulting variance of the estimated quantile can be used to check the validity of the
formula based on asymptotic theory, that is,

Var
[
ξ̂q

] = α2

m − 1

[(
1.1128 − 0.9066

m

)
−

(
0.4574 − 1.1722

m

)
y

+
(

0.8046 − 0.1855

m

)
y2

]
,

where y = ln(− ln q) denotes the reduced variate.15 Note that the variance of the quantile
estimates is independent of the location parameter. To evaluate the prediction limits of quantile
estimate, one can assume the estimated quantile to be a random variable Z distributed as

N (ξ̂q , Var[ξ̂q ]),

as sketched in Fig. 8.3.2.
This method can also be used to approach more sophisticated sampling problems, such

as the effects of random errors in data on the bias and standard error of Gumbel quantile
estimates.16

8.3.3 Simulation of time- or space-varying systems

Simulation is often used to study the dynamics of time- or space-varying systems. A sim-
ulation model may be time (space)-sequenced or event-sequenced. For example, when

15 See Downton (1966) and Phien (1987).
16 See, for example, Rosso (1985).
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simulating the logistic population growth of Example 8.3, one either assumes that births
and deaths are a sequence of events occurring at equispaced times, or considers their oc-
currences to be random points on the time axis. In a time- or space-sequenced model, a
fixed time or distance interval, �t or �u, is selected, and the model examines the state of
the system at successive time or space intervals. Events of interest can sometimes be un-
noticed in a sequenced study. For example, consider a reservoir that receives precipitation
during �t , from which the same amount of water is lost by seepage and evaporation. If
one examines the initial and terminal reservoir states corresponding to the beginning and
end of the interval �t , there is no evidence of precipitation, or leakage, or evaporation.
An event-sequenced simulation considers a sequence of events, like storms, floods, hurri-
canes, and earthquakes, and the interarrival time of these events is modeled as a random
variable.

Example 8.18. Simulation of streamflows. Kottegoda (1970) simulated 20 sets of 25-year
sequences of monthly runoff to the Elan Valley reservoirs in Wales using the following
recursive equation:

Xt − μτ

στ

= ρ1
Xt−1 − μτ−1

στ−1
+ (1 − ρ1)1/2ηt ,

where Xt denotes flow in month t and for the corresponding calendar month τ, μτ and στ are
the mean and standard deviations.17 The lag 1 serial correlation coefficient is denoted by ρ1

and ηt is a generated random variate with a mean of zero and appropriate higher moments.
The 12 historical (sample) mean monthly flows, x̄τ , τ = 1, 2, . . . , 12, are distributed as

x̄τ ∼ N

(
μτ ,

σ 2
τ

n

)
in large samples. Here n = 50 is the number of years of data used in the study. Further, the
95% confidence interval for μτ is defined by

Pr

[
x̄τ − 1.96

στ√
n

≤ μτ ≤ x̄τ + 1.96
στ√

n

]
= .95.

These are shown in Fig. 8.3.3.
Also shown are the monthly means estimated from each of the 20 simulated sets. Their large

sample distribution is s̄τ ∼ N (μτ , σ
2
τ /n). The probability that the means of the simulated sets

lie within the above mentioned 95% confidence interval is given by

b∫
a

1√
2π

√
2σ 2

τ /n
exp

(
− x2

2 × 2σ 2
τ /n

)
dx

where a = −1.96στ /
√

n and b = 1.96στ /
√

n. The probability is the same if standardized
units are used, for which the limits are

a∗ = −1.96στ /
√

n√
2σ 2

τ /n
≈ −

√
2

and (similarly) b∗ ≈ √
2. Thus, the proportion of estimated monthly means of simulated flows

expected within the 95% confidence limits of the historical monthly means is 0.84. This is
the area under the standard normal pdf between −√

2 and
√

2. However, in these simulations
the μτ s in the recursive equation have been replaced by the x̄τ s. Then the (x̄τ − s̄τ )s tend to

17 τ = t (mod 12) where τ = 1, . . . , 11, 0 for January, . . . , November, December. Sample estimates were used
for all parameters.
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Fig. 8.3.3 Simulation of mean monthly inflows to the Elan Valley reservoirs in Wales, United
Kingdom.

have a smaller variance than N (0, 2σ 2
τ /n) variates. The proportion of values within the 95%

confidence limits should therefore be larger than 0.84.
In the time-sequenced simulated sets, the observed number of values of monthly means

falling within the confidence limits was found to be 0.87. The closeness of these proportions
suggests that the model assumptions are validated.

Example 8.19. Simulation of groundwater heads. In the design of structures such as dams
and weirs, increasing use is being made of the simulation of seepage and groundwater flow.
The hydraulic conductivity of geologic soils depends on many physical factors, including
particle size and distribution and the porosity and shapes of particles and their arrangements.
Because of the inherent nonuniformity of porous media and because the exact nature of the
spatial distribution of hydraulic conductivity is unknown, there is uncertainty in the prediction
of hydraulic head. Random variations in hydraulic conductivity and other soil properties and
their effects on hydraulic heads can be studied by Monte Carlo methods.

The fundamental equation applicable is

∂

∂x

[
K (x)

∂�

∂x

]
= 0,

where �(x) is the hydraulic head and K (x) is the hydraulic conductivity at any point x .
Kottegoda and Katuuk (1983) applied random walk methods for solving specific boundary
value problems, discussed previously. Steps taken by flow particles in a medium represent
a random walk between two boundaries. When a particle strikes a boundary, its motion is
terminated or it is reflected back; thus its subsequent movement depends on the boundary
conditions. Initially, the case of the absorbing barrier was studied.

In the simulation it is assumed that there is simultaneous movement of particles from all
interior points in a region for which calculations are required. The probability of movement
of a particle in any direction depends partly on the permeability in that direction.

When groundwater flow occurs under steady-state conditions, the potential head at an
interior point P in a region is found by making a hypothetical particle wander from one
point in the region on a preselected grid until it finally hits a boundary at point j . Once the
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Fig. 8.3.4 Hydraulic conductivity for representation of two-dimensional flow. (x , z) represents a
node; K (x, z) is conductivity in block (x, z); Kx (x, z) is conductivity in x direction from node
(x, z) ; Kz(x, z) is conductivity in z direction from node (x , z).

random walk of the particle is terminated, a boundary value H ( j) is recorded. Here, H ( j) is
the hydraulic head at point j on the boundary. If n such walks are performed from point P ,
the Monte Carlo solution for the expected potential head at point P , �(P), is obtained from
the sum of the effective boundary values divided by n; that is,

�(P) = n−1
n∑

j=1

H ( j).

Figure 8.3.4 shows the variations of conductivities K (x , z) between blocks in two dimensions
within the study area.

The conductivities in the x- and z-directions are

(1) x-direction: Kx (1, 1) = 1/2[K (1, 1) + K (1, 2)]; Kx (2, 1) = 1/2[K (2, 1) + K (2, 2)].
(2) z-direction: Kz(1, 1) = 1/2[K (1, 1) + K (2, 1)]; and Kz(1, 2) = 1/2[K (2, 1) +

K (2, 2)].

The probabilities of particle movement from a node in each of four directions are calculated
as follows. Let∑

K = Kx (1, 1) + Kx (2, 1) + Kz(1, 1) + Kz(1, 2).

The probability of moving to the right from point (1, 1), say, is Pr[R] = Kx (2, 1)/
∑

K .
Probabilities of particles moving to the left, upward, and downward, denoted, respectively,
by Pr[L], Pr[U ], and Pr[D], are similarly calculated. The actual movement of a particle
depends on the random number, Ut , generated at time t from a (0, 1) uniform distribution. If,
for instance,

0 ≤ Ut < Pr[R],

a particle moves to the right; if

Pr[R] ≤ Ut < Pr[R] + Pr[D],
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Table 8.3.1 Monte Carlo solution for potential head:
Hydraulic heads of two-dimensional flow, matrix 5 × 5 blocks
with nx random numbers; uniform medium (σ Y = 0)

zx : 0 1 2 3 4 5

nx = 500
0 100 100 100 100 100 100
1 100 95 92 82 73 50
2 100 89 84 75 63 50
3 100 86 78 73 59 50
4 100 76 65 59 56 50
5 100 50 50 50 50 50

nx = 1200
0 100 100 100 100 100 100
1 100 94 92 84 75 50
2 100 90 83 76 65 50
3 100 86 77 68 57 50
4 100 75 67 60 55 50
5 100 50 50 50 50 50

the particle moves downward; if

Pr[R] + Pr[D] ≤ Ut < Pr[R] + Pr[D] + Pr[L],

the particle moves to the left; in all other cases, the particle moves upward.
Table 8.3.1 shows the Monte Carlo solutions at each of the nodes for matrix blocks of size

5 × 5. The Monte Carlo solution for an internal node is calculated by weighting each of the
four sets of boundary heads by the proportion of particles reaching the boundary and adding
the weights. After obtaining the solutions for each of the internal nodes, hydraulic heads are
calculated by taking the weighted average of the Monte Carlo solutions at the surrounding
points. The weights are in fact the probabilities Pr[R], Pr[L], Pr[U ], and Pr[D] determined
from the internal conductivities as shown above.

The first set of results is for nx = 500, where nx is the total of the random numbers used. In
the second set nx is increased to 1200. It is noted that corresponding values on either side of the
leading diagonal become closer to each other as nx increases. This is due to the symmetrical
conditions imposed. However, when the standard deviation of the conductivities is increased
there is more divergence in the hydraulic heads. The space-sequenced simulation can be
extended to three-dimensional cases with different boundary conditions and lognormally
distributed conductivities. Note that the values of hydraulic conductivity depend on the spatial
scale, so that appropriate values must be chosen for the size of each block. The concept of
scaling introduced in Section 7.3.1 to represent the variability of extreme storm rainfall with
duration could be applied for this purpose by substituting space for time.

Example 8.20. Storm clustering. The temporal variability of rainfall intensity during a
storm at a point in space depends on the combined effect of two physical processes. One is
the movement of the storm field over the area of rain, and the other is the “birth” and “death”
(arising and passing) of storm cells. Point rainfall intensity X (t) at time t can be modeled as
the sum of a random number N of rectangular pulses of length Y and intensity Z , which are
randomly displaced on the time axis with an interarrival time of W (see Fig. 8.3.5a).

Each pulse represents a cell with a lifetime of Y , which delivers an amount of water of YZ.
Rainfall intensity is found as

X (t) =
N∑

i=1

Ki (t)Zi ,
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Fig. 8.3.5 Storm structure: (a) clustering in time and (b) storm profile.

with

Ki (t) = 1, for
i∑

j=1

W j ≤ t ≤ Yi +
i∑

j=1

W j ,

= 0, elsewhere,

denoting an indicator function for the i th cell with duration Yi and intensity Zi to be active at
time t . The storm profile S(t) is defined as the temporal evolution of cumulative rainfall and
results in a monotonic nondecreasing function shown in Fig. 8.3.5b. In this event-sequenced
simulation of storm clustering, one can assume N to be either a Poisson or a geometric variate,
whereas the Y ’s, Z ’s, and W ’s are usually assumed to be exponentially distributed random
variables.18 However, to preserve the scaling properties of extreme storms with varying du-
rations (see Subsection 7.3.1) one may consider Pareto-type distributions to model the Y s,
Zs, and W s.

8.3.4 Design alternatives and optimal design

Although Monte Carlo simulations may be limited by the constraint of computational
capability, the application of simulation methods is perhaps the most widely used method

18 See, for example, Burlando and Rosso (1993).
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for evaluating alternative designs. The reason for the popularity of the approach is its
mathematical simplicity and versatility, which makes it possible to estimate both physical
and economic responses of various alternatives. To achieve the optimal design of a system,
one begins with a trial design and continues to obtain system responses with different
trials until the optimal system configuration is achieved. The continuously improving
performance of digital computers and the availability of simulation-oriented software
facilities contribute to the wide use of simulation methods.

Example 8.21. Chemical sludge conditioning. Coagulation of the solids dispersed in
sludge from a wastewater treatment plant increases the rate of water removal by filtration
or air-drying. The coagulating process is called chemical conditioning, and a common con-
ditioning chemical for wastewater sludge is ferric chloride or FeCl3. The requirement of this
conditioner is expressed as the percentage X of the pure chemical to the weight of the solids
fraction on a dry basis. This can be evaluated as

X = 1.08 × 10−4 Y Z

100 − Z
+ 1.6

V

100 − V
,

where Y denotes alkalinity of the sludge moisture in mg/L of CaCO3; and Z , V , and 1 −V
are, respectively, the percentage moisture, volatile matter, and fixed solids in the sludge.19 To
improve the process, one can wash out a share of alkalinity with water of low alkalinity by
using repeated washings in multiple tanks. This type of treatment is called elutriation. In this
case, alkalinity is reduced to

Y ′ = Y (R − 1) + W R(Rn − 1)

Rn+1 − 1
,

where W and R are, respectively, the alkalinity of washing water and its proportion
to wastewater sludge, and n is the number of tanks used by countercurrent operation.
One must evaluate the conditioner requirements for unelutriated and elutriated sludge for
Y ∼ N (3000 mg/L, 1000 mg2/L2), Z ∼ uniform (85, 95), and V ∼ uniform (40, 50), R ∼
lognormal (3, 0.52), and W ∼ uniform (15 mg/L, 25 mg/L). The nominal values are com-
puted by considering the mean values of these variates. Thus,

xnom = 1.08 × 10−4 3000 × 90

10
+ 1.6

45

55
= 4.23%

of FeCl3 on a dry basis for unelutriated sludge. If sludge is elutriated in two tanks by coun-
tercurrent operation, alkalinity reduces to

y′
nom = 3000(3 − 1) + 20 × 3(32 − 1)

33 − 1
= 249 mg/L.

Thus,

x ′
nom = 1.08 × 10−4 249 × 90

10
+ 1.6

45

55
= 1.55%

of FeCl3 on a dry basis are nominally required for elutriated sludge. Simulations are per-
formed to evaluate the probability that elutriation can effectively reduce the requirement of
conditioner, that is, Pr[X > X ′]. The cdfs of X and X ′ obtained from 1000 simulations are
shown in Fig. 8.3.6 on a normal probability plot, and the corresponding sampling statistics
are reported in Table 8.3.2.

The probability that elutriation in two tanks by countercurrent operation reduces the
requirement of conditioner is higher than .99.

Example 8.22. Reservoir capacity. Consider a reservoir designed to meet a given minimum
monthly demand of water supply, δτ , under the operating rule shown in Fig. 8.3.7. Suppose
the maximum demand is dτ .

19 See Genter (1946).
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Fig. 8.3.6 Sampling cdfs of required conditioner from 1000 simulations of chemical sludge
conditioning on a normal probability plot.

Table 8.3.2 Sampling statistics from 1000 Monte Carlo simulations of chemical
sludge conditioning

Unelutriated sludge Elutriated sludge

Ferrite chloride Reduced Ferrite chloride
requirement, X ′ alkalinity, Y ′ requirement, X ′

(%) (mg/L) (%)

Mean 4.59 252.9 1.59
Standard deviation 1.67 85.8 0.20
Coefficient of variation 0.36 0.34 0.13
Coefficient of skewness 1.04 0.30 0.49
Nominal values 4.23 249.00 1.55

The total amount of water available in month t is St+Xt , with Xt denoting monthly inflow
into the reservoir, and St initial storage in the reservoir at the beginning of that month.20 The
draft or release Rt is obtained as

(a) Rt = k(St + Xt ) = δτ , if St + Xt ≤ dτ ,
(b) Rt = δτ + (dτ − δτ )(St + Xt − dτ )/c, if dτ < St + Xt < dτ + c,

and

(c) Rt = St + Xt − c, if St + Xt ≥ dτ + c,

where c denotes the capacity of the reservoir. It is assumed that δτ equals dτ from September
to December, 0.85dτ from May to August, and 0.70dτ from January to April. Because storage
cannot exceed the capacity c of the reservoir, an amount at least equal to St + Xt − c must be

20 τ = t (mod 12) where τ = 1, . . . , 11, 0 for January, . . . , November, December.
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Fig. 8.3.7 Operating rule for a reservoir.

released in that month. Accordingly, one can completely satisfy the demand dτ and release
downstream a surplus of water of St + Xt − c − δτ under rule (c) leaving the reservoir full.
Conversely, if the minimum demand, δτ , exceeds the available water St + Xt , one delivers all
the available water to partially satisfy the demand under rule (a) leaving the reservoir empty.
Rule (b) is applied when the available water exceeds the demand; the release is increased
proportionally.

Suppose that inflow Xt is modeled using the recursive stochastic equation of Example 8.18
with ρ1 = 0.85, ηt ∼ N (0, 0.422); also, the mean μτ and standard deviation στ of X (t) for
the calendar month t are those shown in Fig. 8.3.8, where the demand dτ of water supply is
also indicated.

If a reservoir is to be designed with an active volume c, one can use the above equations
to simulate the operation of the reservoir for each t in a period of given length, say, 12n. For
example, a portion of the trajectory resulting from the simulation of n = 100 years of operation
of a reservoir with capacity of 300 mm is shown in Fig. 8.3.9 with monthly inflow, Xt , storage,
St , release, Rt , and deficit, Yt , which is the shortage in a month because insufficient water
is available from inflow and initial storage. All data are in equivalent runoff of the drainage
basin impounded by the reservoir.
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Fig. 8.3.8 Mean μτ and standard deviation στ of monthly inflows to a reservoir, and maximum
monthly demand dτ of water supply from the reservoir.
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Fig. 8.3.9 Results (last 10 years) of a 100-year simulation run of monthly (a) inflow, (b) storage,
(c) release, and (d) deficit for the target demand under the normal operating rule. All data are in
equivalent runoff from the drainage basin impounded by the reservoir, which has an active volume
of 300 mm for this run.
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Fig. 8.3.10 Annual deficit as a percentage of annual target demand as averaged from 10
simulation runs of reservoir operation for a period of 100 years. The upper and lower bounds show
the extreme values out of 10 runs.

Simulation runs with different values of c are then performed to achieve the optimal
reservoir capacity needed to meet the demand. For example, if one wishes to reduce the average
annual deficit to a given percentage of the demand, it seems straightforward to increase c.
However, the simulation runs shown in Fig. 8.3.10 indicate that the rate of reduction decreases
rather rapidly; for example, the amount of reduction that can be achieved by a 20% increase
of c, say, from 500 to 600 mm, is only 0.13% on average, resulting in a reduction of the annual
deficit from 13.8 to 12.1 mm.

The total length of deficit in a year is shown in Fig. 8.3.11. It is seen that increasing c from
500 to 600 mm reduces the expected number of months of water shortage from about 8 to 7
in 25 years.

The required optimal capacity is generally obtained by introducing economic analysis into
the simulation. For a specified lifetime of the structure, the initial costs of construction and
operation costs for different reservoir capacities can be compared with the present value of
the benefit. Note that operating rules for large reservoirs should take account of commonly
applied multipurpose uses.
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Fig. 8.3.11 Annual length of deficit as averaged from 10 simulation runs of reservoir operation
for a period of 100 years. The upper and lower bounds show the extreme values out of 10 runs.
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8.3.5 Summary of Section 8.3

The purpose of this section is to highlight practical applications of simulation. In particular,
details of how simulation can be beneficial in design and research are given. A wide range
of applications is included here. We now discuss sensitivity and uncertainty analysis in
relation to simulation.

8.4 SENSITIVITY AND UNCERTAINTY ANALYSIS

Computer-based modeling and simulation are used in many areas of application, particu-
larly in risk assessment and reliability engineering, which is the subject of the next chapter.
In this chapter we have provided examples and problems based on mathematical models of
a specified physical system. The concept of a mathematical model was initially discussed
in Chapter 2. Basically it is represented by a set of equations, input factors, and parameters
that characterize the process under investigation. From the perspective of simulation, the
model consists of three parts, ordered sequentially as inputs, simulator, and outputs. The
inputs can be some parameters that describe the physical characteristics of the system
studied or the general description of the system. They are needed for the simulator to
produce a sequence of outputs. As already discussed, models and inputs are subject to
uncertainties. The sources of uncertainty include errors of measurement, representation
of unpredictable or stochastic events, and misconceptions of the system studied.

The main purpose in the analysis of a physical system and its simulation is usually
for making decisions related, for example, to the design and optimization of performance
or risk and reliability assessment of the system. If modifications and further analysis are
required, a commonly used method is sensitivity analysis. This activity enables one to
investigate whether, for instance, the uncertainties in the input are related to those of the
output. The analysis can also be used to determine how the variation in the output of
a model can be attributed to different sources or factors of variation. At a basic level,
one can vary each model parameter, over a reasonable range of uncertainty, and note
the relevant change in the output for a given input. Some examples are changes in flow
velocities and hydraulic heads. In this way one can also determine the relative sensitivities
of the model parameters. Also, if the data are not sensitive to variations in the parameters,
additional investigations are deemed to be necessary. Furthermore, one can ascertain the
uncertainties in model structures, specifications and the assumptions made. Electronic
spreadsheets, when used with care and acquired expertise, provide a valuable aid in the
various types of activity (because sensitivity analysis seems to be an overcharged term).
A useful feature in popular packages is a “What if?” type of exercise with Monte Carlo
simulation for sensitivity analysis.

Consequently, different levels of acceptance by a decision maker may be associated with
different types of uncertainty. It will also lead to increased confidence in the model, which
good practice demands. One can also see that sensitivity analysis is closely associated with
uncertainty analysis that attempts to quantify the uncertainty associated with the input,
simulator, and the output.

In recent years there has been a formal recognition of two types of uncertainty. Firstly,
there is aleatory uncertainty. This is attributed to the natural or unpredictable variation
in the performance of a system. Because aleatory uncertainty is inevitable, one can only
quantify it, and hence it is also called irreducible uncertainty, inherent uncertainty, or
stochastic uncertainty. Probability theory is most commonly applied in this case although
under generalized information theory, alternatives such as fuzzy set theory, as discussed
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in Chapter 2, exist. It is assumed that sufficient experimental data are available to apply
the probabilistic concepts. In a supplementary way, methods of Monte Carlo simulation,
described in this chapter, are sometimes used to study the interaction of aleatory variables
with changes in time of a dynamic process.

The other type is known as epistemic uncertainty. It arises from a lack of knowledge
or information regarding one or more aspects of the modeling process. This may refer,
for example, to a physical parameter that may be insensitive or may have insufficient
data to support it. We assume that the system can be conceptualized, but this may be the
main source of error. Subsequently, if there is an increase in knowledge, the uncertainty
in the response of the system is reduced. Thus this type is also called reducible uncer-
tainty, subjective uncertainty, and state-of-knowledge uncertainty. It pertains to our level
of ignorance. Probability theory has provided a basis to model both types of uncertainty
from historical times. One notes, however, that the application of probability theory is
not as straightforward as in the case of aleatory uncertainty. Investigations are often made
through Monte Carlo simulations.

Without proper consideration of the sources of uncertainty, applications of probability
theory may be faulty. Besides, these two types of uncertainty can be used in assessing data
requirements and for discussions between experts and users.21

8.5 SUMMARY AND DISCUSSION OF CHAPTER 8

In this chapter we have discussed many aspects of simulation and associated design.
Simulation provides a method of evaluation of the performance of a system for a given
design and operating policies. It can be used as a supplement to physical experiments and
sometimes as a replacement. One begins with a trial design and continues to obtain system
responses with different trials. Thus, one can have knowledge of anticipated performances
resulting from any design or operating rule. In the case of complex systems, such results
may be impossible to obtain. However, in these cases, planning and screening of alterna-
tives should be done as a prelude to the definition of boundaries and other details of an
experiment. In relation to simulation, we also discuss sensitivity analysis and two types
of uncertainty analysis with their implications in modeling and decision-making.
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PROBLEMS

8.1. Flood regionalization. Develop an algorithm to generate random numbers to sim-
ulate the two-component extreme value distribution of flood flows with cdf

FX (x) = exp
(−e−(x−b1/α1) − e−(x−b2/α2)) .

Generate 100 samples each with 1000 items for given values of parameters and find
the sampling probability distribution of the coefficients of variation and skewness.
Let α1 = 1.15 m3/s, b1 = 10 m3/s, α2 = 2.20 m3/s, b2 = 15 m3/s. This method may
be used to compare the theoretical and sampling variability of these coefficients as
estimated from maximum annual flow data observed at different gauging stations
in a region.

8.2. Percolation cluster. A fluid spreading randomly through a medium is represented
by particles moving on a square grid, that is, a quadratic lattice, where each node is
occupied by a pore with a probability of p and neighboring pores are connected by
small capillary channels (see Fig. 8.P1).

A fluid injected into any given pore may only invade another adjacent pore that
is directly connected to that pore through a capillary channel. The pores connected
to the injection point form a cluster.
(a) Find the minimum probability, pc, that a fluid injected into a site on the left

edge of the lattice reaches the right edge for the structure shown with 16 × 16
nodes. This cluster is called the spanning cluster or the percolation cluster.
Simulations on very large clusters showed that the probability of having a
percolation cluster tends to zero as n → ∞ and p < 0.593 [from R. M. Ziff

p = 0.5

(a) (b)

p = 0.7

Fig. 8.P1 Quadratic lattice representing a porous medium where the nodes are occupied by pores
with a probability of (a) p = 0.5 and (b) p = 0.7.
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(1986), “Test of scaling exponents for percolation-clusters perimeters,” Phys.
Rev. Lett., Vol. 56, pp. 545–548].

(b) The percolation probability p∞(p) is defined as the probability that a fluid
injected at a site, chosen at random, will wet infinite number of pores. Then,
p∞(p) = 0 for p ≤ pc. Design a Monte Carlo experiment to show that the
percolation probability vanishes as a power law near pc; that is p∞(p) ∝ (p −
pc)α for p > pc, and p → pc. The exponent α is 5/36 for two-dimensional
percolation and about 2/5 for three-dimensional percolation.

(c) Design a Monte Carlo experiment to show that for large n the number of sites
of the largest cluster increases as ln(n) for p < pc; as n2 for p > pc; and as
nα for p = pc; with a value of α of about 1.89 [from J. Feder (1988), Fractals,
Plenum Press, New York, 283 p., Section. 7.2, “The infinite cluster at pc”].

8.3. Invasion percolation. In a porous medium, oil is displaced by water, which is
injected very slowly. Invasion percolation occurs when one neglects any pressure
drops both in the invading fluid (water) and in the defending fluid (oil) because
the capillary forces completely dominate the viscous forces, and the dynamics of
the process is determined at the pore level. Simulation of the process on a lattice
consists of following the motion of the water particle injected at a given site on the
lattice as it advances through the smallest available pore, thus filling the pores with
the invading fluid. As the invader advances, it traps regions of the defending fluid by
completely surrounding regions of this fluid, that is, by disconnecting finite clusters
of the defending fluid from the exit sites of the sample (see Fig. 8.P2).

For an n × n lattice, the following simulation algorithm describes invasion per-
colation [from D. J. Wilkinson and J. F. Willemsen (1983), “Invasion percolation:
A new form of percolation theory,” J. Phys. A, Vol. 16, pp. 3365–3376]:
(1) One assigns uniform(0, 1) random numbers to each site of the lattice.
(2) The injection for the invading fluid is assumed to occur at the upper-left corner

and extraction for the defending fluid at the lower-right corner.
(3) Growth sites are defined as the sites belonging to the defending fluid and neigh-

bors to the invading fluid.
(4) The invading fluid advances to the growth site that has the lowest random

number.

Water
Oil

Injection

Exit

Fig. 8.P2 Quadratic lattice representing invasion percolation of water displacing oil.
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(5) Trapping is obtained by eliminating the growth sites in regions completely
surrounded by the invading fluid from the list of growth sites.

(6) The invasion process ends when the invading fluid reaches the exit site.
This algorithm is based on the fact that oil is incompressible (thus, water cannot
invade trapped regions of oil). Using this simulation algorithm, show that the number
of sites in the central m × m portion of the n × n lattice (with m � n) that are
occupied by water is proportional to mα with a value of α of about 1.89 [from
M. M. Dias and D. Wilkinson (1986), “Percolation with trapping,” J. Phys. A,
Vol. 19, pp. 3131–3146]. This is, for instance, one origin of the phenomenon of
residual oil.

8.4. Water storage. Water storage X in a large reservoir is modeled as a truncated
normal variate with pdf

fX (x) = 1

[�(1) − �(−2)]

1

3
√

2π
exp

[
−

(
x − 6

3

)2
]

= 1.5389

3
√

2π
exp

[
−

(
x − 6

3

)2
]

,

for 0 ≤ x ≤ 9 units, and zero elsewhere. Find FX (7) by Monte Carlo integration
using 1000 simulation cycles, and compare this result with that obtained using
tables of the normal distribution. What is the number of simulation cycles required
to achieve a standard error of estimation not larger than 10% of the true value?
Assume the mode of X as the maximum ordinate for the rectangular envelope of
fX (x), with 0 ≤ x ≤ 7 units.

8.5. Storm rainfall. The total amount of water Z delivered by a storm in a
given location is evaluated as Z = XY from independent duration X and av-
erage rainfall rate Y of a storm, with X ∼ lognormal (1.2 h, 6 h2), and Y ∼
lognormal (10 mm/h, 100 mm2/h2). Assume that the number of storms in a year is
a Poisson variate with a mean of 25. Using Monte Carlo simulation find the cdf of
the annual maximum hourly storm depth, that is, the maximum amount of rainfall
in a year which is delivered in the specified duration of 1 hour.

8.6. Storm rainfall. Solve Problem 8.5 under the assumption that the dura-
tion X ∼ lognormal (1.2 h, 6 h2) of a storm and its average intensity Y ∼
lognormal (10 mm/h, 100 mm2/h2) are negatively correlated variates with ρX,Y =
−0.3. Note that if two jointly distributed variates U and W follow the bivariate
normal distribution, then the covariance between X = exp(U ) and Y = exp(W ) is
given by Cov(X, Y ) = μXμY {exp[Cov(U, W )] − 1}. One can thus generate cor-
related values of X and Y from bivariate normal random numbers distributed as
U = ln(X ) ∼ N (μln(X ), σ

2
ln(X )) and W = ln(Y ) ∼ N (μln(Y ), σ

2
ln(Y )) having a corre-

lation coefficient of

ρU,W = ln(1 + VX VY ρX,Y )√
ln

(
1 + V 2

X

)
ln

(
1 + V 2

Y

) .

8.7. Generation of beta variates. Let X ∼ beta(a, b) with 0 ≤ x ≤ 1. Develop an
algorithm to generate beta random numbers based on the rejection method. Compare
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the cdf resulting from simulation of 100 samples of X ∼ beta (1, 3) with its analytical
form by using the Kolmogorov-Smirnov test.

8.8. Wastewater treatment plant. An activated-sludge plant includes five serial pro-
cesses: (1) coarse screening, (2) grit removal, (3) plain sedimentation, (4) contact
treatment, and (5) final settling. Let Xi denote the efficiency of the i th treatment,
that is, the fraction of remaining pollutant after removal by the i th serial treatment.
For example, X1 is the fraction of pollutant removed by treatment process 1, X2 is
the fraction of the remaining pollutant after removal by treatment process 2, and so
on. The amount Qout of pollutant in the effluent is given by

Qout = (1 − X1)(1 − X2)(1 − X3)(1 − X4)(1 − X5)Qin,

where Qin denotes the amount of pollutant in the untreated inflow. A quality indicator
of the performance of the plant is then defined as

Y = (1 − X1)(1 − X2)(1 − X3)(1 − X4)(1 − X5).

Consider a plant with the following single-process mean efficiencies in the removal
of the 5-day 20◦C biological oxygen demand (BOD):

μ1 = 0.05, μ2 = 0.05, μ3 = 0.20, μ4 = 0.70, μ5 = 0.10,

where μi = E[Xi ]. Suppose that X1, X2, X3, and X5 are normal variates with
common coefficient of variation of 0.2, and X4 ∼ uniform (0.6, 0.8). Find the pdf
and cdf of Y by simulation assuming that the five processes are independent of each
other. Compare the mean of Y with the nominal value.

8.9. Underground pipeline subject to corrosion. An underground pressured pipeline
is subject to stresses caused by external soil pressure and by internal (fluid) pressure.
Assuming the radius of pipe r is much larger than the thickness of the pipe wall t ,
the circumferential stress s f due to internal pressure is estimated as

s f = pr

t
,

where p is the internal pressure. The bending stress ss in the circumferential direction
produced in the pipe wall by the external soil loading can be estimated from

ss = 6kmCdγ B2
d Etr

Et3 + 24kd pr3
.

Here Cd is a dimensionless calculation coefficient for soil load, γ is the unit weight
of soil backfill, Bd is the width of the ditch at the top of the pipe, E is the modulus
of elasticity of the pipe metal, km is a bending moment coefficient dependent on the
distribution of vertical load and reaction, and kd is a deflection coefficient dependent
on the distribution of vertical load and reaction. The circumferential bending stress
st produced in the pipe wall due to traffic loads (such as that resulting from roadway,
railway, or airplane traffic) may be estimated from

st = 6km IcCt F Etr

A
(
Et3 + 24kd pr3

) ,

where Ic is a dimensionless impact factor, Ct is the dimensionless surface load
coefficient, F is the wheel load on surface, and A is the effective length of pipe
on which load is computed. If the pipe remains in the elastic range under load, the
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maximum circumferential stress is given at the critical sections by s f + ss + st .
By using simulation, compute the expected maximum circumferential stress and
its coefficient of variation. Suppose that the quantities involved have the follow-
ing distributions [from M. Ahammed and R. E. Melchers (1994), “Reliability of
underground pipelines subject to corrosion,”J. Transp. Eng. Div., ASCE, Vol. 120,
pp. 989–1002, reproduced by the permission of the publisher, ASCE]:

Variate Distribution Mean Coefficient of variation

p Normal 6.205 MPa 0.20
r Normal 228.6 mm 0.05
t Normal 8.73 mm 0.05
km Lognormal 0.235 0.20
Cd Lognormal 1.32 0.20
γ Normal 18.85 × 10−6 N/mm3 0.10
Bd Normal 762 mm 0.15
E Normal 206,800 MPa 0.05
kd Lognormal 0.108 0.20
Ic Normal 1.5 0.25
Ct Lognormal 0.12 0.20
F Normal 267,000 N 0.25
A Normal 914 mm 0.20

The main effect of corrosion is weight loss. Because we are mainly interested is
general corrosion, it is assumed that the loss of wall thickness can be modeled
empirically by a power law, d = kτ n , where τ is the time of exposure in years, k
is a multiplying coefficient, and n is a constant. Accordingly, one will substitute
(t − d) or (t − kτ n) for t in the above equations to account for corrosion. Suppose
that both k and n are normal variates with means of 0.3 and 0.6, respectively, and
coefficients of variation of 0.3 and 0.2, respectively. Evaluate the expected maximum
circumferential stress and its coefficient of variation after an exposure of 30 years.

8.10. Debris flow. Debris flows, also referred as mudflows, are a significant hazard in
many parts of the world, causing extensive damage to engineering structures such
as buildings, bridges, and culverts, as well as causing loss of life. From data analysis
in the Los Angeles area, California, the following empirical formula was proposed
to estimate the debris volume X in cubic meters:

X = 56.56Y 0.75a1.25(1 + 80e−0.239a−0.537W )0.5,

where a denotes the watershed area in square kilometers, Y the 72-hour maximum
annual rainfall depth in millimeters, and W the time interval between watershed
burning in years [from R. H. McCuen, Ayyub, B. M., and T. V. Hromadka (1990),
“Risk of Debris-Basin failure,” ASCE J. Water Resour. Plan. Man. Div., ASCE,
Vol. 116, pp. 473–483, reproduced by the permission of the publisher, ASCE].
Assume that Y and W are independent variates, Y is a Gumbel-distributed variate
with a mean of 100 mm and a coefficient of variation of 0.444, and W is a lognormal-
distributed variate with a mean of 8 years and a coefficient of variation of 1.375.
Consider a drainage area a of 2.5 km2, and find the probability distribution of X by
simulation.
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Water available, st t + x
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cd τ

dτ

Reservoir empty
st = 0 Reservoir full

st = c

Fig. 8.P3 “Normal” operating rule for a reservoir.

8.11. Reservoir capacity. In determining the optimal capacity of a reservoir, let us assume
that the manager will follow the so-called normal operating rule shown in Fig. 8.P3.

In this case, the draft or release Rt is obtained as
(1) Rt = St + Xt , if St + Xt ≤ dτ ,
(2) Rt = dτ , if dτ < St + Xt < dτ + c,
(3) Rt = St + Xt − c, if St + Xt ≥ dτ + c,
where c denotes the capacity of the reservoir. The rate of demand of water supply,
dτ , is equal to the mean annual runoff in March, April, November, and December. It
is reduced to 85% in May, August, September, and October and to 70% in January,
February, June, and July. Using this rule and the other data of Example 8.22, find the
optimal capacity of the reservoir for an average annual deficit of 1% of the annual
demand. Assume full reservoir as the initial condition. Compare this result with that
of Example 8.22.

8.12. Model selection for extreme value data. Let Xdenote a GEV-distributed ran-
dom variable with parameters ε = 0, α = 1, and k = −0.2. Perform the following
experiment:
(a) Generate a sample of 100 outcomes of this variate.
(b) Fit the (1) Gumbel, (2) Fréchet, (3) lognormal, (4) gamma, (5) GEV, (6) shifted-

lognormal, (7) shifted-gamma, and (8) log-Pearson Type III distributions to the
generated sample.

(c) Perform a goodness-of-fit testing procedure using the chi-squared,
Kolgomorov-Smirnov and Anderson-Darling tests.

Determine the probability models for which the null hypothesis is not rejected.
Repeat the experiment for a sample of 10,000 outcomes.

8.13. River network. A river network can be described as a random binary tree, as shown
in Fig. 8.P4a.

A mathematical tree originates from a root (ancestor) and it grows by subsequent
branching, through a bifurcation process. A link is defined as the line segment
between two vertices of the tree; external links are those connecting an internal
vertex (junction) with an external vertex (source), and internal links are those joining
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Fig. 8.P4 River network as a binary tree: (a) link structure and (b) conditional cdf of the number
of links at level i + 1 given that xi = 8.

two junctions. The total number of external links is called the “magnitude” of the
tree. A tree of magnitude m has n = 2m − 1 links (total progeny). A hierarchical
order can be assigned to each element of the tree by indexing a link by its “level” of
branching, that is, by progressively numbering the links from 1, which is assigned
to the root, to k, which is the level of the source having the highest distance from
the root. Let Xi denote the number of links at branching level i . In a standard
model of river networks, the tree randomly branches with a constant branching
probability p for all the links independently of the bifurcation level. Therefore,
the number of links at level i + 1, Xi+1, depends only on Xi , the number of links
at the previous level. The process of branching through upstream growth is called
Markovian, because each stage of development depends only on the immediately
previous one. If p = 1/2, the probability that Xi−1 links at level i − 1 will originate
Xi links at level i is

Pr[Xi = xi |Xi−1 = xi−1] = 2−xi−1

(
xi−1

xi/2

)
,

where(
xi−1

xi/2

)
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denotes the combinations of xi−1 links taking xi/2 at a time, and Xi−1 ≤ 2Xi . For
example, if Xi−1 = 8 at level i − 1, the corresponding transition probabilities pX

for Xi are those listed in the following table with the associated conditional cdf FX :

Xi = 0 2 4 6 8 10 12 14 16
pX = 0.0039 0.0313 0.1094 0.2188 0.2734 0.2188 0.1094 0.0313 0.0039
FX = 0.0039 0.0352 0.1445 0.3633 0.6367 0.8555 0.9648 0.9961 1.0000

One can simulate a river network by using the probability integral transform method
as shown in Fig. 8.3.P4b. The process terminates when Xk = 0 (adsorbing state),
and level k is called the “diameter” of the river network. Using this model find
the probability distribution of the level j for which the number X j of links is a
maximum in trees with diameter of k = 8.

8.14. Seismic hazard. In a period of 600 years, about 330 earthquakes occurred in Central
Italy having epicentral MCS intensity X exceeding 6. Also, X is modeled as an
exponential variate with scale and location parameters of 0.91 and 6, respectively.
Seismic hazard in a specific site is represented by MCS intensity Y as evaluated
from the following attenuation law:

Y = X − 1

ln ψ
ln

[
1 + ψ − 1

ψ0

(
Zϕx0−X

z0
− 1

)]
,

where Z denotes the distance from the epicenter, z0 = 9.5 km is the distance of
the isoseismical line for epicentral intensity x0 = 10, and ψ0 = 1, ψ = 1.5, and
ϕ = 1.3 are the estimated values of parameters ψ0, ψ , and ϕ for Central Italy [see G.
Grandori, A. Drei, F. Perotti, and A. Tagliani (1991), “Macroseismic intensity versus
epicentral distance”: The case of Cental Italy, in: M. Stucchi, D. Postpischl, and D.
Slejko, eds., “Investigations of historical earthquakes in Europe,” Tectonophysics,
Vol. 193, pp. 175–181]. Suppose Z ∼ uniform (3 km, 25 km) and find the probability
distribution of Y by simulation. Compute the 100-year MCS intensity for this region
assuming that Y is a Gumbel variate.
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Chapter 9

Risk and Reliability Analysis

In the assessment of civil and environmental engineering systems, one must evaluate
the capability of a designed system to respond to project requirements or to meet users’
demands. A system can fail to perform its intended function for one or more reasons,
such as natural hazards or lower performance than predicted. Failures may even include
such rare events as collapse of major structures. For example, a dam break can be caused
by a catastrophic flood that exceeds the design value or a structural failure attributable to
faulty design. Although the assurance of system performance and safety is primarily a task
of engineers, the accepted levels of adequacy or risk are subject to economic and social
constraints. Therefore, planning and design of engineering systems require that cost-and-
benefit analyses be performed accurately in order to achieve a complete assessment of
system performance and safety. Social issues also play an important role in the analysis
of civil and environmental engineering systems, because these systems are more directly
involved with the public than are other engineering systems.

Defining the inability of a system to perform adequately, such that failure results, is
not an easy task. For instance, in the case of a dam break the associated failure is not
reversible and it can occur immediately. On the other hand, if an airport suffers occasional
traffic congestion, it will be able to work again satisfactorily after the operational conditions
causing the congestion are removed; moreover, the airport may be subject to another similar
failure in the future. In a wastewater treatment plant, failure may take place gradually;
determining the stage at which the system ceases to perform adequately is to a certain
degree subjective. All these decisions involve some additional uncertainty in the definition
of system performance and safety, as well as the judgments of decision makers, who must
balance potential benefits against costs.

To analyze a system’s risk of failure, one must clearly identify the input to the system
and its consequent response. In the case of a building, structural safety depends on the
maximum load that may be imposed over the lifetime of the building, and also on the load-
carrying capacity, or strength, of the structure or its components. Because the predictions
of maximum load and actual strength of a structure are subject to uncertainties, one cannot
ensure its absolute safety, and the engineer must rely on some probabilistic concept indi-
cating the likelihood that the available strength will adequately withstand the maximum
load over the lifetime of the building. In a water supply system, one must compare the
demand of water from the different users with the available resource. Because the demand
undergoes fluctuations, and water resources are subject to natural variability, the proba-
bility of available supply relative to demand gives the adequacy of the system’s design
or operation. Reliability was defined simply as the probability of success in most related
examples given previously.1 A more precise definition of reliability is the probabilistic
assessment of the likelihood that a system will perform adequately for a specified period
of time under known operating conditions. The acceptance of a given level of reliability
must be discussed in the light of possible economic and social costs, and benefits. Risk

1 See Example 2.19.

541
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and reliability of a system are defined as the probabilities of failure and nonfailure over
the specified system lifetime.

Definition: Risk and reliability. The risk that a system is incapable of meeting the demand
is defined as the probability of failure p f over the specified system lifetime under specified
operating conditions. System reliability, denoted by r , is the complementary probability of
nonfailure, r = 1 − p f .

The capability of a system to perform under given requirements can be defined using
different terms, such as capacity and demand, load and strength, force and resistance. In
this chapter, the concept of capacity X and demand Y is used because of its generality.
For example, this concept can be applied to describe the landing capacity and the flight
arrival rate for an airport, bearing capacity of a terrain and foundation load, allowable
and computed stresses, culvert size and stormwater flow depth, structural capacity and
earthquake loads, spillway capacity and flood discharge, and allowable and predicted
biological oxygen demand.

The objectives of this chapter are to define measures of reliability and to examine
different types of failure. We also study the uncertainty aspects of reliability from different
perspectives. The final section is devoted to reliability design.

9.1 MEASURES OF RELIABILITY

9.1.1 Factors of safety

The assessments of risk and safety of civil and environmental engineering systems are
traditionally based on allowable factors of safety; these are estimated from previous ex-
perience on the behavior of a particular system or from observed responses of similar
systems. A conventional measure of the factor of safety taken by the engineer is the ratio
of the assumed nominal values of capacity x∗ and demand y∗, as

z∗ = x∗

y∗ . (9.1.1)

For example, if the allowable stress in a timber beam is 36 N/mm2 and the design stress
is 24 N/mm2, as shown in Fig. 9.1.1, the conventional safety factor is 1.5. An engineer

0

0.5

1

0 50 100

x and y (N/mm  )2

f X
(x

) 
an

d 
f Y

 (y
)

x*y *

fY (y) fX(x)

Fig. 9.1.1 Nominal values of capacity and demand, x∗ and y∗, respectively.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 18, 2008 17:18

Risk and Reliability Analysis 543

x and y

f X
(x

) 
an

d 
f Y

(y
)

ymaxxmin

fX (x )fY (y )

ymin xmaxmXmY

mX − mY

Fig. 9.1.2 Probability density functions of capacity X and demand Y .

would assume that the designed beam is satisfactory if the calculated safety factor is
greater than a specified minimum value, which is given by design prescriptions or
is based on experience. If a safety factor of 1.5 is considered too low, the engineer
should redesign the system to increase the maximum induced stress or to decrease the
load.

The demand on a system often results from a number of uncertain components, such as
wind loadings, earthquake accelerations, streamflows, water table depths, sea levels, storm
intensities, air and water temperatures, and pollutant loads. The capacity usually depends
on the variability of system characteristics; these include strengths of materials, construc-
tion techniques, testing errors, inspection supervision, and environmental conditions. In
order to evaluate the uncertainties affecting both demand and capacity, one designs the
prototype system on the hypothesis of a physically based mathematical model; this ne-
cessitates a careful scrutiny of the formulas and equations, and their assumptions, that are
used to scale model parameters. To take an extreme case, an engineer should not expect a
highly empirical formula, developed at a time when knowledge of the system was rather
scanty, to model the real world with a reliability close to 100%. This assumption can only
be justified after making repeated observations of the performances of a large number of
similar systems.

Because the nominal values of both the capacity x∗ and the demand y∗ cannot be
determined with certainty, the capacity and demand functions must be considered as
probability distributions, as shown in Fig. 9.1.2. Hence, the safety factor as given by ratio
Z = X/Y of two random variables, X and Y , is also a random variable.

Definition: Safety factor. The safety factor of a system, treated as a random variable and
defined as Z = X/Y , is the ratio between capacity X and demand Y of the system.

The inadequacy of the system to meet the demand, as measured by the probabil-
ity of failure, is associated with that portion of the distribution of the safety ratio
wherein it becomes less than unity, that is, the portion in which Z = X/Y ≤ 1 (see
Fig. 9.1.3).

The probability p f of system failure is thus given by

p f = Pr[Z ≤ 1] = FZ (1). (9.1.2)
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Fig. 9.1.3 cdf and pdf of safety factor Z = X/Y .

The corresponding probability of nonfailure is

r = 1 − p f = Pr[Z > 1] = 1 − FZ (1), (9.1.3)

which can be interpreted as survival probability or simply reliability. When the joint prob-
ability distribution of X and Y is known, the reliability of the system can be evaluated by
determining the cdf of X/Y . There is a zero probability of failure (p f = 0) and a relia-
bility of 100% (r = 1) only if the maximum demand Ymax does not exceed the minimum
capacity Xmin, so that the two distributions do not overlap.

Example 9.1. Structural safety factor for independent lognormally distributed load and
strength. Consider a structure whose load-carrying capacity or strength X , and load Y are
independent lognormal variates, with means and standard deviations μX , μY , and σX , σY ,
respectively. In this case, the safety factor, Z = X/Y , is also a lognormal variate. As shown
in Eq. (4.2.28)

μln(Z ) = μln(X ) − μln(Y ) = ln (μX ) − 1

2
ln

(
1 + V 2

X

) − ln (μY ) + 1

2
ln

(
1 + V 2

Y

)
,

where VX = σX/μX and VY = σY /μY are the coefficients of variation of X and Y , respectively,
and

σ 2
ln(Z ) = σ 2

ln(X ) + σ 2
ln(Y ) = ln(1 + V 2

X ) + ln(1 + V 2
Y ).

In terms of the medians, m X and mY , it follows from Eq. (4.2.28d) that

μln(Z ) = ln(m X ) − ln(mY ) = ln(m X/mY ),

where the ratio (m X/mY ) represents the median safety factor. Since ln(Z ) is normally
distributed with mean μln(Z ) and standard deviation σln(Z ), the random variable [ln(Z ) −
μln(Z )]/σln(Z ) is a standard normal variate. Therefore, the probability of failure is found using
Eq. (9.1.2) as

p f = FZ (1) = �

(
ln 1 − μln(z)

σln(z)

)
= �

(
−μln(z)

σln(z)

)

= 1 − �

⎛⎝ ln(m X/mY )√
ln

(
1 + V 2

X

) + ln
(
1 + V 2

Y

)
⎞⎠ ,
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Fig. 9.1.4 Timber strength and load illustration: pdfs (a) and cdfs (b) for independent
lognormally distributed X and Y .

where �(·) denotes the cdf of the standard normal distribution. Accordingly, the reliability
of the structure, r = Pr[Z > 1] = 1 − FZ (1) = 1 − p f , is

r = �

⎛⎝ ln(m X/mY )√
ln

(
1 + V 2

X

) + ln
(
1 + V 2

Y

)
⎞⎠ .

Thus, if X and Y are independent and lognormally distributed, the reliability is a function of
the median safety factor and the standard deviation σln(X/Y ).

Consider, for example, a rigid timber beam (see Fig. 2.1.3) with an estimated average
strength of 39.1 N/mm2, and coefficient of variation of 25% (as in Table 1.2.2). If the beam
is designed to carry a load of 24.0 N/mm2, with a coefficient of variation of 15%, one can
compute the failure probability as follows. Since the means and coefficients of variation of
strength X and load Y are μX = 39.1 N/mm2, VX = 0.25, μY = 24.0 N/mm2, VY = 0.15,
respectively, assuming X and Y are independent and lognormally distributed,

σln(Z ) = [ln(1 + 0.252) + ln(1 + 0.152)]1/2 = 0.288,

μln(Z ) = ln(39.1) − 1

2
ln(1 + 0.252) − ln(24.0) + 1

2
ln(1 + 0.152) = 0.469.

The required probability of failure is thus

p f = FZ (1) = �

(−0.469

0.288

)
= �(−1.628) = .052,

which indicates that the beam has a reliability of 94.8%. The pdfs of X and Y are shown in
Fig. 9.1.4a, and the corresponding cdfs in Fig. 9.1.4b. The pdf and cdf of the safety factor Z
are shown in Fig. 9.1.5.

To define a single-valued measure, one may use central measures of capacity and
demand. For example, the central safety factor is defined as

ζ = E[X ]

E[Y ]
= μX

μy
, (9.1.4)

where the expected capacity μX and demand μY are used.

Definition: Central safety factor. The central safety factor of a system, denoted by ζ , is
the ratio between expected capacity X and demand Y of the system.
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Fig. 9.1.5 Timber strength and load illustration: pdf and cdf of safety factor Z = X/Y for
independent lognormally distributed X and Y .

Suppose an engineer assigns a nominal value of capacity less than that of its expected
value, say,

x∗ = μX − hXσX , (9.1.5a)

and prescribes a nominal value for the demand greater than μY , say,

y∗ = μY + hY σY , (9.1.5b)

where hX and hY are sigma units of their respective functions. If these estimates of x∗ and
y∗ are used in Eq. (9.1.1),

z∗ = μX − hXσX

μY + hY σY
. (9.1.6)

Hence, the central factor exceeds the conventional factor of safety, when positive values
of hX and hY are taken as usual.
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Fig. 9.1.6 Sigma bounds of capacity X and demand Y .
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Example 9.2. Central safety factor for a pumping station. A pumping station was de-
signed using a safety factor z∗ of 1.8, or 9/5. An engineer has the task of assessing the
reliability of the system without any knowledge of possible fluctuations of capacity and de-
mand. Therefore, the coefficients of variation of capacity and demand are assumed to be equal
(VX = VY = V ), as are the sigma bounds, (hX = hY = h). (see Fig. 9.1.6). From Eq. (9.1.6),

z∗ = μX − hX VXμX

μY + hY VY μY
= μX

μY

1 − hV

1 + hV
= ζ

1 − hV

1 + hV
.

The engineer further assumes that the possible range of V is 0.1 ≤ V ≤ 0.5, and 0 ≤ h ≤ 1,
so that the possible range of hV is 0 ≤ hV ≤ 0.5. Since no other information is available
regarding the moments of hV , the principle of maximum entropy suggests that hV can be
modeled as a uniformly distributed variate with E[hV ] = 1/4, which yields ζ/z∗ = 5/3.
Therefore, to improve system reliability in order to achieve a safety factor of ζ the engineer
must increase the nominal capacity x∗ of the pumping station from (9/5)y∗ to (5/3)(9/5)y∗ =
3y∗.

9.1.2 Safety margin

As shown in Fig. 9.1.2, if the maximum demand Ymax exceeds the minimum capacity
Xmin, the distributions overlap and there is a nonzero probability of failure. To assess this
probability one can take the difference between capacity and demand,

S = X − Y, (9.1.7)

which is usually referred to as the safety margin. Because X and Y are random variables,
the safety margin is also a random variable (see Fig. 9.1.7).

Definition: Safety margin. The safety margin of a system is defined as the random differ-
ence S = X − Y between capacity X and demand Y of the system.

The inadequacy of the system to meet the demand, as measured by p f , is associated
with that portion of the distribution of the safety margin wherein S takes negative values,
that is, the portion in which S = X − Y ≤ 0. Thus,

p f = Pr[(X − Y ) ≤ 0] = Pr[S ≤ 0], (9.1.8)

Safety margin, s

f S
 (s

)

0 mS  = bsS

pf  = FS (0)

Fig. 9.1.7 pdf of safety margin S.
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and the corresponding reliability is

r = 1 − p f = Pr[(X − Y ) > 0] = Pr[S > 0]. (9.1.9)

When the joint probability distribution of X and Y is known, the reliability of the system
can be evaluated by determining the cdf of X − Y .

Example 9.3. Structural margin of safety for independent normally distributed load
and strength. Consider a structure whose load-carrying capacity or strength X and load Y
are independent normal variates, with means and standard deviations μX , μY and σX , σY ,
respectively. In this case, the safety margin, S = X − Y , is shown in Example 3.60 to be also
a normal variate with

μS = μX − μY , σ 2
S = σ 2

X + σ 2
Y .

Since S is normally distributed with mean μS and standard deviation σS , the random vari-
able (S − μS)/σS is a standard normal variate, and the reliability of the structure is from
Eq. (9.1.9)

r = 1 − FS(0) = 1 − �

(
0 − μS

σS

)
= 1 −

[
1 − �

(
μS

σS

)]
= �

(
μX − μY√
σ 2

X + σ 2
Y

)
,

where �(·) denotes the cdf of the standard normal distribution.
For example, consider again the rigid timber beam of Example 9.1, and assume normal and

independent strength X and load Y . The probability of failure can be computed as follows.
Since

μX = 39.1 N/mm2, VX = 0.25, μY = 24.0 N/mm2, VY = 0.15,

one has

σX = 39.1 × 0.25 = 9.775 N/mm2, σY = 24.0 × 0.15 = 3.6 N/mm2,

so that

μS = 39.1 − 24.0 = 15.1 N/mm2, and σS = (9.7752 + 3.62)1/2 = 10.42 N/mm2.

The required probability of failure is

p f = FS(0) = �

(−15.1

10.42

)
= �(−1.450) = .074,

which indicates a beam reliability of 92.6%. The pdfs of X , Y , and S are given in
Fig. 9.1.8a, and the corresponding cdfs are given in Fig. 9.1.8b. The estimated reliability
from the independent normal model differs from that obtained from the independent lognor-
mal model by only about 2%.

In Example 3.60, it was shown using the moment-generating function that any linear
combination of two independent normally distributed variates is itself normally distributed.
It follows that, when X and Y are normally distributed, and correlated, the safety margin
S is a normal variate with mean and variance

μS = μX − μY , (9.1.10a)

σ 2
S = σ 2

X − 2ρXY σXσY + σ 2
Y , (9.1.10b)
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independent normally distributed X and Y .

respectively, where ρXY denotes the correlation coefficient between capacity X and de-
mand Y . Hence, the probability of failure is given by

p f = �

⎛⎝− μX − μY√
σ 2

X − 2ρXY σXσY + σ 2
Y

⎞⎠ , (9.1.11)

where �(·) denotes the cdf of the standard normal distribution; accordingly,

r = �

⎛⎝ μX − μY√
σ 2

X − 2ρXY σXσY + σ 2
Y

⎞⎠ (9.1.12)

is the associated reliability.

Example 9.4. Irrigation water supply. During the growing season the expected demand,
Y , from an irrigation scheme is 10 units with a coefficient of variation of 50%, which accounts
for fluctuations associated with weather variability. The mean available water, X , which is
diverted from a river barrage, is 20 units, with a coefficient of variation of 20%, which
accounts for fluctuations associated with hydrologic variability in that season. Because of
the relationship between hydrology and climate, the natural water availability often tends to
decrease when the demand increases, so that the correlation coefficient between X and Y is
negative. The estimated value of ρXY is −0.5. An irrigation engineer needs to estimate the
reliability of the system assuming that both capacity X and demand Y are normally distributed
variates.

The standard deviations of capacity and demand are

σX = VXμX = 0.2 × 20 = 4 units,

σY = VY μY = 0.5 × 10 = 5 units,

respectively. The safety margin, S = X − Y , is normally distributed with mean

μS = μX − μY = 20 − 10 = 10 units,

and standard deviation

σS =
(
σ 2

X − 2ρXY σXσY + σ 2
Y

)1/2
= (42 + 2 × 0.5 × 4 × 5 + 52)1/2 = 7.81 units.
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The required risk of failure is

p f = FS(0) = �

(−10

7.81

)
= 1 − �(1.28) = 1 − 0.9 = .1,

and the associated reliability is 90%. In order to increase the reliability of the system to 95%,
the diversion of a neighboring stream is considered for the purpose of increasing the mean
capacity. Assuming that both VX and ρXY do not change, the mean capacity μX must be
increased by a factor of a, so that

r = 1 − FS(0) = �

(
aμX − μY√

a2μ2
X V 2

X − 2ρXY aVXμXσY + σ 2
Y

)
= 0.95,

that is,

aμX − μY√
a2μ2

X V 2
X − 2ρXY aVXμXσY + σ 2

Y

= 1.65.

Hence,

20a − 10√
42a2 + 2 × 0.5 × 4 × 5 × a + 52

= 20a − 10√
16a2 + 20a + 25

= 1.65,

which yields a = 1.20. This means that the new source must provide a 20% increase in the
average water availability in order to increase the reliability of the irrigation system to 95%.

9.1.3 Reliability index

An important measure of the adequacy of an engineering design is the reliability index,
defined as

β =
(

μS

σS

)
. (9.1.13)

This can be interpreted as the number h of sigma units (the number of standard deviations
σS) between the mean value of the safety margin E[S] = μS and its critical value S = 0,
as shown in Fig. 9.1.7. By definition, the reliability index is also the reciprocal of the
coefficient of variation of the safety margin; that is β = 1/VS .

Definition: Reliability index. The reliability index of a system, denoted by β, is defined as
the ratio between the mean and standard deviation of the safety margin of the system.

Example 9.5. Structural reliability index for normally distributed safety mar-
gin. Consider again a structure whose load-carrying capacity, or strength, X and load Y
are independent normal variates (see Example 9.3). Since r = �(μS/σS), r is a function of
the ratio μS/σS , which is the safety margin expressed in units of σS , that is, the reliability
index β. Therefore, system reliability can be written as r = �(β), and the corresponding
probability of failure is given by p f = 1 − r = 1 − �(β). For normal S, a value of β = 0
corresponds to r = 0.5 (50% reliability). Similarly, β = 1.28 corresponds to 90% reliability,
β = 1.65 with 95%, β = 2.33 with 99%, β = 3.10 with 99.9%, and β = 3.72 with 99.99%.
This illustrates that the level of reliability is a function of both the relative position of fX (x)
and fY (y), as measured by the mean safety margin μS = μX − μY , and the degree of disper-
sion, as measured in terms of the standard deviation σS = (σ 2

X + σ 2
Y )1/2. The reliability index

β reflects the combined effect of both these factors. A useful approximation of the failure
probability is given by

p f
∼= 2 × 10−β,
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Fig. 9.1.9 Power approximation of the probability of failure as a function of the reliability index.

which can be used for reliability analysis with β taking values from 1 to 2.7, as shown in
Fig. 9.1.9.

For example, in the case of the rigid timber beam of Example 9.3, where strength X and
load Y are normal and independent variates,

β = μS

σS
= 15.1

10.42
= 1.45,

so that the reliability index is 1.451 sigma units. The power approximation of the correspond-
ing probability of failure is

p f
∼= 2 × 10−1.45 = .071.

The previously computed value of p f = 1 − �(1.45) = 0.074, so that the error in the power
approximation is only about 3%.

To obtain a general expression for the reliability index in terms of the first two moments
of the capacity and the demand functions, one can use Eqs. (3.4.27) and (3.4.28) to write
μS as μS = μX − μY , and σ 2

S = σ 2
X − 2ρXY σXσY + σ 2

Y . Thus,

β = μX − μY√
σ 2

X − 2ρXY σXσY + σ 2
Y

, (9.1.14)

where ρXY denotes the correlation coefficient between capacity and demand. Accord-
ingly, the reliability index is a maximum if ρXY = +1, and a minimum if ρXY = −1. For
normally distributed X and Y , Eq. (9.1.11) gives the probability of failure as

p f = 1 − �(β), (9.1.15)

and

r = �(β) (9.1.16)

is the associated reliability as obtained from Eq. (9.1.12).

Example 9.6. Irrigation water supply. Consider again the irrigation problem of Example
9.4. The reliability index of this design is

β =
(

μS

σS

)
=

(
10

7.81

)
= 1.28,
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so that the reliability of the system is r = �(1.28) = 0.9. If a higher reliability, say, 95% is
sought, one must have an index of

β = �−1(0.95) = 1.65,

where �−1(ξ ) is the ξ th quantile of the standard normal variate.

Although reliability problems are sometimes approached by assuming independent
capacity and demand, doing so violates the objective, because engineering structures are
designed so that capacity will accommodate the induced demand. That is, to cope with
higher loads, structures are made stronger. Therefore, engineering practice often requires a
positive correlation to link capacity with demand. For instance, when the capacity is known
to be reduced, the demand is restricted, as in the case when heavy traffic is restricted if one
or more lanes of a bridge are closed for repairs. To investigate the influence of correlation,
one can rearrange Eq. (9.1.14) in terms of the central safety factor, thus obtaining

βVY = ζ − 1√
v2ζ 2 − 2ρvζ + 1

, (9.1.17)

where v = VX/VY , and ρ = ρXY . This relationship is plotted in Fig. 9.1.10 for a range of
correlation coefficients, and values of v of 1, 2, and 1/2.

A comparison of Fig. 9.1.10b and 9.1.10c shows that the influence of correlation between
capacity and demand increases with decreasing ratio v between the coefficients of variation
of capacity and demand. Thus, increasing the variability of demand relative to that of
capacity increases the correlation. For VX = VY = V , Eq. (9.1.17) simplifies to

βV = ζ − 1√
ζ 2 − 2ρζ + 1

. (9.1.18)

This case is shown in Fig. 9.1.10a. Consider, for instance, a structural design with V = 0.5,
and ζ = 2. From Eq. (9.1.18), one has βV ∼= 0.45 for ρ = 0, βV ∼= 0.33 for ρ = −1, and
βV = 1 for ρ = 1. If ρ = 0, one obtains β = 0.45/0.5 = 0.9, meaning that the risk of
failure p f equals p f = 1 − �(0.9) = 0.18. For ρ = −1, one gets β = 0.33/0.5 = 0.66,
yielding p f = 1 − �(0.66) = 0.25. For ρ = 1, one has β = 1/0.5 = 2, and p f = 1 −
�(2) = 0.02. The magnitude of the difference highlights the importance of recognizing
the dependency between capacity and demand.

To measure the correlation coefficient between capacity and demand is not an easy task,
because it depends on many factors. For instance, structural design often reflects a positive
correlation coefficient of at least ρ = 0.5. However, with capacity and demand positively
correlated, conservative design estimates of reliability are obtained when disregarding the
dependency between the two; this results in high probabilities of failure for structures
known to be very safe. On the contrary, nonconservative estimates are obtained if one
disregards negatively correlated capacity and demand (see Example 9.4), although this
error is substantially lower than that introduced by neglecting positive correlation.

Example 9.7. Irrigation water supply. Consider again the irrigation problem of Example
9.4, and assume that correlation between capacity and demand can be neglected. Assuming
that ρXY = 0 yields

σS = (
σ 2

X + σ 2
Y

)1/2 = (42 + 52)1/2 = 6.40 units,

and

β = μS

σS
= 10

6.40
= 1.56;
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Fig. 9.1.10 βVY versus ζ for different correlation coefficients between capacity X and demand Y
for (a) VX/VY = 1, (b) VX/VY = 2, and (c) VX/VY = 1/2.
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thus, the estimated reliability of the system is r = �(1.56) = 0.94. If compared with the
original estimate of 90%, this result illustrates that an engineer who disregards the correlation
between capacity and demand can come to the misleading conclusion that the goal of 95%
reliability can be reached.

One can use Eqs. (9.1.15) and (9.1.16) to compute the failure and nonfailure probabilities
also if either X or Y or both are nonnormal. This is a straightforward exercise for two
independent lognormal variates, as shown in the following example:

Example 9.8. Structural reliability index for independent lognormally distributed load
and strength. Consider again a structure whose load-carrying capacity or strength X and
load Y are independent lognormal variates, with means and standard deviations μX , μY and
σX , σY , respectively (see Example 9.1). Because the nonfailure probability of this structure
is given by

r = �

⎛⎝ ln (m X/mY )√
ln

(
1 + V 2

X

) + ln
(
1 + V 2

Y

)
⎞⎠ ,

the reliability index is, from Eq. (9.1.16),

β = [ln(m X/mY )][
ln

(
1 + V 2

X

) + ln
(
1 + V 2

Y

)]1/2 = μln(Z )

σln(Z )
,

where m X and mY denote the medians of X and Y , respectively. For the rigid timber beam of
Example 9.1,

ln

(
m X

mY

)
= μln(Z ) = 0.469,

and

σln(Z ) =
[

ln
(

1 + V 2
X

)
+ ln

(
1 + V 2

Y

)]1/2
= 0.288,

so that β = 0.469/0.288 = 1.628. This result can be compared with the value of 1.451, which
is found under the assumption of independent and normally distributed strength and load (see
Example 9.5).

If capacity and demand are lognormal variates, then ln X and ln Y are normal variates.
A general form of the reliability index is found as

β = ln (m X/mY )√
ln

(
1 + V 2

X

) + ln
(
1 + V 2

Y

) − 2ρXY

√
ln

(
1 + V 2

X

)
ln

(
1 + V 2

Y

) , (9.1.19)

where m X and mY denote the medians of X and Y , respectively. Introducing the central
safety factor as in Eq. (9.1.17), and assuming equal coefficients of variation VX = VY = V ,
Eq. (9.1.19) reduces to

β = ln ζ√
2(1 − ρ) ln(1 + V 2)

. (9.1.20)

Then, from the series expansion ln(1 + x) = x − x2/2 + x3/3 − · · · , one can approxi-
mate ln(1 + V 2) with V 2, so

Vβ = ln ζ√
2(1 − ρ)

. (9.1.21)
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Fig. 9.1.11 βNORβLN2 versus ζ for different correlation coefficients between capacity X and
demand Y .

Figure 9.1.11 shows the ratio βNOR/βLN2 as a function of the central safety factor ζ for
a range of correlation coefficients relating capacity and demand, where βNOR is computed
from Eq. (9.1.18) and βLN2 from Eq (9.1.21). One can see that normally distributed
variates produce smaller values of the reliability index than lognormal variates. Although
this difference is minor for negative correlation and the ratio does not exceed 7/10 for
uncorrelated variates, reliability indices of normal and lognormal variates diverge from
each other with rapidly increasing positive correlation. The magnitude of the reliability
index is not known in most cases and as seen here the index by itself may not predict very
effectively the performance of the investigated system, especially for correlated capacity
and demand. However, this index is widely used as a basis for scaling performance in civil
engineering practice.

As stated previously, Eqs. (9.1.15) and (9.1.16) can also be used to evaluate the failure
and nonfailure probabilities if either X or Y or both are not normally distributed. The
usual procedure is to transform these variates into equivalent normal deviates by using an
appropriate transformation, such as the Rosenblatt transformation shown in the following
example; accordingly, two or more jointly distributed random variables are transformed
into another set of two or more normal variates. Thus, Eq. (9.1.14) is used in terms of the
means, variances, and correlation coefficient of the equivalent normal variates.2 However,
in engineering practice the test of adequacy for the reliability index concept generally
hinges on a comparison of the computed reliability index β with the recommended value.

Example 9.9. Thermal pollution in a river. The discharge Y from the cooling system of a
thermal power plant flows into a river. To prevent thermal pollution in the river, it is desirable
that Y does not exceed a fraction of natural flow Q in the river, say, X = Q/a, where a
denotes a constant that depends on the difference in temperature between the two flows. An
engineer wishes to evaluate the risk that thermal pollution occurs in the river. Assume that
Y is normally distributed with mean 2 m3/s and coefficient of variation of 20%, as shown in
Fig. 9.1.12.

For the period in which the river receives the discharge Y , Q can be approximated by
an exponential distribution with mean 40 m3/s, and a = 5. Inflow Y and streamflow Q are

2 For some additional details see, for example, by Ang and Tang (1984, p. 350).
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Fig. 9.1.12 cdfs of capacity X and demand Y for illustration of thermal pollution in a river.

further assumed to be independent variates. The problem is approached by using the univariate
Rosenblatt transformation in order to determine the equivalent normal distribution for the
nonnormal capacity X . Since X is exponentially distributed with mean 40/5 = 8 m3/s,

fX (x) =
(

1

8

)
exp

(
− x

8

)
= 0.125 exp(−0.125x)

and

FX (x) = 1 − exp(−0.125x).

The mean μX∗ and the standard deviation σX∗ of the equivalent normal distribution for the
exponential capacity X are found from the assumption that, at the failure point x∗,

�

[
(x∗ − μX∗ )

σX∗

]
= FX (x∗),

where �(·) denotes the cdf of the standard normal variate. Thus,

μX∗ = x∗ − σX∗�−1[FX (x∗)],

where �−1(ξ ) denotes the ξ th quantile of the standard normal distribution. It also follows from
the previous assumption at the failure point that, by equating the corresponding probability
densities at the failure point,(

1

σX∗

)
φ

[
(x∗ − μX∗ )

σX∗

]
= fX (x∗),

where φ(·) denotes the pdf of the standard normal variate. Hence,

σX∗ = φ{�−1[FX (x∗)]}
fX (x∗)

.

By substitution,

σX∗ = φ{�−1[1 − exp(−0.125x∗)]}
[(0.125 exp(−0.125x∗)]

,

and

μX∗ = x∗ − σX∗�−1[1 − exp(−0.125x∗)],

whereas μY = 2 m3/s, and σY = 0.2 × 2 = 0.4 m3/s.
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Because the failure point is unknown, the problem is solved by iteration. If x∗ = 1 m3/s is
taken as the initial value,

σX∗ = φ{�−1[1 − exp(−0.125 × 1)]}
[(0.125 exp(−0.125 × 1)]

= φ[�−1(0.118)]

0.110

= φ[(−1.188)]

0.110
= 1.79,

and

μX∗ = x∗ − σX∗�−1[1 − exp(−0.125 × 1)] = 1 − 1.79�−1(0.118) = 3.12;

these are used in Eq. (9.1.14) to obtain, for independent capacity and demand,

β = (μX∗ − μY )(
σ 2

X∗ + σ 2
Y

)1/2 = (3.12 − 2)

(1.792 + 0.42)1/2
= 0.61.

For the second iteration, let us take x∗ = 1.5, which yields β = 0.74. As shown in
Table 9.1.1, this procedure is then followed until the difference between two subsequent
estimates of β is negligible. Accordingly, one obtains β = 0.76; that is, the reliability of the
system r = �(0.76) ∼= 78%.

One can also use the same approach for a capacity distribution different from the exponen-
tial. For example, if X is gamma distributed with mean 8 m3/s, and its coefficient of variation
is 1/

√
2 (see Fig. 9.1.12), the parameters of the gamma pdf are found to be, by the method

of moments,

r =
(

1

VX

)2

=
(

1√
2

)2

= 2, λ = r

μX
= 2

8
= 0.25 m−3s.

Thus, from Eq. (4.2.7),

fX (x) =
[

λr


(r )

]
xr−1 exp(−λx) = 0.252x exp(−0.25x),

Table 9.1.1 Risk evaluation for thermal pollution in a river with exponentially distributed
streamflow

Exponential capacity, X
Mean of X = 8

λ = 0.125

Iteration process
Point of failure x∗ = 1.0 1.5 2.0 2.5 2.1 1.9

F(x∗) = 0.1175 0.1710 0.2212 0.2684 0.2309 0.2114
f (x∗) = 0.1103 0.1036 0.0974 0.0915 0.0961 0.0986

�−1[F(x∗)] = −1.188 −0.950 −0.768 −0.618 −0.736 −0.802
φ{�−1[F(x∗)]} = 0.197 0.254 0.297 0.330 0.304 0.289

Mean of X∗ = 3.12 3.83 4.34 4.73 4.43 4.25
Standard deviation of X∗ = 1.79 2.45 3.05 3.60 3.17 2.94

Normal demand, Y
Mean of Y = 2

Standard deviation of Y = 0.4

Evaluation of reliability index, β

β = 0.61 0.74 0.76 0.75 0.76 0.76
Reliability: �(β) = .777

Risk: 1 − �(β) = .223
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Table 9.1.2 Risk evaluation for thermal pollution in a river with gamma-distributed streamflow

Gamma capacity, X
Mean of X = 8

Coefficient of variation of X = 0.707
r = 2
λ = 0.25

Iteration process
Point of failure, x∗ = 1.0 1.5 2.0 2.5 1.9 2.1

F(x∗) = 0.0265 0.0550 0.0902 0.1302 0.0827 0.0979
f (x∗) = 0.0487 0.0644 0.0758 0.0836 0.0738 0.0776

�−1[F(x∗)] = −1.935 −1.598 −1.339 −1.125 −1.387 −1.294
φ{�−1[F(x∗)]} = 0.061 0.111 0.163 0.212 0.152 0.173

Mean of X∗ = 3.44 4.26 4.87 5.35 4.76 4.98
Standard deviation of X∗ = 1.26 1.73 2.15 2.53 2.06 2.23

Normal demand, Y
Mean of Y = 2

Standard deviation of Y = 0.4

Evaluation of reliability index, β

β = 1.09 1.27 1.32 1.31 1.31 1.32
Reliability, �(β) = 0.906

Risk, 1 �(β) = 0.094

and, for r = 2,

FX (x) =
x∫

0

λ2


 (2)
z2−1 exp(−λz)dz = 1 − (1 + λx)e−λx

= 1 − (1 + 0.25x)e−0.25x .

Using this procedure, one gets, for the initial value of x∗ = 1 m3/s,

σX∗ = φ{�−1[1 − (1 + 0.25 × 1) × exp(−0.25 × 1)]}
[(0.252 × 1 × exp(−0.25 × 1)]

= 1.26,

μX∗ = 1 − 1.26 × �−1[1 − (1 + 0.25 × 1) × exp(−0.25 × 1)] = 3.44;

and, using these values in Eq. (9.1.14),

β = (μX∗ − μY )(
σ 2

X∗ + σ 2
Y

)1/2 = (3.44 − 2)

(1.262 + 0.42)1/2
= 1.09.

After some iterations, the reliability index is found to be 1.32. Hence, from Eq. (9.1.16)
reliability is about 91%. The procedure is detailed in Table 9.1.2.

9.1.4 Performance function and limiting state

In many engineering applications, the assessment of reliability is made by comparing the
calculated reliability index β with that found to be adequate from previous experience for
the given system. For this purpose, one must establish a relationship between the capacity
(for example, the strength) of the system and the demand (for example, the load) such that
if capacity and demand are equal, there is a limiting state of interest. The safety factor
Z = X/Y is an example of such a relationship, where the safe state is represented by
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Fig. 9.1.13 Failure state, safe state, and limiting state of interest.

Z > 1, the failure state by Z < 1, and the limiting state by Z = 1. The margin of safety,
defined as S = g(X, Y ) = X − Y , is another example of this state, where S > 0 represents
the safe state, S < 0 the failure state, and S = 0 the limiting state. The major advantage
of using S instead of Z is that S is a linear function, whereas Z is highly nonlinear.

More generally, one can define a performance function g(X, Y ) which gives the limiting
state of interest in the form

g(X, Y ) = 0, (9.1.22)

so that safety and failure of the system are represented by two regions in the plane (x , y)
as shown in Fig. 9.1.13, separated by g(X, Y ) = X − Y = 0.

Definition: Performance function. The performance function of a system is the random
function g(X, Y ) of capacity X and demand Y describing system performance, related to its
possible failure, or limiting state of interest, given by g(X, Y ) = 0.

Let us define reduced variables as

X ′ = (X − μX )

σX
, (9.1.23a)

Y ′ = (Y − μY )

σY
, (9.1.23b)

for S = g(X, Y ) = X − Y = 0. Then one obtains

g(X ′, Y ′) = σX X ′ − σY Y ′ + μX − μY = 0, (9.1.24)

which provides an alternative form of the limiting state of interest. If a reduced coordinate
system is introduced as shown in Fig. 9.1.14, the straight line generated by this expression
is displaced at a distance equal to the reliability index β from the origin. This is because
the shortest distance from the origin to a line ax + by + c = 0 is c/(a2 + b2)1/2 (from
analytical geometry). That is,

β = μX − μY√
σ 2

X + σ 2
Y

,

which is the reliability index for uncorrelated variables [from Eq. (9.1.14)]. This concept
can be extended to any performance function in linear form. If the limiting state is a
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Fig. 9.1.14 Failure state, safe state, and limiting state in a reduced coordinate domain.

nonlinear function of reduced variables, this property does not hold. However, for a strictly
monotonic g(X ′, Y ′) the reliability index β corresponds to the shortest distance from the
origin, as shown in Fig. 9.1.15.

More generally, the limiting state may be a function of a number of capacity and demand
variables, X1, X2, . . . , Xn , for the operational and environmental conditions of interest.
A general limiting state or performance function is thereby introduced:

g(X1, X2, . . . , Xn) = 0. (9.1.25)

This defines a critical hypersurface in the n-dimensional space, such that g(·) > 0 is the
safe state and g(·) < 0 is the failure state. Accordingly, the probability of failure is given
by

p f =
∫

g(x1,...,xn )<0

· · ·
∫

fX1,...,Xn (x1, · · · , xn) dx1 · · · dxn (9.1.26)

and the corresponding nonfailure probability is

r =
∫

g(x1,...,xn )>0

· · ·
∫

fX1,...,Xn (x1, · · · , xn)dx1 · · · dxn. (9.1.27)

x'

g (X',Y' ) = 0

Safe stateb

0

Failure state

y'

xf '

y f '

Fig. 9.1.15 Failure state, safe state, and nonlinear limiting state in a reduced coordinate domain.
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A measure of the reliability index can be taken as the minimum distance from the critical
hypersurface (in the multidimensional coordinate space) to the origin, by extending the
concept of the two-dimensional case. Shinozuka (1983) showed that the minimum distance
is the most probable failure point. Depending on the form taken by the performance
function, the computations needed to obtain the failure point may be rather cumbersome.
The solution can be carried out by minimizing the function (X2

1 + X2
2 + · · · + X2

n)1/2,
subject to the constraint g(X1, X2, . . . , Xn) = 0, using Lagrange multipliers.3

If g(·) is expressed in linear form, say,

g(X1, . . . , Xn) = a0 +
n∑

i=1

ai Xi , (9.1.28)

where ai , i = 0, . . . , n are known constants, the reliability index defined by the minimum
distance is given by

β = a0 + ∑n
i=1 aiμi√∑n

i=1

∑n
j=1 ai a jρi jσiσ j

, (9.1.29)

where μi and σi denote the mean and standard deviation of Xi , respectively, and ρi j is the
correlation coefficient between Xi and X j . For mutually independent variates,

β = a0 + ∑n
i=1 aiμi√∑n

i=1 a2
i σ

2
i

. (9.1.30)

Example 9.10. Lake phytoplankton. Climate and water quality are among the factors
influencing the quantity of phytoplankton in shallow lakes. Let us assume that the rate of
increase of phytoplankton to be expressed as a linear function g(X1, X2, X3) of three variables:
the temperature of water X1, the global radiation X2, and the concentration of nutrients X3.
The equilibrium corresponds to the limiting state of interest, g(X1, X2, X3) = 0, and positive
growth rates must be avoided to prevent eutrophication. Field observations indicate that X1,
X2, and X3 can be modeled as normal variates with the following means and coefficients of
variation:

μ1 = 16◦C, μ2 = 150 W/m2, μ3 = 100 mg/m3

and

V1 = 0.5, V2 = 0.3, V3 = 0.7.

Thus,

σ1 = 8◦C, σ2 = 45 W/m2, σ3 = 70 mg/m3.

Although it is observed that temperature and radiation have no effect on the concentration
of nutrients so that ρ13 = ρ23 = 0, mutually they are highly correlated with ρ12 = 0.8. The
equilibrium function is

g(X1, X2, X3) = a0 − (a1 X1 + a2 X2 + a3 X3),

with a0 = 6.9 mg/m3, a1 = 0.08 mg/(m3×◦C), a2 = 0.01 mg/m × W, and a3 = 0.02. Other
variables should be incorporated, such as those accounting for predation and natural wastage;

3 The detailed procedure based on the application of Lagrange multipliers is given, for example, by Ang and
Tang (1984, p. 343).
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these are included in the constant a0 because of difficulties in estimating them separately. The
reliability index is then computed using Eq. (9.1.29). The numerator is given by

a0 − (a1μ1 + a2μ2 + a3μ3) = 6.9 − (0.08 × 16 + 0.01 × 150 + 0.02 × 100) = 2.12,

and the argument in the square root of the denominator is

a2
1σ

2
1 + a2

2σ
2
2 + a2

3σ
2
3 + 2a1a2ρ12σ1σ2 + 2a1a3ρ13σ1σ3 + 2a2a3ρ23σ2σ3

= 0.082 × 82 + 0.012 × 452 + 0.022 × 702 + 2 × 0.08 × 0.01 × 0.8 × 8 × 45 + 0 + 0

= 3.03.

Thus,

β = 2.12√
3.03

= 1.22,

and from Eq. (9.1.16),

r = �(1.22) = 0.89.

This means there is an 89% chance that positive growth rates are prevented. Hence, the risk
that the algal biomass will increase is 11%.

If the limiting state function g(·) is nonlinear, the distance from the failure hypersurface
to the origin of the reduced variates may not be unique. Therefore, to find the exact
probability of failure one should solve the integral in Eq. (9.1.26), which generally will
require multiple numerical quadrature. To obtain an approximate solution one can use the
hyperplane tangent to the hypersurface. If the exact nonlinear failure surface is convex
toward the origin, the approximation will be conservative, as shown in Fig. 9.1.15 in the
two-dimensional case. Conversely, if the surface is concave, it will be nonconservative,
because the approximation lies on the unsafe side. By this method the i th component x ′

if
of the failure point (x ′

1 f , x ′
2 f , . . . , x ′

n f ) expressed in reduced variates is given by

x ′
if = −

(
∂g
∂ X ′

i

)
f√∑n

i=1

(
∂g
∂ X ′

i

)2

f

β = −αiβ, (9.1.31)

where (in geometrical terms) the αi s are the direction cosines of the component axes. The
derivates are computed at point (x ′

1 f , x ′
2 f , . . . , x ′

n f ). Thus, as in Eq. (9.1.23a),

xif = μi + σi x
′
i f = μi − αiσiβ. (9.1.32)

The required value of β is then found by substituting the right-hand side of Eq. (9.2.32)
for the xi s in the performance function g(x1, x2, . . . , xn) as follows:

g(μ1 − α1σ1β, μ2 − α2σ2β, . . . , μn − αnσnβ) = 0. (9.1.33)

Solving this limiting state equation for β gives the required value of the reliability
index. This usually requires an iterative procedure. One assumes tentative initial values
of x1 f , x2 f , . . . , xn f ; then using estimated values of standard deviations, one computes
the partial derivates, and the values of the αi , which are used to solve Eq. (9.1.33) for β,
using estimated values of means. At each step one estimates β, and then reevaluates the
xif = μi − σiαiβ, and the procedure is repeated until there is convergence.
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Example 9.11. Low-head run-of-river small hydropower station. The economic perfor-
mance of the irrigation barrage located at Balcad, Somalia, along the Wabe Shabelle River
could be improved by installing a hydropower station to meet the local energy demand.
An engineer estimates the power demand X3 to be 600 kW on average, with a variance of
3600 kW2. If a standard turboaxial turbine is installed, power output can be estimated as
7.5 X1 X2, where discharge X1 is measured in m3/s and hydraulic head X2 in m, and 7.5 is
a coefficient accounting for gravity, density of water, and the overall efficiency of installed
equipment. Accordingly, power is given in units of kW. Although an average discharge of 22
m3/s and an average head of 5.2 m are available, discharge and head availability depends on
variable natural flows; it is also subject to the constraint of barrage handling, which is operated
with priority for irrigation demand. Discharge and head can be assumed to be independent
normal variates, X1 and X2, with coefficients of variation of 0.2 and 0.15, respectively. As-
suming that the demand X3 in kW is also normal and independent of discharge and head, the
engineer wishes to evaluate the reliability of the plant. Thus,

g(X1, X2, X3) = 7.5X1 X2 − X3

is the performance function of the hydropower system, with

μ1 = 22 m3/s, V1 = 0.20, σ1 = 4.4 m3/s;

μ2 = 5.2 m, V2 = 0.15, σ2 = 0.78 m;

μ3 = 600 kW, V3 = 0.10, σ3 = 60 kW.

The partial derivates of the performance function with respect to each of the variables evaluated
at the failure point are determined as

∂g

∂ X ′
i

=
(

∂g

∂ Xi

) (
∂ Xi

∂ X ′
i

)
=

(
∂g

∂ Xi

)
σi ,

which follows directly from Eq. (9.1.23a). Thus,(
∂g

∂ X ′
1

)
f

= 7.5x2σ1,

(
∂g

∂ X ′
2

)
f

= 7.5x1σ2,

(
∂g

∂ X ′
3

)
f

= −σ3 = −60,

Taking the means as initial values (that is, x1 = 22 m3/s and x2 = 5.2 m) one obtains(
∂g

∂ X ′
1

)
f

= 7.5 × 5.2 × 4.4 = 171.6,(
∂g

∂ X ′
2

)
f

= 7.5 × 22 × 0.78 = 128.7,(
∂g

∂ X ′
3

)
f

= −60.

Hence, form Eq. (9.1.31),

α1 = 171.6√
49,610

= 0.770,

α2 = 128.7√
49,610

= 0.578,

α3 = − 60√
49610

= −0.269.

Thus, the new failure point is given by

x1(new) = μ1 − α1σ1β = 22 − (0.770 × 4.4)β = 22 − 3.388β,

x2(new) = μ2 − α2σ2β = 5.2 − (0.578 × 0.78)β = 5.2 − 0.451β,

x3(new) = μ3 − α3σ3β = 600 − (−0.269 × 60)β = 600 + 16.14β.
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Table 9.1.3 Evaluation of reliability for a low-head run-of-river small hydropower plant

Coefficient of Standard
Design data Unit Mean variation deviation

Normal discharge, X1 m3/s 22 0.20 4.4
Normal hydraulic head, X2 M 5.2 0.15 0.78
Normal power demand, X3 kW 600 0.10 60

Limiting state of interest is
g(X1, X2, X3) = 7.5X1 X2 − X3 = 0

Iteration process
Initial x1 f = 22.0 17.8 17.7 17.7
Initial x2 f = 5.2 4.6 4.7 4.7
Initial x3 f = 600 620 623 623

(∂g/∂ X ′
1) f = 171.6 153.2 154.6 154.8

(∂g/∂ X ′
2) f = 128.7 104.2 103.7 103.6

(∂g/∂ X ′
3) f = −60.0 −60.0 −60.0 −60.0

(∂g/∂ X ′
1)2

f = 49610 37922 38254 38276
α1 f = 0.770 0.787 0.790 0.791
α2 f = 0.578 0.535 0.530 0.529
α3 f = −0.269 −0.308 −0.307 −0.307

New x1 f = 17.8 17.7 17.7 17.7
New x2 f = 4.6 4.7 4.7 4.7
New x3 f = 620.0 622.8 622.7 622.7

g(·) = 7.5x1 f x2 f − x3 f = −4.5 × 10−5 7.5 × 10−6 1.7 × 10−5 1.8 × 10−5

Yields β = 1.24 1.23 1.23 1.23
Reliability, �(β) = 0.892

Risk, 1 −�(β) = 0.108

The limiting state equation is given by

7.5(22 − 3.388β)(5.2 − 0.451β) − (600 + 16.14β) = 0,

which yields β = 1.24. The second-order algebraic equation can be solved analytically;
however, numerical computations are generally required. Results are shown in Table 9.1.3.

To perform the second iteration, one makes use of the new failure point:

x1(new) = 22 − 3.388β = 22 − 3.388 × 1.24 = 17.8,

x2(new) = 5.2 − 0.451β = 5.2 − 0.451 × 1.24 = 4.6,

x3(new) = 600 + 16.14β = 600 + 16.14 × 1.24 = 620.

Then the values of the partial derivates are computed as(
∂g

∂ X ′
1

)
f

= 153.2,

(
∂g

∂ X ′
2

)
f

= 104.2,

(
∂g

∂ X ′
3

)
f

= −60.

Hence, from Eq. (9.1.31),

α1 = 153.2√
37, 922

= 0.787,

α2 = 104.2√
37, 922

= 0.535,
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Fig. 9.1.16 Sketch of a vertical wall harbor breakwater.

and

α3 = −60√
37, 922

= −0.308.

This gives a new failure point

x1(new) = 22 − (0.787 × 4.4)β = 22 − 3.463β,

x2(new) = 5.2 − (0.535 × 0.78)β = 5.2 − 0.417β,

x3(new) = 600 − (−0.308 × 60)β = 600 + 18.48β.

Accordingly, the new limiting state equation is

7.5(22 − 3.463β)(5.2 − 0.417β) − (600 + 18.48β) = 0,

which yields β = 1.23. Further iterations indicate that β = 1.23 is the required reliability
index, as shown in Table 9.1.3. Therefore, the reliability of the hydropower station is about
89%, and the associated risk of failure is about 11%. The most probable failure point occurs for
a demand 623 kW, a discharge of 17.7 m3/s, and an available head of 4.7 m. System simulations
should be implemented to account for the correlation between head and discharge, and for
the variability of equipment efficiency with discharge and head (see La Barbera et al., 1983).
By this procedure one can evaluate which types of standard turboaxial equipments should be
adopted.

This method can also be used to evaluate the failure and nonfailure probabilities if one or
more variables are not normal. One must transform these variables into equivalent normal
deviates by using an appropriate procedure, such as the Rosenblatt transformation.4 The
usual practice, however, is to compute the reliability index and compare it to the design
value.

Example 9.12. Harbor breakwater. Consider a harbor breakwater constructed with mas-
sive concrete tanks filled with sand (see Fig. 9.1.16). It is necessary to evaluate the risk that the
breakwater will slide under the lateral pressure of a large wave during a major storm. Stability
against sliding exists when the ratio of the resultant horizontal force Rh to the resultant of the
vertical force Rv does not exceed the coefficient of friction c f . Therefore, the limiting state
of interest can be represented as

g(c f , Rv , Rh) = c f Rv − Rh = 0,

4 This is introduced briefly in Section 9.4.
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where c f can be interpreted as a random variable, X1, which represents the inherent uncertainty
associated with its field evaluation. The resultant Rv of the vertical forces is given by the
algebraic sum of the weight of the tank reduced for buoyancy, X2, and the vertical component
of dynamic uplift pressure due to the breaking wave Fv :

Rv = X2 − Fv ,

where Fv is proportional to the height of the design wave, Hb, when the slope of sea bottom
is known. The resultant Rh of the horizontal forces depends on the balance between the
static and dynamic pressure components, and it can be taken as a quadratic function of Hb

under a simplified hypothesis on the depth of the breakwater. Simplifications of the shoaling
effects indicate that the height Hb of the design wave is proportional to the random deepwater
X4 = Hs , which is found from frequency analysis of extreme storms in the area. Finally, the
limiting state of interest can be written as

g(X1, X2, X3, X4) = X1(X2 − a1 X3 X4) − X3

(
a2 X 2

4 + a3 X4

) = 0,

where an additional variate X3 is introduced to represent the uncertainties caused by the
simplifications adopted to model the dynamic forces Fv and Rh ; the constants a1, a2, and a3

depend on the geometry of the system.
A unit width of a vertical wall located in La Spezia harbor, Italy, is considered, and all

variables are assumed to be independent. Suppose X1, X2, and X3 are normal variates with
the following means and coefficients of variation:

μ1 = 0.64, μ2 = 3400 kN/m, μ3 = 1,

V1 = 0.15, V2 = 0.05, V3 = 0.20.

Frequency analysis of severe storms in the study area suggests that X4 has an extreme value
Type I distribution with mean μ4 = 5.16 m, and standard deviation σ4 = 0.93 m. Following
methods of Section 7.2, the scale and location parameters of the cdf of X4 are

α =
(√

6

π

)
σ4 = 0.78 × 0.93 = 0.73 m,

and

b = μ4 − 0.5772α = 5.16 − 0.5772 × 0.73 = 4.74 m.

Finally, by accounting for the sea-bottom profile and the geometry of the breakwater wall
one estimates that

a1 = 70, a2 = 17 m/kN, a3 = 145.

Accordingly, the limiting state equation becomes

g(X1, X2, X3, X4) = X1 X2 − 70X1 X3 X4 − 17X3 X 2
4 − 145X3 X4 = 0.

The partial derivatives of the performance function with respect to each of the variables
evaluated at the failure point are obtained from

∂g

∂ X ′
i

=
(

∂g

∂ Xi

) (
∂ Xi

∂ X ′
i

)
=

(
∂g

∂ Xi

)
σi .
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Proceeding as in Example 9.11,(
∂g

∂ X ′
1

)
f

= (x2 − 70x3x4)σ1,(
∂g

∂ X ′
2

)
f

= x1σ2,(
∂g

∂ X ′
3

)
f

= −(70x1x4 + 17x2
4 + 145x4)σ3,(

∂g

∂ X ′
4

)
f

= −(70x1x3 + 34x3x4 + 145x3)σ4,

where x1,x2,x3, and x4 are the values of the corresponding variables at the failure point. For
the first iteration, one takes the means as the initial values. Since X4 is an EV1 variate, the
equivalent normal variate must be determined, as shown in Example 9.9. Thus,

σ ∗
4 = φ{�−1[FX4 (x4 f )]}

fX4 (x4 f )
= φ{�−1[FX4 (5.16)]}

fX4 (5.16)

= φ[�−1(0.570)]

0.442
= φ(0.177)

0.442
= 0.393

0.442
= 0.889,

and

μ∗
4 = x4 f − σ ∗

4 �−1[FX4 (x4 f )] = 5.16 − 0.889 × 0.177 = 5.002.

Also,(
∂g

∂ X ′
1

)
f

= (3400 − 70 × 1.00 × 5.002) × 0.096 = 292.78,(
∂g

∂ X ′
2

)
f

= 0.64 × 170 = 108.80,(
∂g

∂ X ′
3

)
f

= −(70 × 0.64 × 5.002 + 17 × 5.0022 + 145 × 5.002) × 0.20 = −274.97.(
∂g

∂ X ′
4

)
f

= −(70 × 0.64 × 1.00 + 34 × 1.00 × 5.002 + 145 × 1.00) × 0.889

= −320.01.

Hence, from Eq. (9.1.31),

α1 = 292.78

275, 5751/2
= 0.558,

α2 = 108.80

275, 5751/2
= 0.207,

α3 = −274.97

275, 5751/2
= −0.524,

α4 = −320.01

275, 5751/2
= −0.610.

Thus, the new failure point is given by

x1(new) = μ1 − α1σ1β = 0.64 − (0.558 × 0.096)β = 0.64 − 0.054β,

x2(new) = μ2 − α2σ2β = 3400 − (0.207 × 170)β = 3400 − 35.23β,

x3(new) = μ3 − α3σ3β = 1 − (−0.524 × 0.2)β = 1 + 0.105β,

x∗
4 (new) = μ∗

4 − α4σ
∗
4 β = 5.002 − (−0.610 × 0.889)β = 5.002 + 0.542β,
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and the limiting state equation becomes

(0.64 − 0.054β)(3400 − 35.23β) − 70(0.64 − 0.054β)(1 + 0.105β)(5.002 + 0.542β)

− 17(1 + 0.105β)(5.002 + 0.542β)2 − 145(1 + 0.105β)(5.002 + 0.542β) = 0,

which is solved numerically to yield β = 1.446. Accordingly, the new failure point to be used
for the second iteration is given by

x1 (new) = 0.64 − 0.054β = 0.563,

x2 (new) = 3400 − 35.23β = 3349,

x3 (new) = 1 + 0.105β = 1.152,

x∗
4 (new) = 5.002 + 0.542β = 5.786.

The corresponding failure point for X4 is found as

x4(new) = b − α ln

{
− ln �

[
x∗

4 (new) − μ∗
4

σ ∗
4

]}
= 4.74 − 0.73 ln

{
− ln �

[
5.786 − 5.002

0.889

]}
= 5.875.

After further iterations, as shown in Table 9.1.4, the value of β = 1.352 is obtained. Because
there is no further change, the reliability of the structure is estimated as �(1.352) = 0.912.
This means that the sliding risk is about 9%. Simulations can also provide solutions to this
problem, as seen in the work of Franco et al. (1986) and Burcharth (1994).

9.1.5 Further practical solutions

Alternative solutions to those presented in the preceding subsections can be used to ap-
ply simplified methods for reliability assessment. These include the first-order, second-
moment (FOSM) method and the approximations obtained by Taylor series expansion
and point estimation to evaluate the first- and second-order moments of the variates or
safety indices. Although these solutions have a certain degree of inaccuracy in describing
the prototype system, they provide satisfactory results in many cases. These methods are
therefore quite attractive for the solution of engineering problems.

9.1.5.1 First-order second-moment (FOSM) method
A simplified reliability model, first introduced in structural steel design, only uses the
mean values and coefficients of variation for the resistance X and load Y in a particular
limiting state to obtain the reliability index β, which is computed as

β ≈ ln(μX/μY√
V 2

X + V 2
Y

, (9.1.34)

regardless of the type of distribution of X and Y.5

Example 9.13. FOSM reliability index. Consider again the rigid timber beam of Examples
9.3 and 9.8 with

μX = 39.1 N/mm2, VX = 0.25, μY = 24.0 N/mm2, VY = 0.15.

5 See Ravindra and Galambos (1978).
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From Eq. (9.1.34),

β ≈ ln(39.1/24.0)√
0.252 + 0.152

= 1.674.

This result is very close to 1.628 found under the assumption of independent and lognormally
distributed strength and load (see Example 9.8).

The loss of accuracy due to this approximation may be negligible in some cases. The
FOSM approximation is useful when the available information on design variables is not
sufficient to evaluate their marginal and joint distributions with a satisfactory degree of
accuracy. This method is widely applied to evaluate the reliability of individual system
components in structural engineering. For example, the Load and Resistance Factor De-
sign (LRFD) specification for structural steel buildings was developed by assessing the
reliability of structural members and connections by the FOSM method.6

Example 9.14. LRFD specification for metal structures. The design inequality for metal
structures contains partial factors for load effects, γ , and resistances, φ, in the form

φrn ≥ γdqd +
∑

i

γei qni ,

where the subscript n denotes nominal (code-specified) values of resistance r and load effects
q , the subscript i denotes different applicable resistance limit states, the subscript d means
dead load, and the subscript e defines time-varying load effects due to occupancy, snow,
earthquake, wind, and other effects. The nominal resistance rn and the resistance factor φ

depend on the limiting state appropriate to each type of structural member or connection.
For example, φ = 0.85 applies for the elastic limit state of an axially loaded column, and
φ = 0.9 applies for a flexured beam subjected to a bending moment. The LRFD specification
gives the load factors γ in order to achieve a targeted value of the reliability index β for a
given configuration of loads. For example, if the load combination includes dead, live, or
snow loads, typical values of β are 3.0 for structural members (for example, columns and
beams) and 4.5 for structural connections (for example, bolts and welds). The targeted β for
structural members is 2.5 if a combination of dead, live, and wind loads is considered, and
1.75 for a combination of dead, live, and earthquake loads.

Consider, for example, an axially loaded column subjected to live load. The LRFD limit
state equation is

0.85rn = 1.2qd + 1.6qnl ,

where rn denotes the nominal capacity, and qd and qnl denote the dead load and the nominal live
load, respectively. Here, the partial load factors are γd = 1.2 for the dead load, and γnl = 1.6
for the live load. For a particular case of live load-to-dead-load ratio of 3, the expected total
load μY is taken as7

qd + qnl = (3 + 1)qd = 4qd ,

and VY = 0.19. From the limiting state equation, the nominal column resistance rn is computed
as

rn = qd (1.2 + 1.6 × 3)

0.85
= 7.06qd ,

which is taken to equal the expected column resistanceμX , with VX = 0.05. From Eq. (9.1.34),

β ≈ ln(7.06/4.0)√
0.052 + 0.192

= 2.988,

which is close to the targeted value of 3.

6 See American Institute of Steel Construction (1986) for this specification and Smith (1991) for its practical
use.
7 See Ellingwood et al. (1982).
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9.1.5.2 Taylor series expansion method
The second-order second-moment method simplifies the implied functional relationships
by truncation of the Taylor series expansion of the function. This makes it possible to
estimate the mean and variance of a derived variate using Eqs. (3.4.36) and (3.4.37). As
implied, inputs and outputs are expressed as expected values and standard deviations. The
advantages of this approach are the simple mathematical requirements and low computa-
tional needs; the only requirement is the knowledge of the first few moments. However, the
mathematical requirements, although simpler than those of exact methods, are generally
not elementary.

Example 9.15. Pier scour. Consider again the scour problem in bridge foundation of
Example 8.16. The scour depth X measured from the average channel bed to the bottom
of the scour hole is evaluated as

X = 1.59b0.980Y 0.055 S0.105n−0.210W −0.240,

where Y is the depth of flow just upstream of the pier, S is the slope, n is the roughness
coefficient, W is sediment gradation, and b is the pier width. All these quantities are measured
in metric units. For a pier width of 2.5 m, the sediment gradation W ∼ lognormal (4, 1.62),
the slope S ∼ N (0.002, 0.00042), the depth Y ∼ N (4.75 m, 1.22 m2), and the roughness
coefficient n ∼ uniform (0.02, 0.04). Also, Y , S, n, and W are assumed to be independent of
each other. Application of the Taylor series expansion (see Example 8.16) gives

E[X ] = 3.40 m, Var[X ] = 0.1208 m2.

If Z ∼ N (4 m, 0.052 m2) is the maximum allowable scour, one can compute the relia-
bility index β under the assumption of X ∼ N (3.40 m, 0.352 m2) independent of Z . From
Eq. (9.1.14),

β = 4 − 3.4

(0.052 + 0.352)1/2
= 1.71.

This means that the reliability of the system is

r = �(1.71) = .956.

This result can be compared with that obtained by simulation, where a value x of X is
determined in each simulation cycle by the same procedure shown in Example 8.17; the
corresponding value z of Z is simply generated from the standard normal generator, and a
failure occurs if z < x . Ten runs each of 1000 simulation cycles yield the following estimates
of the risk of failure:

0.055, 0.059, 0.054, 0.054, 0.059, 0.060, 0.048, 0.053, 0.051, 0.054,

with an average of 0.055, and the corresponding simulated reliability is 0.945. This shows
that the Taylor series approximation to second-order moments and the further normal approx-
imation to the cdf of system load X provide rather accurate reliability estimates.

9.1.5.3 Point estimation method
As in the Taylor series method, the point estimate method (Rosenblueth, 1975) provides
estimates of the moments of a function of random variables from those of the underlying
variables without requiring the specification of their joint probability distribution. It is
possible to approach reliability problems by this method, which does not require derivatives
of limiting state function. This method is advantageous because it is difficult or impossible
to evaluate these derivatives when, for instance, the limiting state of interest is given
as an implicit function or in the form of graphs or as finite element solutions. If Z =
g(X1, X2, . . . , Xi , . . . , Xm) denotes a random variable Z that is a function of m random
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variables X1, X2, . . . , Xi , . . . , Xm , one can obtain 2m point estimates of Z , say, zk with
k = 1, . . . , 2m , as

zk = g(μ1 + η1kσ1, μ2 + η2kσ2, . . . , μm + ηmkσm), (9.1.35)

where the μi and σi denote the means and standard deviations, respectively, of the Xi ;
also, the ηik are coefficients which take values of 1 and −1 satisfying

k = 1 +
m∑

i=1

2i−2(1 + ηik). (9.1.36)

If Z = g(X1), for example, one has two-point estimates; four-point estimates are obtained
for Z = g(X1, X2), and so on. The moments of Z are estimated as

E[Zr ] =
2m∑

k=1

πk zr
k, (9.1.37)

where πk denotes the weight for the kth point estimate. This weight is given by

πk = 2−m, (9.1.38)

for any k if the Xi s are mutually independent random variables, and it is computed as

πk = 2−m

(
m−1∑
i=1

m∑
j=i+1

ηikη jkρi j

)
, (9.1.39)

for correlated Xi , where ρi j denotes the correlation coefficient between Xi and X j . Note
that this method can also be applied when g(X1, X2, . . . , Xm) is not an explicit function
of the Xi , but its value is determined through numerical computations.

For a function of one random variable, Z = g(X1), η11 = −1 and η12 = +1, so that
z1 = g(μ1 − σ1) and z2 = g(μ2 + σ2). Since π1 = π2 = 1/2,

E[Z ] =
2∑

k=1

πk zk = 0.5(z1 + z2), (9.1.40)

and

Var[Z ] = E[Z2] − E2[Z ] =
2∑

k=1

πk z2
k − 0.25(z1 + z2)2

= 0.5
(
z2

1 + z2
2

) − 0.25(z1 + z2)2

= 0.25
(
z2

1 − 2z1z2 + z2
2

)
. (9.1.41)

In the one-dimensional case, an insight of this method is given by analogy which can
be established between a probability density function and a distributed vertical load on a
simply supported horizontal rigid beam. The expected value is the analog of the center
of loading, and the standard deviation gives information concerning the central tendency
and scatter of the variate. Rosenblueth (1975) suggested that this information could be
extracted from the beam analogy with a rigid beam of length b, as shown in Fig. 9.1.17,
with reaction π1 acting at x1, π2 acting at x2, and

π1 + π2 =
b∫

0

fX (x) dx = 1.
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π 2 π 1
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Fig. 9.1.17 Beam analogy with point estimates.

The reactions π1 and π2 are said to be two-point estimates of the distribution of fX (x).
This analogy indicates that this method should require that the probability density function
is symmetric. Harr (1987) introduced modified weights as π1 = 0.5 + γ1/4 and π2 =
0.5 − γ1/4 to account for skewness coefficient γ1 from 0 to 1, and studied the accuracy
of these weights for varying γ1, as shown in Table 9.1.5.

Example 9.16. Bearing capacity of soil. In foundation engineering, bearing capacity of a
soil depends on

Y = tan4

(
45 + X

2

)
,

which is a function of the friction angle X . One wishes to evaluate how the mean and standard
deviation of Y are influenced by variability in the friction angle. Application of Eq. (9.1.35)
yields

y1 = tan4
(

45 + μ

2
− σ

2

)
,

y2 = tan4
(

45 + μ

2
+ σ

2

)
,

where μ and σ denote the mean and standard deviation of X , respectively. These point
estimates are used in Eqs. (9.1.40) and (9.1.41) to obtain

μY = 0.5[tan4(45 + μ/2 − σ/2) + tan4(45 + μ/2 + σ/2)],

σ 2
Y = 0.25[tan8(45 + μ/2 − σ/2) + tan8(45 + μ/2 + σ/2)

− 2 tan4(45 + μ/2 − σ/2)tan4(45 + μ/2 + σ/2)].

For example, if μ = 25◦ and the coefficient of variation is V = 0.2 (that is, σ = 5◦), values
of μY = 6.580 and σ 2

Y = 5.863 are obtained, so that the estimated coefficient of variation of

Table 9.1.5 Sensitivity of point estimate weight to skewness

−γ1 π1 = 0.5 + γ1/4 Exact π1

0.00 0.50 0.50
0.25 0.56 0.56
0.50 0.62 0.62
0.75 0.69 0.68
1.00 0.75 0.72

From M. E. Harr, Reliability-Based Design in Civil Engineering,
Copyright 1987. The material is reproduced with permission from
McGraw-Hill.
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Fig. 9.1.18 Comparison of point estimated and simulated mean and coefficient of variation of
bearing capacity factor Y of soil.

Y is VY = 0.368. Vannucchi (1985) compared the results from the application of the point
estimation method with those obtained via simulation for μ = 15◦, 25◦, and 35◦ and V = 0.1,
0.2, and 0.3. These results are shown in Fig. 9.1.18.

Note that the deviation of point estimates from simulations increases for increasing V .
However, point estimates provide a satisfactory approximation to simulations.

In the bivariate case with Z = g(X1, X2), η11 = −1, η12 = +1, η13 = −1, η14 =
+1, η21 = −1, η22 = −1, η23 = +1, and η24 = +1. Thus, z1 = g(μ1 − σ1, μ2 − σ2),
z2 = g(μ1 + σ1, μ2 − σ2), z3 = g(μ1 − σ1, μ2 + σ2), and z4 = g(μ1 + σ1, μ2 + σ2).
From Eq. (9.1.39),

π1 = π4 = ρ/4 and π2 = π3 = −ρ/4,

where ρ = ρ12 = ρ21 is the correlation coefficient between X1 and X2. Thus,

E[Z ] =
4∑

k=1

πk zk = 0.25ρ(z1 + z4) − 0.25ρ(z2 + z3)

= 0.25ρ(z1 + z4 − z2 − z3) (9.1.42)

and

Var[Z ] = 0.25ρ
[(

z2
1 + z2

4

) − (
z2

2 + z2
3

)] − E2[Z ]

= 0.25
(
z2

1 + z2
4 − z2

2 − z2
3

) − E2[Z ]. (9.1.43)

For mutually independent X1 and X2,

E[Z ] =
4∑

k=1

πk zk = 0.25(z1 + z2 + z3 + z4) (9.1.44)

and

Var[Z ] = 0.25
(
z2

1 + z2
2 + z2

3 + z2
4

) − 0.625(z1 + z2 + z3 + z4)2. (9.1.45)

Example 9.17. Low-head run-of-river small hydropower station. We consider again the
irrigation barrage located at Balcad, Somalia, along the Wabe Shabelle River, where a hy-
dropower station is to be installed to meet the local energy demand (see Example 9.11). Sup-
pose that system demand is a normal variate X3 independent of system capacity Z = 7.5X1 X2,
where X1 and X2 are independent normal variates. The mean, coefficient of variation, and
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standard deviation of these variates are

μ1 = 22 m3/s, V1 = 0.20, σ1 = 4.4 m3/s;

μ2 = 5.2 m, V2 = 0.15, σ2 = 0.78 m;

μ3 = 600 kW, V3 = 0.10, σ3 = 60 kW.

Using point estimation to evaluate the mean and variance of Z , one calculates

z1 = 7.5(22 − 4.4)(5.2 − 0.78) = 583.44,

z2 = 7.5(22 + 4.4)(5.2 − 0.78) = 875.16,

z3 = 7.5(22 − 4.4)(5.2 + 0.78) = 789.36,

z4 = 7.5(22 + 4.4)(5.2 + 0.78) = 1184.04,

which are used in Eqs. (9.1.44) and (9.1.45) to obtain

z̄ = 0.25(583.44 + 875.16 + 789.36 + 1184.04) = 858.00,

and

σ̂ 2
z = 0.25(583.442 + 875.162 + 789.362 + 1184.042) − 8582 = 46,672.8.

Since X3 ∼ N (600 kW, 602 kW2), assuming Z ∼ N (858 kW, 216.02 kW2) gives the safety
margin S = Z−X3 as S ∼ N (258 kW, 224.222 kW2). From Eq. (9.1.13) the reliability index
β is estimated as

β = μS

σS
= 258

224.22
= 1.15.

This value can be compared with that of β = 1.23 found in Example 9.11 using the analytical
approach.

Multivariate problems require the determination of the values of the ηi s according to Eq.
(9.1.36) as shown in Table 9.1.6.

Table 9.1.6 Coefficients ηik for the point estimate method

i = 1 2 3 4

k = 1 −1 −1 −1 −1
m = 1 2 +1 −1 −1 −1

3 −1 +1 −1 −1
2 4 +1 +1 −1 −1

5 −1 −1 +1 −1
6 +1 −1 +1 −1
7 −1 +1 +1 −1

3 8 +1 +1 +1 −1
9 −1 −1 −1 +1

10 +1 −1 −1 +1
11 −1 +1 −1 +1
12 +1 +1 −1 +1
13 −1 −1 +1 +1
14 +1 −1 +1 +1
15 −1 +1 +1 +1

4 16 +1 +1 +1 +1
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9.1.6 Summary of Section 9.1

In this section we have discussed some fundamental concepts and criteria in the analysis of
risk and reliability. These include the factor of safety, safety margin, reliability index, and
performance function. As alternative solutions we have introduced the first-order second-
moment (FOSM) method for resistance factor design, Taylor series approximation, and
the point estimation method.

9.2 MULTIPLE FAILURE MODES

Let us consider the reliability of a system with components that have known reliabilities.
A system can have three basic configurations, pertaining to series, parallel (or redundant),
and compound (series and parallel) systems (see Fig. 9.2.1).

In general, a system can have one or more subsystems, and each subsystem can be
decomposed into components. The engineer initially determines the reliabilities of the
components and hence determines the reliabilities of the subsystems. Finally, the system
reliability is calculated from the subsystem reliabilities using the axioms of probability
and the concept of series and parallel systems.

For example, an earth dam can collapse because of either a destructive flood or a
catastrophic earthquake (see, for example, Example 2.19). These two events can be viewed
as a series mode producing the failure of the system, because the occurrence of either event

1 2 3 n

Serial system

2

1

3

m

Parallel or redundant system

2

1

3

m

Compound system

2 n

1

Fig. 9.2.1 Block diagram of series, parallel, and compound system layout.
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can cause its collapse. The flood-induced failure due to overtopping occurs because of a
heavy storm in the upstream basin. Overtopping of the dam occurs if this storm yields a
flood hydrograph causing a flow exceeding spillway capacity; however, even if the spillway
can cope with the upstream hydrograph, overtopping can also be caused by the combined
effect of high flows and landslides of the slopes adjacent to the reservoir, which in turn
can generate additional waves. Because the joint occurrence of these two modes—high
flows (lower than spillway capacity) and landslides adjacent to the reservoir—can cause
the failure of the dam, this can be interpreted as parallel modes of failure. Generally,
the interrelationships among the various components of a system are complex; we will,
however, assume initially that they are independent of each other.

9.2.1 Independent failure modes

Let us generalize the different types of system configurations. A series system per-
forms only if each and every one of its n components does not fail. If the events
Ai = {failure of the i th component} are independent with probability Pr[Ai ] = pi , the
event corresponding to the successful performance of the series system is simply given
by {Ac

1 Ac
2 · · · Ac

n}, which describes the event that each and every component does not fail.
Therefore, the reliability of the system is

rss = Pr
[
Ac

1 Ac
2 . . . Ac

n

] = Pr
[
Ac

1

]
Pr

[
Ac

2

] × · · · × Pr
[
Ac

n

] =
n∏

i=1

(1 − pi ), (9.2.1)

where (1 − pi ) denotes the reliability (probability of nonfailure) of the i th component.
The overall probability of failure is

p f = 1 −
n∏

i=1

(1 − pi ) ≈
n∑

i=1

pi , (9.2.2)

in which the approximation on the right side is valid for small pi . If the individual proba-
bilities of failure pi , i = 1, . . . , n are equal to p, say, Eq. (9.2.2) gives

p f = 1 − (1 − p)n, (9.2.3)

and

p f ≈ np. (9.2.4)

This approximation is quite close for small p, provided that n is not large. In summary, a
series system or subsystem fails if any of the components causes the system to fail. That
is to say, the adequacy of the system to respond to the demand by the users depends on
the adequacy of all its components.

An alternative model of system behavior assumes that if one or more modes of failure
occur, the remaining components can assume the additional responsibility to assure system
performance. Such a system is called a parallel or redundant system. It operates if any of its
components (or subsystems) functions. However, as will be discussed, we may sometimes
require more than one component (or subsystem) to work. For independent components
the failure of this system is described by the event A1 A2 · · · Am that all components fail.
The probability of failure is then the product of the individual probabilities. Therefore, the
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reliability of this system (which is the probability of the event that at least one component
works) is

rrs = Pr[(A1 A2 · · · Am)c] = 1 − Pr[A1 A2 · · · Am] = 1 −
m∏

i=1

pi , (9.2.5)

and the risk of system failure is the product of the individual component modes, that is,
the probability that all components will fail. Thus,

p f =
m∏

i=1

pi (9.2.6)

for a system with m parallel or redundant components. If all the pi are equal to p,

p f = pm . (9.2.7)

For example, if there are five parallel modes of system failure, each of which is associated
with a 1% chance of failure, the probability of failure of the system is 10−10. For ten possible
modes, the probability of failure is decreased to 10−20. The extremely low probability of
failure for the parallel model is a consequence of the redundancy of components. In other
words, a parallel or redundant system fails only when all of its components fail.

The series and parallel models described represent unique situations. In series systems
there is a single path connecting the output to the input, so that the removal of any
component or link interrupts the path and results in the failure of the entire system.
Conversely, there are m paths connecting the output to the input of a redundant system,
which fails only if all its components are interrupted. Generally, engineering systems can be
represented by a combination of both series and redundant components. With independent
series components, total reliability of a system is the product of individual reliabilities;
if it has independent redundant components, on the other hand, the total probability of
failure equals the product of the individual probabilities of failure. For a combined system,
the reliability of a system with i = 1, 2, . . . , m redundant components each with ni series
components is given by

rs = 1 −
m∏

i=1

(
1 −

ni∏
j=1

ri j

)
. (9.2.8)

Here ri j denotes the reliability of the j th series subcomponent of the i th redundant com-
ponent. The next illustration is devised to compare dependent and independent cases with
series and redundant components.

Example 9.18. Pipe network. Consider the part of a pipeline network for urban water
supply shown in Fig. 9.2.2.

Knowing the individual probabilities of rupture for each pipe, pi , and the corresponding
reliabilities ri = 1 − pi , i = 1, . . . , 5, consider, the reliability of the system with respect to
node d . This is the probability that node d does not remain isolated because no water passes
through it. From Fig. 9.2.2 it is seen that for this condition to hold at least one of the following
routes must work:

(1, 3), (2, 4), (1, 5, 4), and (2, 5, 3).

Let us call these routes A, B, C , and D, respectively. For each route (that is, for each
series component), the probability of failure is obtained as shown in the rightmost term
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Fig. 9.2.2 Part of pipeline network for urban water supply showing series, without pipe bc, and
redundant components, with pipe bc.

of Eq. (9.2.8). That is,

Pr[A] = 1 − r1r3 (that is, route A does not work);

Pr[B] = 1 − r2r4;

Pr[C] = 1 − r1r4r5;

Pr[D] = 1 − r2r3r5.

These routes form four parallel-series (that is, redundant) systems. However, the events
described here are not independent. For example, routes A = (1, 3) and D = (2, 5, 3) have
pipe 3 in common. Therefore, their joint effects must be considered. Routes A and B are
independent. Thus from Eq. (9.2.8),

Pr[AB] = (1 − r1r3)(1 − r2r4) = (1 − r1r3 − r2r4 + r1r2r3r4).

On the other hand, routes C and D are not independent. From the addition rule of probability
[see Eq. (2.2.6)],

Pr[C D] = Pr[C] + Pr[D] − Pr[C + D]

= (1 − r1r4r5) + (1 − r2r3r5) − (1 − r1r2r3r4r5)

= 1 − r1r4r5 − r2r3r5 + r1r2r3r4r5.

Proceeding further, the probability of failure of the system is found as follows:

Pr[ABC D] = 1 − rs = 1 − r1r4r5 − r2r3r5 + r1r2r3r4r5

− r1r3 + r1r3r4r5 + r1r2r3r5 − r1r2r3r4r5

− r2r4 + r1r2r4r5 + r2r3r4r5 − r1r2r3r4r5

+ r1r2r3r4 − r1r2r3r4r5 − r1r2r3r4r5 + r1r2r3r4r5.

Note, incidentally, that there are no squared terms in such multiplications; the effect of any
single pipe is considered only once in the same product. Hence,

1 − rs = 1 − r1r3 − r2r4 − r1r4r5 − r2r3r5 + r1r3r4r5 + r1r2r3r5

+ r1r2r4r5 + r2r3r4r5 + r1r2r3r4 − 2r1r2r3r4r5.

If r1 = r2 = r3 = r4 = r5 = r ,

rs = 2r 2 + 2r 3 − 5r 4 + 2r 5.

Let us now suppose that we remove pipe 5. We then apply Eq. (9.2.8) directly (for two
independent routes):

r ′
s = 1−(1−r 2)(1−r 2).

Thus,

r ′
s = 2r 2−r 4;
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and

rs−r ′
s = 2r 3−4r 4+2r 5 = 2r 3(1−2r+r 2).

This expression shows that 0 < rs − r ′
s < 1 for 0 < r < 1. For example, if p = 0.01, that is,

r = 0.99,

rs = 2 × 0.992 + 2 × 0.993 − 5 × 0.994+2 × 0.995 = 0.9998,

r ′
s = 2 × 0.992 − 0.994 = 0.9996.

Thus removal of one of the pipes causes only a negligible decrease in the reliability if p is
small; even if p = 0.5, the decrease is 1/16.

In designing the layout of an investigated system, one can compare the benefit achievable
by decreasing the cost of system failure with the additional cost of adding a redundant com-
ponent. Engineering designs are generally improved by adding redundant components;
for instance, if k components are sufficient to prevent the failure of the system, some addi-
tional components are added to increase its reliability. This situation is represented by the
k-out-of-m model, describing a system of m components, k of which must be operable for
the system to succeed. An example is a pumping station with m parallel pumps, k of which
are required to function in order to supply the target flow; in the meantime, maintenance
and repairs can be made on the other m − k pumps. If all m components have the same
probability of failure p (that is, the same reliability 1 − p), the binomial distribution gives
the probability of success of x out of the m components. As in Eq. (4.1.3),

pX (X = x |m, q) =
(

m
x

)
(1−p)x pm−x , (9.2.9)

with x = 0, 1, 2, . . . , m. Hence, the reliability of a k-out-of-m component system is

r =
m∑

x=k

pX (X = x |m, 1 − p) =
m∑

x=k

(
m
x

)
(1 − p)x pm−x , (9.2.10)

and the probability of failure of the system is

p f = 1 −
m∑

x=k

(
m
x

)
(1 − p)x pm−x . (9.2.11)

A block diagram for the k-out-of-m model has
(m

k

)
reliability paths, each path containing

k different elements (which represent one of the combinations of m components taken k
at a time). A block diagram for the 3-out-of-4 model is shown in Fig. 9.2.3, where the
layout is sketched for a typical pumping station feeding a water treatment facility.

The system will fail only if all four paths fail. For the 3-out-of-4 model, Eq. (9.2.11)
gives

p f = 1 −
4∑

x=3

(
4
x

)
(1 − p)x p4−x = 1 − 4(1 − p)3 p − (1 − p)4.

For example, if p = 0.03, then p f = 0.005, so that the estimated reliability will be 99.5%.

Example 9.19. Flight planning. An airline company is planning the types and numbers
of carriers to be used between two cities at night. Current estimates are that the minimum
number of passengers is 100, the maximum is 250, and the average is 175. Three different
options are considered for the aircraft with the following number of seats: 260, 180, and 110,
as shown in Fig. 9.2.4.
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Fig. 9.2.3 Pumping station and pipeline connecting two tanks. The station has four parallel
pumps, three of which must operate to ensure the target flow to reach the upper tank. The
associated block diagram shows four reliability paths, each of them having three components.

One needs to find the reliability of each demand for each of the three options, assuming a
constant risk p that an airplane is out of service. The block diagrams displaying the failure
paths and the corresponding reliabilities are also given [see Eqs. (9.2.8) and (9.2.11)]. The
curves in Fig. 9.2.4 show how the different reliabilities vary with the individual probability
of failure p. As expected, systems with parallel elements are seen to have higher reliability.
Thus, the redundant configuration at bottom left of the block diagrams has the smallest risk if
0 < p < 1/2. The risk is always higher for the series systems. In a practical situation, different
individual reliabilities are likely for each aircraft. Costs also need to be accounted for. This
method can be applied to water resources management, road traffic, structural foundation,
and other problems.

If m = k in Eq. (9.2.11), p f = 1 − (1 − p)m ; that is, Eq. (9.2.3) is obtained. For k = 1,
p f = pm ; that is, Eq. (9.2.7) is obtained. When all component reliabilities are equal, an
m-out-of-m system is equivalent to a series configuration with m independent compo-
nents; conversely, a 1-out-of-m system is equivalent to a redundant configuration with m
independent components. Accordingly, these two configurations give the bounds for the
probability of failure, since

m∏
i=1

pi ≤ p f ≤
m∑

i=1

pi , (9.2.12)
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Fig. 9.2.4 Block diagrams and system reliabilities for different configurations of flight
transportation, with a plot of reliability r against the individual probability of failure p.

where the pi are the individual probabilities of failure of the m independent system
components. For example, if m = 10, and pi = p = 10−2, for i = 0, 1, 2, . . . , m, the
lower bound is 10−20, while the upper one is 10−1. This range is rather wide, so some
better procedure is necessary to tighten the bounds in order to approach complex systems
with a large number of components.8

8 See Harr (1987, p. 149) or Serfling (1974) for a discussion of this subject.
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9.2.2 Mutually dependent failure modes

When the failure modes of a system are mutually dependent, the system components
are related to each other such that the occurrence of a failure in one of the components
has an effect on the performance of the others. Consider a system with n components or
potential modes of failure, and denote with gi (X1, X2, . . . , Xl) the performance function
associated with each i th component, where X1, X2, . . . , Xl are l basic variables describing
capacity and demand of the systems. The individual failure events are defined as Ai =
{gi (X1, . . . , Xl) < 0}, and their complements are the safe events, Ac

i = {gi (X1, . . . , Xl) >

0}. For a series system, the safe event corresponds to the circumstance that each of the
components proves safe, and is represented by {Ac

1 Ac
2 · · · Ac

n}. Accordingly, from Eq.
(9.1.27), its reliability is given theoretically by

r =
∫

Ac
1 Ac

2···Ac
n

· · ·
∫

fX1,...,Xl (x1, . . . , xl)dx1 · · · dxl . (9.2.13)

Conversely, the failure event for a redundant system corresponds to the event that all the
components fail is represented by {A1 A2 · · · An}. Thus, its reliability is given by

r = 1 −
∫

A1 A2...An

· · ·
∫

fX1,...,Xl (x1, . . . , xl)dx1 · · · dxl . (9.2.14)

However, the calculations of reliability through Eq. (9.2.13) or (9.2.14) are cumbersome
in most cases. If the exact solution is not found, one can search for the upper and lower
bounds of the corresponding probability.

Consider a system with two components, say, a and b, and denote with A and B the
corresponding failure events. The failure event of the system is {AB} for the redundant
configuration of a and b, and it is {A + B} for the series configuration. If the joint proba-
bility Pr[AB] is known, Pr[AB] is the probability of failure of the redundant arrangement,
and Pr[A + B] = Pr[A] + Pr[B] − Pr[AB] is that of the series configuration. However,
the joint probability of failure (Pr[AB]) is unknown in many practical applications, so the
engineer is interested in finding the bounds of the required reliability estimate.

Let pA denote the probability Pr[A] of a failure occurring in component a, and pB

the probability Pr[B] of a failure occurring in component b. If the two failure modes are
positively correlated, the conditional probability Pr[A|B] of the failure event of component
a given that b fails is larger than, or at least equal, to the marginal probability of failure of
a, say, Pr[A]. The condition that Pr[A|B] ≥ Pr[A] also means that Pr[Ac|Bc] ≥ Pr[Ac] =
1 − pA. Because Pr[Ac Bc] = Pr[Ac|Bc] Pr[Bc], from Eq. (2.2.10), it follows that

Pr[Ac Bc] ≥ Pr[Ac] Pr[Bc] = (1 − pA)(1 − pB).

This means that the reliability Pr[Ac Bc] of a series system exceeds (or equals) the prod-
uct of the individual reliabilities of its components. Noting that the latter product is the
reliability for mutually independent failure modes, one can see that positively correlated
components increase the reliability of the system compared with the same configuration
composed of independent components. Therefore, the product (1 − pA)(1 − pB) can be
taken as the lower bound of system reliability. Conversely, one notes that Ac Bc ⊂ Ac, and
Ac Bc ⊂ Bc, as shown in the Venn diagrams of Fig. 9.2.5. Thus,

Pr[Ac Bc] ≤ min { Pr[Ac], Pr[Bc]} = min(1 − pA, 1 − pB)

provides the upper bound. Thus,

(1 − pA)(1 − pB) ≤ Pr[Ac Bc] ≤ min(1 − pA, 1 − pB).
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Fig. 9.2.5 Venn diagrams representing the sample space � and failure events A and B. The failure
event of the series configuration is A + B, and (A + B)c is the safety event (c). Failure of the redundant
configuration is AB, and ABc its safety event (d).

This result can be extended to the general case of n series positively correlated components
with individual failure probability pi ; the reliability bounds are thus

n∏
i=1

(1 − pi ) ≤ r ≤ min
i=1,...,n

(1 − pi ). (9.2.15)

With equal failure probability p for each of the components, the bounds become

(1 − p)n ≤ r ≤ (1 − p). (9.2.16)

For example, if there are five positively correlated serial modes of failure, each of them
associated with a 1% chance of failure, the reliability of the system will range from 0.995

to 0.99, that is, from 95.1 to 99%. For ten possible modes, the reliability ranges from 90.4
to 99%, and so on. Therefore, the bounds may be widely separated for a large number of
potential modes with the same individual risk. However, if the reliability of the system is
dominated by a single dominating mode, the bounds will be narrow.

Consider now the redundant configuration of two positively correlated components
a and b, where {AB} is the failure event for the system. Since Pr[A|B] ≥ Pr[A], and
Pr[AB] = Pr[A|B] Pr[B],

Pr[AB] ≥ Pr[A] Pr[B] = pA pB,

which gives the lower bound of the probability of failure. Conversely,

Pr[AB] ≤ min { Pr[A], Pr[B]} = min(pA, pB)

provides the upper bound. Thus,

pA pB ≤ Pr[AB] ≤ min(pA, pB).

By extending this result to m redundant positively correlated components with individual
failure probabilities pi , the reliability bounds are

min
i=1,...,m

(1 − pi ) ≤ r ≤ 1 −
m∏

i=1

pi , (9.2.17)

and, for constant component risk p,

(1 − p) ≤ r ≤ (1 − pm). (9.2.18)

For example, if m = 5 and the individual risk is 1%, the reliability of the redundant system
will range from 0.99 to (1 − 10−10). For m = 10 and p = 0.01, 0.99 ≤ r ≤ (1 − 10−20).
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The separation between these bounds dramatically increases with the number of potential
modes of failure.

Using similar reasoning, the upper bound for negatively correlated series modes is found
as follows:

r ≤
n∏

i=1

(1 − pi ). (9.2.19)

That is, the effect of negatively correlated components is to decrease the reliability of
the system as compared with the same configuration with independent components. This
shows that the engineer should prevent negative correlations between series modes of
failure in designing the configuration of a system. Conversely, the lower bound cannot be
found, or it is null, so an analysis of system reliability requires accurate simulations of
system behavior. Fortunately, negative correlation is less frequent than positive correlation
in civil engineering practice, although it often occurs in many environmental engineering
systems.

Example 9.20. Multipurpose reservoir. A reservoir located in a semiarid region is designed
to meet two conflicting demands: water supply and flood control. Floods occur randomly with
season, owing to variations in the local climate, whereas a water shortage may occur if the
impounded water is low at the end of spring and the following summer is dry. Let F denote
the event of a catastrophic flood in a year, D the occurrence of a summer drought in that
year, and L that of a low reservoir level at the end of spring. From hydrologic analyses, one
estimates the associated probabilities pF = Pr[F], pD = Pr[D], and pL = Pr[L]. A system
failure is said to occur (event E) if the reservoir receives a high flood when it is at a high level
or if water supply is insufficient. One can model this system through two series modes, the
first one describing flood risk, and the second representing water shortage. The failure event
A1 associated with overflooding is simply A1 = F , whereas that associated with insufficient
water supply is A2 = DL , so that the second component is a redundant subsystem. Thus,
E = A1 + A2 = F + DL . Climatic records also indicate that events D and L are positively
dependent, but there is a negative correlation between extreme floods and droughts in the
region. Hence, the reliability of the system is, from Eq. (9.2.19),

r ≤ (1 − Pr[A1])(1 − Pr[A2]) = (1 − pF )(1 − Pr[A2]).

From Eq. (9.2.17),

min(1 − pD, 1 − pL ) ≤ Pr
[
Ac

2

] ≤ (1 − pD pL );

that is,

pD pL ≤ Pr[A2] ≤ 1 − min(1 − pD, 1 − pL ).

Accordingly,

r ≤ (1 − pF )(1 − pD pL ).

For example, if pF = 0.01, pD = 0.15, and pL = 0.10,

r ≤ (1 − 0.01)(1 − 0.15 × 0.10) = 0.99 × 0.985 = 0.975,

which means that the system has a chance of failure of at least 2.5%.

The bounds obtained in the preceding discussion are generally too wide for obtaining
effective reliability estimates, especially for a system with several modes of failure. The
search for more effective bounds can be implemented when the underlying joint probability
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distribution is known. In the case of correlated normal variates X1, X2, . . . , Xl , Ditlevsen
(1979) found the joint probability of failure Pr[AB] to be bounded as

max(pa, pb) ≤ Pr[AB] ≤ pa + pb, (9.2.20)

with

pa = �(−βA)�

(
−βB − ρβA√

1 − ρ2

)
, (9.2.21a)

and

pb = � (−βB) �

(
−βA − ρβB√

1 − ρ2

)
, (9.2.21b)

where β A and βB denote the reliability indexes of component a and b, respectively, and
ρ the correlation coefficient between the two. Accordingly, the reliability bounds for a
redundant system with two components a and b are

1 − pa − pb ≤ r ≤ 1 − max(pa, pb). (9.2.22)

For constant component reliability index, βA = βB = β, substituting Eq. (9.2.21) into
(9.2.22) yields

1 − 2�(−β)�

(
−β

1 − ρ√
1 − ρ2

)
≤ r ≤ 1 − � (−β) �

(
−β

1 − ρ√
1 − ρ2

)
. (9.2.23)

Note that �(−β) is the risk of failure of each individual component. These bounds are
shown in Fig. 9.2.6, where the probability of failure p f = 1 − r is plotted against the
reliability index β for three different values of the correlation coefficient. A comparison
of the plots of Fig. 9.2.6a and 9.2.6b for ρ = 0.5 and 0.9, respectively, indicates that the
reliability of a redundant system decreases, that is, p f increases, with increasing positive
correlation. It is also seen from Fig. 9.2.6c that the effect of negative correlation is to
increase remarkably the reliability of the system as compared with the same configuration
with independent components.

Example 9.21. Road connection. Two mountain resorts are connected by roads a and b.
During a snowstorm in the region there is a 20% chance that traffic is suspended in road a, and
a corresponding 10% chance for road b. The road between the two resorts can be modeled as a
redundant system, with individual probabilities of failure pA = 0.2 and pB = 0.1. Assuming
independent failures, the risk p f that there is no access between the two resorts during a
snowstorm is simply

p f = pA pB = 0.2 × 0.1 = 0.02.

However, limited facilities in the area delay the removal of snow from the two roads. Accord-
ingly, from Eq. (9.2.17), the system reliability is bounded by

min(1 − pA, 1 − pB) ≤ r ≤ 1 − pA pB ;

that is, 0.8 ≤ r ≤ 0.98. Hence, 0.02 ≤ p f ≤ 0.2.
From past experience the failure modes can be assumed to be normally distributed with a

positive correlation of ρ = 0.7. From Eq. (9.1.15),

βA = �−1(1 − pA) = �−1(0.8) = 0.842
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Fig. 9.2.6 Upper and lower bounds for the risk of failure of a correlated redundant system with
(a) ρ = 0.5, (b) ρ = 0.9, and (c) ρ = −0.5.
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and

βB = �−1(1 − pB) = �−1(0.9) = 1.282.

These are substituted in Eq. (9.2.21) to obtain

pa = pA�

(
−βB − ρβA√

1 − ρ2

)
= 0.2�

(
−1.282 − 0.7 × 0.842√

1 − 0.72

)
= .0332

and

pb = pB�

(
−βA − ρβB√

1 − ρ2

)
= 0.1�

(
−0.842 − 0.7 × 1.282√

1 − 0.72

)
= .0531.

Hence, from in Eq. (9.2.22),

1 − 0.0332 − 0.0531 ≤ r ≤ 1 − max(0.0332, 0.0531);

that is, 0.914 ≤ r ≤ 0.947. Thus, the required risk of failure is bounded as 0.053 ≤ p f ≤
0.086. These limits are much narrower than those obtained by distribution-free methods, and
thus provide an improved assessment of the road system.

For a series system with two components having individual failure probabilities pA

and pB the failure event is {A + B}. From the addition rule of probability theory [see
Eq. (2.2.6)],

Pr[A + B] = pA + pB − Pr[AB].

Thus,

pA + pB − max(Pr[AB]) ≤ Pr[A + B] ≤ pA + pB − min(Pr[AB]),

and substituting the lower and upper bounds of Eq. (9.2.20) for min(Pr[AB]) and
max(Pr[AB]), respectively,

pA + pB − pa − pb ≤ Pr[A + B] ≤ pA + pB − max(pa, pb), (9.2.24)

where pa and pb are given in Eq. (9.2.21). Substituting 1 − r for the failure probability
Pr[A + B] in Eq. (9.2.24) yields

1 − pA − pB + max(pa, pb) ≤ r ≤ 1 − pA − pB + pa + pb. (9.2.25)

For a constant component reliability index β, the individual failure probability is, from
Eq. (9.1.15), p = �(−β). Substitution into Eq. (9.2.25) yields

1 − � (−β)

[
2 − �

(
−β

1 − ρ√
1 − ρ2

)]
≤ r ≤ 1 − 2� (−β)

[
1 − �

(
−β

1 − ρ√
1 − ρ2

)]
.

(9.2.26)

Figure 9.2.7 shows these bounds in terms of the probability of failure p f = 1 − r plotted
against the reliability index β for three different values of the correlation coefficient.
Comparing these plots with those of Fig. 9.2.6 indicates that the series configuration is
much less sensitive to correlation than the redundant one. Only high correlation levels
between the components significantly reduce the risk of failure from that corresponding
to the independent case, as shown in Fig. 9.2.7b. The effect of negative correlation is rather
negligible, as shown in Fig. 9.2.7c.
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Fig. 9.2.7 Upper and lower bounds for the risk of failure of a correlated series system with
(a) ρ = 0.5, (b) ρ = 0.9, and (c) ρ = −0.5.
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Example 9.22. Suspension bridge. A suspension bridge relies on twin identical steel wires,
the collapse of either of which causes the bridge to collapse. Accordingly, the failure of the
bridge is modeled by two series modes. Previous analysis of wire safety has been made
assuming independent and normally distributed strength X and load Y , with μX = 16.3
N/mm2, VX = 0.2 N/mm2, μY = 7.2 N/mm2, and VY = 0.3. Thus, from Eq. (9.1.14),

β = (μX − μY )/[(VXμX )2 + (VY μY )2]1/2

= (16.3 − 7.2)/[3.262 + 2.162]1/2 = 2.33,

which gives �(−2.33) = 0.01, that is, an individual probability of failure of 1%. For inde-
pendent failure modes, the reliability of the bridge would be

r = (1 − 0.01)2 = 0.98.

This means that there is a 2% risk of failure due to wire collapse. However, correlation between
the two failure modes must be introduced, because of their identical overall behavior. It can
be shown that

ρ = Var[Y ]/Var[X ] = 2.162/3.262 = 0.44,

which also yields

β
1 − ρ√
1 − ρ2

= 2.33
1 − 0.44√
1 − 0.442

= 1.45.

The reliability of the bridge is then computed from Eq. (9.2.23):

1 − �(−2.33)[2 − �(−1.45)] ≤ r ≤ 1 − 2�(−2.33)[1 − �(−1.45)]

1 − 0.010 × (2 − 0.073) ≤ r ≤ 1 − 2 × 0.010 × (1 − 0.073)

0.9808 ≤ r ≤ 0.9815.

The associated risk of failure is 0.0185 ≤ p f ≤ 0.0192. By neglecting the correlation between
the two failure modes, one overestimates the risk of failure up to 8%, although a conservative
result is achieved under the assumption of independent modes.

The extension of this method to any multiple failure modes is not trivial. For a redundant
system with A1, A2, . . . , Am correlated normal modes of failure, the solution is obtained
by subsequent comparison of the joint probability Pr[Ai A j ] for each pair of modes. For a
series system having A1, A2, . . . , An correlated normal modes of failure with individual
reliability index βi the bounds are9

p f ≥ �(−β1) + max

(
n∑

i=2

{
pi −

i−1∑
j=1

[
�(−βi )�

(
−β j − ρβi√

1 − ρ2

)

+ �(−β j )�

(
−βi − ρβ j√

1 − ρ2

)]}
, 0

)
(9.2.27a)

and

p f ≤
n∑

i=1

� (−βi )

−
n∑

i=2

max
i< j

{
max

[
� (−βi ) �

(
−β j − ρβi√

1 − ρ2

)
, �

(−β j
)
�

(
−βi − ρβ j√

1 − ρ2

)]}
.

(9.2.27b)

9 Sharper bounds than those given by the following equations are possible. See, for example, Worsley (1982).
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9.2.3 Summary of Section 9.2

The application of reliability to multiple failure modes is introduced here. Both indepen-
dent and dependent cases are discussed. There is a comparison of series and redundant
systems. The concepts of k-out-of-m models and reliability bounds are discussed.

9.3 UNCERTAINTY IN RELIABILITY ASSESSMENTS

In this section we discuss two additional approaches to the problem of uncertainty in the
estimation of reliability. The first is based on the assumption that after completion of a
system its (design) reliability is given by a parameter, say R∗, but it needs to be estimated.
We cannot do so directly but we show how to find two bounds or limits that include it. We
call these limits credibility limits. To obtain the credibility interval, the beta distribution is
postulated.10 Secondly, Bayes’ theorem is used to update the prior estimate of reliability
on receipt of additional information on system performance.

9.3.1 Reliability limits

In this subsection we assume that the design reliability of a system is a parameter R∗.
This parameter is treated as a random variable in the Bayesian sense, as in Chapter 10.
Instead of finding a point estimate, we seek a credibility interval, that is, an interval within
which R∗ lies at a given level of probability. This credibility interval for the parameter for
reliability is analogous to the confidence interval in classical statistics where a parameter
is a constant.

As in the classical case, suppose that the upper, rU , and lower, rL , limits of the design
reliability R∗ are those values satisfying Pr[R∗ ≤ rL ] = Pr[R∗ > rU ] = α/2; that is,

Pr[rL < R∗ ≤ rU ] = 1 − α. (9.3.1)

This of course means that, on a frequency basis, there is a (1 − α) percent chance that the
credibility interval in Eq. (9.3.1) includes R∗. To resolve the problem, we treat reliability
as a standard beta distributed random variate R, which is justifiable because of the imposed
limits of 0 and 1. The credibility limits are then determined by solving

α = 2FR(rL ) = 2

rL∫
0

ra (1 − r )b

B (a + 1, b + 1)
dr (9.3.2a)

for rL and

α = 2[1 − FR(rU )] = 2

1∫
rU

ra(1 − r )b

B(a + 1, b + 1)
dr (9.3.2b)

for rU . The solution can be obtained either by using tabulated values of the beta distribution,
or more conveniently by numerical methods, for which standard software facilities are
available. Suppose that our system is one that experiences a run of successes before a

10 See Subsections 4.2.4 and 10.2.4.
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failure occurs. Thus we set b = 1, which follows from the geometric distribution.11 The
pdf of R is then given by

fR(r |a, 1) = (a + 1)(a + 2)ra(1 − r ). (9.3.3)

Hence, from Eqs. (9.3.2),

(a + 2)ra+1
L − (a + 1)ra+2

L = α/2 (9.3.4a)

and

(a + 2)ra+1
U − (a + 1)ra+2

U = 1 − α/2. (9.3.4b)

Example 9.23. Water quality test. Water samples are taken daily from a particular distri-
bution system to test the quality of supply. Suppose that after 20 successful water samples
were taken, the twenty-first sample fails the required quality level.12 Thus,

E[R] = a + 1

a + b + 2
= 20 + 1

20 + 1 + 2
= 0.913

is the average estimated reliability. The corresponding standard deviation is

σR =
√

(a + 1)(b + 1)

(a + b + 2)2(a + b + 3)
=

√
(20 + 1)(1 + 1)

(20 + 1 + 2)2(20 + 1 + 3)
= 0.058.

The 90% credibility limits are found by substituting 0.10 for α in Eqs. (9.3.4). Thus,

22r 21
L − 21r 22

L = 0.05,

from which rL = 0.802, and

22r 21
U − 21r 22

U = 0.95,

which gives rU = 0.984.

9.3.2 Bayesian revision of reliability

In the design of civil and environmental engineering systems, there is often a need to update
criteria used after receiving additional data or information. In a statistical assessment, if the
reliability of a system is found to be below expectations after it is completed, the estimate
of reliability should be revised. As in Subsection 9.3.1 we continue to treat reliability R
as a random variable. It may be uncertain in such cases whether the initial estimate is
inaccurate or whether a failure arises because of random factors. We need an appropriate
procedure to find an answer.

As shown in Chapter 2, Bayes’ theorem of Eq. (2.2.16) provides a rational method of
updating the prior assessment of the probability of an event on receipt of additional data.13

In the context of reliability of system reliability, when the introduction of the posterior
outcome X alters the prior pdf, the reliability can be interpreted as the outcome of the
random variable R in the range 0 ≤ R ≤ 1. Within these limits it is reasonable to model
R as a beta variate, following our previous postulation, with initially estimated mean and
variance. Therefore, from Eq. (4.2.13a) the prior pdf of reliability is

fR(r ) = ra0 (1 − r )b0

B(a0 + 1, b0 + 1)
, (9.3.5)

11 See Subsections 4.1.4 and 4.2.4.
12 See further discussion in Subsection 10.2.4.
13 Further details are given in Chapter 10.
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Fig. 9.3.1 Beta-distributed reliability estimates.

where B(a0 + 1, b0 + 1) denotes the beta function of Eq. (4.2.13b), and a0 > 0, b0 > 0.
The new data, say, X can be interpreted as the number of successes in n trials with r as
the probability of a success. Then, as given by Eq. (4.1.3) and subject to independence
and other conditions as specified, X is modeled as a binomial variate by the likelihood
function

fX (x |r ) =
(

x
r

)
r x (1 − r )n−x . (9.3.6)

The beta distribution of Eq. (9.3.5) is said to be conjugate prior of the discrete binomial
distribution of X given in Eq. (9.3.6).14 By Bayes’ theorem the posterior pdf is given by

fR (r |x ) = fX (x |r ) fR (r )∫ 1
0 fX (x |r ) fR (r ) dr

, (9.3.7)

in which the role of the denominator is to provide the normalizing constant. Hence,

fR (r |x ) = ra0+x (1 − r )b0+n−x

B (a0 + x + 1, b0 + n − x + 1)
.

If we write a0+x = a, and b0+n– x = b,

fR(r |x) = ra(1 − r )b

B(a + 1, b + 1)
. (9.3.8)

The pdf of R for selected values of a and b is shown in Fig. 9.3.1, in which the corresponding
cdf is also plotted. From Eqs. (4.2.14) the expected value and variance of the posterior
reliability R are given by

E[R] = a + 1

a + b + 2
(9.3.9a)

14 These conjugate distributions are extensively studied by Raiffa and Schlaifer (1961). The modern practice in
applying Bayes’ theorem in intractable situations is to simulate using Markov Chain Monte Carlo methods (see
Section 10.3).
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and

Var[R] = (a + 1) (b + 1)

(a + b + 2)2 (a + b + 3)
. (9.3.9b)

Figure 9.3.2a shows a plot of E[R] against a with 1 ≤ a ≤ 100, for values of b rang-
ing from 1 to 10. The corresponding plot for the standard deviation of R is shown in
Fig. 9.3.2b.

Example 9.24. Wastewater treatment. The design reliability of the efficiency in the abate-
ment of water pollutants for a newly constructed wastewater treatment facility is 96%, which
has been determined with an error of 2%. Assuming initially E[R] = 0.95, and VR = 0.02,
one takes R to be a beta-distributed variate with parameter values of a0 = 75 and b0 = 2 (see
Fig. 9.3.3).

After the beginning of plant operation, the outflow from the plant is sampled daily and
tested in the laboratory to evaluate the actual performance of the system. The engineer wishes
to assess the reliability of the system after n = 90 samples have been analyzed, and no failures
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Fig. 9.3.3 Prior and revised pdf of estimated reliability for Example 9.24.
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have been observed. Since x = 90, and n − x = 0, the assessed reliability of outflow quality
is beta distributed with parameters

a = a0 + x = 75 + 90 = 165

and

b = b0 + n − x = b0 = 2.

Thus,

E[R] = a + 1

a + b + 2
= 165 + 1

165 + 2 + 2
= 0.98

is the expected reliability after the assessment. Also,

σR =
√

(a + 1) (b + 1)

(a + b + 2)2 (a + b + 3)
=

√
(165 + 1) (2 + 1)

(165 + 2 + 2)2 (165 + 2 + 3)
= 0.010.

Note that without prior knowledge of system performance, substituting a0 = b0 = 0 in
Eq. (9.3.5) results in the uniform prior fR|a0′ ,b0 (r |0, 0) = 1.

Example 9.25. Water quality test. Suppose water samples are taken daily from a distribu-
tion system to test the quality of supply. If b out of n samples are found to fail the required
quality level, the engineer wishes to determine the expected value and variance of the reli-
ability as a function of n and b assuming a uniform prior distribution. Since the number of
successful samples is a = n − b,

E[R] = a + 1

a + b + 2
= n − b + 1

n − b + b + 2
= n − b + 1

n + 2
.

The corresponding variance is

Var[R] = (a + 1) (b + 1)

(a + b + 2)2 (a + b + 3)
= (n − b + 1) (b + 1)

(n + 2)2 (n + 3)
.

For instance, if 100 samples are taken in a day, 5 of which do not meet the optimal quality
requirements,

E[R] = 100 − 5 + 1

100 + 2
= 0.941,

and the associated standard deviation of the reliability is

σR =
√

(n − b + 1) (b + 1)

(n + 2)2 (n + 3)
=

√
(100 − 5 + 1) (5 + 1)

(100 + 2)2 (100 + 3)
=

√
96 × 6

1022 × 103
= 0.023.

If the test is aimed at detecting water pollution, it is required that all the samples meet the
specified standard. Therefore, if n samples are taken daily, one must obtain n = a continuous
successes and b = 0 failures. An engineer is thus interested in knowing the number of samples
to be taken in order to achieve a given level of reliability. Since, for n = a and b = 0,

E[R] = n + 1

n + 2
,

one gets

n = 2E[R] − 1

1 − E[R]
.

Figure 9.3.4 shows a plot of this equation, from which can be determined the number of
consecutively successful tested samples required to achieve a given average reliability. For
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example, to achieve an average reliability of 90%, the required number of consecutively suc-
cessful test samples is eight. The corresponding standard deviation is 0.028, so the coefficient
of variation of the reliability is 0.028/0.9 = 0.03, or 3%. For an average reliability of 95%,
one should have n = 18, and the corresponding coefficient of variation of reliability is then
1%. For an average reliability of 99%, one must have n = 98, with a 0.1% coefficient of
variation of reliability.

Suppose that the reliability of a design is predicted to be 90%. This is based on eight
consecutive successes after the system is built (as discussed previously). Then a failure occurs,
so that the previous estimate must be revised. For the posterior failure, we have a = 8 and
b = 1. Hence the revised probability of E[R] = 0.82. A second failure would make the
expected reliability 75%.

9.3.3 Summary of Section 9.3

Two additional methods of estimation of reliability, in the face of uncertainty, are shown
here, based on the assumption that reliability is a beta variate. First, credibility limits are
obtained for the design value of reliability. Second, Bayesian methods are used in the
revision of reliability on receipt of new data.

9.4 TEMPORAL RELIABILITY

As stated in Section 9.1, reliability is the probability that a system performs adequately
over a design period if it runs to specifications. A failure is said to occur when the system
is incapable of working as specified to perform its intended function. Engineers are aware
that most systems fail at some point in time and are therefore interested in evaluating
the time to failure, called the survival time, particularly in the case of systems such as
dams or other structures, which are characterized by irreversible failures. In this section
we investigate reliability as a function of time.

9.4.1 Failure process and survival time

Generally, an engineer is interested in evaluating the risk of failure of a system over a
specified period of time: the design life t . Because of the inherent randomness, the survival
time of a system is defined as the random waiting time W to the first failure from the
beginning of system operation, usually the time of the project’s completion. Accordingly,
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Fig. 9.4.1 Survival and interarrival times.

the risk of failure over the specified lifetime t is given by p f (t) = FW (t), where FW (t)
denotes the cdf of the survival time. The probability that the system will survive at least t
units of time (for example, t years) from the beginning of system operation is defined as
the reliability function of the system, denoted R(t). This is the probability that no failure
occurs within the specified lifetime t . Accordingly, R(t) is a temporal function indicating
the chance of a system to perform its intended function in time.

Definition: Reliability function. The reliability function of a system is defined as

R(t) =
∞∫

t

fW (t) dt = 1 − FW (t), (9.4.1)

where fW (·) is the pdf of survival time, W , and FW (·) its cdf.

The probability distribution of survival time depends on the temporal process of failure
occurrence (see Fig. 9.4.1). If this process is stationary, it can be represented by the random
interarrival time U between two failure occurrences. Accordingly, the return period of
failure occurrence is defined as the expected value of U , μU = E[U ], and the average rate
of failure λ = 1/μU . To analyze the relationship between survival and interarrival times,
W and U respectively, one denotes by U ∗ a time interval comprising the time origin,
which is displaced at random on the time axis. Thus, the pdf of U ∗ is15

fU ∗ (u) = (u/μU ) fU (u) = λu fU (u),

where fU (u) denotes the pdf of U . The conditional pdf of W given that the failures occur
in time with interarrival time U is

fW (w |u) = 1/u, for w < u,

= 0, elsewhere.

Therefore, the joint pdf of W and U ∗ is

fW,U ∗ (w, u) = fW (w |u) fU ∗ (u) = (1/u)λu fU (u) = λ fU (u), for w < u,

= 0, elsewhere.

15 Cox and Lewis (1961, p. 61) provide a heuristic argument for the derivation of the pdf of U∗ (length-based
sampling procedure).
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The marginal pdf of survival time W is then found by integrating fW,U ∗ (w , u):

fW (w) =
∞∫

0

fW,U ∗ (w, u) du = λ

∞∫
w

fU (u) du = λ [1 − FU (w)] . (9.4.2)

Also, the probability that at least one failure will occur in a time span of length t is given
by

p f (t) =
t∫

0

fW (w) dw = λ

t∫
0

[1 − FU (w)] dw = λt − λ

t∫
0

FU (w) dw . (9.4.3)

Accordingly, the associated reliability function is

R(t) = 1 − λ

t∫
0

[1 − FU (w)] dw = 1 − λt + λ

t∫
0

FU (w) dw . (9.4.4)

Noting that fU (u) ≥ 0, 1 – FU (u) ≤ 1, and

t∫
0

[1 − FU (w)] dw ≤ t,

one finds

p f (t) ≤ λt, for t ≤ 1/λ, (9.4.5a)

p f (t) ≤ 1, for t > 1/λ. (9.4.5b)

This result is independent of any assumption taken to represent the pdf of interarrival time
of failures.16 The associated reliability bound is given by

R(t) ≥ 1 − λt, for t ≤ 1/λ, (9.4.6a)

R(t) ≥ 0, for t > 1/λ. (9.4.6b)

Example 9.26. Earthquake damage. Records of earthquakes in Italy over ten centuries
indicate that there were 28 earthquakes exceeding a value of 4 of the Mercalli–Canconi–
Seeber (SMB) index in Rome (see Problem 1.22). These events produced severe damage to
historical buildings, which needed large restoration works. An average interarrival time of
1000/28 ∼= 36 years (that is, an average failure rate of 1/36 = 0.028 per year) is estimated.
If restoration works are completed after the last devastating earthquake, the buildings’ risk of
failure after 10 years from restoration is

p f (10) ≤ 10/36 ∼= 0.28,

and the associated reliability is

R(10) ≥ 0.72.

16 The derivation of Eq. (9.4.5) from (9.4.3) can be simplified by considering the distribution function of U
instead of its density. Boccotti and Rosso (1984) adopted these relationships, which are interpreted as the upper
bound of risk of failure, as equalities when the failure process is unknown. Also, Eq. (9.4.5a) was proposed by
Gumbel (1958) to estimate system reliability for values of t � 1/λ.
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When the distribution of interarrival times of failure occurrence is known, Eq. (9.4.3)
gives the risk of failure, and Eq. (9.4.4) the associated reliability function for the specified
design lifetime t . For example, if the failures are exactly displaced in time with a fixed
interarrival time of 1/λ, the pdf of U is modeled as a Dirac function. Accordingly, the
substitution of fU (u) = δ(u − 1/λ) in Eq. (9.4.3) gives the pdfs of Eq. (9.4.5). As noted
in Subsection 4.1.3, if the failures occur as homogeneous Poisson events with rate λ, the
interarrival time is exponentially distributed with parameter λ; thus,

p f (t) = 1 − exp(−λt), (9.4.7)

R(t) = exp(−λt). (9.4.8)

Example 9.27. Earthquake damage. Assuming that the interarrival time of earthquake
occurrence in Example 9.26 is exponentially distributed with an average failure rate of 1/36 =
0.028 per year,

p f (10) = 1 − exp(−10/36) ∼= 0.25.

The associated reliability is R(10) = 0.75, which is higher than the lower bound of 72%.

If the interarrival time of failures follows the Rayleigh distribution,

FU (u) = 1 − exp(−πλ2u2/4), (9.4.9)

with mean 1/λ, Eq. (9.4.3) gives the risk of failure as

p f (t) = 2�[(π/2)1/2λt] − 1. (9.4.10)

Also,

R(t) = 2 − 2�[(π/2)1/2λt] (9.4.11)

is the associated reliability function.

Example 9.28. Earthquake damage. Assuming that the interarrival time of earthquake
occurrence in Example 9.26 is Rayleigh distributed with an average interarrival time of 36
years, one gets

p f (10) = 2�[(π/2)1/210/36] − 1 ∼= 0.27.

The associated reliability is R(10) = 0.73, which is higher than the lower bound of 72%, but
is lower than that estimated for exponential interarrival time.

The risk of failure and its associated reliability function are plotted in Fig. 9.4.2a and
9.4.2b, respectively, for the Dirac, exponential, and Rayleigh models of the interarrival time
distribution. In many engineering applications, however, the failure mechanism follows the
Poisson distribution representing the occurrence of rare events; accordingly, the interarrival
time is exponentially distributed, so that the reliability of the system at any time is given
by R(t) = exp(−λt). It is suggested that if there are sufficient data (from similar systems),
a goodness-of-fit test (see Sections 5.6 and 5.8) should be made to verify the Poisson
assumption.

The expected life of the system can be evaluated from the mean survival time, which is
defined as the expected value of the time that the system will operate successfully from
the beginning of operation,

μW = E[W ] =
∞∫

0

t fW (t) dt . (9.4.12)
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Fig. 9.4.2 Risk of failure (a) and reliability function (b) for different distributions of interarrival times.

In the case of exponentially distributed interarrival times, substituting 1 − exp(−λu) for
FU (u) in the right side of Eq. (9.4.2) gives

fW (w) = λ[1 − FU (w)] = λ exp(−λw),

and from Eq. (9.4.12),

μW =
∞∫

0

λw [1 − FU (w)] dw = λ

∞∫
0

w exp (−λw) dw = 1/λ. (9.4.13)

As noted in Subsection 4.1.3 for the Poisson process and Sub-subsection 4.2.2.5, in which
renewal and point processes are discussed, the interarrival and waiting times are both
exponentially distributed variates with parameter λ. The fact that the distributions are
identical is attributed to the lack of memory.

Differentiating Eq. (9.4.1) with respect to t gives fW (t) = −d R(t)/dt . From
Eq. (9.4.12),

μW = −
∞∫

0

t
d R (t)

dt
dt = − [t R(t)]∞0 +

∞∫
0

R (t) dt .

Since R(t) tends to zero for moderately large values of t, [t R(t)]∞0 = 0, and

μW =
∞∫

0

R (t) dt . (9.4.14)

The moments of the waiting times W are obtained from those of the interarrival time U .
Thus,

E[W k] =
∞∫

0

ktk−1 R (t) dt ; (9.4.15)
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for the moments of any kth order about the origin, and

Var[W ] =
∞∫

0

2t R (t) dt −
⎡⎣ ∞∫

0

R (t) dt

⎤⎦2

. (9.4.16)

9.4.2 Hazard function

At any time of system operation prior to first failure, it is of interest to investigate the
residual survival probability. Given that a system has survived up to a time t , the probability
that it will fail in the next time interval of length �t is the conditional probability

Pr[t < W ≤ t + �t |W > t] = Pr[t < W ≤ t + �t]/ Pr[W > t].

Since

Pr[t < W ≤ t + �t] = FW (t + �t) − FW (t) = R(t) − R(t + �t),

and

Pr[W > t] = 1 − FW (t) = R(t).

The hazard function h(t) is defined such that

h(t)�t = Pr[t < W ≤ t + �t]/ Pr[W > t].

In the limit (as �t tends to zero),

h(t) = lim
�t→0

R (t) − R (t + �t)

R (t) �t
= 1

R (t)

[
−d R (t)

dt

]
= fW (t)

R (t)
. (9.4.17)

Under these stipulations this temporal function can be interpreted as the failure rate of the
system. From Eq. (9.4.17),

t∫
0

h (t) dt = −
t∫

0

d R (τ )

R (τ )
= − [ln R (τ )]t

0 .

It is reasonable to take R(0) = 1 as the initial condition, meaning that the system is perfect
initially. Therefore,

R(t) = exp

⎡⎣−
t∫

0

h (t) dt

⎤⎦ , (9.4.18)

which is substituted for R(t) in Eq. (9.4.17) to obtain

fW (t) = h(t) exp

⎡⎣−
t∫

0

h (t) dt

⎤⎦ . (9.4.19)

Definition: Hazard function. The hazard function of a system, defined as h(t) =
fW (t)/R(t), provides the failure rate of the system.

In civil engineering practice, the hazard function characterizing many systems can be
modeled as sketched in Fig. 9.4.3, where three different periods are indicated. During the
initial period of operation, an expected high quality of management during construction
reduces the high initial failure rate, so that the hazard decreases in time. In the second
period, corresponding to the useful life of the system, the failures occur randomly, often
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Fig. 9.4.3 Hazard function.

as Poisson or similar rates. In the third period the system is either in a state of deterioration
or it runs inefficiently, so that the hazard or failure rate increases accordingly.

Example 9.29. Combined earthquake and deterioration hazard. One must evaluate the
reliability of a building to be constructed in an earthquake-prone area, where catastrophic
earthquakes are modeled as a sequence of Poisson events with an average annual rate of
0.02. The building is also exposed to hazard owing to deterioration (for example, fatigue).
This hazard is negligible at the time t = 0 (completion of the construction), but it grows
exponentially in time with a rate of 0.002. Let R1(t) be the reliability function associated with
the earthquake hazard. The cdf of the survival time under the earthquake hazard,

FW 1(t) = 1 − exp(−0.02t),

is used in Eq. (9.4.1) to obtain

R1(t) = exp(−0.02t).

Since

fW 1(t) = 0.02 exp(−0.02t),

the failure rate h1(t) due to earthquake occurrence is found using Eq. (9.4.17):

h1(t) = 0.02 exp(−0.02t)/ exp(−0.02t) = 0.02.

Assuming that the failure rate h2(t) associated with wearout hazard is initially null, the hazard
function of the wearout process is modeled as

h2(t) = exp(0.002t) − 1.

Since the wearout process in independent from that of earthquake occurrence, the hazard
rates can be added. Thus,

h(t) = h1(t) + h2(t) = 0.02 + exp(0.002t) − 1 = exp(0.002t) − 0.98,

which is shown in Fig. 9.4.4a. From Eq. (9.4.18), the reliability function of the building is
then found:

R(t) = exp

⎧⎨⎩−
t∫

0

[exp(0.002t) − 0.98]dt

⎫⎬⎭ = exp[0.98t − 500(e0.002t − 1)].

This is shown in Fig. 9.4.4b, where the individual reliability functions of the two processes
are also displayed. Because R(0) = 1, and R(20) ∼= 0.45, so that the engineer can predict a
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Fig. 9.4.4 Combined earthquake and deterioration illustration: (a) hazard function, (b) reliability
function, and (c) pdf of survival time.

reliability of 45% over a 20-year building lifetime. Note that the individual reliabilities are
both equal to 67% for t = 20 years. The pdf of time to failure,

fW (t) = h(t)R(t) = [exp(0.002t) − 0.98] exp[0.98t − 500(e0.002t − 1)],

is shown in Fig. 9.4.4c. Note that the modal value of the survival time, about 22 years, which is
associated with the deterioration hazard, is reduced to about 12 years because of the additional
earthquake hazard.

For a constant failure rate of λ, we obtain by substituting λ for h(t) in Eq. (9.4.19)

fW (t) = λ exp(−λt). (9.4.20)

This gives an exponential survival time. Then, from Eq. (9.4.18), R(t) = exp(−λt), and,
from Eq. (9.4.12), μW = 1/λ. Because the expected survival time is proportional to the
reciprocal of the hazard rate, lower hazards are associated with longer expected times to
failure, and vice versa.

The initial failure state, corresponding to inception time, is generally shorter for civil
engineering systems than in the industrial disciplines, where failures of individual parts
are quite common. On the other hand, the deterioration of civil engineering systems can
be longer than that for other systems, because of costs involved. Generally, to model the
deterioration hazard is not an easy task, because of the difficulty of predicting the joint
long-term behavior of the system and its environment. Let us assume, for simplicity, that
the third period is represented by a linear hazard function h(t) = bt , b > 0, and that time
begins after the constant hazard phase (see Fig. 9.4.3). Thus, from Eq. (9.4.19),

fW (t) = bt exp(−bt2/2), (9.4.21)

which gives the Rayleigh distribution for survival time. Thus, the expected survival time,

μW =
√

π

2b
, (9.4.22)

is inversely proportional to the square root of the hazard slope. From Eq. (9.4.18),

R(t) = exp(−bt2/2) (9.4.23)

is the corresponding reliability function.17

17 Alternatively, a nonlinear hazard function can be modeled through a Weibull pdf, with two or three parameters.
It can be relevant, for example, in planning for irrigation (see, for example, Mukherjee and Kottegoda, 1992).
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Example 9.30. Water distribution. A water distribution system is only 95% reliable 1
year after it has begun to deteriorate due to lack of maintenance. Assuming the failure rate to
increase linearly with time, the engineer must estimate the reliability of the system for a time
horizon of 5 years after the initiation of the deterioration. From Eq. (9.4.23),

b = −2 ln R(t)/t2 = −2 ln(0.95)/1 ∼= 0.10 year−2.

Thus, the wearout reliability is estimated from

R(t) = exp(−0.10t2/2) = exp(−0.05t2),

which gives R(5) ∼= 0.28, indicating a residual reliability of about 28% after 5 years. This
remaining reliability can be interpreted as the worth of the water distribution system. That is,
after 5 years of deterioration without maintenance, the engineer estimates that the system is
worth approximately 28% percent of its initial value after the beginning of this phase.

9.4.3 Reliable life

A further measure of temporal reliability is the reliable life, denoted by tr , which is defined
as the time required for system reliability to decrease to a specified level, r .

Example 9.31. Combined earthquake and deterioration hazard. Consider again the re-
liability of the building in Example 9.29 subject to the combined effect of earthquake and
deterioration hazards. The engineer wishes to evaluate the reliable life of the building for a
selected reliability level of 90%. Since,

R(t) = exp[0.98t − 500(e0.002t − 1)],

one must solve

0.9 − exp[0.98t − 500(e0.002t − 1)] = 0

for t , thus obtaining t0.9
∼= 4.3 years.

If the system has a constant failure rate, one can use Eq. (9.4.18) and substitute the
specified level r of reliability for R to obtain

tr = −(1/λ) ln r. (9.4.24)

For instance, for a reliability level of 10% the historical buildings of Example 9.26 with
the constant failure rate of 1/36 per year have a reliable life of

t0.1 = −36 × ln(0.1) ∼= 83 years.

Example 9.32. Flood control. The records over the last 75 years indicate that there were
three floods in the Sansobbia Valley, in northern Italy that produced severe damage to the
downstream town of Albisola by overtopping of existing levees. Assuming a constant rate of
failure of λ = 3/75 = 0.04 year−1, corresponding to a return period of 25 years, the engineer
estimates that the reliable life of the system is very low: t90% = −25 × ln(0.9) ∼= 2.6 years,
for a reliability level of 90%. To improve the performance of the system, the engineer wishes
to modify the existing levees in order to achieve a reliable life of 20 years for the specified
90% reliability level. Accordingly, the rate of failure must be reduced to

λ = − ln(r )/tr = − ln(0.9)/20 ∼= 0.0053/year.

Therefore, the new design return period must be of 1/λ = 1/0.0053 = 190 years, which must
equal the probability of exceeding the maximum annual peak flow, X ; that is,

1/λ = 1/[1 − FX (x)],
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or λ = 1 − FX (x). Since no indications are available for the probability distribution of flood
flows, the engineer further assumes that large floods in the area are exponentially distributed.
Inverting the cdf of X yields

x = −(1/a) ln λ,

with a denoting an unknown constant. Thus,

xnew design/xold design = ln λnew design/ ln λold design = ln(0.0053)/ ln(0.04) ∼= 1.63.

This means that the reconstruction of levees must accommodate 1.63 times the original design
flow in order to have a reliable life of 20 years for the specified reliability level of 90%.

9.4.4 Summary of Section 9.4

This section mainly concerns time to failure or survival time. We discuss the survival
function and show the use of the hazard function. This is followed by the determina-
tion of the reliable life. The next section deals with the important subject of reliability
design.

9.5 RELIABILITY-BASED DESIGN

Generally, the design reliability of most civil and environmental engineering systems is in
the range from 0.9 to 0.99 or more. The usual design practice is based on recommended
factors of safety, which should allow the system to be subject to only a limited number
of failures over its lifetime, and to be subsequently repaired or restored. The criteria to
determine design tolerable factors of safety are based on the past performances of many
systems. These criteria have been established by U.S. and European organizations (for
example, the U.S. Army Corps of Engineers and the U.S. Bureau of Reclamation in the
United States, the Commission of European Communities in the European Community).
They are formulated as recommendations or by-laws in many other countries. For example,
the structural safety of a reinforced concrete structure can be taken as ax∗ ≥ by∗

1 + cy∗
2 ,

where x∗, y∗
1 , and y∗

2 indicate the nominal values of resistance, dead load, and maximum
live load, respectively; here a ≤ 1, b ≥ 1, and c ≥ 1 are specified coefficients; for exam-
ple, a = 0.9, b = 1.4, and c = 1.7 as recommended by the American Concrete Institute.
Accordingly, the recommended safety factor is z∗ = ax∗/(by∗

1 + cy∗
2 ), where the nomi-

nal values of resistances and loads in this case are usually higher than the corresponding
mean values. However, the accuracy of this approach depends on the actual similarity of
the investigated systems; also, the confidence in the results so achieved is related to the
number of systems studied. The performance of many systems needs to be analyzed for
this purpose.

One must account for the appropriate capacity and demand factors in a reliability-based
design. The components and interactions, and the results obtained, should be related to
the expected performance of a system during its projected design life. Also, it is necessary
to have inputs or parameters or other characterizations that can be estimated within the
current state of the art. Indices currently thought to be pertinent, such as the factor of safety
or the margin of safety, should be considered because of the relationship with probabilistic
aspects.

Reliability-based design usually depends on a maximum probability of failure within a
given lifetime l of the system. The failure process is related to the reliability as a decreasing
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Table 9.5.1 Suggested minimum design lifetime, in years, for coastal engineering structures

Required security level

Type of infrastructure a b c

General use
General interest and moderate risk of loss of human life or
environmental damage in case of failure (for example, work in
large ports, outfalls of large cities)

25 50 100

Specific industrial installation
Works in service of a particular installation or associated with the use
of a transitory natural deposit of resources (for example, industry
service ports, loading platforms of a mineral deposit, petroleum
extraction platforms)

15 25 50

Level a: Local auxiliary interest and small risk of loss of human life or environmental damage in case
of failure (for example, defense and coastal regeneration works, works in minor ports and marinas, local
outfalls, pavements, buildings).
Level b: General interest and moderate risk of loss of human life or environmental damage in case of failure
( for example, works in large ports, outfalls of large cities).
Level c: International interest or protection against flooding, and high risk of loss of human life or envi-
ronmental damage in case of failure ( for example, defense of urban and industrial centers).
Source: By kind courtesy of Leopoldo Franco, University of Roma Tre, Italy.

function of time, R(t), of a given system. If, for example, a system has a constant failure rate
during its design life, the probability of failure p f (t) as given by Eq. (9.4.7) is maximum
for t = l; that is,

max p f (t) = p f (l) = 1 − exp(−λl). (9.5.1)

However, if environmental or climatic changes are foreseen or the original operation of
the system is changed, more sophisticated models are required to evaluate the reliability
function. There are, of course, no universally recommended values for the lifetime l or
the acceptable risk max p f (t). The design life varies for different parts of a project and is
related to system’s time of performance. Also, the choice of the design lifetime depends on
the specified level of security as shown, for instance, in Table 9.5.1 for coastal engineering
structures. Furthermore, one must consider separately those structural facilities that are
related to a particular industrial installation. For assessing risk during the construction
period, one can equate the time of construction to the lifetime. The probability of failure
during the service period is constrained on the basis of human loss in case of failure or
damage and the economic consequences of failure. Also, the circumstances that lead to
failure need to be considered together with facilities for the repair of a structure; one
considers either economic damages associated with underperformance of the system or
the need for its restoration or repair (see Table 9.5.2). There are also damages associated
with the loss of life or other hazards to people and other factors that cannot be adequately
assessed (such as the reputation of those involved).

Example 9.33. Risk assessment of a dam. The choice of the design lifetime l of a dam
depends on the type and size of the dam. From Table 9.5.1, one can argue that 100 years is
a correct choice for a large dam, because of its general use and high threat of potential loss
of human life and environmental damage in case of failure. The maximum allowable failure
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Table 9.5.2 Suggested maximum failure probability during useful life of coastal
engineering systems

Damage initiation Total destruction

Unexpected Expected Unexpected Expected
human loss in human loss in human loss in human loss in

Economic case of damage case of damage case of damage case of damage
effects or failure or failure or failure or failure

Low 0.50 0.30 0.20 0.15
Average 0.30 0.20 0.15 0.10
High 0.25 0.15 0.10 0.05

Economic effects: Low for cL/cI ≤ 5, average for 5 <cL/cI ≤ 20, and high for cL/cI > 20.
cL : Total costs of direct and indirect losses in case of damage or failure.
cI : Total investment costs for system construction.
Source: By kind courtesy of Leopoldo Franco, University of Roma Tre, Italy

probability for total destruction and expected human loss in case of damage or failure is 0.05,
from Table 9.5.2. From Eq. (9.5.1),

λ = −l−1 ln[1 − p f (l)] = −(1/100) ln(1 − 0.05) = 0.00051,

which is also the probability of failure in a year if the annual number of failure events is a
Poisson variate. One can compare this value with the observed probabilities of failure and
damage reported by Cheng (1993). These are based on statistics of 5450 dam incidents in
the United States and 8925 dam incidents that have occurred in 43 ICOLD (International
Commission on Large Dams) member countries (see Table 9.5.3). Note that assuming a
maximum allowable risk of failure of about 0.05% yields a more conservative design than
that of most existing dams.

If overtopping because of a flood exceeding the spillway capacity is the only risk factor in
the analysis, the design flood has a return period of 1/λ. Therefore, in the design of the dam
one must consider a return period of 1/0.00051 = 1950 years to prevent dam overtopping. In
practice, one must also account for the characteristics of the site where the dam is located. The
local factors to be considered are piping and leakage, sliding, and earthquake attack. These
factors constitute multiple modes of failure. Also, at least 50% of observed dam failures and
accidents have occurred within 5 years after the commencement of dam operation, so that a
constant rate of failure is only an approximation to the real situation.

Economic analysis is applied to damages associated with normal operating conditions.
One obtains the probability of failure of the system configuration in relation to economic
aspects such as project cost, benefit, or benefit-cost ratio. However, the estimation of the
costs of damages caused is not straightforward unlike construction and operation costs.
The following example is based on the book by Chow et al. (1988).

Example 9.34. Hydroeconomic analysis. The design return period T of a hydraulic struc-
ture facing a hydrological hazard can be evaluated by economic analysis. It is assumed that
one can estimate the probability distribution of the hydrologic events and costs of damage.
The initial cost of a structure increases as the design return period increases. However, there
will be a decrease in expected damages because the structure can cope better with larger
hazards. One can find a constant failure rate or design return period with minimum total cost
by adding the costs of expected annual damage and capital costs. For a variable X , such as



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 18, 2008 17:18

Risk and Reliability Analysis 609

Table 9.5.3 Probability of dam incidents
according to causes

Probability per
year per dam

Cause Failure Damage

Overtopping .0014 .0016
Spillway damage .0022 .0100
Piping and leakage .0063 .0180
Sliding .0017 .0047
Others .0004 .0026

Source: Adapted from Cheng, 1993.

annual maximum flow, no damage is caused if x ≤ x(T ), where T is the return period. For a
pdf fX (x) and damage function d(x),

dT =
+∞∫

x(T )

d(x) fX (x)dx

is the expected annual cost. A finite difference approximation is obtained as

dT =
+∞∑
i=1

d(xi−1) + d(xi )

2
[FX (xi ) − FX (xi−1)],

where x0 = x(T ). One can then add the discounted annual cost cT to dT and search for the
optimum return period by minimizing the total cost.

Consider, for example, the reliability assessment of an existing urban drainage system.
This system has been seen to fail its intended function at least once in 2 years, but no human
loss is associated with its failure. For events of various return periods, the annual costs and the
annualized capital cost of structures are shown in Table 9.5.4. The engineer must determine
the present expected annual damages and evaluate the optimum return period to design a new
system. Damage costs and the annualized capital costs are given in Table 9.5.4, where the
incremental expected damage is computed as

d (xi−1) + d (xi )

2
[FX (xi ) − FX (xi−1)] or

d (Ti−1) + d (Ti )

2

(
1

Ti−1
− 1

Ti

)
,

for each increment used to discretize the probability of nonexceedance, 1 − 1/T .
The expected damage cost is found by summing all the values of incremental expected

damage, resulting in 58.8 monetary units. The damage risk cost for each return period is
then computed by partial summation of relevant incremental values, and the total costs are
obtained by adding to these figures the corresponding capital cost, as given in Table 9.5.4.
The results are also shown in Fig. 9.5.1.

The minimum total cost is found for a return period of 6 years. The corresponding risk of
failure in a year is 0.167.

Because civil and environmental engineering systems involve multivariate formula-
tions, often with several random variables, one must use analytical methods that provide
information for functions of random variables. Probability distributions can be assigned
and statements can be made with respect to the reliability of the system. The probabil-
ity distribution, pertaining to a number of random variables, must be determined. Sev-
eral probabilistic methods have been developed to give measures of the distribution of
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Fig. 9.5.1 Determination of optimal design return period by economic analysis of an existing
urban drainage system.

functions of random variables. These range from so-called exact methods that require
computer-oriented numerical excursions to approximate procedures that can be accom-
modated by relatively simple algebraic calculations. Each system has its set of assumptions
and its own group of advocates. Briefly, the methodologies can be divided into three cate-
gories, or levels, depending on the complexity of the analysis and the amount of required
information.

The design of a system is given by a set of values of parameters characterizing the
system, and by a set of pertinent safety relations. In this way one identifies the safe and
unsafe regions in the space of random variables X1, X2, . . . relevant to the problem as
modeled in terms of random load and resistance. A design point is usually defined as
the most probable point on the failure boundary or limiting state of interest between
the safe and unsafe regions, or as some conditioned point on the boundary. Similarly, a
characteristic point may be defined in the domain of random variables by assigning to
each variable a characteristic (average or cautious) value. Quotients between the design
and characteristic values (for load, and the opposite for resistance) represent the partial
safety factors. The probability of failure p f of the system can be evaluated by integrating
over the unsafe region the joint pdf of the involved variates, as indicated by Eq. (9.1.26).
This method is conceptually sound and although it is sometimes referred to as the exact
method, or Level 3 reliability assessment, some approximations are used for integration,
with numerical methods in many cases. Because standard numerical integration techniques
require unrealistic computational resources as soon as one considers more than five or
six variates, the application of Level 3 reliability assessment involves the development of
Monte Carlo experiments to simulate system behavior. All variates are simulated according
to their known joint statistical properties, and the safe or unsafe behavior of the system is
evaluated in a deterministic manner for each simulation. Failure frequency, as evaluated
from simulation results gives an approximation of the required failure probability, and the
accuracy increases with the length of simulation, as shown in Section 8.1. To achieve a
design with a specified reliability, however, one must repeat this exercise with different
design parameters within a trial-and-error framework.
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Simplified methods to evaluate reliability may be classified in two categories or levels.
Level 2 reliability assessment is performed by assuming the variates to be jointly normally
distributed, and the shape of the failure boundary to be approximated by a linear or
circular surface. This method yields the probability of failure, the design point, partial
safety factors, and the relative importance of the uncertainty of the single variates in
estimating the probability of failure. Its accuracy depends on the combined effect of its
assumptions to represent the limiting state of interest and the joint pdf of the variates. Level
1 reliability assessment, which is provided by a number of partial safety factors, or safety
margins related to characteristic values of variates, is the most popular method for design
practice. In most cases these safety factors are not explicitly related to the probability
distribution of random variables or to the failure probability, but they reflect a standard
variability and tolerance risk. Only if the safety factors are explicitly related to the failure
probabilities and to the joint pdf of the involved variates does a Level 1 assessment give
explicit information on risk.

The exact methods require that the probability distribution functions of all component
variables are known initially. Because of the complexity of the solution process, the un-
known component distributions are usually assumed to be normal or lognormal, or even
uniform. The lack of data for some random variables makes it difficult to infer their prob-
ability distributions. The analytical solution can only be approached for particular cases,
and numerical integration of Eq. (9.1.26) is needed. Monte Carlo simulations, for which
high-performance computers are often mandatory, are required when the design involves
several random variables. The advantage of this methodology is that the complete proba-
bility distributions of the dependent random variables are obtained. The disadvantages are
that the output may be no better than the (assumed) input and that considerable computer
time may be required. Also, each case must be treated separately, so that one may need to
assume a large number of inputs or design alternatives to achieve a satisfactory design in
terms of system performance.

Level 2 methods assume that the variates are jointly normally distributed, and nonnormal
variates are transformed into normal variates. Also, the solution is searched through the use
of a tangent hyperplane or hypersurface. This approximation is conservative if the exact
nonlinear safe-unsafe boundary is convex toward the origin, but it is nonconservative for a
concave boundary. These methods yield the probability of failure, the design point, partial
safety factors, and the relative importance of the uncertainty of the single variates that
constitutes the probability of failure. Their accuracy depends on the combined effect of the
given assumptions to represent the safe-unsafe boundary and the joint pdf of the variates.

Level 3 methods require the evaluation of the probability distribution of the safety
index adopted in the analysis. Because of the difficulties in determining this distribution
on analytical grounds, the lognormal and the normal distributions are usually assumed to
represent the safety factor and the safety margin, respectively, so that one needs only to
estimate the mean and standard deviation of these indices. The major advantage of this
method is that the solution to the inverse problem of determining reliability-based values
of design parameters results in a much more straightforward exercise than that required
when using higher levels of reliability assessment.

9.6 SUMMARY FOR CHAPTER 9

Civil and environmental engineers are interested in evaluating the chance that a system
is successful over its expected lifetime. Thus, reliability is defined as the probability that,
under given operating conditions, a system performs adequately over a specified period
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of time, and a failure is said to occur when the system is incapable of performing its
intended function. Measures of reliability are the factors of safety, the safety margin,
and the reliability index, which are determined from the joint distribution of the random
capacity X and demand Y of the system. The performance function, which provides a
general approach to system reliability, is the random function g(X, Y ) of capacity and
demand; it describes system performance as related to its possible failure, or limiting
state, given by g(X, Y ) = 0. If g(·) is linear, g(·) = 0 can be solved in a straightforward
manner for normal capacity and demand, thus giving the required estimate of the reliability
index. Nonnormal variates are transformed at the failure point; except for some specific
distributions (for example, lognormal capacity and demand), this transformation requires
iterative calculations to be performed. In the nonlinear case, the solution always requires
iterative calculations.

The concepts of series, redundant, and compound configurations have been applied to
multimodal failures of a system. For independent system components, the overall reli-
ability is obtained directly from the individual reliabilities; on the other hand mutually
dependent modes of failure can be analyzed using reliability bounds.

The assumption of a beta-distributed random variable for reliability can yield credibility
limits for an unknown reliability. The Bayesian approach is also shown to be useful for
updating reliability estimates when new information is received on system performance.

The analysis of the failure process has been shown to be necessary for evaluating the
temporal reliability of a system, and the definitions of interarrival and survival times have
been introduced accordingly. For a stationary failure process, temporal reliability depends
only on the distribution of interarrival time, but its upper bound is shown to be distribution
free. Representing the failure rate by the hazard function makes it possible to model the
useful life of a system and also its breaking-in and wearout phases. Finally, through the
concept of reliable life, that is, the time required for the system reliability to decrease to
a specified level, one can evaluate the design lifetime on a probabilistic basis.

In the application of reliability concepts to engineering design, one considers the max-
imum probability of failure in a given life of the system, with incorporated economic
issues. Also, reliability is assessed at different levels depending on the required degree of
accuracy. Approximation methods such as the FOSM, the Taylor series expansion, and
point estimation methods facilitate the computations.
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PROBLEMS

9.1. Heuristic reliability predictions. Based on your own knowledge or experience
estimate the reliability of (a) an automobile, (b) a telephone, (c) an audio sys-
tem, (d) the operating system of a digital computer, (e) a 1-day ahead weather
prediction, ( f ) a 1-week ahead weather prediction, and (g) the municipal water
supply and wastewater removal systems of the place where you live on a scale
of 0 to 100%.

9.2. Reliability assessment. Consider the following civil and environmental engineer-
ing systems and apply the concepts of capacity and demand to their reliability
assessment, also indicating the variables involved:
(a) The roof of your house.
(b) The water distribution network in a campus or housing subdivision
(c) Water quality of the municipal supply system
(d ) The spillway of a dam
(e) A municipal transportation system
(f ) A retaining wall for highway embankment
(g) Air quality in a city

9.3. Structural safety factor. Consider a structure designed with a central safety factor
of 2 with a nonrandom load Y . Determine its risk of failure for (a) normally, (b)
lognormally, and (c) gamma-distributed load-carrying capacity X with known mean
μX = y and coefficient of variation VX = 0.5.

9.4. Pile. The conventional safety factor of a pile is z∗ = 1.2. Both load-carrying capacity
and strength are independent normal variates with coefficients of variation of 30 and
50%, respectively. Find the sigma bound hX = hY = h, if the central safety factor
is ζ = 1.6.

9.5. Flow meters. The reliability of a standard flow meter used for rating munici-
pal water supply to private buildings is 95%, and it is estimated that a defective
meter underestimates flow by 20%. If the tolerable loss is 2% for each supplied
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building, what is the reliability of the municipal system if 100 buildings are sup-
plied? Calculate also the reliability if 1000 buildings are supplied. Note that for
large n the binomial distribution can be approximated by the normal distribution
(with the same mean and variance), as shown in Sub-subsection 4.2.6.2.

9.6. Uniform capacity and demand. The joint capacity-demand distribution of a supply
system is uniform: fX ,Y (x, y) = (ab)−1 unit−2, for 0 ≤ X ≤ a units and 0 ≤ Y ≤ b
units, with a ≥ b. What is the reliability of the system?

9.7. Pipe flow. The pressure p and water flow q in a circular pipe are measured as p = 7
kPa (kN/m2) and q = 0.08 m3/s, respectively. The pipe is located 2 m above the
reference level and its diameter is d = 20 cm. The total head h (energy) in the pipe
at the point of interest is given by the Bernoulli equation,

h = u2

2g
+ p

γ
+ z,

where X1 = u2/2g is called the kinetic head, X2 = p/γ the pressure head, and
X3 = z the elevation head. Assuming that X1, X2, and X3 are normal variates with
a coefficient of variation of 0.05, an engineer needs to determine the reliability of
system operation for h > h0, with h0 = 3 m. (The flow velocity is defined as the
ratio between flow and cross-sectional area of the pipe, say, u = q/(πd−2/4), g is
the acceleration due to gravity, 9.806 m/s2, and γ is the specific weight of water,
9.806 kN/m3.) Assume that all variates are independent of each other.

9.8. Column load. A column of a building is designed with a central safety factor of
1.6. The coefficient of variation of its strength is 25%. The total column load is
the sum of several factors: live load, dead load, wind load, and snow load. Assume
these factors are independent normal variates.

Factor Expected value (kN) Coefficient of variation

Live load 70 0.15
Dead load 90 0.05
Wind load 30 0.30
Snow load 20 0.20

Find the following:
(a) The expected value and coefficient of variation of the total column load, Y .
(b) The reliability index and the corresponding risk of failure of the column, if the

strength is assumed to be a normal variate independent of load.
(c) The reliability index and risk of failure, if the strength and load are correlated

normal variates with ρ = 0.6.

9.9. Earth embankment. For the stability of an earth embankment, the overturn-
ing moment eW must not exceed the resisting moment r (L A RA + L B RB), as
shown schematically in Fig. 9.P1. For the given configuration, L A = 21 m, L B =
4 m, r = 12 m, e = 3 m, and W = 2000 kN/m2. Find the reliability of the sys-
tem if RA andRB are joint normally distributed variates with means 35 and
20 kN/m2, respectively, coefficient of variation of 20%, and coefficient of correlation
of 0.7.
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Fig. 9.P1 Sketch for stability analysis of an earth embankment.

9.10. Slope stability. The wedge method for analyzing the stability of an earth slope
assumes a linear critical surface, such as AB in Fig. 9.P2. The factor of safety is
then obtained as

z = 2c sin θ cos ϕ

hγ sin2 [(θ − ϕ)/2]
,

where c is the cohesion parameter, ϕ is the internal angle of friction or friction
angle, θ is the slope angle, γ is specific weight, and h is the slope height. Find the
risk of failure for a slope with h = 10 m and θ = 55◦ if these factors are independent
normal variates as follows:

Factor Expected value Coefficient of variation

Friction angle 21◦ 0.12
Cohesion parameter 15 kN/m2 0.40
Specific weight 20 kN/m3 0.10

A

B

jq

h

Fig. 9.P2 Wedge method for slope stability.

9.11. Elastic collapse of a steel beam. Consider a simply supported steel beam with nor-
mally distributed strength X , with mean of 25 KN/cm2, and coefficient of variation
of 15%. The bending moment Y is also a normal variate with mean 900 kN · cm
and coefficient of variation of 20%. Find the reliability of the beam if its section
modulus W is normally distributed with mean 20 cm3 and coefficient of variation
of 5%. The limiting state of interest is given by Y/W − X = 0. Assume mutually
independent X , Y , and W .

9.12. Flexure formula. Consider a timber beam subject to flexure. The stress at the
extreme fiber at a distance X2 from the neutral axis acted upon by a bending moment



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 18, 2008 17:18

618 Applied Statistics for Civil and Environmental Engineers

X3 is given by X2 X3/X4, where X4 denotes the moment of inertia of the section.
We assume that the factors are normal variates as follows:

Factor Expected value Coefficient of variation

Bending moment, X3 6 kN cm 0.25
Moment of inertia, X4 90 cm4 0.10
Distance from neutral axis, X2 20 cm 0.05

Further assume that X2, X3, and X4 are independent of each other. Find the reliability
of the system if the capacity X1 of the beam is a normal variate with a mean of
4 kN/cm2 and a coefficient of variation of 30%.

9.13. Surveying using Geosatellite Positioning System. The values of latitude YGPS and
longitude XGPS obtained by GPS readings at a point are affected by a certain random
multiplicative error Z . Thus, XGPS = Z x and YGPS = Z y, respectively, with x and
y denoting longitude and latitude of the point. Find the reliability of measuring the
planar distance w between two points with a tolerance of 3% if Z is a lognormally
distributed variate with unit mean and coefficient of variation of 0.02, assuming that
all (four) readings used in measuring the distance are independent of each other
(this reliability can be evaluated as Pr[0.97 < WGPS/w ≤ 1.03]).

9.14. Column load. The strength of a building is normally distributed with mean of
336 kN, and coefficient of variation of 25%. The total column load is the sum of
several components: live load, dead load, wind load, and snow load. These factors
are independent variates as follows:

Factor Expected value (kN) Coefficient of variation

Normal live load 70 0.15
Normal dead load 90 0.05
Weibull wind load 30 0.30
Gumbel snow load 20 0.20

Find the reliability index and the risk of failure of the column. Check this result by
simulation.

9.15. Stormwater removal. In the Italian method for designing storm sewer systems, the
system capacity is estimated by

W = q X

[
1 − exp

(
−q X

s

)]−1

,

where W is the stormwater removal capacity (that is, the volume of stormwater that
can be appropriately drained by the system) for a storm with duration X , q is the
outlet discharge capacity (that is, the maximum discharge that can be conveyed by the
outlet channel under uniform flow conditions), and s is system storage capacity (that
is, the volume of water that can be stored in the whole system, including the outlet
channel, upstream channel network, and surface detention). System reliability can
be evaluated using the concepts of capacity and load by considering the volume of
stormwater delivered in a storm event as the storm depth multiplied by drainage area
a, that is, aXY, where Y denotes the average intensity of a storm [see R. Rosso and
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E. Caroni (1977), “Storm sewer capacity design under risk,” Proc. XVII Congr. Int.
Assoc. Hydraul. Res., Baden-Baden, 15–19, August, Vol. 4, pp. 537–543]. Consider
the stormwater removal system for a drainage area of 205 × 103m2 in a location
where the duration X and intensity Y of a severe storm are independent exponentially
distributed variates with means of 1.4 hours and 18 mm/h, respectively. The outlet
discharge capacity of the system is 4 m3/s, and its storage capacity is 1500 m3.
Using coherent units, do the following computations:
(a) Compute the system reliability for a storm by simulation.
(b) Because of gradually varied flow in the system, the system storage during a

storm may not achieve storage capacity, and a random variate Z is substituted
for s to evaluate the stormwater removal capacity W . Compute the system
reliability for a storm if fZ (z) = 3z2/s3 for 0 ≤ z ≤ s, and 0 elsewhere.

9.16. Dilution requirements. The amount of water into which wastewater can be dis-
charged without creating objectionable conditions is represented by a dilution pa-
rameter that is commonly expressed for combined systems as the minimum stream-
flow Y required. If wastewater with a first-stage BOD of W in newtons per capita
is discharged daily into a stream with a permissible loading of Z in newtons per
cubic meter, the required streamflow becomes Y = 0.012W/Z in cubic meters per
second per 1000 population. Assume that the population is 10,000, that permissible
loading Z can vary uniformly from 0.23 to 0.12 N/m3 and that load W is a normal
variate with a mean of 1.2 N per capita and a coefficient of variation of 20%. Find
the reliability of the system if streamflow X is a gamma variate with mean and
standard deviation of 2 and 0.5 m3/s, respectively [see G. M. Fair, J. C. Geyer, and
D. A. Okun (1968), Elements of Water Supply and Wastewater Disposal, 2nd ed.,
John Wiley and Sons, New York, p. 659].

9.17. Law of diminishing returns. Consider a system with n series components, each
constituted by m redundant independent subcomponents with equal probability of
failure p.
(a) Find the overall reliability of this system.
(b) Show that, by determining the rate of increase of system reliability with increas-

ing number m, the advantage of introducing additional redundant subcompo-
nents in each series component rapidly vanishes.

9.18. Pipe network. Consider the portion of a pipeline network for urban water supply
of Example 9.18 (see also Fig. 9.2.2). Assuming independent failure modes find the
probability that node c remains isolated if there is a common probability of rupture
of 1% for all pipes.

9.19. Retaining wall. The retaining wall for road embankment sketched in Fig. 9.P3a
can fail due to several factors. The failure modes are schematically indicated in
the block diagram for system reliability analysis shown in Fig. 9.P3b (M. E. Harr
(1987), Reliability-Based Design in Civil Engineering, McGraw-Hill, New York).
Under the assumption of independent modes, compute the reliability of the overall
system if the individual probabilities of failure are as indicated in parentheses.

9.20. Rain gage network. The rain gage network for stormwater management in the
metropolitan area of Milan, Italy, is constituted by 16 stations. Real-time operation
of the urban drainage control system requires telemetered data from at least 12
stations in order to have sufficient information of spatial precipitation. Find the
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Fig. 9.P3 (a) Retaining wall for road embankment and (b) block diagram for reliability analysis.
(Adapted from Harr, 1987, with permission of the McGraw-Hill.)

reliability of the network if the failures occur independently with a probability of
10%.

9.21. Improved reliability bounds for a k-out-of-m system. Assuming that failures
occur as rare events, one can substitute the Poisson distribution for the binomial
distribution to compute the reliability of a k-out-of-m system. Accordingly, R. J.
Serfling (1974), “The role of the Poisson distribution in approximating system
reliability of k-out-of-n structures,” Contract N0014-75-C0551, Office of Naval
Research, found

FX (m − k) − l ≤ r ≤ FX (m − k) + l,

where FX (·) is the cdf of a Poisson variate X with mean
∑

pi , and 2l = ∑
p2

i , where
the summation is made over all m components, each of them having an individual
probability of failure of pi . Compute these bounds for the pumping system shown
in Fig. 9.2.3 with p = 0.03.

9.22. Levee collapse. The design elevation of a levee built for flood protection at a site
in the Po River plain was determined using the estimated 200-year flood, so that
overtopping occurs with a risk of 0.5% in a year. However, this structure can fail
also due to excessive seepage through the foundation material at high stages of
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the river, and it is estimated that this can occur with a probability of 10% if the
10-year flood stage is exceeded. Assuming that the two failure modes are normal
and correlated with ρ = 0.7, find the minimum reliability of the levee and compare
with that corresponding to the independent case.

9.23. Redundant and series equally reliable components. A system with a given overall
reliability r is composed of l positively correlated components; each of them has
an identical probability of failure, say, p. Find the bounds for the reliability of each
component if (a) they are series; (b) they are redundant.

9.24. Repeated design. The reliability of a particular design procedure to prevent the
collapse of buildings caused by earthquakes was found to be 99% over a long
period of time. Since it is planned to construct ten structures using this design,
evaluate the probability that none of the ten similar structures fails over the same
time span.

9.25. Reservoir sedimentation. When reservoir sedimentation exceeds the dead level
in a reservoir, it can affect its efficiency in meeting the target demand. Expensive
maintenance work is then necessary to remove sedimentation excess. Assuming
that the annual sediment yield trapped by a reservoir with dead capacity c is an
exponentially distributed variate with mean μ, find expressions of (a)R(t) and
(b)h(t). (c) For c = 5 × 106 m3 and μ = 4 × 105 m3, determine the design life for
a reliability level of 90%. Note that the sum of t exponentially distributed variates
having a common scale parameter is a gamma-distributed variate with the same
scale parameter and shape parameter equal to t .

9.26. Road pavement. Suppose that a road is made of 1000 pavement sections. The
number of surviving pavements ns after the j th year in service is as follows:

j = 1 2 3 4 5 6 7 8 9 10
ns = 865 782 701 362 201 157 86 47 40 36

j = 11 12 13 14 15 16 17 18 19 20
ns = 31 27 26 16 10 6 4 3 2 1

Estimate the pdf and cdf of the survival time distribution, fW (t) and FW (t); the
reliability function R(t); and the hazard function h(t) for a pavement section. Find
the reliable life of a pavement section for a specified reliability level of 70%. Note
that for the discrete case the hazard function is the ratio between the number of
failures in a time interval and the average number of survivors for the period.

9.27. Weibull reliability function. The reliability function of a saltwater conversion unit
is taken as R(t) = exp[−(t/τ )γ ], where τ is its characteristic lifetime, t is the test
time, and γ is a parameter estimated from observations of several units of this type.
For γ = 1, the reliability is exponentially distributed with constant rate of failure
1/τ ; and γ = 2 gives the Rayleigh model associated with a linearly increasing
hazard function.
(a) Find the expression of h(t) associated with R(t).
(b) If τ = 10 years, γ = 1.5, and the unit is observed to be performing properly

for 5 years, find its conditional reliability at the end of this period for t = 10
years.
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9.28. Combined hazards in bridge construction. Evaluate the reliability of a bridge
to be constructed in an earthquake-prone area, where the estimated return period
of catastrophic earthquakes is 250. The 200-year flood must be taken as a design
guidance for that area. The bridge is exposed to the hazard due to obsolescence,
which increases in time as a logistic function,

hobs(t) = 0.05/{1 + exp[−0.25(t − 25)]}
where t is in years. Assuming that earthquakes and floods are independent sequences
of Poisson events find (a) the reliability function of the bridge and (b) its design life
for a reliability level of 90%.

9.29. Bearing capacity of soil. Bearing capacity of soil depends on the following three
factors:

Y = tan4(45 + X/2),

W = eπ tan(X ) tan2(45 + X/2),

Z = cotan(X )[eπ tan(X ) tan2(45 + X/2) − 1],

which are functions of the friction angle X (see G. Vannucchi (1985). “Straight-
forward probabilistic methods in geotechnics,” Ital. J. Geotech., Vol. 19 No. 2,
pp. 77–87 (in Italian).). Using the point estimate method find the mean and coeffi-
cient of variation of Y , W , and Z for mean friction angles of 15, 25, and 35◦, and
coefficients of variations for X of 0.1, 0.2, and 0.3. Compare these estimates with
those obtained by simulation.

9.30. Partial load factors for beams. Consider two simply supported beams made of
different materials that are designed to carry the same live load, with a nominal
value of ql = 2 kN/m. The nominal dead loads are qd = 1 kN/m for beam 1, and
qd = 3 kN/m for beam 2, respectively. The mean value of the nominal resistance
is (γdqd + γlql)/φ with φ = 0.9, γd = 1.33, and γl = 1.5, and its coefficient of
variation is 0.1. Use the FOSM method to compute the values of the reliability
index β for the two beams, assuming that both dead and live loads are normally
distributed variates with means equal to the nominal values and coefficients of
variation of 0.1 for the dead loads and 0.25 for the live load, respectively. Modify
the value of the partial factor γd for beam 1 in order to obtain the same reliability
of beam 2.
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Chapter 10

Bayesian Decision Methods and
Parameter Uncertainty

The main focus of this book’s previous chapters was to find realistic descriptions of the
types of random phenomena which an engineer encounters in his or her professional life.
These activities should lead to a common goal, that of making decisions. For example, what
design should be adopted for a stormwater drainage system with respect to pipe diameter,
slope, and other variables when the magnitudes, durations, and frequencies of rainfall
events cannot be predicted? Or perhaps an engineer must decide on the sizes of piles to be
driven for the foundation of a large building when there is uncertainty regarding the nature
of the subsurface. This chapter focuses on decisions that are called for under conditions
of unpredictability—that is, when the decision maker is faced with the unknown. Each
choice must be logically based with the aim of meeting given objectives, which often have
an economic basis. The probability models we adopt are not unique in some practical
situations, for it becomes evident when fitting to data from the real world that there is
hardly any satisfactory criterion for choosing between two or more competing types. Our
philosophy for making decisions should take this problem into account.

Nature is a frequent contributor to the uncertainty, and it has become customary to refer
to its aspects of uncertainty as the states of nature. For instance, the inflows to a reservoir
depend on the rainfall and state of the basin; the settlement of a foundation varies with
the characteristics of the soil strata; and the water quality of a river is a function of the
flow and other factors. The states of nature are quantified by probabilities, which are often
evaluated subjectively when there is no practical alternative. The approach comes under
the sphere of Bayesian decision theory, for which we follow Bayes’ theorem introduced
in Chapter 2 and utilized further in Chapter 9.

Thus the Bayesian viewpoint is an alternative to the classical approach, which is ex-
emplified, for instance, by the estimation of confidence intervals in Section 5.3, wherein
population parameters are treated as unknown constants. In Bayesian estimation, on the
other hand, the unknown parameter or state of nature is treated as a random variable. For
example, the proportion p of defective welds for a steel structure may change from one
time period to another and is accordingly described by a prior pdf, f (p). The value of this
probability is thus an intrinsic part of the decision process. There is also direct involvement
of the engineer’s experience in such situations, albeit in a subjective manner.

The next step is the acquisition of new information by the engineer. This can take the
form of additional cube tests, soil samples, gaugings, or drill holes, for instance. The
Bayes’ method, as we have previously seen, then provides a direct means of updating the
probabilities. Not surprisingly, it has aroused some controversy, mainly with respect to
subjective probabilities and the choice of a prior distribution.

We have already followed the decision-theoretic path in Chapters 5 and 6. Whereas
we were previously concerned with the probabilities of making the right or wrong deci-
sions and similar issues, the methodology is now formulated so that monetary loss (or
gain) becomes the main criterion when quantifying engineering judgment. Although we
have turned the spotlight on economic decision making, there are other factors of im-
portance. For example, environmental benefits are of direct concern; these aspects may,

623
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however, entail problems of definition and estimation, as in the case of social and political
considerations.

This chapter commences with basic Bayes’ rules for action by the engineer followed
by decision trees that show the available alternatives such as actions, states of nature,
and losses. The associated minimax solution, which minimizes the maximum risk, is then
presented. In posterior decision analysis, presented in Section 10.2, we discuss loss and
utility functions. Appropriate theoretical distributions are indicated and applied. We return
to likelihood ratio tests introduced in Chapter 5 but in a Bayesian context.

There are many situations in which Bayes’ theorem is difficult to apply. This happens
when we cannot obtain the moments of the posterior distribution except possibly by using
some type of cumbersome numerical integration. In such cases one can apply Markov
chain Monte Carlo methods. These are now standard in many areas of usage. A particular
technique for application is the Gibbs sampler. The subject is discussed here and a case
study is presented.

In the final section we demonstrate James-Stein estimators, at an elementary level, as
an alternative method of revising forecasts of mean values.

10.1 BASIC DECISION THEORY

The Bayesian decision procedure can be summarized as follows: Let us suppose that the
decision is to take an action or set of actions a that belong to a set A, the action space,
comprising all conceivable courses of action. We specify the states of nature by the values a
parameter θ takes. This parameter indexes the probability distribution of a random variable
X , the observations of which form the basis of our decisions. The model comprises the
probability distributions that X can take. We denote the set of all possible values of θ by
�, the parameter space. The viable decision d is viewed as part of a decision space D; it is
the link between X and A and maps the sample space of the basic random variable X onto
the action space. The actions a that we take may be correct, or partially correct to some
extent, or incorrect. In general, we expect that there will be a loss, implying a wastage of
resources. This is quantified by a loss function l(θ , a) which specifies the loss, commonly
expressed in monetary terms that will be incurred under action a and state of nature θ ; if
on the contrary such an outcome is negative the loss becomes a gain, say, g(θ , a).

For the analysis, we need a function to quantify the status or quality of the decision rule.
If we adopt the action or set of actions a = d(X ) given a state of nature θ , the expected
or average loss is defined by the risk function

R(θ, d) = E[l{θ, d(X )}]. (10.1.1)

In this equation we use either the pmf p(x | θ ) or the pdf f (x | θ ) in discrete and continuous
cases, respectively, as the weighting function to obtain the average loss. The risk is based
on the decision and the true state of nature (which will usually be known in retrospect).
Our objective is to find a reasonable method of minimizing the risk (or maximizing the
gain) in the face of uncertainty.

10.1.1 Bayes’ rules

Decision analysis is sometimes based on a prior distribution π (θ ) to specify the probability
distribution of the parameters. Previously, we discussed such distributions in relation to
Bayes’ theorem by which we can incorporate prior knowledge about a parameter; if we
then revise it on receipt of sampling information, it becomes the posterior distribution,
which we shall return to in Section 10.2. For making decisions, prior distributions can
be used in different ways. Basically, they serve as weighting functions to determine the
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average risk, as already mentioned. They also give the expected monetary value, or as
commonly termed, the Bayes’ risk of a decision rule a = d(X ). This is defined as

B(π, d) = E[R(θ, d)], (10.1.2)

which is the expected risk, taking account of the prior distribution π (θ ) of the state of nature
θ . The decision that minimizes the Bayes’ risk is called the Bayes’ rule (or Bayes’ decision).
In Examples 10.1 to 10.4 we assume that the prior distribution is known or can be estimated.

Example 10.1. Bayes’ risks in road contracts. A road contractor needs to hire or lease
machinery and equipment for resurfacing works during a limited period. The first type costs
$120,000 and enables 200 km of roads to be restored. Alternatively, a second type costs
$40,000 but its roadwork is limited to 50 km. These costs include labor and other expenditures.
The corresponding decisions that should be made are termed d1 and d2, respectively. The
contractor expects to be successful in one of two bids. The first contract θ 1 involves 190 km
of road and the second θ 2 only 40 km. The rate contracted is $1900 per km for θ1 and
$2050 per km for θ 2. Let us assess the Bayes’ risks and find the Bayes’ rule.

Solution. In the loss function, negative losses signify gains. The expected losses and gains
are as specified [so there are no weighting functions and Eq. (10.1.1) follows directly]. The
four risk functions are as follows:

R(θ1, d1) = −1900 × 190 + 120,000 = −$241,000.

R(θ1, d2) = −1900 × 50 + 40,000 = −$55,000.

R(θ2, d1) = −2050 × 40 + 120,000 = $38,000.

R(θ2, d2) = −2050 × 40 + 40,000 = −$42,000.

The probability that the first contract θ1 is obtained, is denoted by p. Let us assume that
the probability that the contractor is unsuccessful in both bids, say, θ3, is zero. The expected
losses or Bayes’ risks associated with each decision are as follows:

B(π, d1) = −241,000p + 38,000(1 − p) = $38,000 − $279,000p

and

B(π, d2) = −55,000p − 42,000(1 − p) = −$42,000 − $13,000p.

We note that B(π, d1) < B(π, d2), if 80,000 < 266,000p. This holds if p > 0.3 approxi-
mately. Hence the Bayes’ rule is that if p > 0.3—that is if the probability of obtaining the
first contract is greater than 0.3—the first decision should be taken. Bayes’ risks are plotted
against the probability of obtaining the first contract in Fig. 10.1.1.

Example 10.2. Welding. In Problem 1.4 (of Chapter 1), we discussed specifications for
welding of some structural components. These concerned lengths of welds. There may be
other flaws, such as those measured on a volumetric basis. A welder employed by a civil
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Fig. 10.1.1 Bayes’ risk versus probability p of obtaining the first contract.
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engineer fabricates 50 welds at a time. Subsequently a random test of a single weld is made.
The welder is informed that there are only two possible actions open to him or her after the
result of the random test is known. The first action a1 is to accept payment at the rate of
$10 per weld for those which are satisfactory. However, a penalty of $25 per weld will be
imposed on any one or more welds which are found to be defective; this is to cover the cost
of necessary remedial work. The second action a2 is to accept a payment of $100 for the lot.
Let us assess the Bayes’ risks and find the Bayes’ rule.

Solution. Let φ1 signify that the initial test is satisfactory and φ2 that it is unsatisfactory. The
decision space D can be fully described as follows:

D φ1 φ2

d1 a1 a2

d2 a1 a1

d3 a2 a2

d4 a2 a1

Let i be the sampling number of bad welds in a lot of 50. This is taken as the state of nature. The
probability that the tested weld is unacceptable is i/50, so the probability that it is satisfactory
is 1 − i/50. The risk functions are obtained by weighting the losses by these probabilities
and are written as follows (with gains indicated by negative losses):

R(i, d1) = [25i − 10(50 − i)](1 − i/50) − 100(i/50) = $43i − $0.7i2 − $500.

R(i, d2) = [25i − 10(50 − i)] = $35i − $500.

R(i, d3) = −$100.

R(i, d4) = [25i − 10(50 − i)](i/50) − 100(1 − i/50) = −$8i + $0.7i2 − $100.

In order to find the expected risks, we assume that the conditions of the n = 50 welds are
the outcomes of n Bernoulli trials with parameter p, the probability that a weld is unsat-
isfactory. This assumption will, however, be violated in practice if the defects in welds are
interdependent. If the assumption holds, I is a (n, p) binomial random variable.1 Hence,

E[I ] = np = 50p

and

E[I 2] = Var[I ] + {E[I ]}2 = np(1 − p) + (np)2

= 50p(1 − p) + 2500p2 = 50p + 2450p2.

Hence from Eq. (10.1.2) the Bayes’ risks are written with p as a variable as follows:

B(π, d1) = 43 × 50p − 0.7(50p + 2450p2) − $500 = $2115p − $1715p2 − $500.

B(π, d2) = 35 × 50p − 500 = $1750p − $500.

B(π, d3) = −$100.

B(π, d4) = −8 × 50p + 0.7 × (50p + 2450p2) − $100

= −$365p + $1715p2 − $100.

Bayes’ risks are plotted against the probability p that a weld is defective in Figure 10.1.2.
It is seen that for small values of p, decision d2 has the lowest Bayes’ risk and for large values
of p, decision d3 gives the lowest risk. There is a narrow intermediate range, in which decision
d1 provides the optimum by a margin of less than $10. This range, which can be easily found
from the given equations for Bayes’ risk, is from p = 0.213 to p = 0.233. Decision d4 is
shown merely for completeness.

1 Reference may be made to Subsection 4.1.2 and also Eq. (3.2.12) for what follows.
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Fig. 10.1.2 Bayes’ risk versus probability p of a defective weld.

10.1.2 Decision trees

In Examples 10.1 and 10.2, we considered the best possible courses of action when there
is uncertainty regarding the true state of nature. The optimal expected result such as the
highest net gain is found by examining each of the decisions d1, d2, d3, . . . , each associated
with more than one course of action a1, a2, . . . . These possible actions are said to belong
to the action space A, as already stated. The engineer may sometimes delete actions that
are inferior or illogical, such as decision d4 in Example 10.2. Nevertheless, there are many
options available. Note also that the probability distribution of the state of nature θ did not
confine us to a few discrete cases in Examples 10.1 and 10.2; we considered the full range
of probabilities. Situations arise, however, when the decision space is limited to a small
number of actions or compound actions and the true state of nature can be represented by
a few discrete values. In such cases a pictorial representation can be made of a particular
problem. A commonly used method is a decision tree.

A decision tree is drawn from left to right. Having identified the various possible
decisions and starting from a single node at the left extreme, one provides a fork for each
decision. Further subdivisions are made at the ends of these forks to represent alternative
actions, such as to test or not to test, to drill or not to drill, and so on, depending on the
case studied. Then a complete set of forks is provided, at the ends of the previous forks, to
denote the exclusive and true states of nature with estimated probabilities of occurrence.
Finally, the losses, benefits, or utilities are given under each decision, action, and state of
nature. Examples 10.3 and 10.4 utilize decision trees.

Example 10.3. Pipes for water supply. A manufacturer who supplies pipes for a water
project is paid $95 per pipe. This rate is applicable only for pipes that are found to be
satisfactory. Unsatisfactory pipes are used for subnormal work and are paid for at a rate of
$25 per pipe. The overall cost to the manufacturer is $60 per pipe. Past records show that
92% of the pipes manufactured meet the criteria. Sophisticated tests can be made at a cost of
$15 per pipe in order to exclude those with defects from being delivered. Let us suppose that if
a pipe is found to be unsatisfactory by this test, it is brought to a satisfactory condition before
delivery at an additional cost $15. There is a cheaper alternative: doing an initial inspection
at a cost of $2 per pipe, but there is a 4% chance of not detecting an unsatisfactory pipe and
a 2% chance of rejecting a good pipe with this test. If it is decided to do the initial inspection
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on all the pipes, tabulate the decisions available (with or without the tests) and determine the
risks and Bayes’ rule.

Solution. The decision space D is described in the table below. The apparent states of nature
as seen from the results of the initial inspection are either φ1 (the pipe is satisfactory) or φ2 (it
is unsatisfactory). The two possible actions are a1 (do the exact test) and a2 (forego the test).

D φ1 φ2

d1 a1 a1

d2 a1 a2

d3 a2 a1

d4 a2 a2

The risk functions are calculated as follows. These are written as expected losses per pipe (so
negative values are gains) and related to the true states of nature: θ1 (satisfactory pipe) and
θ2 (unsatisfactory pipe) and the decisions given above.

R(θ1, d1) = 60 − 95 + 2 + 15 = −$18.0.

R(θ1, d2) = (60 − 95 + 2 + 15) × 0.98 + (60 − 95 + 2) × 0.02 = −$18.3.

R(θ1, d3) = (60 − 95 + 2) × 0.98 + (60 − 95 + 2 + 15) × 0.02 = −$32.7.

R(θ1, d4) = 60 − 95 + 2 = −$33.0.

R(θ2, d1) = 60 − 95 + 2 + 15 + 15 = −$3.0.

R(θ2, d2) = (60 − 95 + 2 + 15 + 15) × 0.04 + (60 − 25 + 2) × 0.96 = $35.4.

R(θ2, d3) = (60 − 25 + 2) × 0.04 + (60 − 95 + 2 + 15 + 15) × 0.96 = −$1.4.

R(θ2, d4) = 60 − 25 + 2 = $37.0.

As previously stated, the following prior probabilities are estimated from past records:π (θ1) =
0.92 and π (θ2) = 0.08. Bayes’ risks are then obtained from Eq. (10.1.2), using the prior
probabilities as weighting functions:

B(π, d1) = −18 × 0.92 + −3 × 0.08 = −$16.8.

B(π, d2) = −18.3 × 0.92 + 35.4 × 0.08 = −$14.0.

B(π, d3) = −32.7 × 0.92 − 1.4 × 0.08 = −$30.2.

B(π, d4) = −33 × 0.92 + 37 × 0.08 = −$27.4.

The minimum Bayes’ risk is thus given by the third decision, which becomes the Bayes’ rule.
If this is adopted, the manufacturer expects to make a profit of above $30 per pipe on average.
The decision tree for pipe testing is given in Fig. 10.1.3.

Example 10.4. Bayes’ rule for cofferdam. A small dam is to be built across a stream in a
mountainous area where the melting of snow makes a substantial contribution to the runoff and
high flows. A cofferdam is planned for protecting the work on foundations during the first year
of construction. At the preliminary stage, two designs are submitted for the cofferdam based
on the maximum flow expected during the period. The proposed alternative heights for this
temporary structure, which are proportional to the costs, are as follows: h1: 2 m and h2: 5 m.

The designs are based on the assumption that the true state of nature θ that is related to the
magnitude of the maximum flow in the stream during the design period can have one of two
values:

θ1 : head of water is 2 m.

θ2 : head of water is 5 m.
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Fig. 10.1.3 Decision tree for pipe testing.

If the shorter cofferdam is built and subsequently found to be inadequate, emergency measures
are required to protect the foundations of the main dam. This is estimated to cost $60,000.
Conversely, the construction of a larger cofferdam in place of a smaller structure, which
would have sufficed under the circumstances, amounts to $15,000 in wasted resources. In this
example we deal entirely with losses, and the signs are therefore omitted. We can thus define
the loss function as follows:

H θ1 θ2

h1 $0 $60,000
h2 $15,000 $0

A forecast is made of the height required for the cofferdam in the coming year. Suppose
this gives the probable heights X required, which depend on θ as follows:

X θ1 θ2

2 m .50 .0
3 m .30 .10
4 m .15 .20
5 m .05 .70

There are five decision rules that give the actions under various forecasts F as specified in
the following table:

D 2 m 3 m 4 m 5 m

d1 h1 h1 h1 h1

d2 h1 h1 h1 h2

d3 h1 h1 h2 h2

d4 h1 h2 h2 h2

d5 h2 h2 h2 h2
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Fig. 10.1.4 Decision tree for cofferdam.

From Eq. (10.1.1) the risk functions for each state of nature and decision are as follows:

R(θ1, d1) = 0 × 0.50 + 0 × 0.30 + 0 × 0.15 + 0 × 0.05 = $0.

R(θ1, d2) = 0 × 0.50 + 0 × 0.30 + 0 × 0.15 + 15,000 × 0.05 = $750.

R(θ1, d3) = 0 × 0.80 + 15,000 × 0.20 = $3000.

R(θ1, d4) = 0 × 0.50 + 15,000 × 0.50 = $7500.

R(θ1, d5) = $15,000.

R(θ2, d1) = $60,000.

R(θ2, d2) = 60,000 × 0.30 + 0 × 0.70 = $18,000.

R(θ2, d3) = 60,000 × 0.10 + 0 × 0.90 = $6000.

R(θ2, d4) = 0.

R(θ2, d5) = 0.

From past records, the following prior probabilities are estimated: π (θ1) = 0.7 and π (θ2) =
0.3. Bayes’ risks are then obtained from Eq. (10.1.2), using the prior probabilities as weighting
functions.

B(π, d1) = 0 × 0.7 + 60,000 × 0.3 = $18,000.

B(π, d2) = 750 × 0.7 + 18,000 × 0.3 = $5925.

B(π, d3) = 3000 × 0.7 + 6000 × 0.3 = $3900.

B(π, d4) = 7500 × 0.7 + 0 × 0.3 = $5250.

B(π, d5) = 15, 000 × 0.7 + 0 × 0.3 = $10,500.

The minimum Bayes’ risk is thus given by the third decision, which becomes the Bayes’ rule.
The decision tree for the cofferdam is given in Fig. 10.1.4.

10.1.3 The minimax solution

In Subsection 10.1.2 we used the notion of Bayes’ risk to summarize in a unique form
the information conveyed by a risk function. The average risk under each decision rule
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is evaluated in the application of Bayes’ risk through the prior distribution of the state
of nature. Hence an optimal solution can be found. The minimax method provides an
alternate summary of the risk function by considering maximum risks and then finding
the minimum value of the maximum risks. This procedure is done in the absence of prior
information. The risk varies with the state of nature θ , and the optimal decision is found
within the decision space D. The procedure seems conservative, but in the absence of prior
information it is justifiable if one needs to safeguard against all adverse eventualities. The
minimax decision rule thus points to the decision, say, d∗, that minimizes the maximum
risk, under each decision, as follows:

max
θ∈�

[R(θ, d∗)] = min
d∈D

{
max
θ∈�

[R(θ, d)]
}
.

Example 10.5. Water pipes. Consider the pipes for water supply problem of Example 10.3.
The values in dollars of the risk function are reproduced here, for the four decisions and two
states of nature, with negative values denoting gains.

d1 d2 d3 d4

θ1 −18 −18.3 −32.7 −33
θ2 −3 35.4 −1.4 37

The maximum risks are given in the bottom row (for θ2), so the minimax solution is to take
action d1. As shown in Example 10.3, the Bayes’ rule is d3 based on the prior probabilities
π (θ1) = 0.92 and π (θ2) = 0.08. Calculations show that the minimax decision corresponds to
the range of prior probabilities in which 0 ≤ π (θ1) < 0.1. Therefore the minimax decision
rule seems to be ultraconservative in this case because it is a most uncommon practice to
supply pipes 90% of which are defective!

Example 10.6. Cofferdam. Let us reconsider Example 10.4 and find the corresponding
minimax solution. Each of the five decisions contain a risk that also varies with the state
of nature θ . These risks are shown in the following table. (Given in the last row of the
table are Bayes’ risks evaluated in Example 10.4 for the prior distribution: π (θ1) = 0.7 and
π (θ2) = 0.3.)

d1 d2 d3 d4 d5

θ1 0 750 3,000 7,500 15,000
θ2 60,000 18,000 6,000 0 0
B(π, d) 18,000 5,925 3,900 5,250 10,500

For the minimax solution the maximum risks are $60,000, $18,000, $6,000, $7,500, and
$15,000 under the respective decisions; hence, the minimax rule is d3. As shown in
Example 10.4 and given here, the Bayes’ rule is also d3. It is interesting to note that for
the range of prior probabilities in which 0.6 ≤ π (θ1) ≤ 0.8, the minimax and Bayes’ rules
are the same. Hence the minimax solution seems to be reasonable in this case.

Some of the shortcomings of the minimax method can be overcome, at least in part, by
adopting the minimax regret approach. Suppose we have a net benefit or gain matrix. For
each state of nature θ , we find the maximum gain, corresponding to some decision. Then
the other benefits for that state of nature are subtracted from the maximum benefit and
the differences are termed regret losses. We than proceed as before to find the minimax
solution.
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Example 10.7. Irrigation scheduling. The inflows to a reservoir built for irrigation needs
are random variables. For preliminary purposes the annual yield of the reservoir may be
represented by variables, say, θ1, θ2, and θ3. Early in the year the engineer needs to take one
of three decisions d1, d2, and d3. Each of these are related differently to the following:

(a) The preparation of a variable extent of land for farming.
(b) Decisions on the types of crops to be grown.
(c) Amounts of water to be drawn from external sources or released from the reservoir

for other purposes if a surplus is expected.

The annual net benefits in units of $1000 are given as follows:

d1 d2 d3

θ1 100 80 60
θ2 120 180 140
θ3 150 200 250

We convert the benefit matrix to a regret matrix by subtracting the highest value in each
row from the values in that row. The resulting values represent the opportunity loss for each
decision and state of nature in units of $1000:

d1 d2 d3

θ1 0 20 40
θ2 60 0 40
θ3 100 50 0

Under each decision the maximum losses are $100,000, $50,000, and $40,000. The minimax
solution is to take the action that minimizes these maximum losses. Hence the decision
is d3.

The regrets approach has its advantages as shown here. It should be noted, however,
that differences in regrets may be linearly disproportionate to differences in benefits.

10.1.4 Summary of Section 10.1

In this section we provide a brief introduction to Bayesian decision theory. This involves
loss and risk functions, a prior distribution, and the Bayes’ risk. Then the Bayes’ rule
is given for taking the decision that minimizes the risk. When the true state of nature
may be represented by a few discrete values, decision trees are helpful, as seen here, in
showing the choice of decisions that can be made with respect to expected losses and
risks. The alternative minimax rule is adopted when there is no prior information or when
the prior distribution is vaguely defined. This method may sometimes give results that are
irrational, as in Example 10.5 but not in Example 10.6, which corresponds to a reasonable
prior distribution. The minimax regret method (Example 10.7) may overcome some of the
problems cited.

10.2 POSTERIOR BAYESIAN DECISION ANALYSIS

In this section we apply Bayes’ rule in situations in which a posterior density function
f (θ | x) is estimated on the basis of observations or new data x in addition to a known
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(or sometimes assumed) prior distribution function π (θ ). Let f (x | θ ) denote the likelihood
function of x conditional to a state of nature θ . Then if θ is continuous

f (θ | x) = f (x | θ )π (θ )∫ ∞
−∞ f (x | θ )π (θ )dθ

. (10.2.1)

When discrete values of θ are considered, we should replace the integral in the denominator
on the right-hand side of Eq. (10.2.1) by a summation as follows:

f (θ j | x) = f (x | θ j )π (θ j )∑
i f (x | θi )π (θi )

. (10.2.2)

Corresponding to Eq. (10.1.1), the risk function is defined as

R(θ, d) = E[l{θ, d(x)}] =
∫

l{θ, d(x)} f (θ | x)dθ, (10.2.3)

which depends on the posterior distribution function. The decision d ′ that minimizes the
risk function is called the Bayes’ rule.

10.2.1 Subjective probabilities

As previously noted, engineers sometimes face situations that require knowledge of prob-
abilities without the benefit of knowing repeated outcomes under similar conditions, so
that the long-run frequency approach is not possible. For example, what is the probability
that a pile driven for a foundation will encounter rock at a specified depth? Or what is the
probability that traffic flow will exceed a critical rate 10 years from now? In circumstances
such as these the frequency approach may not apply because the data are not yet available
or it is not possible to carry out the necessary experiment. In such cases it seems justifi-
able to apply subjective probabilities quantifying personal knowledge or belief, such as
the chance of high flows during the coming year that might damage a cofferdam (as in
Example 10.4) or the possibility of rain affecting some important construction work.

In Examples 10.3 and 10.4, prior probabilities were used to obtain the Bayesian decision
rules. We did not state how these probabilities are obtained. It is sometimes possible to
estimate these through the interpretation of frequentists such as Fisher, Neyman, E. S.
Pearson, and Wald. In fact, this classical treatment has been the basis of our previous
chapters (with the exception of the brief introduction in Chapter 2 and the Bayesian
revision of reliability in Chapter 9). However, the approach one follows in situations
discussed in this chapter is more often based on the degree of belief a rational individual has,
according to information available, on the outcome of an uncertain event. The subjective
view of probability, as conveyed by this statement, was expressed by James Bernoulli
in the seventeenth century and, also prior to the twentieth century, by De Morgan and
Laplace. Subsequently, Savage (1954) and de Finetti (1970) were notable among those
advocating this approach.

Prior probabilities can be vague or diffused (that is, noninformative) at times, or more
definitive and impersonal on other occasions, in the manner of Jeffreys (1961) who objected
to the use of subjective probabilities. In any case, Bayes’ theorem provides a method of
revising the probabilities on receipt of additional data as demonstrated in the following
illustrations. When there is inclusion of the subjective element, the activity is usually
called decision making under uncertainty. Decision making with objective probabilities,
on the other hand, is called decision making under risk.
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10.2.2 Loss and utility functions

In Subsection 10.1.1 we obtained the risk function by taking the expectation of the loss
function. As previously emphasized, an engineer has to make decisions, in all phases of
a design and its implementation. These pertain, for example, to heights of dams, depths
of piles, and construction procedures. All are dependent on an unknown state of nature
θ . This is a fixed parameter in classical statistical theory, but in Bayesian decision anal-
ysis it is a random variable, as already mentioned, and is further revised on receipt of
additional information. The objective is to take the optimum decision that minimizes
the risk or loss. The choice of a suitable loss function is perhaps the main problem one
faces in the Bayesian approach; the other concerns the prior distribution (as discussed
in Subsection 10.2.1). It is an accepted fact that accurate estimation of loss functions
is not feasible. An incorrect loss function leads to reduced profits, extra costs, losses,
damages, compensations, and even disasters in some cases. In most circumstances, how-
ever, one can estimate the right type of function with sufficient accuracy. Engineering
experience indicates the shape of the function, but it should be amenable to mathematical
analysis.

For instance, if errors of estimation are not quite serious we may use the loss function
l(θ̃ , θ ) = c | θ̃ − θ | , where c is a constant. Thus, our decision is based on the value θ̃

when the true state of nature is θ . It is more common, however, to choose the stronger
alternative function l(θ̃ , θ ) = c(θ̃ − θ )2, based on squared errors. A notable use of this
function was made in the 1930s by Neyman, Pearson, and Wald in their classical statis-
tical decision theory for estimating an unknown parameter, having disregarded the use
of unbiased estimators. This is also used in James-Stein estimators (Section 10.4). Then
from Eq. (10.2.3),

R(θ̃ , d) = E[l(θ̃ , θ )] =
∞∫

−∞
c(θ̃ − θ )2 f (θ | x)dθ.

Hence,

d R

d θ̃
= 2c

∞∫
−∞

(θ̃ − θ ) f (θ | x)dθ.

Because
∫ ∞
−∞ f (θ | x)dθ = 1, we have for the optimum condition, d R/d θ̃ = 0,

θ̃ =
∞∫

−∞
θ f (θ | x)dθ.

It shows that for the squared-error loss function the posterior mean corresponding to our
optimal decision is the estimator for the state of nature.

Risk analysis applied through Eq. (10.2.3) is equivalent to defining a so-called util-
ity function, U (θ | a) for a state of nature θ conditional to an action a. Such a func-
tion expresses an expected benefit or loss; utility conveys the same meaning as prefer-
ability. The variable can be monetary worth in economic theory or, more importantly
for the civil or environmental engineer, the true state of nature such as the actual
strength of an engineering material or the magnitude of a flood. These functions are
usually nonlinear. When interpreted in a personal sense, a risk seeker’s curve is concave
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Fig. 10.2.1 Utility functions (with constants specified in the text).

upward.2 But more commonly they are concave downward signifying an avoidance of
risk. For example,

U (θ | a) = ba + c[1 − exp(−k(θ − a))], (10.2.4)

where b, c, and k are constants and action a directly reflects the decision regarding the
design value for θ . Two such utility functions are shown in Fig. 10.2.1 for b = 0.8, c =
60,000, and k = 0.00001 and design values of 40,000 and 100,000 N/m2 for θ .

10.2.3 The discrete case

Let us initially consider only discrete values of θ , without the application of a theoretical
probability mass function. As in Eq. (10.2.2), a summation takes the place of the integral
on the right-hand side of Eq. (10.2.3). The discrete case simply involves the substitution
of probabilities and values of risk from data or other means as shown in the following
example:

Example 10.8. Cofferdam. We return again to the problem of the cofferdam of Example
10.4. Let us suppose that on the basis of the depth of the snow cover in the upstream basin, long-
range weather forecasts, and hydrological calculations, it is predicted that the necessary height
of the cofferdam is x = 4 m. From the data provided in Example 10.4, f (4 | θ1) = 0.15 and
f (4 | θ2) = 0.20; also π (θ1) = 0.7 and π (θ2) = 0.3. Hence, from Eq. (10.2.2) the posterior
(conditional) pmf of θ is

f (θ1 | 4) = f (4 | θ1)π (θ1)∑2
i=1 f (4 | θi )π (θi )

= 0.15 × 0.7

0.15 × 0.7 + 0.20 × 0.3
= 0.64.

And

f (θ2 | 4) = 1 − (θ1 | 4) = 0.36.

The decision is either to build a cofferdam of height h1 or a taller one with height h2. From
Eq. (10.2.3) and the loss function defined in Example 10.4, the two actions are associated

2 See, for example, Ingles (1983).
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with posterior risks given by

R(θ, h1) = E[l(θ, h1)]

=
2∑

i=1

(θi , h1) f (θi | 4)

= 0 × 0.64 + 60,000 × 0.36 = $21,600

and

R(θ, h2) = E[l(θ, h2)]

=
2∑

i=1

(θi , h2) f (θi | 4)

= 15,000 × 0.64 + 0 × 36 = $9600.

The posterior Bayes’ rule is to build a cofferdam of height h2 because this entails a smaller
risk. In effect we have reworked the problem of Example 10.4 differently, in a more compact
form, using the posterior distributions. We have come to the same conclusion.

10.2.4 Inference with conditional binomial and prior beta

Let the prior distribution of the state of nature θ be beta(α, β), that is,

π (θ ) = �(α + β)

�(α)�(β)
θα−1(1 − θ )β−1, 0 < θ < 1, α > 0, β > 0, (10.2.5)

= 0, elsewhere.

This distribution is appropriate if θ represents a probability, for example, θ = 1 − F(y),
where the cdf F(y) = Pr[y < Y ] and Y is a random variable such as soil pressure, concrete
strength, or river flow.

If X is the number of exceedances of Y in n independent trials, the sample likelihood
function of X given θ is binomial. That is,

f (x | θ ) =
(

n
x

)
θ x (1 − θ )n−x , for x = 0, 1, 2, . . . , n. (10.2.6)

Hence, the joint density function of X and θ becomes

f (x, θ ) = f (x | θ )π (θ )

=
(

n
x

)
�(α + β)

�(α)�(β)
θα+x−1(1 − θ )β+n−x−1. (10.2.7)

The marginal density function of X is obtained by integrating out θ as follows:

fX (x) =
(

n
x

)
�(α + β)

�(α)�(β)

1∫
0

θα+x−1(1 − θ )β+n−x−1dθ

=
(

n
x

)
�(α + β)

�(α)�(β)

�(α + x)�(β + n − x)

�(α + β + n)
. (10.2.8)

We recognize that Eq. (10.2.8) can be substituted for the denominator of Eq. (10.2.1), and
the posterior density function of θ for a given value of X is obtained using Eq. (10.2.7)
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as follows:

f (θ | x) = �(α + β + n)

�(α + x)�(β + n − x)
θα+x−1(1 − θ )β+n−x−1. (10.2.9)

From Eq. (10.2.5) it follows that Eq. (10.2.9) is the pdf of a beta (α + x, β + n − x)
distribution.

Example 10.9. Protective embankments on the Po. The Po is the largest river basin in Italy.
In the lower reaches of the basin, vast areas of agricultural land are protected by embankments
along both banks of the river. There is concern about the adequacy of the flood protection
scheme. Over a period of 72 years, it is known that the agricultural lands below the city of
Piacenza have been extensively flooded five times, that is, in five different years. Assuming
quite reasonably that the overtopping of the embankments constitutes a series of independent
events, let us determine (a) the probability that the adjacent lands are inundated in the next
year and (b) the probability that lands are safe from flood water during the next 10 years.

Solution. Corresponding to Eq. (10.2.8), X is the number of exceedances over a future period
of n years. The marginal pdf of X is obtained from Eq. (10.2.8) as follows with α = t + 1
and β = m − t + 1:

f (x) = n!

x!(n − x)!

(m + 1)!

t!(m − t)!

(x + t)!(n + m − t − x)!

(n + m + 1)!
,

where m = 72 and t = 5. (Note that 0! = 1.)

(a) n = 1; x = 1

f (1) = 1!

1!0!

73!

5!67!

6!67!

74!
= 6

74
= 0.08.

(b) n = 10; x = 0

f (10) = 10!

0!10!

73!

5!67!

5!77!

83!
= 0.45.

The prior [Eq. (10.2.5), with α = 6 and β = 68)] and posterior [Eq. (10.2.9), with (a) n = 1;
x = 1 and (b) n = 10; x = 0] distributions of θ , the probability of inundation of adjacent
lands, are shown in Fig. 10.2.2.
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It is noted from the preceding and the following examples that the posterior pdf tends to
be taller and hence narrower than the prior pdf. This reflects a reduction in the uncertainty.

10.2.5 Poisson hazards and gamma prior

As discussed in Chapter 4, there are many applications in civil and environmental engi-
neering in which intervals in time or space tend to result from Poisson processes, such as
in traffic flow on busy roads and failures at treatment plants. We noted that the waiting
time between successive events, X , for a homogeneous Poisson process, with parameter
λ, called the hazard rate, is exponentially distributed with pdf

fX (x) = λe−λx , for x ≥ 0, λ > 0,

= 0, otherwise.

For n independent waiting times with sum Sx , the joint pdf is as follows:

f (x1, x2, . . . , xn | λ) =
n∏

i=1

λe−λxi = λne−λSx . (10.2.10)

In Bayesian estimation we noted that the Poisson rate parameter λ is treated as a random
variable. It is reasonable to assume a gamma prior pdf for the hazard rate λ; that is,

π (λ | α, r ) = αrλr−1e−αλ

�(r )
, for λ > 0, (10.2.11)

= 0, otherwise.

The posterior pdf is proportional to the product of Eqs. (10.2.10) and (10.2.11); that is,

f (λ | Sx ) = 1

k

αrλr+n−1e−λ(α+Sx )

�(r )
, (10.2.12)

where k is a constant. We obtain k by integrating out λ as follows [using a substitution
such as z = λ(α + Sx )]:

f (Sx ) =
∞∫

0

αrλr+n−1e−λ(α+Sx )

�(r )
dλ = αr�(r + n)

�(r )(α + Sx )r+n
.

Thus the posterior pdf of λ is

f (λ | Sx ) = (α + Sx )r+n λr+n−1e−λ(α+Sx )

� (r + n)
. (10.2.13)

Example 10.10. Traffic rates. In Example 4.21 we considered, for a Poisson process with
hazard rate λ, the exponentially distributed time intervals between vehicles passing a point
of observation on a road. The following are ten time intervals in minutes between vehicles
observed at another point:

1.2 0.1 1.5 1.0 2.3 0.2 1.4 0.1 1.1 1.3

As just discussed it is reasonable to assume a gamma prior for the Poisson rate parameter λ.
From observations in similar cases, the mean and standard deviation of the rate λ are 2 and
2.828. Hence the parameters for the gamma prior take values α = 0.25 and r = 0.50. Also,
n = 10 and Sx = 10.2 min. The prior pdf of λ from Eq. (10.2.11) is

π (λ | α, r ) = 0.250.50λ−0.5e−0.25λ

�(0.50)
.
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Fig. 10.2.3 Prior and posterior pdfs of the Poisson hazard rate, λ, resulting in exponentially
distributed times between successive vehicles.

After the ten observations are made, the posterior pdf becomes

f (λ | Sx ) = (10.45)10.5λ9.5e−10.45λ

�(10.5)
.

Figure 10.2.3 shows the prior and posterior pdfs for the Poisson rate.

10.2.6 Inferences with normal distribution

Let X1, X2, . . . , Xn be a random sample taken from a distribution N (θ, σ 2) with known
σ 2. Suppose the prior distribution of the mean θ is N (μ0, σ0). In the following equations
we shall use constants k1, k2, k3, k4, and k5 for normalizing purposes. The prior pdf of θ

can be written as

π (θ ) = k1 exp

[
− (θ − μ0)2

2σ 2
0

]
. (10.2.14)

Also, we can write the pdf of X for a given θ as

f (x | θ ) = k2 exp

[
−

∑n
i=1 (xi − θ )2

2σ 2

]
. (10.2.15)

Using the sample mean x̄ , this can also be written as

f (x | θ ) = k2 exp

[
−n(x̄ − θ )2

2σ 2
−

∑n
i=1 (xi − x̄)2

2σ 2

]
.

We can treat the second term, which does not include θ , as a constant. Hence the joint pdf
of x and θ becomes

f (x, θ ) = f (x | θ )π (θ )

= k3 exp

[
−n(x̄ − θ )2

2σ 2
− (θ − μ0)2

2σ 2
0

]
.

After expanding the above equation, we can treat the two terms that do not involve θ as
constants and obtain

f (x, θ ) = k4 exp

[
−θ2

2

(
n

σ 2
+ 1

σ 2
0

)
+ θ

(
nx̄

σ 2
+ μ0

σ 2
0

)]
.
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Using the procedure known as completing the square (on θ ), we can write this equation
as

f (x, θ ) = k5 exp

[
−1

2

(
θ − (nx̄/σ 2) + μ0/σ

2
0

(n/σ 2) + 1/σ 2
0

)2 (
n

σ 2
+ 1

σ 2
0

)]
.

We noted that in Eq. (10.2.1) the denominator is a normalizing constant, so the previous
equation can represent the posterior pdf in the form

f (θ | x) = 1

σ1

√
2π

exp

[
−1

2

(θ − μ1)2

σ 2
1

]
, (10.2.16)

in which

μ1 = σ 2
0 x̄ + μ0σ

2/n

σ 2
0 + σ 2/n

(10.2.17)

is the mean and

σ 2
1 = σ 2

0 σ 2/n

σ 2
0 + σ 2/n

(10.2.18)

is the variance. Thus the posterior mean μ1 is a weighted average of the prior mean μ0

and the sample mean x̄ and it approaches the sample mean x̄ as n becomes very large. In
the case of a diffused or vague prior distribution, σ 2

0 will be high and the posterior mean
μ1 will again approach the sample mean x̄ , and the posterior variance tends to σ 2/n.

The following example, based on the work of Benjamin and Cornell (1970), is on soil
strengths3:

Example 10.11. Soil strengths. Buildings and other structures are planned in several lo-
calities for a new town. Numerous tests have been made in the region on the load-bearing
soils which consist mainly of a reddish-gray clay. It is reported that the standard deviation
is in the narrow range of 14,000–16,000 N/m2, but the mean soil strength S shows a wide
variation. The engineer responsible at a particular site decides that the prior distribution of S
is N (85,000, 11,0002) in metric units. Subsequently, three random soil tests are done from
which the mean strength of 70,000 N/m2 is obtained. Assuming that the standard deviation
σ = 15,000 N/m2, the mean and standard deviation of the posterior N (μ1, σ

2
1 ) distribution

are obtained from Eqs. (10.2.17) and (10.2.18) as follows:

μ1 = 11,0002 × 70,000 + 85,000 × 15,0002/3

11,0002 + 15,0002/3
= 75,740 N/m2

and

σ1 =
√

11,0002 × 15,0002/3

11,0002 + 15,0002/3
= 6804 N/m2.

The prior and posterior distribution are shown in Fig. 10.2.4.
Because the mean soil strength is the important design variable for the foundation of

structures in this locality, a utility function is used for the actual strength, or state of na-
ture, denoted by μs . From previous experience the following function of the type given by
Eq. (10.2.4) is used:

U (μs | a) = ba + c[1 − exp(−k(μs − a))],

3 See also Bayesian estimation of compressive strengths of concrete by Viola (1983).
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Fig. 10.2.4 Prior and posterior pdfs of soil strengths.

where a is the recommended design strength; we also estimate the constants b = 0.8, c =
90,000, and k = 0.00001. The form of this function shows that, if the actual soil strength
is greater than the recommended strength, a small increase in benefit is obtained through
an increased margin of safety; on the other hand, where the true strength is less than that
adopted in the design, the loss increases at a fast rate. One notes also that an increase in
the design strength is reflected in a cheaper design. From the adaptations of Eqs. (10.2.4)
and (10.2.16), the mean utility for a particular value of a is given as follows after some
rearrangement:

E [U | a]

= ba + c − c × exp(ka)
1

σ1

√
2π

∞∫
−∞

exp
−2kμsσ

2
1 − μ2

s + 2μ1μs − μ2
1

2σ 2
1

ds

= ba + c − c × exp(ka)
1

σ1

√
2π

∞∫
−∞

exp
− [

μs − (
μ1 − kσ 2

1

)]2 − 2μ1kσ 2
1 + k2σ 4

1

2σ 2
1

ds

= ba + c − c × exp

(
ka − μ1k + k2σ 2

1

2

)
1

σ1

√
2π

∞∫
−∞

exp
− [

μs − (
μ1 − kσ 2

1

)]2

2σ 2
1

ds

= ba + c − c × exp

(
ka − μ1k + k2σ 2

1

2

)
.

Hence the Bayes’ solution for the optimum design strength of the soil is obtained by maxi-
mizing the expected utility, that is, by differentiating the previous function with respect to a
and equating to zero. After simplification and substituting for the constants b, c, and k and
the posterior mean and standard deviation,

a = μ1 + 1

k
ln

(
b

ck

)
− 1

2
kσ 2

1

= 75,740 + 1

0.00001
ln

(
0.8

90,000 × 0.00001

)
− 0.00001 × 68042

2

= 63,730 N/m2

Figure 10.2.5 shows utility curves of the type shown in Fig. 10.2.1, based on design-
recommended means of 20,000 and 150,000 N/m2 and the optimum design value, which
is approximately 64,000 N/m2.
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Fig. 10.2.5 Three utility functions for design recommendations of 20,000 and 150,000 N/m2 and
optimum design recommendation of 64,000 N/m2 for maximum utility, with c = 90,000, b = 0.8,
and a = 0.00001.

10.2.7 Likelihood ratio testing

We return to the subject of likelihood ratio tests introduced in Subsection 5.4.3. This is
applicable in Bayesian theory with respect to an unknown state of nature, θ (which is
treated as a random variable). Here we consider only prior probabilities (as in Subsections
10.1.1 and 10.1.2). Suppose a random variable X has conditional pdf f (x | θ ). If a random
sample of observations x1, x2, . . . , xn , of size n is available, we can formulate the following
Bayes’ solution for testing hypotheses:

The null hypothesis H0: θ = θ0.
The alternate hypothesis H1: θ = θ1.

The critical region is defined by

L0

L1
=

∏n
i=1 f (xi | θ0)∏n
i=1 f (xi | θ1)

≤ p1

p0
, (10.2.19)

where p0 and p1 are the prior probabilities for the values θ0 and θ1 in the null and alternate
hypotheses, respectively. If in the critical region the ratio (10.2.19) is low, we thus minimize
the Type I error.4 It will be noted that p1/p0 corresponds directly with kα in the Neyman-
Pearson lemma. Thus α and β, the probabilities of a Type I and Type II error, are dependent
on p1/p0.

Example 10.12. Concrete strengths. Several tests on large samples over a long period have
shown that the standard deviation of the 28-day strength of a particular concrete is very nearly
5 N/m2. There is, however, some uncertainty regarding the mean strength. Compression tests
on five test cubes have indicated that the mean 28-day strength is 59 N/m2. Let us state that
the null hypothesis is that the mean strength is 58 N/m2 and the alternate hypothesis is that it
is 62 N/m2:

H0: μ = μ0 = 58 N/m2.
H1: μ = μ1(> μ0) = 62 N/m2.

4 See also Example 5.19 and Problem 10.10.
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Formulate a test of hypothesis with (a) the prior probabilities unknown, and (b) the prior
probabilities (from knowledge of past test results) as .2 and .8 for values of 58 and 62 N/m2,
corresponding to the null and alternate hypotheses, respectively.

Solution. We apply Eq. (10.2.19) and proceed as in Example 5.19 but in a Bayesian frame-
work, considering also the variance σ 2. Within the critical region,

L0

L1
=

∏n
i=1 f (xi | θ0)∏n
i=1 f (xi | θ1)

= exp

[
−

(
n∑

i=1

xi

)
μ1 − μ0

σ 2
+ n

2σ 2

(
μ2

1 − μ2
0

)] ≤ p1

p0
.

After taking logarithms and rearranging terms, the critical region is defined by

x̄ ≥ 1

2
(μ1 + μ0) − σ 2 ln(p1/p0)

n(μ1 − μ0)
.

Note that if the alternative hypothesis is such that μ1 < μ0, the critical region becomes

x̄ ≤ 1

2
(μ1 + μ0) + σ 2 ln(p1/p0)

n(μ0 − μ1)
.

(a) If the prior probabilities are unknown, we make p0 = p1. Then the critical region
simplifies to

x̄ ≥ 1

2
(μ1 + μ0).

That is, x̄ ≥ 1
2 (58 + 62) = 60 N/m2. Because x̄ = 59 N/m2, the null hypothesis is not

rejected.
(b) For the given prior probabilities, the critical region is defined by

x̄ ≥ 1

2
(58 + 62) − 52 ln(0.8/0.2)

5 × 4
= 58.27 N/m2.

In this case the ratio of prior probabilities, with Pr(μ1) > Pr(μ0), has caused a negative
shift in the boundary of the critical region from 60 (for the condition p0 = p1) to 58.27 N/m2.
Thus the null hypothesis is rejected. (Of course, it does not mean that we automatically accept
the alternative hypothesis.)

If Pr(μ0) > Pr(μ1), the shift will be in the opposite direction. As n increases, however,
the influence of the prior probabilities tends to reduce; that is, the information in sample data
will gradually swamp the effects of differences in the prior probabilities. Similar results are
obtained as (μ1 − μ0) increases or when the variance σ 2 decreases.

10.2.8 Summary of Section 10.2

Bayesian methods are discussed here on the basis of prior and posterior distributions with
utility functions. All these are databased, and we may not always find appropriate functions
and suitable constants. More about this follows immediately. How the information col-
lected by engineers is used in a prior distribution varies from one case to another. Almost
invariably, specific assumptions are made. These should be subject to careful scrutiny from
different perspectives. When no information is available, one uses a noninformative prior.

10.3 MARKOV CHAIN MONTE CARLO METHODS

In Section 10.2 we used the normal, gamma, and beta as prior probabilities and found
associated likelihood functions to apply Bayes’ theorem. However, there are many situa-
tions in which the posterior distribution of Eq. (10.2.1) is not easily obtained. One can use
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numerical integration techniques in an attempt to solve the problem, but this is usually very
cumbersome. The current widely accepted practice in such situations is to use the Markov
chain Monte Carlo (MCMC) method. In this way one constructs a Markov chain whose
stationary and ergodic distribution is the posterior distribution from Bayes’ theorem, that
is, intractable by analytical means. The theory and numerous applications from diverse
fields are given by Gilks et al. (1996). A commonly used technique of implementation
is the Gibbs sampler, which is a special type of MCMC (see, for example, Casella and
George, 1992). It is named after the physicist J. W. Gibbs because of the analogy between
the sampling algorithm and statistical physics. This multivariate simulation procedure in-
volves the replacement of a component by drawing from its conditional distribution given
the current values of all other components, using available data. We present the basic idea
of this Bayesian updating method.

For a variable X , a Markov chain with stationary distribution π (x) is constructed as
follows. Under certain conditions, the sample output from the chain can be used asymptoti-
cally to estimate the expected value with respect to π (x) of a function, say, f (x) of interest.
Let π (x) = π (x1, x2, . . . , xn) denote a joint pdf of the components xi , i = 1, 2, . . . , n.
Also, let π (xi | xi−1) denote the conditional densities of each of the components xi using
values of the other components. We commence at stage 0, say, by taking arbitrary start-
ing values, x0 = (x0

1 , . . . , x0
n ). For the next stage, we draw randomly from conditional

distributions π (xi | xi−1), i = 1, 2, . . . , n, as follows:

x1
1 from π

(
x1 | x0

2 , x0
3 , . . . , x0

n

)
,

x1
2 from π

(
x2 | x1

1 , x0
3 , . . . , x0

n

)
,

...

x1
n from π

(
xn | x1

1 , x1
2 , . . . , x1

n−1

)
.

Note that the conditionality is the key feature. Thus, after the first iteration we transit from
x0 = (x0

1 , . . . , x0
n ) to x1 = (x1

1 , . . . , x1
n ). On completion of t and more such iterations,

we have a sequence x0, x1, . . . , xt , . . . , which is a realization of a Markov chain (see,
for example, Gelfand et al., 1990). When all distributions are taken as conditional on
the data, as shown in the following example, the marginal equilibrium distributions give
the marginal posteriors as in Bayes’ theorem. Because multivariate Bayesian methods are
usually specified as an ensemble of conditional distributions, the Gibbs sampler can be
appropriately and easily adopted.

Repeated simulations are required to reach the desired states of stationarity and er-
godicity. The speed of convergence depends on the strength of dependence between the
components.

Example 10.13. Climatic trends and periodicities. In this case study we combine initial
assumptions about model parameters, such as trend and periodicity with observations to
obtain the posterior distribution on the parameter space through a Bayesian framework, after
repeated simulations.

Here we consider a monthly time series of mean temperature, as a climatic variable. The
series is expressed in the classical additive form by

yi = ti + pi + ηi ,

in which at time i, yi represents the observed value of the variable, ti and pi are the parameters
of trend and periodicity, respectively, and ηi is a random component.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 15, 2008 7:27

Bayesian Decision Methods and Parameter Uncertainty 645

The trend component is incremented as follows:

ti+1 = ti + si ,

using an auxiliary variable si . The uncertainty in the trend is modeled as

si+1 = si + ω1i ,

in which ω1i is a “latent” variable (in Bayesian terminology) that describes the random
fluctuations in this component. With regard to the periodicity component, we simplify this
component so that it is modeled as a truncated Fourier series, in the usual way, but including
only the fundamental frequency, f = 1/12 (per month, corresponding to the annual cycle),
that is, with only one harmonic. This gives a close representation for monthly mean temper-
atures and generally provides a good approximation for some other monthly climatic series.
More about this follows. Accordingly, the periodicity component is modeled, following West
and Harrison (1997), as

pi+1 = pi cos (2π f ) + qi sin (2π f )

and

qi+1 = −pi sin (2π f ) + qi cos (2π f ) + ω2i ,

using an auxiliary variable qi , and another “latent” variable ω2i that describes the random
fluctuations in this component. Thus, the trend component is treated as a simple linear process
whereas the periodicity component is a linear sum of sine and cosine curves. The advantage
in this type of nonstationary modeling is that one can incorporate changes in the mean level
from year to year and also differences in the cyclical structure.

The dynamic linear model of the system, also called the state space model, is then written
as follows in a form similar to the well-known Kalman filter:

xi+1 = Fxi + Gωi

yi = Hxi + ηi

where yi represents the input data,

xi = [ti , si , pi , qi ]
T ,

and

ωi = [
ω1i , ω2i

]T
.

Also,

H = [
1 0 1 0

]
,

G =
[

0 1 0 0

0 0 0 1

]T

,

and

F =

⎡⎢⎢⎢⎢⎣
1 1 0 0

0 1 0 0

0 0 cos (2π/12) sin (2π/12)

0 0 − sin (2π/12) cos (2π/12)

⎤⎥⎥⎥⎥⎦ .

To facilitate the application of the Gibbs sampler we adopt a generalized approach by
modeling the state variables as random walks in which the variances are treated as parameters
within a Bayesian estimation framework, in the manner of West and Harrison (1997). Accord-
ingly, we write the stochastic dynamic model in a static form. For the static representation
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we follow Magni and Bellazi (2004):

y = Az + ηη

x = Bz

Here y represents n observations, corresponding to which ηη signifies n measurement errors
and x denotes the 2n values of the trend and periodicity components to be evaluated, and z is
a variable incorporating the four initial conditions of t , s, p, and q followed by the 2 (n − 1)
“latent” variables of the trend and periodicity components.

Thus,

x = [ t0 p0 · · · tn−1 pn−1 ]T,

y = [ y0 · · · yn−1 ]T,

ηη = [ η0 · · · ηn−1 ]T,

and

z = [
t0 s0 p0 q0 ω10 ω20 · · · ω1n−2 ω2n−2

]T
.

Also, the A and B matrices, of sizes n × (2n + 2) and 2n × (2n + 2), respectively, of constants
are functions of the F, G, and H matrixes of the original state space model as follows:

A =

⎡⎢⎢⎢⎣
H 0 · · · 0

HF HG · · · 0
...

...
...

HFn−1 HFn−2G · · · HG

⎤⎥⎥⎥⎦
and

B =

⎡⎢⎢⎢⎣
M 0 · · · 0

MF MG · · · 0
...

...
...

MFn−1 MFn−2G · · · MG

⎤⎥⎥⎥⎦ ,

in which

M =
[

1 0 0 0
0 0 1 0

].

We note that the size of the square F matrix will increase if one increases the number of
harmonics in the periodicity component from 1, toward the maximum of 6 for monthly time
intervals; correspondingly, the dimensions of the H, G, and M matrixes and the length of the
z vector will also increase.

To implement the scheme, one needs to specify the probability distributions of the error
terms. This also applies to the initial states. Let us assume that

Pr [ωki ] = N
(
0, σ 2

ωk

)
, for k = 1, 2, . . . ,

Pr [ηi ] = N
(
0, σ 2

ηi

)
,

and

Pr [x0] = N
(

0, diag
[
σ 2

x01
σ 2

x02
σ 2

x03
σ 2

x04

])
,

where N (., .) denotes the multinormal distribution and diag [··] signifies a diagonal matrix.
Unlike in the Kalman filter, we treat σ 2

ω1
and σ 2

ω2
as parameters to be estimated from the

data within the Bayesian framework through repeated simulations. We assume that these
unknown variances pertaining to trend and periodicity, respectively, have inverse gamma
distributions, which is a reasonable assumption, as in Gilks et al. (1996). For the prior state
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these distributions are vaguely defined; that is, they are taken to be somewhat like uniform
so that the final estimates do not have a large latent variable. Since the initial values of the
t , s, p, and q variables of the trend and periodicity components are assumed arbitrarily, as
stated, their variances are taken sufficiently large so that the data will dominate the posterior
distribution.

In order to update trend and periodicity through Bayes’ theorem, we need to compute the
first two moments of the joint posterior probability

Pr
[
t, p, σ 2

ω1
, σ 2

ω2
|y ]

,

where for n values of data y, t = [ t0 · · · tn−1 ]T and p = [ p0 · · · pn−1 ]T are the trend and
periodicity components, respectively. To solve this problem, we implement the MCMC pro-
cedure through Gibbs sampling. We commence by partitioning the random parameters into
three groups or subsets: σ 2

ω1
, σ 2

ω2
, and z. It means that, the algorithm should accommodate a

scheme that extracts a sample in each iteration from each of the following three conditional
distributions (that is, the distribution of a variable conditioned on the other variables and
sample data, y) based on the previously stated strategy for Gibbs sampling:

Pr

[
1

σ 2
ω1

∣∣∣∣∣σ 2
ω2

, z, y

]
= �

(
n

2
+ γ1,

(
ωT

1 ω1

)
2

+ γ2

)
,

Pr

[
1

σ 2
ω2

∣∣∣∣∣σ 2
ω1

, z, y

]
= �

(
n

2
+ γ3,

(
ωT

2 ω2

)
2

+ γ4

)
,

and

Pr
[
z
∣∣σ 2

ω1
, σ 2

ω2
, y

] = N

(
D−1AT

−1∑
η−1

y, D−1

)
,

with D = AT
−1∑
η

A +
−1∑
z

,

in which � (., .) is the gamma distribution. N (., .) is the multinormal distribution, and ωi =
[ωi0 · · · ωin−2 ]T for i = 1, 2, and (γ1, . . . , γ4) pertain to the (initially prior) parameters of the
gamma distributions of 1/σ 2

ω1
, 1/σ 2

ω2
. The sample data are given by y as defined previously.

Also,∑
η

= diag
([

σ 2
η0

· · · σ 2
ηn−1

])
and

∑
z

= diag
([

σ 2
x01

σ 2
x02

· · · σ 2
x04

σ2
ω

])
,

where σ2
ω is a vector containing the sequence {σ 2

ω1
, σ 2

ω2
} repeated (n − 1) times.

The algorithm can be summarized as follows:

(1) We commence with prior values of the vectors ω1 and ω2, on which the current
distributions of the unknown variances σ 2

ω1
and σ 2

ω2
in the random components of

trend and periodicity, respectively, depend as previously defined. Hence, the dependent
parameters of the respective inverse gamma distributions, as specified above, are taken
to the next step; we tried values of 1, 10, 0.1, and 10, respectively, for γ1, γ2, γ3, and
γ4 as prior values, but note that γ1 and γ3 are invariable in our scheme.

(2) The samples of Pr [z | σ 2
ω1

, σ 2
ω2

, y] are drawn iteratively by the Bayesian estimator and
Gibbs sampler. This is in the main loop of the computer programme for simulation.

The vector z is simulated through the multinormal distribution conditioned on sam-
ple data y and the two variances of the ω1 and ω2 vectors. Recall that the variable
z contains, except for the four initial conditions of t, s, p, and q at the beginning,
alternating values of ω1i and ω2i , for each successive value of i . The current vector z
forms a new row in the matrix Z, at each iteration.

(3) New values of the ω1 and ω2 vectors are abstracted from Z.
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Fig. 10.3.1 Monthly mean temperature in Chateau-d’Oex, in the Lake Geneva region of
southwestern Switzerland, for the period 1901–2004 with the data grouped by years.

(4) The new values of the ω1 and ω2 vectors are taken to step (1) each time in the stated
loop, considering current (post prior) values of the gamma parameters. Their respective
updated variances are simulated using the specified gamma simulators.

(5) From these iterations k series (runs or vectors z) are obtained for Z: step (2).
(6) Then the initial si series are discarded and the mean values of a z row vector are formed

by averaging the sr = k − si remaining series for each point in time. Desirable values
of si and sr are subject to experimental investigation in order to stabilize the final
series.

(7) We draw the sampling posterior distribution of the trend and periodicity components
by a direct transformation of (the mean of) z to x using the equation x = Bz of our
model.

Figure 10.3.1 gives the monthly mean temperature at Chateaux-D’oex, in the Geneva
region of southwestern Switzerland, for the period 1901–2001. The data are listed in Table
E.10.1 in degrees centigrade. Also shown in Fig. 10.3.1 are annual mean temperatures. The
variability in the annual mean temperatures is of course much smaller than in the monthly
data. The annual temperature data does not show a significant trend except for a rise after the
third quarter of the past century, or thereabouts.

The Bayesian estimation and Gibbs sampling scheme is then applied to the monthly tem-
peratures in Chateaux-D’oex from 1901 to 2001. Figure 10.3.2 shows the stochastic trend
component. This does not indicate any general movement, except that there is a late rise
during the fourth quarter of the last century as seen in Fig. 10.3.1. However, it shows a sim-
ilar rise in the first quarter followed by a steady decline in the second and third quarters.
Figure 10.3.3 shows the stochastic periodicity component for the some period. This has sharp
irregular movements within periods of 12 months. The differences in amplitudes between
years indicate the nonstationarity of the periodicity component.
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Fig. 10.3.2 Monthly mean temperature in Chateau-d’Oex, in the Lake Geneva region of
southwestern Switzerland, for the period 1901–2004 with the trend component from Gibbs
sampling.

Conditional distributions that are not of a standard form that is easy to apply, or the
fact that the model is not tractable enough, warrant the use of the original Metropolis-
Hastings algorithm for the individual components. In this wide approach, a powerful
Markov chain method is used to simulate multivariate distributions by implementing a
random walk procedure and an acceptance-rejection sampling scheme (see, for example,
Chib and Greenberg, 1995). Details of the Gibbs sampler and the Metropolis-Hastings
algorithm are also provided by Smith and Roberts (1993), among others. Applications of
the Gibbs sampler have been made in diverse fields, for example, in medicine as discussed
by Gilks et al. (1993).5 The Bugs manual (Spiegelhalter et al., 2003) originally written
for medical research is an aid for users (website: http://www.mrc-bsu.com.ac.uk/bugs).

5 See also Kottegoda et al. (2007).
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Fig. 10.3.3 Monthly mean temperature in Chateau-d’Oex, in the Lake Geneva region of
southwestern Switzerland, for the period 1901–2004 with the periodicity component from Gibbs
sampling.

10.4 JAMES-STEIN ESTIMATORS

In this section we consider briefly a class of estimators called James-Stein estimators that
have proved to be efficient as data analytic tools. The procedure concerns the simultaneous
estimation of several means μi , i = 1, 2, . . . , k, where k > 2, coming from mutually
independent normal populations that are not identically distributed.6 These estimators
have the advantage that information on prior distributions is not required. The subject is
included in this chapter because of similarities with Bayesian methods. (We noted that the

6 See James and Stein (1981), Lehmann and Casella (1998), and Casella and Berger (2002, pp. 574–576).
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uncertainty in the estimation of the prior distribution had provided grounds for criticism
of the Bayesian approach.)

Efron and Morris (1977) give a nonmathematical introduction. They show how the
James-Stein results sometimes contradict a basic law in classical statistics, going back to
Gauss, Legendre, and others, which states that the arithmetic mean is uniformly superior
to other comparable estimators. Originally, Stein (1956) had shown that in terms of a
form of mean squared error, this estimator was suboptimal, in a multivariate context; an
improvement can be obtained by deliberately introducing some bias. Efron and Morris
(1977) demonstrate the apparent paradox by finding estimators Xi primarily for the batting
averages of 18 baseball players who performed in the 1970 season. Using James-Stein
procedures for the estimate of a player’s future batting ability is more likely to be closer
to a particular average obtained from the grand average

X̄ =
∑k

i=1 X̄i

k

of all k = 18 players than an individual player’s own past average. It is shown that such
averages shrink toward the overall average.

A simple version of the James-Stein estimator gives the shrunken mean for each player
as

Z (Xi ) = X̄ + c(Xi − X̄ ), for i = 1, 2, . . . , k, (10.4.1a)

in which c is a constant called the shrinking factor. This factor is obtained from

c = 1 − (k − 3)σ 2∑k
i=1 (Xi − X̄ )2

, (10.4.1b)

where σ 2 is the variance. In the application cited, observed batting averages and the James-
Stein estimates from the early part of the 1970 season were compared with the averages
from the players’ subsequent performances during the same year, in which there were nine
times as much data. The sum of the squared errors of the observed arithmetic averages
was found to be 3.5 times that of the James-Stein estimates. This result was expected
because the risk function of the James-Stein estimator is less than that for the sample
average. However, this estimator is inadmissible if the constant c becomes negative. Then
one simply takes the grand average, that is, Z (Xi ) = X̄ .

There are alternatives to Eq. (10.4.1), such as the following James-Stein estimator:

Z∗(X̄i ) =
(

1 − (k − 2)σ 2

n
∑k

j=1 X̄2
j

)
X̄i , for i = 1, 2, . . . , k, (10.4.2)

in which Xi j ≈ N (μi , σ
2) for i = 1, 2, . . . , k and j = 1, 2, . . . , n. That is, the series are

of length n and have a common variance σ 2 but their means are different as stated before.
Also, they are all independent.

Example 10.14. Annual rainfall. There are several data series in civil and environmental
engineering in which the James-Stein estimators may be applicable. However the somewhat
stringent conditions preclude some types. One application that seems to be appropriate is
annual precipitation. This is true because by the central limit theorem it tends to be normally
distributed and the series are not usually correlated between different series and within them.
In this example we use ten series from the Puyango basin, Ecuador. They span 23 years
from 1963 to 1985 and are listed in Table E.10.2 in millimeters. The means and standard
deviations are also shown. The means vary over a narrow range with six values in the 1300s.
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Table 10.4.1 Correlation matrix of annual rainfall at ten stations in Ecuador

Station 1 2 3 4 5 6 7 8 9 10

1 1.000 0.009 0.036 0.210 0.176 −0.002 0.111 0.029 −0.153 0.200
2 0.009 1.000 0.590 0.665 0.078 0.872 0.233 0.676 0.467 0.329
3 0.036 0.590 1.000 0.858 0.250 0.780 0.166 0.735 0.441 0.107
4 0.210 0.665 0.858 1.000 0.342 0.850 0.368 0.725 0.332 0.368
5 0.176 0.078 0.250 0.342 1.000 0.165 0.047 0.097 0.023 0.512
6 0.002 0.872 0.780 0.850 0.165 1.000 0.351 0.792 0.425 0.237
7 0.111 0.233 0.166 0.368 0.047 0.351 1.000 0.257 0.096 0.180
8 0.029 0.676 0.735 0.725 0.097 0.792 0.257 1.000 0.610 0.321
9 −0.153 0.467 0.441 0.332 0.023 0.425 0.096 0.610 1.000 0.011

10 0.200 0.329 0.107 0.368 0.512 0.237 0.180 0.321 0.011 1.000

The standards deviation of the first series is significantly lower than the others. Many of the
other values are not very different from each other. Furthermore, it is seen in the correlation
matrix, Table 10.4.1, that some series are correlated.

Many of the correlations are not significant. Although the model assumptions (constant
variance and independence) are violated in some cases, we proceeded with the application of
the James-Stein estimator. Initially we estimated the averages from the first n years, where
n = 8, 9, 10, . . . , 20. We find the reduction factors and compare the averages of the remaining
data with (a) the averages of the first n years and (b) the James-Stein averages. As shown in
the last two columns of Table 10.4.2 from the sum of least squares, the James-Stein estimator
performed marginally better for values of n ranging from 10 to 18 years. Because of the
inadequate length of the series, strong conclusions cannot be made.

This procedure can be extended, for instance, to estimate the variance from replicates.

Table 10.4.2 James-Stein estimation of Ecuador annual rainfalls

Forecast for next
(23 − n) yearsa

Estimated from Mean Standard Reduction SSEOBM SSEJSE
first n years (mm) deviation (mm) coefficient (mm2) (mm2)

n = 8 1099.9 547.2 0.9768 751,876 791,459
9 1109.6 518.6 0.9816 662,611 694,286
10 1187.6 676.1 0.9754 498,937 468,100
11 1218.1 669.7 0.979 452,658 399,002
12 1203.6 648.9 0.9815 502,320 464,007
13 1224.8 635.5 0.9841 569,913 515,726
14 1245.8 628.6 0.9859 778,903 708,549
15 1228.9 613.7 0.9871 695,300 639,621
16 1207.8 607.1 0.9877 868,762 831,572
17 1190.4 599.1 0.9884 706,874 685,292
18 1173.5 592.4 0.989 785,884 782,017
19 1158.1 587.7 0.9895 825,835 842,967
20 1156.8 580.9 0.9903 1,059,582 1,080,825

a SSEOBM: sum of squared errors from observed mean; SSEJSE: sum of squared errors from James-Stein
estimator.
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10.5 SUMMARY AND DISCUSSION OF CHAPTER 10

In this chapter we have introduced some aspects of Bayesian decision theory that should
serve as useful tools for civil and environmental engineers. We have also provided details
of the associated subjects of likelihood ratio testing and James-Stein method of estimation
with practical applications.

Depending on the subject investigated and data available, one may decide whether a
Bayesian or classical approach or a combination of both is suitable. (It is noted, inciden-
tally, that if sample sizes are small, more statisticians tend to follow Bayesian methods.)
Previously, Bayesian methods seem to have found favor in the economic and business
communities, partly because loss functions seem more straightforward to them. In the
toolkits of scientists and engineers, on the other hand, there have been some signs of rust.
The main reasons that practicing statisticians have tended to avoid Bayesian methods are
the problem of prior probabilities, which are generally unknown or vaguely defined, and
hence the use of subjective probabilities. Another reason has been inadequate comput-
ing facilities, but this has progressively become less of an issue. Difficulties have also
arisen because of the lack of experience, which is assumed. However, a paper presented
by Racine et al. (1986) to the Royal Statistical Society on the practical experiences in the
pharmaceutical industry (with published data, which is a rarity, and numerous high-level
discussions) provided insights, albeit at a sophisticated level.

During the past decade the Bayesian approach has been revolutionized. The recent
popularity is due to the advent of Markov chain Monte Carlo methods. The Gibbs sam-
pler and the Metropolis-Hastings algorithm are used increasingly by a wide spectrum
of applicants in common situations where direct application of Bayesian methods is not
possible.

In spite of the initial problems and uncertainties involved, revision of probabilities
on receipt of additional data and consequent decision making is being implemented in
one way or another. (This is in line with the Laplacian dictum of treating probability as
calculations based on common sense.) There is widespread recognition of the iterative
nature of scientific investigations. One learns from the past, then reformulates the anal-
ysis and design, makes additional experiments, and gathers more information. Further
fitting and verification follow. The problem of prior probabilities will then fade into the
past. This procedure should make the task of the decision maker less and less subject to
error.
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PROBLEMS

10.1. Treatment plant design. Design I of a wastewater plant for a new community is
based on the expectation that some heavy industries will be established in the area.
This eventuality has an estimated probability of 0.9. Some alternative designs are
considered. The cost of implementing Design I(a) is $300,000 and Design I(b) is
$400,000. These designs are based on effluents of two types (depending on types of
possible heavy industries) that have equal probabilities, given a positive decision
on citing the industries here. If these industries are not established in the area, a
loss $150,000 will be incurred because of modifications to the plant in Design I(a).
Furthermore, if Design I(a) is implemented, whereas subsequently Design I(b) is
found to be necessary, an additional cost of $150,000 will be incurred. (Design
I(b) is versatile in all these aspects.)

Design II, on the other hand, costs $170,000 to implement and does not take
account of the extra industrial effluent; however, if the industries are cited in the
area, it is deemed that extensions costing an estimated $330,000 will be necessary
to meet the increased demand.

Sketch a tree diagram and show the expected risks. What decision should be
taken?

10.2. Decision tree and utility curve. A structural engineer has to choose an action
from three alternatives a1, a2, and a3. The state of nature to cope with is the
modulus of elasticity used in the design. Suppose the unknown states of nature
are approximated discretely by θ1, θ2, and θ3. The monetary values of action a1

consequent to the three states of nature are estimated as $500,000, $150,000, and
−$300,000, respectively. The corresponding values are $250,000, $200,000, and
−$100,000 for action a2 and $200,000, $50,000, and −$50,000 for action a3.
Sketch the decision tree. Assigning a utility value of +1 unit to the highest of
these monetary values and −1 unit to the lowest value, draw three utility curves to
typically represent (a) a risk seeker, (b) a risk avoider, and (c) a large organization
with a balanced view on risk taking. In case (c) what utility should be assigned for
the outcome of the second action and the third state of nature.

10.3. Rural water supply. A contractor has the job of providing water to communities
in a rural area by drilling boreholes. There is uncertainty regarding the depth of
the groundwater level. Experience elsewhere suggests an assumption of either 10
m or 20 m. It is necessary to acquire well-casing, pumps, and other equipment in
advance because of time factors. If an incorrect choice of depth is made, a loss
will be incurred in monetary units as follows:

Water depth

Purchase equipment for depth 10 m 20 m

10 m No loss 150 units
20 m 50 units No loss

From data of other wells in the region the following prior probabilities are assumed:

Pr(depth 10 m) = 0.7.

Pr(depth 20 m) = 0.3.
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Draw the decision tree and show the expected risks. Determine the Bayes’ rule.
Compare with the minimax solution.
A hydrogeologist is consulted on the optimum depth. The following likelihoods
are assigned to the predictions:

Actual depth

Indicated depth 10 m 20 m

10 m 0.7 0.1
20 m 0.3 0.9

Obtain the posterior probabilities of the two states of nature conditional to the
predictions. Determine the expected risks for each prediction.

10.4. Pipes and cofferdam. Find solutions to the pipes-for-water-supply (Example 10.3)
and cofferdam (Example 10.4) problems using the following criteria:

(a) Bayesian theory with uniform prior.
(b) Maximax (maximize maximum profit or minimize minimum loss).

10.5. Water projects. Water supply schemes are planned for three new towns: X, Y, and
Z. Designs are based on projected populations 10 years hence. Future populations
with approximated probabilities are as follows:

Probability

Town 0.25 0.50 0.25

X 90,000 100,000 120,000
Y 125,000 150,000 175,000
Z 160,000 190,000 250,000

Assume that the water demand is 100 L per day per head of population. The cost
C in dollars per million liters per day varies with size S of water supply scheme
in liters per day as follows:

C = − S

10
+ 100, 000.

Assume additional supply is sold to local industries at $70,000 per million liters
per day and any shortfall is met from alternate sources at $130,000 per million
liters per day. Determine the optimum sizes of plants at X, Y, and Z on the basis
of expected minimum costs and sizes given by the above forecasts of population.

10.6. Contractor’s utility function. Suppose the utility function of the contractor in
Example 10.1 is defined by the following pairs of utilities (in the range 0–100
units) and gains in units of $100,000:

Utility Gain

100 2.30
80 1.25
60 0.90
40 0.60
20 0.50

0 0.25
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What decision should be taken if the expected utility were to be maximized and
the probabilities of winning either contract are equal.

10.7. Earth dam. Two designs are submitted for an earth dam. Design I is based on
locally available materials, and its implementation is estimated to cost $1,000,000.
For Design II 5000 m3of a particular type of clay is required. The engineer’s
estimated pdf of the availability X of the clayey material in the vicinity of the
dam is uniform (0, 7000 m3). The estimated cost of implementing Design II is
$650,000; however, the average cost of hauling any extra material from outside
the area at $100 per m3should be added. Which design should be accepted on the
basis of expected least cost? What decision should be taken if the engineer’s pdf
for X is

fX (x) = 1

3500
exp

(
− x

3500

)
?

10.8. Soil strengths with uniform prior. In Example 10.11, the engineer decided that
the prior distribution of the soil strength is N (85,000, 11,0002). Determine the
posterior distribution and the optimum design strength assuming that the prior
distribution is uniform (75,000, 95,000).

10.9. Loss functions. It was shown that in the case of squared loss function, the Bayes’
estimator is the mean value of the state of nature θ . What estimator is obtained if
the loss function is (a) constant and (b) linear with respect to θ?

10.10. Traffic rates. In Example 10.10 ten exponentially distributed waiting times be-
tween successive vehicles are given. Using this data, formulate and apply a likeli-
hood ratio test in which the null hypothesis is that the parameter is 1 minute and
the alternative hypothesis is that it is 0.9 minute, if (a) the prior probabilities are
0.4 and 0.6, respectively, (b) the prior probabilities are unknown. Show how the
Type I and Type II errors of the test, α and β, respectively, can be calculated.

10.11. Traffic rates. In Example 10.10, estimate the Poisson parameter λ using the pos-
terior mean. Compare with the moments or ML estimator. What is the significance
of the difference?

10.12. Ecuador rainfalls. From the data used in Example 10.14 choose some series which
meet the model requirements more closely and repeat the exercise of comparing
the past averages with the James-Stein estimators for predicting the future averages
(see Table E.10.2). The lag-l serial correlation (of variables that are l units apart
in time) may be estimated, say, for l = 1, 2, and 3, as follows:

rl =
∑n−l

t=1 (xt − x̄)(xt+l − x̄)∑n
t=1 (xt − x̄)2

.

In an independent time series the rl , l 
= 0 have an approximate N (0, 1/n) distri-
bution. Are the conclusions from the reduced data set substantially different?
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Appendix A

Further Mathematics

A.1 CHEBYSHEV INEQUALITY

Consider a nonnegative function h(X ) of a continuous random variable X with pdf fX (x)

E[h(X )] =
∞∫

−∞
h(x) fX (x)dx =

∫
x,h(x)<m

h(x) fX (x)dx +
∫

x,h(x)≥m

h(x) fX (x)dx,

where m is a positive constant. Because the two terms on the right-hand side are positive,

E[h(X )] ≥
∫

x,h(x)≥m

h(x) fX (x)dx ≥
∫

x,h(x)≥m

m fX (x)dx = m Pr[h(X ) ≥ m].

Hence,

Pr[h(X ) ≥ m] ≤ m−1 E[h(X )].

A.2 CONVEX FUNCTION AND JENSEN INEQUALITY

A continuous function h(x) is by definition convex if for every x on the real line, there
is a straight line which passes through the point {x, h(x)} and is situated on or under the
curve representing h(x). Hence the saying that h(x) can “hold water.”

Consider a continuous random variable X with mean E[X ] and a straight line f (x) =
β0 + β1x that passes through the point [E[X ], h{E[X ]}]. Because

E[ f (X )] = β1 E[X ] + β0 = f {E[X ]},
h{E[X ]} = f {E[X ]} = E[ f (X )].

Also, in the case of two functions h(x) and f (x) where h(x) is equal to or greater than
f (x) for all values of x, E[h(X )] ≥ E[ f (X )]. Thus,

E[h(X )] ≥ h{E[X ]}.

A.3 DERIVATION OF POISSON DISTRIBUTION

Let the term o(�t) denote a function such that

lim
�t→0

o (�t)

�t
= 0.

Let Px (t + �t) denote the probability that there are exactly x arrivals in the interval
(0, t + �t]. Similarly, let Px (t) and Px (�t) denote the probabilities that there are x arrivals
in the intervals (0, t] and (t , t + �t], respectively. Because of the Poisson postulate 3 of
independence,

P0(t + �t) = P0(t)P0(�t).

659
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Considering also that the mean rate of occurrence of a Poisson arrival is λ,

P0(�t) = 1 − Px>0(�t) = (1 − λ�t − o(�t)),

in which the last term is introduced because, as already discussed, the probability
Px>0(�t) = P1(�t) = λ�t is only an approximation. From the previous equations,

P0(t + �t) = P0(t)(1 − λ�t − o(�t)).

By rearranging terms and in the limit as �t → 0,

lim �t → 0

[
P0(t + �t) − P0(t)

�t

]
= P ′

0(t) = −λP0(t).

Because P0(0) = 1, it follows that

P0(t) = e−λt .

Also, it follows from the theorem of total probability that

P1(t + �t) = P1(t)P0(�t) + P0(t)P1(�t)

= P1(t)[1 − λ�t − o(�t)] + P0(t)[λ�t + o(�t)].

As �t → 0,

P ′
1(t) = P1 (t + �t) − P1 (t)

�t
= −λP1(t) + λP0(t).

Similarly, by induction

P ′
x (t) = −λPx (t) + λPx−1(t).

We thus have a system of differential equations, and it is easy to verify that the solution is

Px (t) = (λt)x e−λt

x!
.

We let v = λt and hence obtain the Poisson pmf as defined by Eq. (4.1.7),

pX (x) ≡ Pr(X = x |v) = vx e−v

x!
, for x = 0, 1, 2, . . . , and v > 0.

A.4 DERIVATION OF THE NORMAL DISTRIBUTION

The normal curve was originated in the eighteenth century by De Moivre and developed
as a mathematical tool notably by Gauss, whose work in astronomy led to the normal law
of errors (which denote differences between estimated values and observations), and also
by Laplace. The representative bell-shaped curve takes the form

g(x) = e−z2/2, for −∞ < z < ∞,

which is proportional to the pdf of a large number of independent errors.
To put this in the form of a pdf, one must divide the right-hand side by its complete inte-

gral which can be equated to a constant, say, c. This is, of course, an essential requirement
for a pdf. Thus,

c =
∞∫

−∞
exp

(
− y2

2

)
dy.
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We can also write

c2 =
∞∫

−∞
exp

(
−u2

2

)
du

∞∫
−∞

exp

(
−v2

2

)
dv =

∞∫
−∞

∞∫
−∞

exp

(
−u2 + v2

2

)
du dv,

where the double integral replaces the product of two integrals. Let us change the variables
to polar coordinates by the transformations u = r sin θ and v = r cos θ . Hence u2 + v2 =
r2. The double integral given in the preceding equation represents the volume under a
surface; in the polar system of coordinates an elementary area is rδθδr . Also, because
0 ≤ θ ≤ 2π and 0 ≤ r ≤ ∞,

c2 =
∞∫

0

2π∫
0

exp

(
−r2

2

)
rdθdr = 2π

∞∫
0

exp

(
−r2

2

)
rdr

= 2π

[
−

(
exp

(
−r2

2

))]∞

0

= 2π.

Hence the pdf of a N (0, 1) variable is

φ(z) = 1√
2π

exp

(
− z2

2

)
.

If we use the transformation x = σ z + μ,

fX (x) = 1

σ
√

2π
exp

[
−1

2

(
x − μ

σ

)2
]

, for −∞ ≤ x ≤ ∞,

is the pdf of an N (μ, σ 2) distribution; the first σ term is a consequence of Eq. (3.4.5) and
the relationship dz/dx = 1/σ .

A.5 MGF OF NORMAL DISTRIBUTION

For a variate X ∼ N (μ, σ 2),

MX (t) = E[et X ] = etμE
[
et(X−μ)]

= etμ

σ
√

2π

∞∫
−∞

et(x−μ)e−(x−μ)2/2σ 2
dx = etμ

σ
√

2π

∞∫
−∞

e−[(x−μ)2−2σ 2t(x−μ)]/2σ 2
dx .

This can be put in the form

etμ

σ
√

2π

∞∫
−∞

e−[(x−μ−σ 2t)2−σ 4t2]/2σ 2
dx = etμeσ 2t2/2

⎡⎣ 1

σ
√

2π

∞∫
−∞

e−(x−μ−σ 2t)2/2σ 2
dx

⎤⎦ .

The term within square brackets is the area under the pdf of a N (μ + σ 2t, σ 2) variate.
Hence,

MX (t) = e(2μt+σ 2t2)/2.

It follows that for a variate Z ∼ N (0, 1), MZ (t) = et2/2.
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A.6 CENTRAL LIMIT THEOREM

Let X1, X2, . . . , Xn be a random sample of identically distributed independent random
variables (of unspecified distribution), with sample mean X̄ , from a population with mean
μ and finite variance σ 2. Assume that the mgf MX (t) exists for |t | < δ, where δ > 0.

Let Zi = (Xi − μ)/σ and the random variable Yn be defined as

Yn = X̄ − μ

σ/
√

n
.

Then,

MYn (t) = E[exp(tYn)] = E

[
exp

(
t

n

n∑
i=1

√
nZi

)]

=
n∏

i=1

E

[
exp

(
t√
n

Zi

)]
=

[
MZ

t√
n

]n

.

From the expansion of the exponential term, as given by Eq. (3.2.17),

MYn (t) =
{

1 + t√
n

E[Z ] + 1

2!

(
t√
n

)2

E[Z2] + 1

3!

(
t√
n

)3

E[Z3] + · · ·
}n

.

Equating E[Z ] to zero and taking logarithms,

ln{MYn (t)} = n ln

{
1 + 1

n

(
1

2
t2 E[Z2] + 1

6

t3

n1/2
E[Z3] + · · ·

)}
.

From Eq. (4.1.6b) or a Taylor series expansion,

ln(1 + a) = a − a2

2
+ a3

3
− a4

4
+ · · · if − 1 < a < +1.

Let

a = 1

n

(
1

2
t2 E[Z2] + 1

6

t3

n1/2
E[Z3] + · · ·

)
.

Then

ln{MY n(t)} = na − na2

2
+ na3

3
− na4

4
+ · · · .

Since E[Z2] = 1,

lim
n→∞ MYn (t) = et2/2.

From Section A.5, this is the mgf of an N (0, 1) variate.
If the random sample X1, X2, . . . , Xn is from a normal population,

MX̄ (t) = E

[
exp

t
∑n

i=1 Xi

n

]
=

n∏
i=1

E

[
exp

t Xi

n

]
=

n∏
i=1

MXi

(
t

n

)

=
n∏

i=1

exp

[
μ

(
t

n

)
+ 1

2
σ 2

(
t

n

)2
]

= exp

[
μt + 1

2

(
σ 2

n

)
t2

]
,
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using the result from A.5. This is the mgf of a normal distribution with mean μ and
variance σ 2/n (from A.5). Therefore, for a normal population, the result of the central
limit theorem holds regardless of sample size.

A.7 PDF OF STUDENT’S T DISTRIBUTION

Let the random variables Z ∼ N (0, 1) and Y ∼ χ2(v) be independent (see Subsec-
tions 4.2.3 and 5.3.5). Then the random variable

T = Z√
Y/v

has the Student’s t distribution with v degrees of freedom. From Eqs. (4.2.12d) and (4.2.21)
the joint pdf of Z and Y , which are mutually independent, is given by

fZ ,Y (z, y) = 1√
2π

1

�(v/2)

(
1

2

)v/2

y(v/2)−1 exp

[
− (z2 + y)

2

]
,

for −∞ < z < ∞ and 0 < y < ∞.

In order to determine the pdf of the t distribution, we use the method of transformations
of Subsection 3.4.2, defining the random variable X = Y to solve for

t = z√
y/v

.

The inverse relationships are z = t
√

x/v and y = x .

We first need to define the bivariate pdf of T and X as in Eq. (3.4.22), for which we
follow closely the steps outlined in Subsection 3.4.2 to obtain the Jacobian:

J =

∣∣∣∣∣∣∣∣
∂z

∂t

∂z

∂x

∂y

∂t

∂y

∂x

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
√

x

v

t

2
√

xv

0 1

∣∣∣∣∣∣∣ =
√

x

v
.

Hence from Eq. (3.4.22),

fT,X (t, x) =
√

x

v

1√
2π�(v/2)2v/2

x (v/2)−1e−(x/2)(1+t2/v)

for −∞ < t < ∞ and 0 < x < ∞. We then integrate out the X variable to obtain

fT (t) = 1√
2πv�(v/2)2v/2

∞∫
0

x (v−1)/2e−(x/2)(1+t2/v)dx .

We note from Eq. (4.2.8) that

∞∫
0

z
v+1

2 −1e−zdz = �

(
v + 1

2

)
and we let z = (x/2)(1 + t2/v). Hence,

fT (t) = �[(ν + 1)/2]√
πν�(ν/2)

1

[(t2/ν) + 1](ν+1)/2
, for −∞ < t < ∞.
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A.8 PDF OF THE F DISTRIBUTION

Let U and V be independent chi-squared random variables with m and n degrees of
freedom, respectively. Taking account of the independence between the two variables,
their joint density function is given by

fU,V (u, v) = u(m/2)−1v (n/2)−1

�(m/2)�(n/2)2(m+n)/2
e−(u+v)/2, for 0 < u, v < ∞.

The ratio of the two random variables scaled by the respective degrees of freedom,

F = U/m

V/n
,

which is sometimes called the variance ratio, has the F distribution.
Following the methods of Subsection 3.4.2 as applied in Section A7, we can obtain

the distribution of F . First define a new variable Y = V . The inverse solutions of f =
(u/m)/(v/n) and y = v are u = my f /n and v = y. Hence the Jacobian is

J =

∣∣∣∣∣∣∣∣
∂u

∂ f

∂u

∂y
∂v

∂ f

∂v

∂y

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣

my

n

m f

n

0 1

∣∣∣∣∣∣ = my

n
.

Thus,

gF,Y ( f, y) = my

n

(m f y/n)(m/2)−1 y(n/2)−1

2(m+n)/2�(m/2)�(n/2)
e−[(m/n) f y+y]/2.

We then integrate out the Y variable. From the properties of the gamma integral as given
by Eq. (4.2.8) and used in Section A.7,

hF ( f ) =
∞∫

0

gF,Y ( f, y)dy

= �[(m + n)/2]

�(m/2)�(n/2)

(m

n

)m/2 f (m/2)−1

[1 + f m/n](m+n)/2
for 0 < f < ∞.

Corollaries: It can be shown if X ∼ tv , X 2 ∼ F1v .
Also, if X ∼ Fm,n ,

m X/n

1 + m X/n
∼ beta(m/2, n/2).

A.9 WILCOXON SIGNED-RANK TEST: MEAN AND VARIANCE
OF THE TEST STATISTIC

The test statistic is the sum of the ranks of the positive ranks T . Under the null hypothesis,
this is the same as the sum of the ranks of the negative ranks. Furthermore, the probability
that a rank will be assigned to either a positive or negative difference is 1/2. On the
assumption that the variable investigated is random, we can therefore model the random
process by which the n ranks are divided into positive and negative differences by a
Bernoulli distribution as defined by Eq. (4.1.1).
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Suppose that Xi , i = 1, 2, . . . , n ∼ Bernoulli (1/2) and thus the variable can take values
of only 0 and 1. The mean and variance of the Xi are 1/2 and 1/4 from Eq. (4.1.2a) and
(4.1.2b), respectively. Accordingly, we can express T as

T = 1 × X1 + 2 × X2 + · · · + n × Xn =
n∑

i=1

i × Xi .

The mean of T then becomes

μT ≡ E[T ] = E[1 × X1 + 2 × X2 + · · · + n × Xn]

=
n∑

i=1

i × E [Xi ] = 1

2

n∑
i=1

i = n(n + 1)

4
,

because the summation of the i values is the sum of an arithmetic series and is equal to
n(n + 1)/2. The variance of T is

Var[T ] =
n∑

i=1

i2 Var[Xi ] = 1

4

n∑
i=1

i2.

One method of obtaining the summation of the first n values of i2 is by equating the
right-hand side of

n∑
i=1

[i(i + 1)(i + 2) − (i + 1)i(i − 1)] =
n∑

i=1

3(i2 + i)

to the net sum, n(n + 1)(n + 2), obtained by inserting i = 1, 2, . . . , n on the left-hand
side. Hence,

Var[T ] = n(n + 1)(2n + 1)

24
.

A.10 SPEARMAN’S RANK CORRELATION COEFFICIENT

Let xi denote the rank i of a set of n objects placed in order. The sum of the ranks is the
sum of the first n integers,

n∑
i=1

xi = 1

2
n(n + 1),

as in Section A.9. Hence the mean rank is

x̄ = 1

2
(n + 1).

We also note from Section A.9 that the sum of squares of the first n ranks is

n∑
i=1

x2
i = 1

6
n(n + 1)(2n + 1).

Hence,

n∑
i=1

(xi − x̄)2 =
n∑

i=1

x2
i − nx̄2 = 1

6
n(n + 1)(2n + 1) − 1

4
n(n + 1)2 = n(n2 − 1)

12
.
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Similarly, for another set of n objects in which yi denotes the rank i ,
n∑

i=1

(yi − ȳ)2 = n(n2 − 1)

12
.

We can use the product-moment correlation coefficient as defined by Eq. (1.4.3) and substi-
tute these relationships to obtain an equation for Spearman’s rank correlation coefficient:

rs =
∑n

i=1 (xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

∑n
i=1 (yi − ȳ)2

=
∑n

i=1 xi yi − nx̄ ȳ
1
12 n(n2 − 1)

=
∑n

i=1 xi yi − 1
4 n(n + 1)2

1
12 n(n2 − 1)

.

It now remains to substitute for the first term in the numerator. We note that the difference
in ranks di = xi − yi . Hence,

n∑
i=1

d2
i =

n∑
i=1

(xi − yi )
2 =

n∑
i=1

x2
i − 2

n∑
i=1

xi yi +
n∑

i=1

y2
i

= 1

3
n(n + 1)(2n + 1) − 2

n∑
i=1

xi yi

and

rs =
1
12 n(n2 − 1) − 1

2

∑n
i=1 d2

i
1
12 n(n2 − 1)

= 1 − 6
∑n

i=1 d2
i

n(n2 − 1)
.
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Appendix B

Glossary of Symbols

A Matrix of coefficients in principal component analysis
A Event space
Ai Atkinson’s modification to Cook’s distance
Ac Complement of event A
A | B A conditional to B
A ⊂ B Event A contained in event B
A ∈ A The event space A is a special set containing A
A2, A∗ Test statistic in Anderson-Darling test, modified version
ANOVA, ANCOVA Analysis of variance, covariance
a j Column vector j of variables
a Correlation distance or radius of influence; action in

decision theory
ai j Coefficient in principal components analysis
â Moments estimator of parameter a (typical)
ã Maximum likelihood estimate of parameter a (typical)
a, b Parameters of uniform, beta distributions; constants in

Gutenberg-Richter relationship for earthquakes
B Studentized deviate; Bayes’ risk
BLUE Best linear unbiased estimator
b Location parameter for Gumbel distribution; width

in simulation
bi j Factor loading of variables i and j
C Variance-covariance matrix, matrix of correlation

coefficients
C Copula function
Cl , Cu ; Ci , Cα Lower and upper confidence limits; Cook’s distance and

critical value in detecting outliers in regression
ci j Correlation coefficients of i and j variables
cdf Cumulative distribution function
Cor, Cov Correlation, covariance
D Diagonal matrix of eigenvalues
DFFITS Modified Cook’s distance
Dn, Dm,n; D+

n , D−
n Difference statistics in Kolgomorov-Smirnov test, for

sample sizes n and m; cumulative positive and negative
departures from the mean for sample size n

d Mean absolute deviation; sediment diameter in
simulation; decision

di Difference between ranks for rank correlation test
dn Sample difference in Kolgomorov-Smirnov test, for

sample size n
E[·] Expectation

667
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E Modulus of elasticity
Ei Expected number in class i in chi-squared test
EV1, EV2, EV3 Three types of extreme value distributions
e,exp Exponential, base of natural logarithms = 2.71828 . . .

F Matrix of factor scores
FN (n) Empirical or sample distribution function or step

function, for sample size n
FX (x) Cumulative distribution function X at x
F F distribution, variance ratio
Fj j th uncorrelated common factor
Fm,n F variate with numerator m and denominator n degrees

of freedom
Fm,n,α F variate with numerator m and denominator n degrees

of freedom and probability of exceedance α

fX (x) Probability density function of X at x
fX,Y (x, y) Joint probability density function of X , Y at x , y
fX |Y (x | y) Probability density function of X at x conditional to Y

at y
GEV General extreme value distribution
g Gini’s mean difference; gain; performance function;

acceleration due to gravity
g1 Sample coefficient of skewness
g2 Sample coefficient of kurtosis
H Matrix of coefficients in factor analysis; leverage or

“hat” matrix
H Kruskal-Wallis test statistic; depth in simulation

illustration; Hurst exponent
H (x) Entropy function of X
H0, H1 Null and alternative hypotheses
h Distance vector
hi , h′

i i th diagonal element of leverage matrix, leverage
measure

hF ( f ) pdf of F distribution at f
I Identity matrix (with 1s in the leading diagonal and 0s

elsewhere)
I Cross-sectional moment of inertia
iqr Interquartile range
J Jackknife estimator; Jacobian
K Frequency factor
k Variable used in binomial distribution; shape parameter

in general extreme value distribution
L(θ ) Likelihood function of θ

L0, L1 Likelihoods for ratio test
L1, L2, . . . L moments
l Number of classes for chi-squared test; loss function
ln Natural logarithm (base e)
M(·) Moment generation function
Mi jk Probability weighted moments with indices i , j , and k
ML Maximum likelihood
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m Number of successes in Bernoulli trials
max[·], min[·] Maximum and minimum of a function
mgf Moment generation function
mL Milliliters
N (a, b) Normal distribution with parameters a and b
N , n Sample size; number of Bernoulli trials; scaling

exponent
nc;ne Number of classes in histogram; Euler’s constant =

0.5772 (approximately)
Oi Observed number in class i in chi-squared test
P Matrix for rotation of principal components
Pr[· ] Probability
p Probability of a success in Bernoulli trials
p f Probability of failure
pi i th plotting position
p0; pA; pB Probability mass at origin of cdf of low-flow index; strike

probability; speed probability
pX (x) Probability mass function of X at x
pX,Y (x ,y) Joint probability mass function of X , Y at x , y
pX |Y (x | y) Probability mass function of X conditional to Y at x , y
pdf, pmf Probability density and mass functions
pwm Probability weighted moment
Q1, Q2, Q3 Quantiles; Q2 is the median
R Matrix of correlation coefficients between X variables

and principal components (or factors)
R∗ Sum of ranks in Kruskal-Wallis test; risk function;

correlation function
R′; R∗

n , R∗∗
n Design reliability; adjusted range and adjusted rescaled

range for sample size n
R( f ) Reliability function
Rn Range of sample of size n
R2 Coefficient of determination or multiple correlation
r Range; shape parameter in gamma distribution;

correlation coefficient (product moment); reliability
rs ; ri ; rU , rL Spearman’s rank sample correlation coefficient;

internally Studentized residual; upper and lower
credibility limits of reliability

rX,Y Coefficient of correlation between X and Y
S; Sn Safety margin; standard deviation for sample size n
S2, s2; Ŝ2, ŝ2 Variance; unbiased variance
Sp Pooled variance in hypothesis testing
Sxx , SS Sum of squares
Sxy Sum of cross-products
Sup[· ] Upper bound of a function
T Transpose of a matrix
T Student’s t variate; test statistic in Wilcoxon signed-rank

test
T. Grand total in ANOVA
Tj Test statistic in test for exponentiality
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t Time variable; variable in MGF; t distribution
ti Externally Studentized residual
tn,α Student’s t variate with n degrees of freedom and

probability of exceedance α

U , u Uniform random variates; utility function
V Velocity of flow
v , VZ Coefficient of variation, of variable Z
Var[· ] Variance
W Test statistic in Shapiro-Wilk’s for normality; width or

sediment gradation
WE j Test statistic in Shapiro-Wilk’s test for exponentiality
X Matrix of (explanatory) variables
X, Y, Z Random variables; depths in simulation illustration
X∗ Smallest-value variate having extreme value distribution
X2 Statistic in chi-squared test, with an asymptotic

chi-squared distribution
X (1), X (2), . . . X (n) Series of sample size n, ranked in increasing order
x Vector of explanatory variables in multiple regression
x̄ ; x̄. Sample mean; mean value in ANOVA
x̄g Geometric mean
x̄h Harmonic mean
x (r )

i = xi (xi − 1)(xi − 2) · · ·
× (xi − r + 1)

Partial factorial

x0 Lower bound in Pareto distribution; scale parameter in
Fréchet distribution

x∗ Nominal value of capacity
x, y, z Values taken by random variables
Ŷ Mean response in fitted regression model
y Vector of response variables
y∗ Nominal value of demand; reduced (Gumbel)

smallest-value variate
y Reduced (Gumbel) variate; observed response variable
Z Matrix of principal components
Z Safety factor
z j j th vector of principal components
z∗ Nominal factor of safety
zα Standard normal variate with exceedance probability α

α Shape parameter for Type I extreme value (Gumbel)
distribution; level of significance in hypothesis testing

α, β Type I and II errors in hypothesis testing; parameters of
beta distribution

αi , β j Treatment effect at level i and block effect at level j ,
respectively

αn, βn Parameters used in general extreme value distribution
αβ Interaction effect
β Vector of regression coefficients
β Reliability index; shape parameter in Weibull

distribution
β0, β1, . . . , βp Parameters in multiple linear regression
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�(p) Gamma function for argument p
�(h), �(h) Semivariogram at distance h, h as a vector
γ Limiting constant in extreme value theory
γ̂ (h) Empirical semivariogram at h
γ1 Population coefficient of skewness
γ2 Population coefficient of kurtosis
ε Vector of error terms
δ Dependence parameter of bivariate copula
ε; ε̂ Residual in ANOVA, location parameter of a continuous

distribution, error term in regression; residual in regre-
sion

ζ Central safety factor of a system
η Coefficient used for plotting position and in simulation

parameter space; scale parameter in modeling Weibull
parameter λ

� Parameter space for state of nature, θ

θ Shape parameter in Fréchet and Pareto distributions;
state of nature

θ̂ Unbiased estimator of the population parameter θ

κ Constant in rainfall depth-duration; normalizing factor
� Variate used in modeling Weibull parameter λ

λ; λ1 Poisson mean-rate parameter (v/t), scale parameter in
exponential, gamma, and Weibull distributions;
Lagrange multiplier

λi Eigenvalue, weight in Kriging
μr Moment of order r about the mean, also called central

moment
μ′

r Moment of order r about the origin, that is, zero, also
called absolute, crude, or raw moment

μ∗
r Moment of order r about a point other than the origin

μ(r ) Factorial moment of order r
μw Mean survival time
μ̂Y | x=a Estimate of conditional mean response in multiple

regression at x = a
v Poisson mean parameter; degrees of freedom for t and

chi-squared distributions; ratio of coefficients of
variation

� Parameter vector used in regional flood estimation
ξq The qth quantile of a random variable
π = 3.14159 . . . Circumference of a circle with unit diameter or area of

a circle of unit radius
πk Weight or reaction in point estimation method of

reliability analysis at kth point
π (θ ) Prior distribution of state of nature θ

ρ correlation parameter; physical growth rate
σ standard deviation of population
σ 2 Variance of population
τ Kendall’s rank correlation coefficient
φ(x) Normal pdf at x
�(x) Normal cdf at x
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χ2(p) Chi-squared distribution with parameter p
χ2

n,α Chi-squared variate with n degrees of freedom and
probability of exceedance α

�́ Sample space, multidimensional volume in simulation
ω Outcome; state; upper bound for EV3 distribution
Ø Null set
∪ Union
∩ Intersection
� Addition
� Multiplication
〈·〉 Arithmetic mean over the n sample points
(a, b] b is within interval, a outside interval(

n
x

)
Number of possible combinations selecting x objects at
a time over a total of n objects

|J | Absolute value of J , determinant
n! Factorial of n (=n(n − 1)(n − 2) · · · 1)
˜ Distributed as
≈ Approximated as
X−1 Inverse of matrix X
d Equality in distribution
∀x For all x
⇒ Implies
x → x+

0 x → x0 and x > x0

x → x−
0 x → x0 and x < x0
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Appendix C

Tables of Selected Distributions

Table C.1 Cumulative standard normal distribution: �(z) = ∫ z
−∞

1√
2π

exp(− t2

2 )dt

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5039 0.5079 0.5119 0.5159 0.5199 0.5239 0.5279 0.5318 0.5358
0.1 0.5398 0.5438 0.5477 0.5517 0.5556 0.5596 0.5635 0.5674 0.5714 0.5753
0.2 0.5792 0.5831 0.5870 0.5909 0.5948 0.5987 0.6025 0.6064 0.6102 0.6140
0.3 0.6179 0.6217 0.6255 0.6293 0.6330 0.6368 0.6405 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6627 0.6664 0.6700 0.6736 0.6772 0.6808 0.6843 0.6879
0.5 0.6914 0.6949 0.6984 0.7019 0.7054 0.7088 0.7122 0.7156 0.7190 0.7224
0.6 0.7257 0.7290 0.7323 0.7356 0.7389 0.7421 0.7453 0.7485 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7733 0.7763 0.7793 0.7823 0.7852
0.8 0.7881 0.7910 0.7938 0.7967 0.7995 0.8023 0.8051 0.8078 0.8105 0.8132
0.9 0.8159 0.8185 0.8212 0.8238 0.8263 0.8289 0.8314 0.8339 0.8364 0.8389
1.0 0.8413 0.8437 0.8461 0.8484 0.8508 0.8531 0.8554 0.8576 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8707 0.8728 0.8749 0.8769 0.8790 0.8810 0.8829
1.2 0.8849 0.8868 0.8887 0.8906 0.8925 0.8943 0.8961 0.8979 0.8997 0.9014
1.3 0.9032 0.9049 0.9065 0.9082 0.9098 0.9114 0.9130 0.9146 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9250 0.9264 0.9278 0.9292 0.9305 0.9318
1.5 0.9331 0.9344 0.9357 0.9369 0.9382 0.9394 0.9406 0.9417 0.9429 0.9440
1.6 0.9452 0.9463 0.9473 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9544
1.7 0.9554 0.9563 0.9572 0.9581 0.9590 0.9599 0.9608 0.9616 0.9624 0.9632
1.8 0.9640 0.9648 0.9656 0.9663 0.9671 0.9678 0.9685 0.9692 0.9699 0.9706
1.9 0.9712 0.9719 0.9725 0.9732 0.9738 0.9744 0.9750 0.9755 0.9761 0.9767
2.0 0.9772 0.9777 0.9783 0.9788 0.9793 0.9798 0.9803 0.9807 0.9812 0.9816
2.1 0.9821 0.9825 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9853 0.9857
2.2 0.9861 0.9864 0.9867 0.9871 0.9874 0.9877 0.9880 0.9884 0.9887 0.9889
2.3 0.9892 0.9895 0.9898 0.9901 0.9903 0.9906 0.9908 0.9911 0.9913 0.9915
2.4 0.9918 0.9920 0.9922 0.9924 0.9926 0.9928 0.9930 0.9932 0.9934 0.9936
2.5 0.9937 0.9939 0.9941 0.9943 0.9944 0.9946 0.9947 0.9949 0.9950 0.9952
2.6 0.9953 0.9954 0.9956 0.9957 0.9958 0.9959 0.9960 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9972 0.9973
2.8 0.9974 0.9975 0.9976 0.9976 0.9977 0.9978 0.9978 0.9979 0.9980 0.9980
2.9 0.9981 0.9981 0.9982 0.9983 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986
3.0 0.9986 0.9986 0.9987 0.9987 0.9988 0.9988 0.9988 0.9989 0.9989 0.9990
3.1 0.9990 0.9990 0.9991 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992
3.2 0.9993 0.9993 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995
3.3 0.9995 0.9995 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996
3.4 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997
3.5 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.7 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
4.0 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
4.1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
4.2 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
4.3 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
4.4 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table C.2 Cumulative Student’s t Distribution with v degrees of freedom:
F(t) = ∫ t

−∞
�((v+1)/2)√

vπ�(v/2)(z2/v+1)(v+1)/2 dz (entry in table is t)

F = 0.75 0.80 0.85 0.90 0.95 0.975 0.99 0.995

v = 1 1 1.376 1.963 3.078 6.314 12.71 31.82 63.66
2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925
3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841
4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604
5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032
6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707
7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499
8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355
9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169
11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106
12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055
13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012
14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977
15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947
16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921
17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898
18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878
19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861
20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845
21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831
22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819
23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807
24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797
25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787
26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779
27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771
28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763
29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756
30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750
40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704
50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678
60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660
70 0.678 0.847 1.044 1.294 1.667 1.994 2.381 2.648
80 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639
90 0.677 0.846 1.042 1.291 1.662 1.987 2.368 2.632

100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626
∞ 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576
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Table C.5 Values of the gamma function, �(k)

k 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 99.433 49.442 32.785 24.461 19.470 16.146 13.774 11.997 10.616
0.1 9.5135 8.6127 7.8633 7.2302 6.6887 6.2203 5.8113 5.4512 5.1318 4.8468
0.2 4.5908 4.3599 4.1505 3.9598 3.7855 3.6256 3.4785 3.3426 3.2169 3.1001
0.3 2.9916 2.8903 2.7958 2.7072 2.6242 2.5461 2.4727 2.4036 2.3383 2.2765
0.4 2.2182 2.1628 2.1104 2.0605 2.0132 1.9681 1.9252 1.8843 1.8453 1.8081
0.5 1.7725 1.7384 1.7058 1.6747 1.6448 1.6161 1.5886 1.5623 1.5369 1.5126
0.6 1.4892 1.4667 1.4450 1.4242 1.4041 1.3848 1.3662 1.3482 1.3309 1.3142
0.7 1.2981 1.2825 1.2675 1.2530 1.2390 1.2254 1.2123 1.1997 1.1875 1.1757
0.8 1.1642 1.1532 1.1425 1.1322 1.1222 1.1125 1.1031 1.0941 1.0853 1.0768
0.9 1.0686 1.0607 1.0530 1.0456 1.0384 1.0315 1.0247 1.0182 1.0119 1.0059

Table C.6 Values of �2(1 + k)/�(1 + 2k)

k 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 00.09

0.0 1.000 1.000 0.999 0.999 0.998 0.996 0.995 0.993 0.991 0.988
0.1 0.986 0.983 0.980 0.977 0.974 0.970 0.966 0.963 0.959 0.954
0.2 0.950 0.946 0.941 0.937 0.932 0.927 0.922 0.917 0.912 0.907
0.3 0.901 0.896 0.891 0.885 0.880 0.874 0.868 0.863 0.857 0.851
0.4 0.845 0.839 0.833 0.828 0.822 0.816 0.810 0.804 0.798 0.791
0.5 0.785 0.779 0.773 0.767 0.761 0.755 0.749 0.743 0.737 0.731
0.6 0.725 0.719 0.713 0.706 0.700 0.694 0.688 0.682 0.677 0.671
0.7 0.665 0.659 0.653 0.647 0.641 0.635 0.630 0.624 0.618 0.612
0.8 0.607 0.601 0.596 0.590 0.584 0.539 0.573 0.568 0.562 0.557
0.9 0.552 0.546 0.541 0.536 0.531 0.525 0.520 0.515 0.510 0.505

Weibull shape parameter β = 1/k.
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Table C.7 Values of Dn,α for the Kolmogorov-Smirnov goodness-of-fit test

n Dn,0.10 Dn,0.05 Dn,0.02 Dn,0.01

10 0.369 0.409 0.457 0.489
11 0.352 0.391 0.437 0.468
12 0.338 0.375 0.419 0.449
13 0.325 0.361 0.404 0.432
14 0.314 0.349 0.390 0.418
15 0.304 0.338 0.377 0.404
16 0.295 0.327 0.366 0.392
17 0.286 0.318 0.355 0.381
18 0.279 0.309 0.346 0.371
19 0.271 0.301 0.337 0.361
20 0.265 0.294 0.329 0.352
21 0.259 0.287 0.321 0.344
22 0.253 0.281 0.314 0.337
23 0.247 0.275 0.307 0.330
24 0.242 0.269 0.301 0.323
25 0.238 0.264 0.295 0.317
26 0.233 0.259 0.290 0.311
27 0.229 0.254 0.284 0.305
28 0.225 0.250 0.279 0.300
29 0.221 0.246 0.275 0.295
30 0.218 0.242 0.270 0.290
31 0.214 0.238 0.266 0.285
32 0.211 0.234 0.262 0.281
33 0.208 0.231 0.258 0.277
34 0.205 0.227 0.254 0.273
35 0.202 0.224 0.251 0.269
36 0.199 0.221 0.247 0.265
37 0.196 0.218 0.244 0.262
38 0.194 0.215 0.241 0.258
39 0.191 0.213 0.238 0.255
40 0.189 0.210 0.235 0.252

>40 1.22/
√

n 1.36/
√

n 1.52/
√

n 1.63/
√

n

Entries in the last row are approximations for large samples. For n = 40 the closeness of this approximation
is seen from the entries in the penultimate row.
Source: From Miller, L. H. (1956), “Table of percentage points of Kolgomorov statistics,” J. Am. Stat. Assoc.,
Vol. 51, p. 111–121 (with permission of the publishers).



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 3, 2008 21:4

682 Applied Statistics for Civil and Environmental Engineers

Table C.8 Lilliefors’s test for normalitya

n Dn,0.20 Dn,0.10 Dn,0.05 Dn,0.01 Dn,0.001

10 0.217 0.241 0.262 0.304 0.352
11 0.208 0.231 0.251 0.291 0.338
12 0.200 0.222 0.242 0.281 0.325
13 0.193 0.215 0.234 0.271 0.314
14 0.187 0.208 0.226 0.262 0.305
15 0.181 0.201 0.219 0.254 0.296
16 0.176 0.195 0.213 0.247 0.287
17 0.171 0.190 0.207 0.240 0.279
18 0.167 0.185 0.202 0.234 0.273
19 0.163 0.181 0.197 0.228 0.266
20 0.159 0.176 0.192 0.223 0.260
25 0.143 0.159 0.173 0.201 0.236
30 0.131 0.146 0.159 0.185 0.217
40 0.115 0.128 0.139 0.162 0.189

100 0.074 0.082 0.089 0.104 0.122
400 0.037 0.041 0.045 0.052 0.061
900 0.025 0.028 0.030 0.035 0.042

aCorrected values of Dn,α for the Kolmogorov-Smirnov goodness-of-fit test.
This is applicable when parameters are estimated from the same sample used in the test.
Source: Dallal, G. E., and L.Wilkinson (1986), “An analytic approximation to the distribu-
tion of Lilliefors’s test statistic for Normality,” Am. Stat., Vol. 40, p. 294–296. (Reprinted
with permission from the American Statistician. Copyright (1986) the American
Statistical Association. All rights reserved.)
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Table C.9 Tests for multiple outliers: Critical values for 5 and 1% significance levels of k
Studentized deviates Bj ; samples of size n from a normal population

α = 0.05 α = 0.01

sample size k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5

n = 20 2.56 2.83 2.88 2.95 2.97 2.88 3.09 3.13 3.20 3.18
2.52 2.60 2.63 2.65 2.76 2.83 2.83 2.89

2.45 2.49 2.51 2.68 2.68 2.69
2.39 2.42 2.58 2.61

2.37 2.57

n = 30 2.74 3.05 3.12 3.16 3.19 3.10 3.35 3.41 3.48 3.48
2.67 2.73 2.77 2.78 2.92 3.01 3.02 3.03

2.56 2.59 2.60 2.75 2.79 2.80
2.49 2.51 2.70 2.74

2.45 2.62

n = 40 2.87 3.17 3.22 3.32 3.31 3.24 3.52 3.58 3.64 3.63
2.77 2.81 2.86 2.88 2.98 3.03 3.10 3.13

2.62 2.67 2.69 2.82 2.87 2.89
2.55 2.55 2.74 2.74

2.47 2.65

n = 50 2.96 3.27 3.34 3.40 3.45 3.34 3.61 3.68 3.74 3.77
2.85 2.89 2.93 2.96 3.08 3.15 3.18 3.21

2.68 2.72 2.74 2.89 2.92 2.94
2.59 2.61 2.78 2.79

2.52 2.70

n = 60 3.03 3.34 3.42 3.48 3.51 3.41 3.70 3.75 3.82 3.81
2.90 2.95 2.98 3.01 3.17 3.20 3.20 3.24

2.73 2.77 2.77 2.95 2.97 2.96
2.63 2.65 2.82 2.83

2.56 2.72

n = 80 3.14 3.45 3.49 3.57 3.61 3.53 3.80 3.85 3.91 3.93
2.97 3.03 3.05 3.11 3.23 3.27 3.31 3.36

2.81 2.84 2.86 3.01 3.04 3.08
2.69 2.72 2.87 2.89

2.62 2.76

n = 100 3.21 2.52 3.60 3.64 3.70 3.27 3.87 3.97 3.96 4.01
3.03 3.10 3.13 3.16 3.28 3.34 3.34 3.42

2.86 2.89 2.91 3.06 3.06 3.10
2.74 2.77 2.90 2.93

2.67 2.84

Source: See references in Chapter 6. Adapted partly from Jain (1981). Reprinted with permission from
Technometrics. Copyright (1981) the American Statistical Association. All rights reserved; and from Barnett
and Lewis (1994). Copyright (1994, John Wiley and Sons.). Reprinted by permission of the publishers.
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Appendix D

Brief Answers to Selected Problems

CHAPTER 1
1.1 RDEN: 61.0, 17.39, 0.63; ACCEL: 0.327, 0.142, 0.70; r = 0.28. 1.2 5408, 1735;
p = 0.59. 1.3 2837, 1301; 1980, 2410, 3245; larger v , g1; 3 outliers. 1.5 frequency
reversal in midwinter; 2.92, 0.23. 1.6 load: 918, 86, 58, −2.1; strength: 40, 4.2, 3.2,
−1.5; r = 0.85. 1.7 all: 11.66, 7.55, 10.89, 9.92; no zero: 11.47, 7.36, 10.54, 9.46;
1.63, 2.48, 3.20, 4.63%. 1.8 985,000. 1.10 88.9. 1.12 large skew, 5 outliers. 1.15
4.9, 10.7% r = 0.027. 1.16 trimmed 3%: 7.94, 0.14, 2.48; all: 9.92, 0.15, 4.46. 1.17
r = 0.069. 1.19 1.2, 3.0%; r = −0.15. 1.20 increase with duration. 1.21 1.65 per year.
1.24 x : 6.29, 0.291, 4.6%; y: 49.6, 0.166, 0.3%.

CHAPTER 2
2.3 p = 1/6, 1/3, 1/3, 1/6. 2.4 Pr[AB] = 0.2, Pr[Ac + Bc] = 0.8, Pr[A|B] = 1/3,
Pr[B|A] = 2/5. 2.5 Pr[B] = 0.03, Pr[BC] = 0.01. 2.6 p = 4/9. 2.9 13/14, 3/14,
0.5. 2.10 n = 55, p = 0.70, 0.85. 2.11 p = 0.9. 2.12 p = 0.68256, 0.65152. 2.13
(a) $141,000, (d) rate a. 2.14 p = 0.1875. 2.15 (b) 2/9. 2.16 p = 0.942. 2.17 (a) ps =
(1 − q)n e−βn(n+1)/2, (b) qn = (1 − q)n−1 e−βn(n−1)/2(1 − e−βn+ qe−βn), (c) ps = 0.4061,
qn = 0.02513. 2.18 p = 0.81, 0.75, through Chambery. 2.19 p = 0.402. 2.20 p =
0.8, 2/329. 2.21 0.75. 2.22 p = 0.04, 0.50, 0.45, 0.01. 2.23 p = 0.055, 0.65. 2.24
p = 0.95, 0.3. 2.25 (a) 54, (b) 19, (c) yes. 2.26 (b) 1/3, (c) 0.32 kg/m2, (d) two
subcatchments.

CHAPTER 3
3.1 1.88, 3.13. 3.2 3/800, p = 0.875. 3.3 0.00182, 0.138; 12.857, 0.298; 0.298. 3.4
0.982. 3.5 ≥0.82. 3.7 0.135, 7.81. 3.8 9/275. 3.10 1.28, 1.39. 3.11 1.58, 1.40,
1.30; 1.61. 3.12 (a) 2.7, 5.3. (c) 0.140. 3.13 81,200, 313,000,000. 3.15 0.988. 3.16
k = (4/297)10−10; (2x/99)10−8, 10,000 < x < 100,000; y/150, 10 < y < 20. 3.17
1/16. 3.18 0. 3.19 (1) 10−9(p − 15, 000)/8.3655, 28,000 ≤ p ≤ 145,000. 3.20 (a)
0.91. 3.21 2/9, 3/9; 4/9; 3/12, 4/12, 5/12; 11/9, 14/12. 3.24 0.435, 1.4 −0.8y, −1/11.
3.25 44a/(125b4). 3.26 θ = β; x0 = aν1/θ .

CHAPTER 4
4.1 0.74. 4.2 975. 4.3 46. 4.4 0.366, 0.00904. 4.5 0.0729. 4.6 0.678. 4.8
0.000019996. 4.9 0.0000200, after 10 years 0.0000198. 4.10 0.472. 4.11 between
1 and 2. 4.12 5. 4.13 5 days. 4.14 0.471, 0.533. 4.15 3. 4.16 0.691. 4.17
fx (x) = x3e−x/3/486. 4.18 5/12. 4.19 0.999. 4.20 0.15. 4.21 7.9. 4.22 29 min. 4.23
0.844. 4.24 0.378. 4.25 0.0000, 0.0067. 4.26 N (500, 802); 0.03. 4.27 N (350, 150), 1,
0.08. 4.28 0.866. 4.29 0.988.

CHAPTER 5
5.1 (a) Bernoulli (0, 1), (c) 18/500, (d) 0.008331; (0.020, 0.052). 5.2 (2436, 2449),
(2435, 2449). 5.3 59; 84%. 5.4 1910. 5.5 (102.3, 377.8). 5.6 5 years. 5.7 reject H0.
5.8 do not reject H0. 5.9 do not reject H0. 5.10 reject, reject, reject do not reject H0.

684
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5.11 5 and 11, 0.0455; 0.752; 0.642; to reduce (a) Type I error, take 3 standard errors and
(b) Type II error, increase n. 5.12 0.937, 0.628, 0.382, 0.175, 0.014. 5.13 X2 = 5.93: do
not reject H0. 5.14 do not reject H0. 5.15 do not reject H0. 5.16 reject H0. 5.17 reject
H0. 5.18 rs = −0.934. 5.19 X2 = 7.81: do not reject H0, 0.2. 5.20 α = 0.01, reject
H0; do not reject H0. 5.21 reject H0. 5.22 reject H0. 5.23 X2 = 7.29: do not reject H0.
5.24 X2 = 14.87: do not reject H0. 5.25 do not reject H0; do not reject H0. 5.26 reject
H0. 5.27 do not reject H0. 5.28 do not reject H0. 5.29 X2 = 3.31: do not reject H0.
5.32 do not reject H0. 5.33 do not reject H0; do not reject H0. 5.36 0.50. 5.39 mean
3224, std. dev. 1042; 6225.

CHAPTER 6
6.1 0.394, −0.0656; 0.985. 6.2 0.994; 240, 260. 6.4 (a) 0.137, 0.924; (b) 0.352; (c) 0.862;
(d) 0.570, 0.961. 6.5 (a) −0.1212, 0.1062; (b) 0.095, 0.118; −0.633, 0.391; (c) reject
H0. 6.6 475, 0.943; reject H0; subtract evapotranspiration, include rainfall from previous
years. 6.7 2.188, 1.712; 16.74; 18.84, 14.64. 6.11 reject H0: slope is not significant.
6.12 (b) 3.09, 9.92, 25.51; 80.67; 0.50. 6.15 eigenvalues: 98.4572752, 4.7230437,
0.5996811; vectors: 0.05262043, −0.99809260, 0.03228406; 0.82395523, 0.06165978,
0.56329020; 0.564206404, 0.003039957, −0.825628180. 6.20 11.54.

CHAPTER 7
7.1 (b) 0.983, (c) 0.991. 7.2 0.63 (rainfall), 0.72 (runoff). 7.3 E[Xmin] = x0 + 1/λn;
Var[Xmin] = E2[Xmin] − 2E[Xmin](x0 + 1

λ
) + (x2

0 + 2 x0
λ

+ 1
λ2 ). 7.5 (a) α = 0.192, b =

0.889; (b) L: k = 0.052; α = 0.201, ε = 0.894; moments: k = 0.033; α = 0.199, ε =
0.891; (c)xmax(100, t) = 23.01t0.46. 7.7 FXmax (x) = ∫ +∞

λ0
α e−α(λ−λ0)−ν exp[−(x/λ)2/2] dλ.

7.8 FYmax (y) = exp[−e−λ(y−λ−1 ln ν)]; ymax(100) = 23.8 × 106 m3. 7.9 6.545; 5.569.
7.10 (a) α = 1.46, b = 16.97, xmax(50) = 22.68 (Cagliari); (b) α = 3.18, b = 24.98,
xmax(50) = 37.38 (Pantelleria). 7.11 (a) α = 2.36, b = 13.76; (b) α = 2.22, b = 12.93;
(c) xmax,B(50) = 19.47. 7.12 (a) Xmax ∼ Gumbel (2.70, 18.42), xmax(50) = 28.96;
(b) Xmax ∼ Frechèt(18.69, 8.47), xmax(50) = 29.62. 7.14 (a) T = 7.89 × 106 ; (b) p =
1.27×10−7. 7.20 FZmax (z) = exp(−[ 1

z ( 1230
(l+25)2 )[exp(λx0 + ln ν]0.8/λ]λ/0.8). 7.21 (a) W ∼

exp(0.32); (b) a = 2.55 × 104, b = 0.91, T = 92. 7.22. (a) T = 69; (b) T = 97.

CHAPTER 8
8.1 N (0.32, 0.02); N (7.91, 1.63). 8.4 0.7388; 361. 8.5 Gumbel (19.06, 0.10). 8.6
Gumbel (7, 0.74). 8.9 288, 0.22. 8.10 lognormal (14,200, 99152). 8.11 0.340.

CHAPTER 9
9.4 0.370. 9.5 98.9, 100. 9.6 r = Pr[X ≥ Y ] = 1 − Pr[X < Y ] = 1 − b/(2a). 9.7
0.661. 9.8 (a) 210, 0.072; (b) 1.476, 0.07; (c) 1.660, 0.048. 9.9 0.976. 9.10 0.023.
9.11 0.979. 9.12 98.3%. 9.13 0.867. 9.14 1.451, 0.073. 9.15 0.983, 0.982. 9.17
(a) r = (1 −pm)n; (b) dr/dm = n ln(1/p)(1 −pm)n−1 pm . 9.18 0.000102. 9.19 0.9441.
9.20 0.983. 9.21 0.9916, 0.9952. 9.22 0.9888, 0.9851. 9.23 (a) r to r1/ l ; (b)
1 − (1 −r )1/ l to r . 9.24 0.9044. 9.25 (a)R (t) = ∫ c

0
1

μ�(t) (
x
μ

)t−1 exp(− x
μ

)dx ; (b) h (t) =
1/μ�(t)(c/μ)t−1 exp(−c/μ)∫ c

0 1/μ�(t)(x/μ)t−1 exp(−x/μ)dx
; (c) t0.9 ≈ 8.5. 9.26 3. 9.27 (a) (γ /τ )(t /τ )γ−1; (b) 52.4. 9.28

(a) R (t) = exp{−0.009t − ∫ t
0

0.05
1+exp[−0.25(u−25)] du}; (b) ≈11. 9.30 2.395 (beam 1), 2.867

(beam 2), 1.75 (beam 1).
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CHAPTER 10
10.1 −382,500; −400,000; −467,000. 10.2 −0.5. 10.3 45, 35; Bayes 20 m; minimax
20 m; 0.94, 0.06; 0.44, 0.56; 8.7, 21.9. 10.4 d3, d3; d3, d1 or d4 or d5. 10.5 X : 10,000,000;
Y : 15,000,000; Z : 19,000,000. 10.6 d1. 10.7 Design II, Design II. 10.8 N (70,000,
15,0002/3); 57,847. 10.9 mode, median. 10.10 reject, do not reject H0. 10.11 1.005,
0.98. 10.12 no change.



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 13, 2008 15:11

Appendix E

Data Lists

Table E.1.1 Appearance quality grade 5a

48.78 32.02 45.54 32.40 48.37 50.98 35.58 40.53 29.11 65.35
41.64 39.34 34.12 33.06 29.93 40.71 28.97 47.25 65.61 45.19
39.77 46.33 45.92 33.47 36.38 34.63 34.56 32.68 37.78 70.22
35.89 46.99 36.47 35.67 46.86 24.84 28.69 43.26 43.33 41.75
54.04 22.67 28.98 28.46 36.00 28.83 38.64 47.61 53.63 37.51
35.43 39.62 40.85 23.16 23.19 42.31 24.25 28.13 41.85 31.60
22.75 44.78 56.60 44.51 36.88 39.33 44.54 32.48 33.19 37.65
44.78 26.63 28.76 42.47 44.30 39.93 40.85 36.81 39.15 28.00
43.99 43.48 47.42 48.39 44.59 39.60 39.97 35.88 54.71 46.01
47.74 30.05 33.61 38.05 44.00 38.16 37.69 33.92 43.64 43.48
25.39 30.33 44.36 35.03 40.39 43.33 41.78 57.99 56.80 40.27
38.00 39.21 35.30 31.33 41.72 69.07 33.14 49.57 43.07 39.05
25.98 51.39 33.18 27.31 29.90 51.90 55.23 40.20 43.12 32.76
36.84 50.91 36.85 53.99 35.17 33.71 36.53 49.59 30.02 45.97
34.49 49.65 17.98 43.41 34.44 46.50 22.74 32.03 38.81 23.14
38.71 47.83 27.90 28.71 27.93 36.92 34.40 39.20 24.09 53.00
30.53 44.07 44.36 58.34 0.00

aModulus of rupture data from 50 mm × 150 mm Swedish redwood and whitewood timber in
neutons per square millimeter.
Source: By kind courtesy of the Building Research Establishment, Timber Division, Garston;
Watford, England.
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Table E.1.2 Density and compressive strength at 28 days from
examination of 40 concrete cube test records during the period 8 July
1991 to 21 September 1992, and arranged in reverse chronological order

Compressive strength
Date Density (kg/m3) (N/mm2)

21 September 1992 2437 60.5
29 June 1992 2437 60.9
26 June 1992 2425 59.8
14 April 1992 2427 53.4
31 March 1992 2428 56.9
19 March 1992 2448 67.3
9 March 1992 2456 68.9
7 February 1992 2436 49.9
28 January 1992 2435 57.8
18 December 1991 2446 60.9
6 December 1991 2441 61.9
6 December 1991 2456 67.2
6 December 1991 2444 64.9
5 December 1991 2447 63.4
4 December 1991 2433 60.5
3 December 1991 2429 68.1
2 December 1991 2435 68.3
22 October 1991 2471 65.7
18 October 1991 2472 61.5
14 October 1991 2445 60.0
9 October 1991 2436 59.6
7 October 1991 2450 60.5
3 October 1991 2454 59.8
2 October 1991 2449 56.7
30 September 1991 2441 57.9
27 September 1991 2457 60.2
23 September 1991 2447 55.8
20 September 1991 2436 53.2
17 September 1991 2458 61.1
13 September 1991 2415 50.7
10 September 1991 2448 59.0
9 September 1991 2445 63.3
6 September 1991 2436 52.5
3 September 1991 2469 54.6
2 September 1991 2455 56.3
29 August 1991 2473 64.9
23 August 1991 2488 69.5
12 July 1991 2454 58.9
9 July 1991 2427 54.4
8 July 1991 2411 58.8

Source: By kind courtesy of Mr. L. K. Moore, Technical Manager, Douglas
Concrete & Aggregates, Barton-on-Trent, England.
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Table E.1.3 Dissolved oxygen (DO) and biochemical oxygen demand (BOD)
at 38 stations along the Blackwater River in units of milligrams per liter

DO 8.15 5.45 6.05 6.49 6.11 6.46 6.22 6.05
BOD 2.27 4.41 4.03 3.75 3.37 3.23 3.18 4.08

DO 6.3 6.53 6.74 6.9 7.05 7.19 7.55 6.92
BOD 4 3.92 3.83 3.74 3.66 3.58 3.16 3.43

DO 7.11 7.28 7.44 7.6 7.28 7.44 7.59 7.73
BOD 3.36 3.3 3.24 3.19 3.22 3.17 3.13 3.08

DO 7.85 7.97 8.09 8.19 8.29 8.38 8.46 8.54
BOD 3.04 3 2.96 2.93 2.89 2.86 2.82 2.79

DO 8.62 8.69 8.76 9.26 9.31 9.35
BOD 2.76 2.73 2.7 2.51 2.49 2.46

Source: By kind courtesy of the Severn Trent Authority, Birmingham, England.

Table E.5.1 Road rutting measurements at Section 1, Site 6 in millimeters; base thickness
305 mm; base material, dense bituminous macadam

Date Location 1 Location 2 Location 3 Location 4 Location 5

7 May 1960 0.01 2.9 0.9 0.01 1.5
14 November 1960 0.6 3.7 2 3 0.9
14 May 1961 0.2 3.7 1.8 3 1.1
28 August 1961 0.6 3.8 2.3 3.5 0.8
5 March 1962 1.8 4.1 1.8 3.2 0.6
19 September 1962 0.7 4.1 2.3 3.5 0.8
24 April 1963 0.7 4 1.9 2.9 0.8
10 October 1963 0.7 4.1 2.3 4.1 0.5
7 February 1964 4.1 2.1 3.4 0.6
3 October 1964 1.3 3.5 2.1 3.4 0.8
12 March 1965 1.8 4.3 2.3 3.4 0.8
26 September 1965 1.1 4 2 4 1.1
26 March 1966 1.1 3.6 1.9 5.3 0.01
21 May 1967 1.8 3.2 2.7 5.5 0.5
10 October 1969 3.1 3.8 3.8 4.1 0.01
3 October 1970 1.9 4.7 4 5 0.01
3 April 1971 1.7 5.3 2.4 4 0.01
10 October 1971 3.7 4.4 2.3 4.1 1.4
10 April 1972 1.5 3.5 3 5.5 1.3
3 October 1972 1.7 5.8 2.1 5.3 0.3
14 May 1973 1.8 5.2 3.2 4 0.01
31 July 1974 1.8 4.5 3.2 6.2 0.01
12 September 1975 3.7 4 4.6 5.3 0.01
17 October 1976 1.8 4 2.9 5.8 1.1
17 October 1977 2.4 4 3.7 5.8 0.3
17 October 1978 1.8 4.1 2.9 5.9 0.01
19 September 1979 2.9 5.2 2.5 5.3 0.01
14 May 1980 2.8 3.6 3.2 6 0.2

Note: The original data are in inches; measurements of 0.01 mm in this and in the following five tables
denote zero rutting.
Source: Tables E.5.1 to E.5.6 are used by kind courtesy of the Transport Research Laboratory, Old
Wokingham Road, Crowthorne, Berkshire, England.
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Table E.5.2 Road rutting measurements at Section 2, Site 6 in millimeters; base thickness
229 mm; base material, dense bituminous macadam

Date Location 1 Location 2 Location 3 Location 4 Location 5

7 May 1960 1.7 1.4 0.01 0.9 2.1
14 November 1960 0.01 4.9 4.6 1.5 2.3
14 May 1961 0.01 4.9 3 1.2 2
28 August 1961 0.01 5.3 4 1.7 2.3
5 March 1962 0.01 5.1 4 1.8 2.4
19 September 1962 0.01 5.8 4.1 1.5 2.4
24 April 1963 0.01 7.6 3 1.6 2.9
10 October 1963 0.01 5.3 4.5 2 2
7 February 1964 0.01 5.8 4 2 2.5
3 October 1964 0.01 5.6 3.7 1.4 2.6
12 March 1965 0.6 7.7 4.6 2.1 2.6
26 September 1965 0.5 6.1 4.3 2 2.7
26 March 1966 0.3 5.6 5.9 4.1 2
21 May 1967 0.4 5.8 4.6 1.7 2
10 October 1969 0.7 6.2 5.6 2.3 2.9
3 October 1970 1 6.4 5.6 4.4 1.4
3 April 1971 0.01 6.7 5.6 3.8 2.3
10 October 1971 1 7.2 4.9 2.7 3
10 April 1972 1.6 7 6.1 4.1 3.4
3 October 1972 0.9 8.5 5.6 2.4 2.4
14 May 1973 0.01 7.3 4.6 3.3 3
31 July 1974 0.01 8.5 4.8 3.7 2.7
12 September 1975 1.3 8.2 5.6 3.8 4
17 October 1976 1.2 7.6 5.9 1.5 2.8
17 October 1977 1.2 8.7 6.4 3.7 3.8
17 October 1978 0.9 6 5.2 3.8 3.4
19 September 1979 0.01 5.2 6.4 3.1 2.8
14 May 1980 0.5 5.8 5.2 4.1 3.2
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Table E.5.3 Road rutting measurements at Section 3, Site 6, in millimeters; base thickness
152 mm; base material, dense bituminous macadam

Date Location 1 Location 2 Location 3 Location 4 Location 5

7 May 1960 0.8 2.4 2.7 3 1.1
14 November 1960 2.9 2.7 1.8 3.8 1.7
14 May 1961 2.5 3 0.8 3.2 1.7
28 August 1961 2.9 2.9 2.1 2.9 1.7
5 March 1962 2.9 3 2 3.3 1.7
19 September 1962 2.6 3 2.3 2.9 1.5
24 April 1963 2.9 2.9 2.9 4.2 2.4
10 October 1963 3.4 3.4 2.3 3.5 2.3
7 February 1964 3.4 3.4 3.2 2.9 1.8
3 October 1964 3 3 2 3.5 2.1
12 March 1965 3.1 2.7 2.9 3.2 2.6
26 September 1965 3.8 3 1.8 4.4 2.3
26 March 1966 4.7 3.3 3.7 4 2.7
21 May 1967 3.5 5.6 2.4 5.4 2.4
10 October 1969 4.8 4.5 2.3 4.1 2.8
3 October 1970 5.7 4 2.4 4.8 4.5
3 April 1971 6.2 4.3 3.6 4.8 4.3
10 October 1971 3.4 4.4 3.4 5.5 3.1
10 April 1972 4.9 5.4 3.2 5.9 3
3 October 1972 6.1 5.1 3.2 3.3 3.8
14 May 1973 7.2 3.8 3.5 3.9 2.9
31 July 1974 7.3 4.5 3 4.1 3.7
12 September 1975 5.5 5.6 2.8 4.9 4
17 October 1976 5.2 4.5 2.9 4.4 3.5
17 October 1977 5.4 5.9 3.2 4.9 4.6
17 October 1978 5.8 5.6 3.8 4.3 4
19 September 1979 5.1 6 4 4.8 4.1
14 May 1980 5.9 6.6 3.9 5.6 4.1
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Table E.5.4 Road rutting measurements at Section 4, Site 6 in millimeters; base thickness
152 mm; base material, hot-rolled asphalt

Date Location 1 Location 2 Location 3 Location 4 Location 5

7 May 1960 2.9 0.01 0.01 1.8
14 November 1960 4 1.4 0.5 1.4 3.2
14 May 1961 3.6 1.4 0.01 2 3.4
28 August 1961 4.1 1.6 0.01 2 3.4
5 March 1962 3.9 1.3 0.8 2.3 3.7
19 September 1962 4.2 1.3 0.01 2.1 3.5
24 April 1963 4.1 1.8 0.6 1.5 3.7
10 October 1963 4.7 1.3 0.01 1.8 4.1
7 February 1964 4.8 1.5 1 2 5.2
3 October 1964 4.7 1.3 0.7 1.8 4.3
12 March 1965 3.7 1.3 0.01 2 3.8
26 September 1965 4.5 1.6 0.9 2.4 4.4
26 March 1966 4.8 1.5 2.6 4.9
21 May 1967 5.3 1.4 0.6 1.5 3.8
10 October 1969 5.4 1.8 0.3 2.6 4.1
3 October 1970 6.1 1.1 1.1 2.1 5.1
3 April 1971 1.4 2.7 3.7
10 October 1971 6.1 2.1 0.8 2.7 3.4
3 April 1972 6.3 1.4 1 2.1 6.2
3 October 1972 5.7 2.6 0.8 1.1 5.2
30 April 1973 6.5 1.6 1.4 2.3
28 August 1975 6.2 2.8 1.4 1.3 5.5
3 October 1976 6.8 1.5 2.6 4.5
3 October 1977 6.9 1.4 2.5 5.4
17 October 1978 7.9 2.3 1.3 2.1 5.9
28 August 1979 6.9 3.7 1.7 2 5.3
30 April 1980 7.5 2.4 0.6 2.3 6.1
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Table E.5.5 Road rutting measurements at Section 5, Site 6 in millimeters; base thickness
229 mm; base material, hot-rolled asphalt

Date Location 1 Location 2 Location 3 Location 4 Location 5

7 May 1960 1.2 0.01 0.6 1.1
14 November 1960 2.3 4.1 1.5 2.9
14 May 1961 2.6 4.1 1.2 3.2 2.6
28 August 1961 2.9 4.4 1.2 3 2.9
5 March1962 3.2 4.3 1.1 2.9 3
19 September 1962 2.9 4 1.4 3.5 3.3
24 April 1963 3.1 4.7 1.5 3.1 3.2
10 October 1963 3.2 4.7 0.8 3.5 3.1
7 February 1964 3.2 5.3 1.5 3.2 3.3
3 October 1964 3 4.7 1.3 3.4 2.9
12 March 1965 2.5 4.9 2 3.4 4.6
26 September 1965 3 4 1.5 3.6 3.3
26 March 1966 3.3 4.7 3 3.8 4.6
21 May 1967 4.4 4.9 1.8 4 3.7
10 October 1969 3.2 4.1 2 4.9 3.5
3 October 1970 3.8 3.7 3.7 3.4 3
3 April 1971 3.2 2.9 3.8 4 3.6
10 October 1971 3 5 3.5 3.8
3 April 1972 3.4 4.7 1.6 3.9 3.4
3 October 1972 3.7 2.9 4.2 4.3
30 April 1973 3 3.5 1.8 5.1 3.9
28 August 1975 3 5 2.4 3.2
3 October 1976 4.4 3.7 3.2 4.8 4.8
3 October 1978 3.5 5.8 1.4 3.7 5.5
28 August 1979 2.8 3.2 1.4 3.7 4.1
30 April 1980 4.3 4.1 1.2 4.1 4.1
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Table E.5.6 Road rutting measurements at Section 6, Site 6 in millimeters; base thickness
305 mm; base material, hot-rolled asphalt

Date Location 1 Location 2 Location 3 Location 4 Location 5

7 May 1960 0.8 4.4 2.7 0.01
14 November 1960 3.5 2.8 3.9 4.2 2.9
14 May 1961 3.7 3.2 6.2 3.9 3
28 August 1961 3.6 3.4 6.4 4.2 3
5 March 1962 3.2 3.5 6.1 4 3.5
19 September 1962 4.2 3.3 6.4 4 3.2
24 April 1963 4.5 4.6 6.4 4.2 3.9
10 October 1963 4.5 4.5 6.8 4.4 3.8
7 February 1964 4.6 4.5 6.9 4.5 3.6
3 October 1964 5 3.8 6.2 4.4 3.6
12 March 1965 4.4 4.8 6.4 5.6 4.3
26 September 1965 5.2 4.9 6.5 4.5 4.2
26 March 1966 4.3 4.7 6.6
21 May 1967 5.3 5.1 4.6 4.2
10 October 1969 5.1 5.1 6.2 4.8 5.5
3 October 1970 4.1 5.9 7.9 5.6 3.9
3 April 1971 6.2 7.9 3.8
10 October 1971 3.8 6.8 5.9 3.6
3 April 1972 4.6 5.4 7.6 5.2 4
3 October 1972 4.2 4.2 7.5 5
30 April 1973 5.2 6.2 7.8 5 6.3
28 August 1975 3.8 6.1 6.8 5.6 6.3
3 October 1976 4.6 7.3 6.5 5.9 5.9
3 October 1978 4 7.4 8.5 6.5 5.9
19 September 1979 4.6 6.6 9.6 6.2 6.2
30 April 1980 4.6 7.7 9 5.7 6.2
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Table E.5.7 Annual maximum flows in cubic feet per second from North America with
suspected outliers

1. N. Fork Sun River near Augusta, Montana
06078500; 1911; 25; (1911 2 1946 23); 1968

2,390 2,280 2,190 3,520 4,840 2,720 3,340 3,170 2,140 3,990
4,580 2,900 4,170 3,330 2,830 3,960 2,660 3,400 2,830 1,680

51,100 3,370 2,810 3,370 2,600

2. Two Medicine River near Browning, Montana
06092000; 1907; 42; (1907 1 1909 4 1914 11 1951 26); 1976

7,950 7,600 1,790 4,140 2,900 1,640 1,840 4,300 5,160 5,160
2,030 2,150 2,320 3,180 2,340 2,890 4,620 2,280 6,520 5,860
2,590 5,020 3,960 2,720 3,940 2,100 3,350 1,790 1,540 100,000
4,000 1,970 5,920 2,700 3,500 8,310 3,880 4,020 1,910 2720

74,500 3,390

3. Twin Creek near Germantown, Ohio
03272000; 1913; 60; (1913 1 1915 9 1927 50); 1976

66,000 9,390 7,880 6,950 6,510 7,640 8,480 5,630 6,070 4,270
5,400 6,410 7,640 6,800 2,470 5,520 7,350 3,370 4,370 4,790
7,890 6,150 5,850 5,250 1,720 4,460 7,200 5,370 6,360 5,250
7,040 5,870 7,520 6,740 6,690 8,790 2,610 1,420 3,970 7,340
7,860 7,010 8,590 2,970 6,300 5,790 8,400 7,420 4,900 4,430
5,980 7,760 6,010 6,280 5,260 4,210 5,300 5,800 7,460 5,140

4. Waterton River near international boundary
05011500; 1948; 17; ; 1964

2,510 1,890 2,560 2,190 1,520 2,520 2,710 2,260 2,360 1,870
1,850 2,160 2,020 2,520 1,440 1,840 12,400

5. Belly River near Mountain View, Alberta
05011000; 1912; 65; ; 1976

1,030 2,070 1,370 1,372 2,729 3,100 1,643 1,934 1,925 1,730
2,040 2,230 1,500 2,030 644 2,670 2,040 1,400 1,360 1,300
1,800 1,920 2,900 1,640 1,300 3,960 2,070 1,008 1,080 936
2,510 1,910 1,050 1,680 1,540 1,420 3,220 1,330 2,210 3,020
1,020 4,500 2,470 2,140 2,180 2,000 1,900 1,960 1,550 1,950
1,130 1,810 16,400 2,540 1,890 2,330 1,550 2,450 3,600 1,910
2,710 1,590 2,510 14,700 1,730

6. Little River at Buffumville, Massachussets
01124500; 1940; 38; 1977

516 168 502 264 337 331 334 255 448 181
208 520 356 518 1220 8340 518 280 396 429
382 259 278 255 224 137 145 294 340 288
268 182 321 330 360 284 330 294

7. Belly River at international boundary
05010000; 1948; 17; ; 1964

1,810 972 1,770 1,570 751 2,450 1,720 1,540 1,740 1,320
1,240 1,570 1,270 1,630 790 1,320 12,000

(continued )
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Table E.5.7 (continued)

8. Yakdin River at Wilkesboro, North Carolina
02112000; 1904; 63; (1904 6 1916 1 1921 56); 1976

9,250 16,000 26,800 24,200 14,700 22,600 11,6000 10,700 11,300 13,600
13,700 12,300 12,000 4,020 22,000 10,300 29,000 6,030 7,500 19,200
10,600 11,000 10,800 17,100 19,300 11,600 160,000 10,200 13,200 9,530
11,800 23,200 9,350 14,200 9,250 12,800 5,770 12,300 12,800 11,300
11,800 10,200 7,650 15,500 6,640 15,200 11,600 8,600 6,800 6,100

5,570 8,120 9,300 5,180 5,800 7,800 12,700 4,620 9,080 8,570
9,740 7,660 10,400

9. Great Miami River at Taylorsville, Ohio
03263000; 1913; 60; (1913 5 1922 55); 1976

12,7000 11,400 11,400 26,400 14,700 17,300 10,600 21,600 5,610 13,800
21,600 14,000 23,700 20,600 4,750 9,430 25,500 5,500 11,400 15,600
25,500 16,600 13,600 14,600 4,980 12,800 21,900 17,700 17,200 8,410
20,200 16,200 17,200 20,300 18,300 21,500 9,210 7,520 9,000 14,000
17,200 21,400 31,400 6,310 16,100 12,400 24,300 18,800 11,500 8,570
12,200 10,800 12,700 13,900 13,100 11,600 14,100 15,700 22,600 11,400

10. Quinebaug River at Quinebaug, Connecticut
01124000; 1932; 45; (1932 42 1975 3); 1977

1,260 1,800 2,310 2,140 10,500 2,280 19,000 1,700 2,550 1,210
2,110 1,340 1,460 1,560 1,490 1,180 2,370 1,020 1,020 2,940
1,990 2,240 5,990 49,300 2,830 1,410 1,970 3,160 2,170 1,490
1,730 1,570 1,350 985 838 1,480 2,760 2,100 2,500 907
2,070 2,440 1,850 2,620 2,170

11. North Fork New River at Crumpler, North Carolina
03162500; 1878; 43; (1878 1 1901 1 1909 8 1928 32 1966 1); 1966

44,300 23,500 6,660 2,700 4,190 4,320 7,960 2,590 5,290 39,000
5,970 6,250 6,670 2,980 4,570 3,670 4,220 7,500 5,910 3,450
3,900 3,670 73,000 3,450 3,850 7,780 6,620 11,400 8,830 7,290
6,380 11,300 4,870 17,100 4,380 5,730 7,920 7,900 9,500 10,000
3,930 7,950 10,600

Key to line beneath station listings: station index; starting year; number of years of data; (excluding missing
years: starting year and number of years); last year.
Source: By kind courtesy of U.S. Geological Survey.
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Table E.5.8 Annual maximum flow of Tevere (Tiber) River observed at Ripetta, a guaging
station in Rome, central Italy, from 1921 to 1974

x x x x x x
Year (m3/s) Year (m3/s) Year (m3/s) Year (m3/s) Year (m3/s) Year (m3/s)

1921 1092 1930 775 1939 985 1948 1600 1957 612 1966 1325
1922 1099 1931 1166 1940 1346 1949 714 1958 822 1967 528
1923 1440 1932 843 1941 1553 1950 794 1959 1370 1968 622
1924 1083 1933 1508 1942 1370 1951 1460 1960 1380 1969 355
1925 1621 1934 1876 1943 743 1952 1240 1961 510 1970 468
1926 1132 1935 1696 1944 1340 1953 1230 1962 810 1971 472
1927 935 1936 1690 1945 896 1954 1270 1963 735 1972 664
1928 1540 1937 2730 1946 1600 1955 861 1964 259 1973 717
1929 1966 1938 1440 1947 2190 1956 1355 1965 1290 1974 950

Table E.6.1 Some characteristics of stream basins on the left bank of the Po basin in northern
Italy

Annual Annual Mean Longest Area of
Stream basin runoff rainfall elevation flow path basin

Index outlet (mm) (mm) (m) (km) (sq km)

1 Pian di Nambron 1654 1350 2329 5.59 20.42
2 Saone 1374 1621 1593 35.38 506.19
3 Nago 910 1263 1479 73.82 937.63
4 Capo di Ponte 1189 1293 1857 50.42 781.11
5 Ponte Cene 1453 1666 1335 43.12 426.86
6 Ponte Briolo 1278 1593 1140 54.03 763.11
7 Tirano 818 932 2136 55.86 616.83
8 Fuentes 1047 1121 1844 138.60 2323.09
9 Colombaio 589 1398 144 12.98 38.90

10 Ponte Gurone 769 1615 472 13.69 84.41
11 Santino 1730 2113 1230 17.43 62.80
12 Caderese 1571 1457 2146 25.93 185.45
13 Candoglia 1382 1519 1641 74.66 1461.86
14 Ponte Folle 1600 1936 1350 23.56 149.41
15 Campertognio 1295 1427 2120 22.12 171.37
16 Ponte Aranco 1428 1735 1480 49.39 697.75
17 Passobreve 1461 1803 1495 13.63 73.78
18 D’Ejola 1733 1280 3112 3.08 28.51
19 Gressoney St. Jean 1357 1191 2615 12.17 89.79
20 Saint Oyen 1023 1283 2206 10.44 68.85
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Table E.6.2 Biochemical oxygen demand (BOD), nitrates (NO3-N)
and ammonia (NH3-N) at 38 stations along the Blackwater river in
units of milligrams per liter

Station BOD NO3-N NH3-N

1 2.27 1.97 0.11
2 4.41 12.83 0.61
3 4.03 11.11 0.53
4 3.75 9.86 0.47
5 3.37 9.54 0.62
6 3.23 8.85 0.56
7 3.18 8.02 0.64
8 4.08 8.94 1.14
9 4 8.76 1.11

10 3.92 8.59 1.07
11 3.83 8.43 1.04
12 3.74 8.27 1
13 3.66 8.13 0.97
14 3.58 7.99 0.94
15 3.16 6.72 0.83
16 3.43 9.23 0.94
17 3.36 9.1 0.93
18 3.3 8.97 0.91
19 3.24 8.85 0.89
20 3.19 8.74 0.88
21 3.22 9.8 0.95
22 3.17 9.64 0.93
23 3.13 9.49 0.9
24 3.08 9.34 0.88
25 3.04 9.2 0.86
26 3 9.06 0.84
27 2.96 8.03 0.82
28 2.93 8.81 0.8
29 2.89 8.69 0.78
30 2.86 8.57 0.76
31 2.82 8.45 0.74
32 2.79 8.35 0.73
33 2.76 8.24 0.71
34 2.73 8.14 0.7
35 2.7 8.04 0.68
36 2.51 6.54 0.48
37 2.49 6.51 0.47
38 2.46 6.46 0.46

Mean 3.218 8.533 0.781
Standard deviation 0.496 1.580 0.213
Coefficient of variation 15.6% 18.5% 27.3%

Source: By kind courtesy of the Severn Trent Authority, Birmingham, England.
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Table E.7.1 Annual maximum hourly storm depth in millimeters at Genoa University, Italy,
from 1931 to 1988

x x x x x x
Year (mm) Year (mm) Year (mm) Year (mm) Year (mm) Year (mm)

1931 38.6 1941 40.2 1951 76.2 1961 66.5 1971 50.4 1981 89.4
1932 33.7 1942 53.8 1952 27.4 1962 24.5 1972 43.2 1982 27.2
1933 33.8 1943 26.9 1953 69.4 1963 64.1 1973 39.6 1983 32.7
1934 79.2 1944 34.7 1954 22.8 1964 53.9 1974 38.7 1984 105.7
1935 58.6 1945 72.6 1955 34.8 1965 66.5 1975 40.2 1985 25.3
1936 39.3 1946 30.2 1956 38.8 1966 32.9 1976 55.7 1986 27.6
1937 33.2 1947 42.7 1957 39.8 1967 52.4 1977 118.9 1987 128.5
1938 29.2 1948 54.5 1958 29.3 1968 27.8 1978 25.0 1988 24.7
1939 46.7 1949 30.0 1959 58.1 1969 23.3 1979 55.6
1940 80.0 1950 30.0 1960 48.5 1970 80.0 1980 40.1
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Table E.7.2 Hydrologic data of the Po basin at Pontelagoscuro, northern Italy, from 1918 to 1978

Annual Annual Annual Mean
maximum flow minimum flow minimum 7-day flow annual flow Rainfall Runoff

Year (m3/s) (m3/s) (m3/s) (m3/s) (mm) (mm)

1918 5390 910 944 2010 1133 904
1919 4240 826 856 1440 999 648
1920 7220 969 1005 2400 1501 1080
1921 3000 569 590 1220 807 549
1922 2590 380 394 1070 1051 481
1923 2980 563 580 1280 969 576
1924 3920 749 813 1400 997 630
1925 3460 696 713 1530 1090 688
1926 8850 740 757 2040 1356 918
1927 3760 825 861 1630 1133 733
1928 8600 538 563 1800 1171 810
1929 2220 428 463 1090 876 490
1930 5400 607 618 1660 1159 747
1931 3700 508 527 1180 993 531
1932 4150 555 571 1420 1112 639
1933 4690 437 463 1310 1128 589
1934 6810 855 875 2050 1345 922
1935 6620 529 565 1750 1290 787
1936 6620 787 797 2310 1259 1039
1937 7700 668 675 2130 1529 958
1938 4380 287 305 1150 940 517
1939 3900 745 800 1780 1196 801
1940 5420 424 447 1350 1046 607
1941 6870 720 749 1860 1218 837
1942 4600 366 383 1160 948 522
1943 3270 310 311 987 896 444
1944 3660 306 307 905 950 407
1945 6830 304 306 916 846 412
1946 5130 655 669 1510 1011 679
1947 5460 588 594 1300 1096 585
1948 6630 711 735 1610 1100 724
1949 7220 275 278 967 922 435
1950 3260 400 411 1020 978 459
1951 8940 830 837 2200 1496 990
1952 4200 450 510 1110 913 499
1953 7400 520 550 1370 1046 616
1954 4450 440 456 1500 1100 675
1955 2400 423 441 1060 886 477
1956 5090 426 445 1220 1028 549
1957 6990 540 544 1390 1215 625
1958 5680 425 466 1320 1142 594
1959 7730 470 524 1900 1422 855
1960 6510 939 981 2620 1654 1179
1961 4880 424 450 1330 987 598
1962 4540 354 361 1070 909 481
1963 6430 732 737 1980 1362 891
1964 5630 444 461 1370 1026 616
1965 6110 321 363 1300 1015 585
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Table E.7.2 (continued )

Annual Annual Annual Mean
maximum flow minimum flow minimum 7-day flow annual flow Rainfall Runoff

Year (m3/s) (m3/s) (m3/s) (m3/s) (mm) (mm)

1966 7240 359 425 1570 1228 706
1967 2470 414 454 1120 885 504
1968 7830 653 711 1650 1264 742
1969 6080 577 593 1410 995 634
1970 3170 376 394 1070 986 481
1971 5270 433 469 1380 1017 621
1972 5940 664 688 1900 1349 855
1973 4030 474 486 1270 1029 571
1974 5590 421 442 1422 959 640
1975 5360 488 508 1730 1323 778
1976 8030 323 340 1750 1318 787
1977 7800 1030 1103 2630 1564 1183
1978 5540 650 668 1920 1197 864

Table E.7.3 Earthquake catalog for California north of latitude 32◦ and south of latitude 36◦

Date and time Date and time
(day/month/year Zone (day/month/year Zone
hour minute) Magnitude typea hour minute) Magnitude typea

29/11/1852 20.00 6.5 C 08/06/1934 4.47 6.1 B
11/7/1855 4.15 6.0 B 25/02/1937 16.49 6.0 A
9/1/1857 16.00 7.8 B 19/05/1940 4.36 6.9 B
16/12/1858 10.00 6.0 C 21/10/1942 16.22 6.6 A
27/5/1862 20.00 6.0 B 15/03/1946 13.49 6.0 C
15/11/1875 22.30 6.2 B 10/04/1947 15.58 6.6 C
5/9/1883 12.30 6.2 C 04/12/1948 23.43 6.0 A
9/2/1890 12.06 6.5 A 21/07/1952 11.52 7.5 B
24/2/1892 7.20 7.0 B 21/07/1952 12.05 6.4 B
28/5/1892 11.15 6.5 A 29/07/1952 7.03 6.3 C
30/7/1894 5.12 6.0 A 22/11/1952 7.46 6.0 C
25/12/1899 12.25 6.4 A 19/03/1954 9.54 6.4 A
03/03/1901 7.45 6.4 B 28/06/1966 4.26 6.0 B
19/04/1906 0.30 6.2 B 09/04/1968 2.28 6.5 A
04/11/1908 8.37 6.0 C 09/02/1971 14.00 6.7 B
23/06/1915 3.59 6.0 B 15/10/1979 23.16 6.4 B
10/11/1916 9.11 6.1 C 02/05/1983 23.42 6.4 C
21/04/1918 22.32 6.8 A 08/07/1986 9.20 6.2 A
10/03/1922 11.21 6.1 B 24/11/1987 13.16 6.5 A
23/07/1923 7.30 6.0 A 23/04/1992 4.50 6.1 C
29/06/1925 14.42 6.9 C 28/06/1992 11.57 7.3 B
04/11/1927 13.50 7.3 B 28/06/1992 15.05 6.2 C
11/03/1933 1.54 6.2 B 17/01/1994 11.18 6.7 B

aType A zones contain faults for which paleoseismic data suffice to estimate conditional probabilities. Type B
zones contain faults with insufficient data for conditional probability analysis. Type C zones contain diverse
or hidden faults.
Source: Data from Working Group on California Earthquake Probabilities (1995).
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Table E.7.4 Annual maximum 10-minute wind
velocity in meters per second at three stations in
Italy, from 1951 to 1973

Station

Year Milan Cagliari Pantelleria

1951 13.89 20.06 26.24
1952 10.29 20.58 27.78
1953 16.46 15.43 30.87
1954 11.83 16.98 26.75
1955 11.83 15.43 27.78
1956 10.29 18.52 36.01
1957 9.77 15.43 29.84
1958 11.32 15.95 30.87
1959 18.01 19.03 25.72
1960 14.40 19.03 26.75
1961 19.55 18.52 33.44
1962 14.92 16.98 31.90
1963 10.29 14.40 25.21
1964 13.89 18.01 25.72
1965 11.32 19.03 28.29
1966 13.89 20.58 26.75
1967 13.38 19.55 21.61
1968 13.89 19.55 22.12
1969 12.35 16.46 20.58
1970 12.86 18.52 20.58
1971 15.43 18.52 21.61
1972 13.38 15.43 24.69
1973 20.06 — 25.72
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Table E.10.1a Monthly mean temperatures at Chateaux-D’oex, Switzerland: Part 1

1901 3.8 8.0 1.3 5.7 9.9 13.2 14.8 13.1 11.3 5.4 2.0 3.0
1902 2.3 2.6 1.2 7.4 5.1 11.7 14.8 13.1 10.4 5.0 0.1 3.4
1903 2.8 0.2 2.3 1.6 9.4 11.2 13.2 13.4 11.0 6.6 0.6 3.8
1904 4.2 1.9 0.9 6.8 11.1 13.4 16.6 14.6 8.9 5.7 0.3 2.0
1905 6.0 3.5 1.8 5.7 8.2 13.1 16.5 13.3 11.0 1.3 0.2 2.9
1906 2.5 4.0 0.5 4.4 9.1 12.4 14.7 14.8 10.1 7.9 2.3 6.7
1907 4.4 6.0 0.5 3.7 9.8 12.4 12.7 14.3 11.4 6.8 2.4 1.2
1908 3.8 2.5 0.5 3.2 11.5 14.3 14.1 12.4 10.3 6.4 0.2 3.0
1909 5.4 5.6 1.3 6.7 9.0 10.8 12.1 12.9 9.4 7.0 1.3 1.0
1910 2.1 1.8 1.7 4.5 8.1 13.0 12.5 13.2 9.0 7.4 0.4 0.2
1911 6.4 2.2 1.6 3.9 9.8 12.2 17.0 16.5 12.7 6.4 3.0 0.2
1912 0.9 1.7 3.2 3.8 10.2 12.6 13.4 10.7 6.0 4.5 2.7 1.6
1913 0.4 2.3 3.1 4.8 9.2 12.3 11.7 12.8 9.9 7.4 3.2 2.7
1914 8.3 0.3 1.2 6.9 8.1 11.6 12.6 14.1 9.7 5.6 0.1 0.6
1915 4.0 3.1 0.0 3.6 11.5 14.1 13.4 12.4 9.1 4.0 2.0 2.0
1916 1.3 1.0 1.1 5.0 10.5 10.8 13.6 13.0 8.8 5.7 0.8 1.3
1917 6.4 4.4 1.2 1.8 12.1 13.8 13.8 12.5 12.5 3.5 0.0 6.2
1918 1.6 0.6 0.8 4.9 10.7 10.4 14.2 13.1 11.0 4.2 0.9 0.1
1919 4.0 2.6 0.9 2.7 9.2 12.4 11.4 14.5 11.8 2.5 1.4 1.6
1920 0.7 0.0 3.2 5.8 12.6 12.2 13.9 11.7 10.4 6.2 1.5 2.8
1921 0.0 2.7 2.4 4.1 10.4 13.1 16.8 13.7 12.3 8.2 0.6 1.5
1922 3.9 2.5 1.6 2.8 11.1 13.5 12.9 13.5 8.4 4.4 0.7 3.8
1923 4.7 0.4 1.4 5.1 9.3 9.9 16.4 14.8 10.6 8.3 1.3 2.1
1924 3.5 4.7 0.8 5.1 10.7 12.8 14.3 10.5 10.5 6.0 1.0 0.9
1925 0.7 0.2 0.8 5.0 9.5 13.6 13.8 13.0 8.6 6.9 0.2 2.2
1926 2.9 2.8 2.8 5.8 7.4 10.1 13.4 13.5 12.4 6.6 3.6 4.4
1927 2.5 2.5 1.9 5.1 10.2 12.4 14.2 12.5 10.1 5.8 1.5 1.8
1928 1.6 1.0 2.5 5.2 7.3 12.9 17.2 15.5 10.7 5.6 2.6 4.3
1929 7.3 7.4 0.9 2.1 9.6 13.6 15.4 13.5 13.0 6.7 1.6 0.1
1930 0.5 2.9 2.4 5.3 8.2 14.7 13.0 13.4 11.4 5.6 3.9 3.0
1931 3.2 4.0 0.1 4.4 11.5 15.6 13.8 12.3 7.0 6.2 3.1 3.8
1932 1.5 6.2 0.1 3.1 8.4 11.8 13.7 16.3 13.2 6.0 2.2 0.2
1933 5.1 1.7 2.4 6.0 8.3 10.2 15.4 15.3 12.0 6.8 0.6 7.0
1934 3.3 3.1 0.9 7.2 11.5 13.0 15.5 12.6 12.1 5.7 0.3 1.9
1935 6.3 1.1 0.1 3.9 8.1 14.7 15.5 13.0 11.7 6.3 2.5 3.0
1936 1.4 1.1 3.3 4.7 10.1 12.0 13.6 13.6 10.7 2.3 1.6 1.2
1937 0.4 0.6 0.3 4.4 10.7 13.6 15.0 13.9 10.3 7.1 1.1 4.4
1938 2.8 3.9 3.2 2.5 8.1 14.1 14.0 13.7 11.4 6.5 3.7 3.1
1939 2.5 1.2 2.1 6.0 7.0 12.6 13.3 13.5 10.0 5.3 3.1 3.2
1940 7.0 1.1 1.7 5.4 9.1 12.2 13.2 12.7 10.7 5.8 2.5 7.9
1941 4.7 2.0 1.8 4.0 6.4 13.5 16.0 12.9 10.6 5.1 0.6 4.3
1942 7.0 6.7 3.2 5.7 9.7 13.7 14.8 14.5 12.9 8.9 1.3 0.9
1943 1.9 1.2 3.5 6.1 10.8 12.1 14.9 15.5 12.0 8.1 0.1 1.8
1944 1.6 5.0 1.4 6.7 9.9 12.3 14.4 16.7 10.4 4.8 0.8 3.6
1945 8.2 0.8 2.5 7.2 11.1 14.7 16.4 13.7 11.4 6.3 0.0 1.9
1946 4.0 0.2 2.7 8.3 11.2 12.1 15.7 13.7 11.8 5.9 1.4 4.3
1947 5.8 2.5 3.0 9.0 11.9 15.0 16.5 16.5 13.1 7.2 4.1 2.3
1948 0.2 0.6 5.5 6.2 10.7 11.8 12.3 13.7 10.8 6.9 2.8 2.2
1949 2.1 1.6 0.6 8.1 8.9 13.6 16.3 15.4 14.4 8.4 0.8 0.3
1950 3.2 0.4 2.5 3.9 11.3 15.0 17.4 14.6 10.7 6.2 2.1 4.4
1951 1.5 1.2 0.1 5.2 9.3 12.8 15.0 13.8 12.2 6.5 3.0 0.5
1952 4.2 3.9 2.7 7.3 10.9 14.7 17.3 14.5 8.2 5.8 0.3 2.5
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Table E.10.1b Monthly mean temperatures at Chateaux-D’oex, Switzerland: Part 2

1953 7.1 4.8 1.6 6.3 10.9 11.7 15.0 14.2 12.0 8.1 1.7 0.7
1954 5.6 3.1 2.6 3.8 8.5 13.3 12.8 12.5 11.5 6.7 2.5 1.0
1955 0.2 2.2 0.3 5.8 8.9 13.0 14.4 13.2 10.2 4.9 0.0 0.8
1956 1.4 11.2 1.7 3.5 10.1 10.6 14.2 12.5 12.2 4.5 0.9 2.5
1957 4.0 1.1 5.3 5.7 7.1 13.5 14.6 13.3 10.2 6.2 1.9 3.2
1958 3.3 0.4 1.3 2.8 11.7 12.2 14.7 14.7 13.0 5.4 1.3 0.0
1959 2.6 0.4 4.4 6.0 10.3 13.7 16.3 13.8 12.8 6.0 0.8 0.7
1960 3.4 0.2 3.3 5.4 11.2 13.9 12.9 13.0 9.4 5.6 2.9 2.6
1961 2.4 1.4 3.1 7.8 8.5 13.7 13.6 13.6 14.1 7.2 1.5 0.6
1962 1.2 2.8 1.0 4.8 8.0 12.4 14.2 15.6 11.0 6.6 0.1 5.5
1963 8.1 6.6 0.2 6.1 8.7 12.5 15.5 12.8 11.2 6.7 4.1 3.4
1964 4.7 0.2 1.5 6.6 11.5 14.1 15.8 13.6 11.6 5.0 2.4 3.3
1965 2.3 6.5 0.8 3.8 9.1 13.3 13.3 12.9 9.2 7.2 2.0 0.2
1966 4.8 2.8 0.4 6.7 10.1 13.7 13.0 12.8 12.6 8.6 0.5 2.0
1967 3.8 0.6 2.9 4.0 9.3 11.9 16.3 14.3 10.5 8.6 2.6 4.4
1968 3.8 0.7 1.2 6.5 9.0 12.4 14.2 12.2 10.3 9.0 2.0 2.7
1969 2.4 4.4 1.2 4.5 10.6 10.8 15.1 13.3 11.6 7.6 1.4 7.6
1970 2.0 1.8 1.5 2.2 8.1 14.1 14.6 14.2 12.3 5.9 3.3 3.3
1971 3.3 1.7 2.5 8.0 10.8 11.7 16.3 15.9 11.0 7.8 0.2 1.5
1972 2.2 0.7 3.3 4.8 8.7 11.8 14.4 13.4 8.5 5.4 2.5 1.9
1973 3.0 4.1 0.0 2.3 10.8 13.5 14.3 16.3 12.4 5.5 1.9 2.1
1974 0.1 0.4 3.9 5.4 8.8 11.6 14.2 15.4 10.7 1.6 0.9 0.4
1975 0.9 0.0 0.8 5.2 9.6 11.4 15.1 15.1 13.0 5.5 1.1 3.1
1976 2.0 0.2 1.4 5.1 10.5 15.1 15.3 13.2 9.9 7.9 1.3 4.1
1977 2.1 0.8 4.3 4.1 8.7 12.2 14.5 13.5 10.8 8.6 0.8 1.3
1978 2.7 1.5 2.5 4.1 8.5 12.0 14.0 13.2 11.3 6.3 1.3 0.4
1979 4.1 0.2 2.5 3.7 9.5 13.7 14.7 13.1 11.5 8.6 1.0 0.1
1980 4.0 0.7 2.1 2.9 8.2 11.2 13.0 15.2 12.5 6.0 1.1 3.8
1981 4.0 4.0 3.9 7.2 9.2 13.1 13.3 15.1 12.0 6.6 2.0 1.6
1982 0.2 0.5 0.8 5.1 10.3 14.0 16.8 14.3 13.5 7.0 3.6 0.1
1983 0.0 4.5 2.9 6.0 7.9 14.1 19.4 15.3 12.4 7.3 1.8 0.8
1984 1.5 3.7 0.7 4.5 6.9 12.7 15.4 14.5 10.2 7.8 4.6 0.3
1985 7.2 2.0 0.3 5.5 9.6 12.1 16.6 14.7 13.3 7.9 1.3 0.5
1986 1.9 5.6 2.2 3.8 12.1 13.5 15.0 14.9 12.2 8.6 2.6 1.1
1987 6.8 1.2 1.0 6.9 7.4 12.0 15.8 15.5 14.7 9.3 2.3 0.5
1988 1.2 1.2 0.4 6.9 11.3 12.8 15.4 15.4 11.6 9.1 0.7 1.0
1989 1.8 1.0 5.0 4.9 11.4 12.9 16.3 15.3 11.8 7.6 1.5 0.4
1990 0.8 3.6 4.2 4.7 12.1 12.7 16.2 16.1 11.2 8.9 1.5 3.5
1991 1.9 2.6 5.4 4.7 7.2 12.5 16.9 17.3 13.9 6.1 2.0 2.8
1992 3.2 0.6 3.8 6.5 11.9 12.9 15.8 17.6 12.0 5.7 4.4 0.9
1993 0.8 1.8 1.6 7.2 11.5 13.7 14.4 15.5 10.9 6.0 0.2 0.8
1994 0.1 0.6 6.3 4.4 11.1 13.9 17.8 16.9 11.6 7.8 5.4 0.9
1995 3.0 2.2 0.7 6.3 9.9 12.4 17.8 14.7 9.5 10.3 1.8 0.6
1996 0.1 2.6 0.8 6.9 10.2 14.4 14.9 14.8 9.0 7.4 2.3 1.1
1997 1.7 1.8 5.0 5.6 10.9 13.3 14.3 16.9 13.6 7.2 2.8 0.5
1998 1.6 0.8 3.3 5.8 11.3 14.4 16.4 15.8 11.3 7.6 1.3 2.5
1999 0.8 3.1 2.9 5.8 12.8 13.1 16.8 16.1 14.0 7.9 0.3 0.6
2000 3.7 0.6 3.2 7.4 12.1 15.7 13.8 16.2 12.8 8.1 2.9 1.3
2001 0.7 1.1 5.3 4.3 12.7 12.8 16.1 17.0 9.6 11.1 0.3 3.8
2002 2.1 2.6 4.8 6.8 9.9 16.6 15.6 14.9 11.1 8.1 3.4 1.2
2003 3.2 4.3 4.3 7.0 12.0 18.8 17.5 19.5 12.1 4.9 3.5 0.6
2004 1.1 0.8 1.8 6.6 9.7 14.1 15.8 15.8 13.1 9.3 1.5 1.2
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Index

action space, 624
addition rule, 53–5, 62
additive model, 288
agglomeration, 383
algebra of events, 45
aleatory uncertainty, 530
analysis of covariance (ANCOVA), 295
analysis of natural hazards, 453–73

avalanches and snow storms, 444, 473,
485, 489

droughts and low flows, 207–208,
227–8, 428–9, 433, 459–60

earthquakes, 29, 35, 461–4, 482, 484–5,
540

floods, 453–5
highest sea waves, 35–6, 471–3
hurricane winds, 442, 465–70, 479–82,

702
landslides and debris flows, 473, 537,

549
volcanic eruptions, 464–5

analysis of variance (ANOVA), 283–95
F test, 286, 350–55
one-way, 284–7
sum of squares, 284–7, 289–90
two-way, 288–95

antithetic variates method, 496–500
arithmetic mean, 12

backward elimination procedure, 353–4
bar chart, 4
Bayes’ rule. See Bayesian decision theory
Bayes’ theorem, 68–72, 594, 633
Bayesian decision theory, 632–42

action space, 624
Bayes’ risk, 624–32
Bayes’ rules, 624–33
decision tree, 627–30
Gibbs sampling, 644–50
likelihood ratio testing, 642–3
loss function, 624, 63–5, 658
minimax decision rule, 630–32
Markov chain Monte Carlo, 643–50
Metropolis-Hastings algorithm, 649

parameter space, 624
posterior probabilities, 51, 632–42
prior probabilities, 51, 71, 624, 632,

636–43
risk function, 624
subjective probabilities, 51, 633
utility function, 634–5, 640–41

Bayesian method in reliability, 592–7
Behrens-Fisher problem, 253
Bernoulli distribution. See distribution,

Bernoulli
Bernoulli trial, 167
Bessel function, 139
best critical region, 256
beta distribution. See distribution, beta
beta function, 204, 592–7, 636
bias, 104, 233–5

in multiple regression, 346
in simple regression, 332–3

binomial distribution. See distribution,
binomial

bivariate distribution. See distribution,
bivariate

bivariate histogram, 122
block, 288–94
BLUE (best linear unbiased estimator),

332, 392
Boltzmann H function, 109
Boole’s inequality, 56
bootstrap method, 111
box plot, 22–33
Box-Cox transformation, 366
Box-Muller method, 506–507
Buffon’s needle problem, 488–9

carrier matrix, 343
Cauchy distribution. See distribution,

Cauchy
censored sample, 483
central limit theorem, 213–14

proof of, 662–3
central tendency, 12
chaotic system, 38n
characteristic function, 102

707
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characteristic point, 611
Chebyshev inequality, 93, 95

proof of, 659
chi-squared distribution, 202, 271

approximation to normal, 202n
table of, 675–6

chi-squared test, 271–3
Cluster analysis, 383–6
Coastal structures, 607–608
coding, 13
coefficient of determination, 355–6
coefficient of excess, 97
coefficient of kurtosis, 97

sample, 19, 281
coefficient of multiple correlation, 355
coefficient of skewness, 97–8

sample, 19, 281
coefficient of variation, 96, 196

sample, 18
communality, 379
complement, 40–45, 53
complete block design, 288
completely randomized design, 283
compound

event, 40
system, 577

concrete strengths, 14, 21–2, 24, 31,
211–2, 219–21, 240–41, 265–7,
287, 318–19, 642–3, 688

conditional
expectation, 128–32

bivariate, 220, 340
in multiple regression, 366
in simple regression, 332–3

probability, 56–61, 67–75
variance, 132

confidence
coefficient, 236
level, 236
limits. See confidence interval

confidence interval, 236–47
central, 245
for differences between two means,

242–3
for mean, 236–42
for mean response, 366–8
in Monte Carlo simulation, 495
noncentral, 245
one-sided, 236–8, 239
for proportion, 242

for regression, 337–9, 352–3, 366–8
for standard deviation, 246
two-sided, 236–46
for variance, 243–6

confounded variable, 283
consistency, 232
contagious distributions, 151–4,

439–45
continuity correction, 214, 261, 268
control chart, 318–19
control variate, 501
controlled experiment, 284
convolution integral, 135
Cook’s distance, 362–4
copulas, 154–7

2-copula, 155–6
exponential marginals, 156
Frank’s family, 156
Gumbel’s family, 155
Hoeffding’s seminal papers, 154
Kendall’s tau, 156
Pareto marginals, 156
Sklar’s theorem, 155
Spearman’s rho, 156

correlation, 23–6, 124–7, 339–41, 376,
379–83

matrix, 374
spatial, 387–92

correlation coefficient, 24, 124–7
in multiple regression, 355
in simple regression, 340–41
test statistic for regression, 298–9

counterdomain, 52
covariance, 24, 124–7, 376, 388

analysis of, 295
matrix, 346, 374, 379
of order statistics, 413
sample, 24
spatial, 387–8

Cramer-Rao inequality, 233, 482
credibility limits for reliability, 592–3
cumulants, 101–102

generating function, 102
cumulative distribution function (cdf), 10,

88–90
of a continuous random variable,

88–90
of a discrete random variable, 85–6
joint, 118–24
of order statistics, 406–407
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cumulative relative frequency diagram,
9–10

cumulative sum (cusum) charts, 30

dam failures, 609
dam reliability, 62–4, 78
debris flows, 537
decile, 9
decision tree, 627–30
decomposition method, 508–509
degrees of freedom, 17
dendogram, 383–5
depth-duration-frequency curve, 455–9,

479
derived distribution, 143–51
derived variables, 132–51

expectation of, 143–7
moment generating function of, 147–51
moments of, 143–7
probability density function of,

133–42
design point, 611
determinant (of a matrix), 345
determination, coefficient of, 355–6
deviation

mean absolute, 16
standard. See standard deviation

difference between two random variables,
distribution of, 135

Dirac function, 512, 600
disjoint event, 41
distribution, 1, 81–90

Bernoulli, 166–7, 193
beta, 203–205, 218

in Bayesian decision theory, 593–6,
636–7

generation of random variates, 508
limiting distribution, 415–18
for reliability, 592–6

binomial distribution, 167–71, 193
approximation to normal, 213
in Bayesian decision theory, 636–7
generation of random variates, 508,

511–12
for order statistics, 406–407
relation to hypergeometric, 190–92
relation to multinomial, 187–9
relation to negative binomial, 182
relation to Poisson, 171–4

bivariate

exponential, 119–22, 125, 128, 131,
139, 142, 145

logistic, 222
normal, 219–22, 339–41

Cauchy, 301, 417, 510
chi-squared, 202, 244, 271–3

table of, 675–6
contagious, 151–4, 439–45
continuous, 88–90
derived, 133–51
difference between random variables,

135–6
discrete, 85–6
Erlang, 200
exponential, 196, 199, 218

bivariate, 119–22, 125, 128, 131,
139, 142, 145

contaminated, 508–509
generation of random variates, 494
limiting distribution, 417
memoryless property, 198
outliers, 309–311
probability plotting, 301–303
shifted, 161, 199

extreme value. See extreme value
distribution

F, 258–9
derivation of pdf, 664
table of, 677–9

Fréchet, 429–32, 435–8, 452. See also
extreme value distribution

gamma, 102–103, 145, 146, 200–203,
218

in Bayesian decision theory, 638–9
as extreme value model, 447–50
generation of random variates, 508,

510–11
outliers, 309–311
relation to normal, 202n, 243–4
shifted, 447–50

geometric, 181–5, 193
generation of random variates, 508
memoryless property, 185

GEV, 435–9
Gibrat-Galton, 446
Goodrich, 434n,
Gumbel, 422–38, 452. See also extreme

value distribution
generation of random variates,

518–19
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distribution (cont.)
outliers, 309–311
probability plotting, 300–301, 424,

429, 431, 433, 438
relation to Fréchet, 431
relation to GEV, 435–7

half-normal, 356n
hypergeometric, 189–93
log-Pearson Type III, 449–50
log-series, 185–7, 193
logistic, 417
lognormal, 215–18, 544–5

as extreme value model, 445–7
probability plotting, 303
shifted, 445–7

multinomial, 168n, 187–9, 193
multivariate, 217–22
negative binomial, 181–5, 193

alternative form, 181–2, 193
generation of random variates, 508

normal. See normal distribution
Pareto, 135n, 156, 164, 429, 441, 468

as extreme value model, 412–13, 417
generalized, 441
limiting distribution, 417

Pearson Type III, 202, 447
Poisson, 101, 116–17, 193

approximation to binomial, 171–4
approximation to normal, 213–14
in Bayesian decision theory, 638–9
derivation of pmf, 659–60
in extreme value model, 442–4
generation of random variates, 508,

513
homogeneous, 174–8
nonhomogeneous, 180–81
probability plotting, 303
sum of, 17–25, 235
truncated, 178–9

Poisson-Weibull, 442
posterior. See probability, posterior
prior. See probability, prior
Rayleigh, 209, 444, 479, 494–5, 621

limiting case, 421–2
for reliability, 600, 604

reflected-power, 417
sampling. See sampling distribution
Student’s t, 239–40

derivation of pdf, 663
table of, 674–5

triangular, 89, 91, 122–3, 130–31, 417
uniform, 110, 194–5, 218

generation of random variates,
501–514

probability plotting, 296–7, 300
Weibull, 205–209, 218, 43–5, 452. See

also extreme value distribution
probability plotting, 303
shifted, 433, 452

dot diagram, 4–5
dry runs, 188
Duncan’s method, 293n
duration curve, 10–11
Durbin and Watson test, 335n

efficiency, 234
eigenvalue, 369–70, 375–80
eigenvector, 375–7
elementary event, 40
entropy, 109–110
epistemic uncertainty, 531
ergodicity, 388
Erlang distribution. See distribution,

Erlang
errors

Type I, 249, 254, 642
Type II, 249, 254–5, 642

estimate, 231
estimation, 231

Bayesian, 109, 636–43
entropy-based, 109–110
interval, 236–47
kernel-based, 112
method of L moments, 104–107, 439
method of least median-squares (LMS),

372
method of least squares, 109, 207, 330,

344
method of maximum likelihood,

107–109, 426–7
method of moments, 103–104
method of probability weighted

moments, 104–107, 427
method of weighted least squares, 371,

400
point, 103–112

estimator, 18, 231
best linear unbiased (BLUE), 332,

392
biased, 104, 231–4
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consistent, 104, 232
efficient, 234
James-Stein, 650–52
M, 371
minimum variance bound, 232–3
minimum variance unbiased, 232–3
point, 231
sufficient, 234–5
unbiased, 17n, 18

Euclidean distance, generalized, 384
event space, 43–50
events, 40–50

algebra of, 45
associative, 46
complement, 40
compound, 40
disjoint, 41
distributive, 46
elementary, 40
extreme. See extreme events
independent, 61
intersection of, 42
mutually exclusive, 41–4
mutually exclusive and collectively

exhaustive, 42–3, 65
null, 42
random, 39–49
simple, 40
union of, 41–2

expectation, 18, 90–99
conditional, 128–32

experimental design, 283
exploratory data analysis, 20–23
exponential distribution. See distribution,

exponential
extreme events, 405–474. See also

maximum of a random sample;
minimum of a random sample

extreme floods, 308–310, 325, 695–6
extreme value distribution, 105, 300–301,

415–22
asymptotic, 415–22
contagious, 439–44
EV1 (Type I), 416–18, 420–29, 452. See

also distribution, Gumbel
EV2 (Type II), 416–18, 431–43, 452.

See also distribution, Fréchet
EV3 (Type III), 416–22, 452. See also

distribution, Weibull
general, 435–9, 452

limiting, 415–422
two-component, 443, 533

F distribution. See distribution, F
factor

analysis, 379–83
loading matrix, 380
scores, 379
shrinking, 651

factor of safety, 542–7
central, 545–7
partial, 611

factorial experiment, 288
factorial moment generating function, 101,

170
failure state, 558–61
first-order second-moment (FOSM)

method, 568
fixed-effects model, 284
Fréchet distribution. See distribution,

Fréchet
frequency, 5, 51

factor, 425
polygon, 8
relative, 51

fuzzy sets, 38n

gamma distribution. See distribution,
gamma

gamma function, 200–201
tables of, 680

Gauss-Newton algorithm, 372
generalized extreme value distribution.

See distribution, GEV
generalized Euclidean distance, 383–4
generalized linear model, 372
generation of random numbers, 501–514

beta, 508
binomial, 508, 511–12
Box-Muller method, 506–507
from continuous variates, 506–511
decomposition method, 508–509
from discrete variates, 511–13
gamma, 508, 510–11
geometric, 508
from jointly distributed variates, 513–14
linear congruential generators, 502–505
minimal standard generator, 504n
multiplicative congruential generators,

504
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generation of random numbers (cont.)
negative binomial, 508
normal, 506–507
Poisson, 508, 513
quasi-random generators, 504
rejection method, 509–511
shuffled, 504
sub-random generators, 504

geometric distribution.See distribution,
geometric

Gibbs sampling, 644
Gibrat-Galton distribution. See

distribution, Gibrat-Galton
Gini’s mean difference, 18
goodness-of-fit tests, 270–81

Anderson-Darling, 277–81
chi-squared, 271–3, 450–51

tables for, 675–6
Filliben’s correlation coefficient, 298–9
Kolmogorov-Smirnov, 273–7, 450–51

tables for, 681–2
Shapiro and Wilk’s W-statistic, 282, 311
skewness and kurtosis, 281
Studentized deviates, 307–310

groundwater flow, 491–3, 521–3, 533–5
Gumbel distribution. See distribution,

Gumbel
Guttenberg-Richter law, 462–3, 485

half-normal distribution, 356n
hanging histogram, 303–305
hat matrix, 359
harbor breakwater, 565–71
hazard

function, 416, 602–605
rate, 638

Hazen plotting position, 298
heteroscedasticity, 371
histogram, 5–8, 303–305

bivariate, 122
homogeneity, 388
homoscedasticity, 371
Hurst

exponent, 414, 478
phenomenon, 414

hydroelectric plant, 563–5, 575–6
hypergeometric distribution, 182–93
hypothesis testing, 247–60

alternative hypothesis, 248
best critical region, 256–7

composite hypothesis, 256
critical region, 248, 254, 256–7
difference between two means, 252–5
goodness-of-fit tests. See

goodness-of-fit tests
likelihood ratio, 256, 642–60
most powerful, 256
nonparametric, 260–70. See also

nonparametric methods
null hypothesis, 248
one-tailed test, 249
operating characteristic curve, 250,

255
outliers, 305–312
power of, 249, 255
for regressions, 337
rejection region, 248
simple hypothesis, 256
test statistic, 248
two-tailed test, 249
Type I error, 249, 254, 256, 642
Type II error, 249, 254, 256, 642
on variances, 257–9

incomplete block or factorial design, 288
independence, stochastic, 61–4. See

also random variables, independent
interaction, 288–94, 306–307
intercept parameter, 327
intrinsically linear model, 372
intrinsically nonlinear model, 372
irrigation, 549–50, 551–2
isotropy, 388, 391

Jacobian, 133–42, 663–4
jackknife method, 111
James-Stein estimators, 650–52
Jensen inequality, 93

proof of, 659

k-dimensional continuous random
variable, 119

k-out-of-m model, 581–2
kernel-based estimation, 112
Kolmogorov-Smirnov. See goodness-of-fit

tests
Kriging

ordinary, 391–4
universal, 394

kurtosis, coefficient of, 19, 97–8
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L-moments, 104–107, 439
Lagrange multiplier, 110, 375, 393
Laplacian indifference to prior, 69n
law of large numbers, 213n
least median squares method (LMS), 371
least squares method, 109, 207–208, 330,

344
level 1, 2, 3 reliability, 611–12
leverage matrix, 359–61
l’Hospital’s rule, 92, 97, 100
likelihood function, 107
likelihood ratio test, 256–7, 642–3
limiting state, 558–76
line diagram, 2
linear congruential generators, 502–508
log-Pearson Type III distribution, 449–50
log-series, 172, 425n
log-series distribution, 185–8, 193
logistic distribution. See distribution,

logistic
logistic model, 490–91
lognormal distribution. See distribution,

lognormal
long-range dependence, 414
loss function, 634–5, 640–42, 658
low flows, 207–208, 227–8, 428–9, 433

M-estimators for regression coefficients,
371

MacLaurin’s series, 99, 102, 425
Markov Chain Monte Carlo, 643–50
Markovian process, 539
Marquardt algorithm, 372
masking, 371
matrix inversion, 345
maximax, 657
maximum likelihood estimator, 107–108,

426–7
maximum of a random sample, 415–19.

See also extreme events
asymptotic distribution, 415–22
marginal density, 407
marginal distribution, 407
mean, 411–12
variance, 412

mean, 12–15, 90–93
absolute deviation, 16
conditional, 128–32. See also

conditional expectation
geometric, 15

harmonic, 15
lifetime, 196
of the maximum of a random sample,

412
of the minimum of a random sample,

412
of order statistics, 411
population, 90
response, 332–3, 344, 366–7
sample, 12
trimmed, 12
weighted, 13

median, 6, 13
of order statistics, 409

memory, 414
metal structures, 571
Metropolis-Hastings algorithm, 649
minimal standard generator, 504n
minimax decision rule, 631
minimax regret, 630–32
minimum of a random sample, 419–22.

See also extreme events
asymptotic distribution, 420–21
distribution of, 136–7. See also extreme

value distribution
marginal density, 407
marginal distribution, 407
mean, 412
variance, 413

minimum variance bound (mvb) estimator,
232–4

mode, 13–14
model

additive, 288
fixed-effects, 284
k-out-of-m, 581
nonlinear, 374
random-effects, 284

moment generating function (mgf),
99–101

alternative negative binomial, 193
Bernoulli, 167, 193
binomial, 170, 193
exponential, 197, 218
factorial, 101
gamma, 202, 218
geometric, 193
joint, 127–8
log-series, 193
negative binomial, 193



P1: SFK/RPW P2: SFK/RPW QC: SFK/RPW T1: SFK

BLUK154-Kottegoda April 13, 2008 16:13

714 Index

moment generating function (cont.)
normal, 214, 218

derivation of, 661
Poisson, 193
uniform, 195, 218
Weibull, 218

moments, 94–5
central, 94
factorial, 94
probability weighted, 104–107
raw, 94

Monte Carlo integration, 489–90
Monte Carlo simulation, 488–501, 514–30

confidence limits, 495, 520–21
sample size, 495

multicollinearity, 368
multidimensional sample space, 47

multinomial distribution, 168n, 187–9
multiple correlation coefficient, 355
multiple failure modes, 577–92

independent, 578–83
mutually dependent, 584–91

multiplication rule, 61
multiplicative congruential generators, 504

shuffled, 504
multivariate analysis, 373–86

cluster analysis, 383–6
dendogram, 383–6
discriminant function analysis, 385
factor analysis, 379–83
principal components analysis, 373–8
varimax method, 382

mutually exclusive events, 41–2

natural hazards, analysis of, 453–73
nearest neighbor method, 383
negative binomial distribution. See

distribution, negative binomial
Neyman-Pearson lemma, 256–7, 642
nonlinear model, 372
nonparametric methods, 260–70

Kruskal-Wallis test, 264–7
runs test, 267–8
sign test, 261–2

one sample, 261–2
paired samples, 262–7

Spearman’s rank correlation coefficient,
268–9, 665–6

Wilcoxon signed-rank test, 262–4
proof of, 664–5

nonstationarity, 414, 474, 645
normal distribution, 209–215, 218

in Bayesian decision theory, 639–41
bivariate, 219–22, 339–41
conditional, 639–41
derivation of pdf, 660–61
folded. See half-normal
generation of random variates, 506–508
probability plotting, 297–300
relation to binomial, 213
relation to Poisson, 213–14
standard, 210

table of, 673
truncated, 215

nugget effect, 359
null event, 42

one-to-one transformation, 133–5
order statistics, 296, 406–415

covariance, 413
cumulative distribution, 406
functions of, 409–411
joint density function, 407–408
marginal density function, 407
mean, 411–12
range, 413–14
sample median, 409
variance, 412–13

outcomes
equally likely, 50
general, 46
mutually exclusive, 50

outliers, 12, 22–3, 305–312
coping with, 311, 325
distributional alternative, 307
hypothesis tests, 307–311
mixture alternative, 307
in regression, 358–65
slippage alternative, 307

parallel system, 577–92
parameter, 88

space (in decision theory), 624
parametric family of pdfs, 88
Pareto distribution. See distribution, Pareto
peakedness, 19
peaks over threshold method, 441
Pearson Type III distribution, 202, 447
percentile, 9
percolation cluster, 533–4
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performance function, 558–68
pie chart, 41
pier scour, 515–17, 572
plotting positions, 296–8
point estimation method, 572–6
point process, 199
Poisson distribution. See distribution,

Poisson
Poisson process, 174, 199

homogeneous, 174
nonhomogeneous, 180–81
truncated, 178–9

pollution
air, 34–5
groundwater, 322–3
lake, 134, 561–2
thermal, 555–8
water, 25–6, 33, 177–8, 376–8, 381–2,

384–5, 401–402, 689, 698
population, 1, 12, 231

measures, 90–99
posterior probability. See probability,

posterior
power of a test, 254–5
prediction interval, 338–9, 367–8
principal components, 373–8
principle of symmetry, 419
prior probability. See probability, prior
probability, 8, 50–72

axioms, 52–3
complement, 53
conditional, 56–63, 65–72
density function (pdf), 86–8

conditional, 120–21
joint, 123–4
marginal, 121–3
of order statistics, 407–408

diagram, 9
of failure, 542–92, 597–606. See also

risk
function, 52
integral transform, 493–5, 411n
marginal, 57
mass function (pmf), 84–5

conditional, 114
joint, 113–14
marginal, 114–15

of nonexceedance, 10
paper, 296
plot, 26, 295–303

for exponential distribution,
301—303

for Gumbel distribution, 300–301,
424, 429, 431, 433, 438, 444, 460,
467

for log-Gumbel distribution, 431
for lognormal distribution, 303
for normal distribution, 297–307,

336, 357
for Poisson distribution, 303, 324
for uniform distribution, 296–7
for Weibull distribution, 303, 433,

460
posterior, 51, 52, 71–2, 632–42
prior, 51, 52, 70–72, 502, 624–42

process, 166. See also stochastic process
properties of, 53–6
space, 55
speed, 469
strike, 469
subjective, 51, 633
total, 65–70
weighted moments, 104–107, 427

product of random variables, distribution
of, 137–9

pseudo-random numbers, 501–503

Q-Q plot, 26–7
quantile, 9, 26, 98–9
quartile, 6–7
quasi-random generators, 504–505
quotient of random variables, distribution

of, 137–9

radius of influence, 389
random effects model, 284
random field, 386
random numbers generation. See

generation of random numbers
random process. See stochastic process
random variables, 1, 83–4, 230. See also

variate
continuous, 1, 86–90

independent, 121
joint, 118–28
k-dimensional, 119

discrete, 85–6
independent, 117–18
joint, 113–18
k-dimensional, 113
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random variables (cont.)
function of, 133–42
independent, 61–4, 124–5

random walk, 491–3, 521–3
range, 5, 15–16

adjusted, 414
adjusted rescaled, 414
interquartile, 6, 16
of order statistics, 409–414

rank correlation coefficient, 156, 268–9
derivation of , 665–6

Rayleigh distribution. See distribution,
Rayleigh

reduced variate (Gumbel), 418
reduced variable (reliability), 559
redundant system, 577–91
reflected-power distribution. See

distribution, reflected-power
regionalization, 453–55
regression

multiple linear
coefficients, 342
confidence intervals, 352–3, 366,

368
error, 343–4
estimates of the parameters, 344
influential observations and outliers,

358–65
normal equations, 344
partial regression coefficients, 343
properties of the estimators, 346–9
residuals, 356–8
tests of significance, 350–55

nonparametric, 371–2
ridge, 368–70
simple linear

bivariate normal model, 339–41
coefficients, 327
confidence intervals, 337–9
error, 327, 333–4
estimates of the parameters, 330
intercept, 327, 333
linear conditional relationship, 328
outliers, 334
prediction interval, 338–9
properties of the estimators, 332–3
residuals, 334–6
slope, 327, 337
tests of significance, 337–9

regret, 631–2

regret losses, 631–2
rejection method, 509–511
relative frequency, 51
reliability, 1

Bayesian revision of, 593–7
bounds, 584–91
credibility limits, 592–3
design, 606–612
function, 598
index, 550–76
uncertainty in the estimation of,

592–7
reliable life, 605–606
renewal process, 199
replicates, 283, 290
residuals

externally studentized, 361
internally studentized, 361
standardized, 361

resistant measure, 13
return period, 183–4
ridge regression, 368–70
risk, 541–91. See also probability, of

failure
function, 624

road rutting, 289–95, 324, 400, 689–94
robust methods, 371
rock tests, 32

rootogram. See hanging histogram
Rosenblatt transformation, 555, 565
Rosenblueth method, 572–7

rough sets, 39n
runs test. See nonparametric methods

safe state, 558–62
safety

factor, 543
central, 545

margin, 547–50
sample, 1, 231

coefficient of kurtosis, 19
coefficient of skewness, 19
coefficient of variation, 18
correlation coefficient, 24
covariance, 24
mean, 12, 90–93, 231, 237

confidence interval for population,
236–7

standard error, 237
points, 39
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random, 230
spatial correlation, 389
standard deviation, 17
variance, 18, 231–2

sample space, 39
conditional, 49
continuous, 39
discrete, 39
multidimensional, 47
two-dimensional, 47

sampling distribution, 231
of differences and sums of statistics,

242–3
of mean, 237–42

sampling statistics (Monte Carlo),
517–19

scale invariance, 456–9, 480
scatter diagram, 23
semi-invariants, 102
semivariogram, 387–9

empirical, 389–93
model

exponential, 389
linear, 389
spherical, 389

radius of influence, 389
sensitivity analysis, 530–31
serial correlation, 520–21, 658
series system, 577–91
set, 43
shrinking factor, 651
sign test, 261–2
significance level, 248
significance tests. See hypothesis testing
sill, 389
simple hypothesis, 256
simulation, 487, 530. See also generation

of random numbers
Monte Carlo. See Monte Carlo

simulation
singularity (of a matrix), 345
skewness, coefficient of, 19, 97
slope parameter, 327
Sobol sequence, 505n
soil strengths, 574–5, 616–17, 619–20,

622, 638–9, 640–42
spanning cluster, 533
spatial correlation, 386–95

function, 388
sample, 389

spatial covariance function, 388
spatial interpolation, 391–3
Spearman’s rank correlation coefficient.

See rank correlation coefficient
specificity, 379
speed probability, 469
stability postulate, 415
standard deviation, 16, 95

confidence limits, 246
sample, 17

standard error
of estimated proportion, 246
of sample mean, 237
of sums and differences of statistics,

242
standardized residuals, 361
stationarity, 387

first order, 388
second order, 388

statistic, 231
order. See order statistics
sufficient, 234–5

statistical inference, 103
stem-and-leaf plot, 20–21
Stirling’s formula, 168n
stochastic independence, 61–4. See also

random variables, independent
stochastic process, 174, 387

integrated, 387
strike probability, 469
Studentized deviate, 307
Studentized residuals, 361
Student’s t distribution, 239

derivation of pdf, 663
table of, 674

sub-random generators, 504
subjective probability, 51, 633
sufficiency, 234–5
sum of random variables, distribution of,

13–16
surveying errors, 36–7, 149, 618
survival time, 597–605
system, 577

compound, 577
parallel, 577–91
redundant, 577–91
series, 577–91

Taylor series, 146, 516, 576
definition of, 172n
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tests of hypothesis. See goodness-of-fit
tests; hypothesis testing;
nonparametric methods

timber strengths, 6, 22, 274–7, 498–500,
617–18, 687

time to failure, 199
total probability theorem, 65
traffic

flows, 197–8, 225–6, 302, 320–21,
638–9

speeds, 31, 321–2
transformation

Box-Cox, 366
cube root, 365
logarithmic, 308–309, 365
reciprocal, 365
Rosenblatt, 555, 565
of single variables, 133–5
square root, 365
of two or more variables, 135–42
Wilson-Hilferty, 202n, 309

treatments, 283
trimmed mean, 12
triangular distribution, 122–3, 417
two-dimensional sample space, 47
Type I and II errors. See hypothesis testing
Type I, II, and III extreme value

distributions. See extreme value
distribution

uncertainty analysis, 530–31
aleatory uncertainty, 530
epistemic uncertainty, 531
sensitivity analysis, 430

unbiasedness, 17n, 103, 231–2
uniform distribution. See distribution,

uniform
union, 41–6
uniqueness, 379
urban storm drainage, 408
urn extractions, 488
utility function, 634–5

variable
compound, 151–4

confounded, 283
dependent, 327
derived. See derived variables
explanatory, 25, 327
independent, 327
random. See random variables; variate
response, 25, 327, 358

variance, 18, 95–7
analysis of. See analysis of variance

(ANOVA)
conditional, 132, 333, 340
confidence interval, 243–6
of the maximum of a random sample,

413
of the minimum of a random sample,

413
of order statistics, 412
in random field, 388
ratio, 258–9
sample, 18, 231–2
of sum of random variables, 143

variance-adjusted hanging histogram,
304–305

variance reduction techniques, 496–501
antithetic variates method, 496–500

variate, 83, 171n. See also random
variables

control, 501
varimax method, 382
Venn diagram, 43–67, 585
Verhulst-Pearl logistic equation, 490–91

waiting time, 196
waste water treatment, 525
wedge method, 617
Weibull distribution. See distribution,

Weibull
Weibull plotting position, 411
weighted least squares method, 371
welding joints for steel, 30, 162
wet runs, 187–8
Wilcoxon signed-rank test. See

nonparametric methods
Wilson-Hilferty transformation, 202n,
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