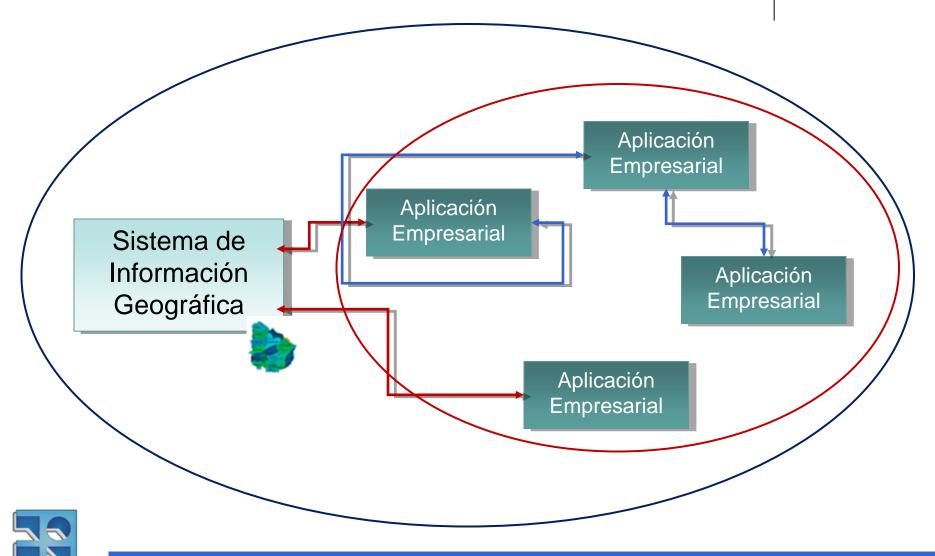
Taller de Sistemas de Información Geográficos Empresariales



Aplicaciones Empresariales y GIS

Motivación

Agenda

- Aplicaciones Empresariales
- Middleware
- ☐SOA y ESB
- Arquitectura y Tecnologías GIS
- Alternativas de Integración

Taller de Sistemas de Información Geográficos Empresariales

Aplicaciones Empresariales

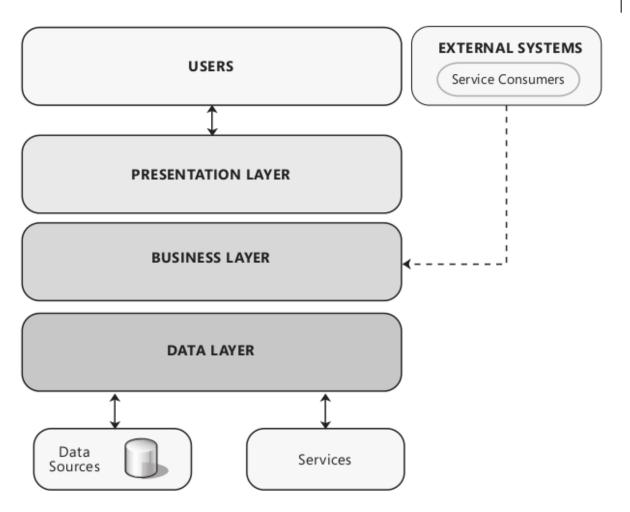
Aplicaciones Empresariales

- Una Aplicación Empresarial es una aplicación de software desarrollada para administrar las operaciones, activos y recursos de una empresa
- ☐ Ejemplos: Contabilidad, Seguimiento de envíos, Servicio al cliente, Nómina de empleados
- Características: persistencia de datos, grandes volúmenes de datos, varias Interfaces de Usuario, integración con otras aplicaciones, acceso concurrente a datos.

Aplicaciones Empresariales

- El proceso de desarrollo de una aplicación empresarial involucra al menos:
 - Programadores de aplicaciones
 - Administradores de base de datos
 - Diseñadores de interfaz de usuario
 - Integradores de aplicaciones
- Complejidades:
 - Administración, Matenibilidad, Escalabilidad, Interoperabilidad, Seguridad, Confiabilidad, Accesibilidad y Usabilidad, Internacionalización

Arquitectura en Capas (Layers)


- "Layers" es un estilo arquitectónico que comúnmente se utiliza para las Aplicaciones Empresariales
- En este esquema las capas más altas utilizan servicios definidos por las capas más bajas
- Esta división lógica entre capas de funcionalidad pueda basarse en distintas responsabilidades

Layer N
Layer J
Layer J-1
Layer 1

Arquitectura en Capas (Layers)

Microsoft Patterns & Practices. Microsoft Application Architecture Guide v2.0

Arquitectura Física (Tiers)

- Las capas antes presentadas pueden estar ubicadas en la misma locación física (tier) o en diferentes locaciones físicas
- ☐Si se encuentran en locaciones físicas diferentes, existen fronteras físicas que deben ser tomadas en cuenta en el diseño

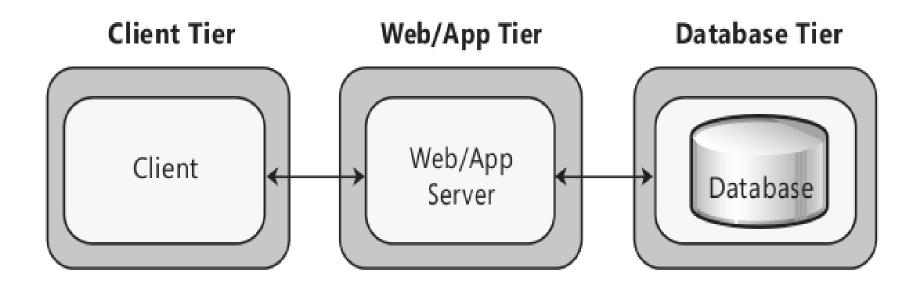
Deployment No Distribuido

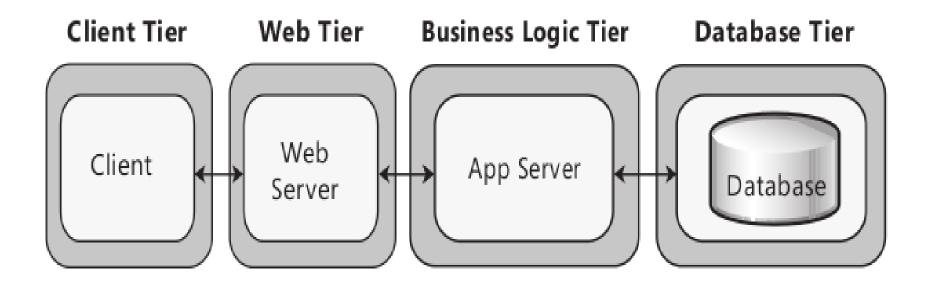
- ☐ Este enfoque minimiza el número de servidores requeridos
- Minimiza el impacto en performance inherente a la comunicación entre capas de diferentes lugares físicos
- ☐Sin embargo, compartir el mismo hardware, puede impactar la performance, por ejemplo, al acceder a recursos compartidos

Deployment Distribuido

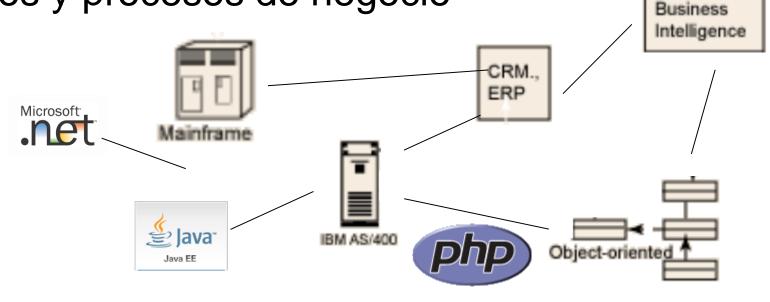
- Este enfoque permite configurar el hardware según las necesidades de cada capa
- Esto permite ajustar las necesidades de escalabilidad según cada capa de la aplicación
- □Sin embargo, el uso de componentes distribuidos, impacta la performance a la hora de realizar llamadas remotas entre diferentes locaciones físicas

- Cliente / Servidor
- ☐2-Tier
- □3-Tier
- ■N-Tier


Cliente / Servidor


3-Tier

4-Tier



Integración de Aplicaciones

□ Integración de Aplicaciones Empresariales (EAI) es la tarea de hacer que aplicaciones desarrolladas de forma independiente trabajen de forma conjunta con el fin de compartir datos y procesos de negocio

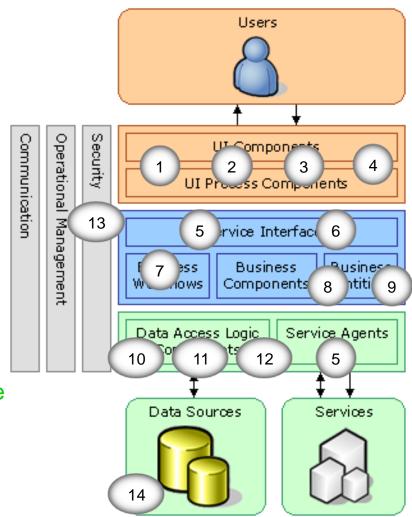
Integración de Aplicaciones

- □Al integrar Aplicaciones Empresariales surgen varios desafíos:
 - Las redes no son confiables
 - Las redes son lentas
 - Las aplicaciones son diferentes
 - a nivel de lenguajes de programación, formato de datos, etc
 - El cambio en las aplicaciones es inevitable

Integración de Aplicaciones

- Históricamente se han utilizado distintos enfoques para la integración:
 - Transferencia de archivos
 - Base de datos compartida
 - Invocación de procedimientos remotos
 - Comunicación sincrónica
 - Mensajería
 - Comunicación asincrónica
 - A nivel de Interfaz de Usuario

Plataformas de Desarrollo Empresarial


- Existen plataformas que facilitan el desarrollo e integración de aplicaciones empresariales
- Las mismas brindan soluciones a varios de los problemas presentados
- □ Permiten que el desarrollador se concentre en los aspectos relevantes para el negocio
- .Net Framework
- ■Jakarta Enterprise Edition (JEE)

.Net Framework

- ASP.NET / ASP.NET MVC
- 2. AJAX
- 3. WPF
- 4. Silverlight
- 5. WCF
- 6. WS*
- 7. Workflow Foundation
- 8. Datatypes
- 9. Datasets
- 10. ADO.NET
- 11. LINQ
- 12. Entity Framework / NHibernate
- 13. Membership
- 14. SQL Server

Jakarta EE

- 1. Java Server Faces
- 2. Flex
- 3. Granite
- 4. AJAX
- 5. JAX-WS
- 6. WS*
- 7. jBPM
- 8. EJB3
- 9. Java Persistance API
- 10. Hibernate
- 11. PostgreSQL

Users Security Operational Management Communication UI Components / Process Consponent Service Interfaces 6 Business Busines Busin Workf **Entities** Compone Da' Access 'nic Service Agents hpor 10 Data Sources Services 11

https://jakarta.ee/

Taller de Sistemas de Información Geográficos Empresariales

Middleware

Middleware

■ Middleware es una capa de software distribuida, situada entre el sistema operativo y las aplicaciones, diseñado para manejar la heterogeneidad y complejidad inherente a los sistemas distribuidos

Aplicación Distribuida

MIDDLEWARE API

Middleware

S.O. API

Sistema Operativo

Aplicación Distribuida

MIDDLEWARE API

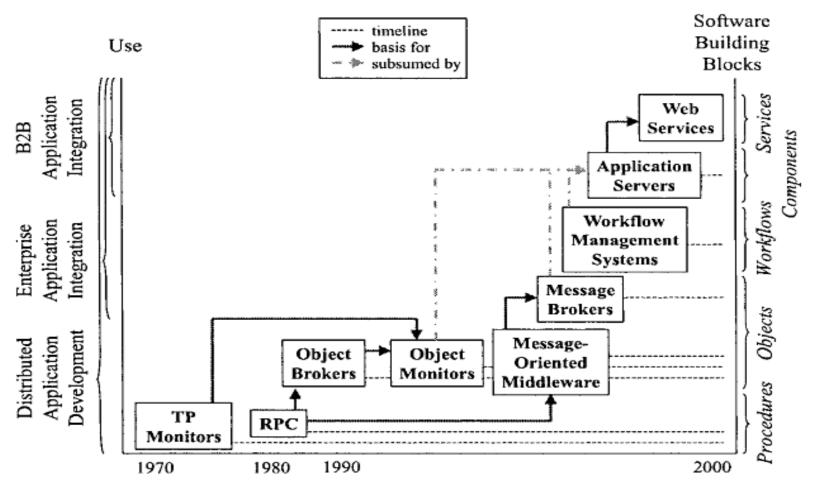
Middleware

S.O. API

Sistema Operativo

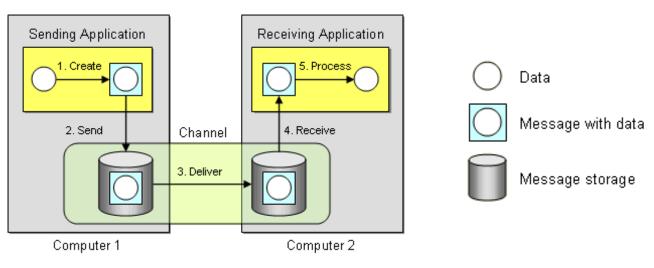
INCO - Facultad de Ingeniería - Montevideo, Uruguay

Middleware



- El rol principal del middleware es facilitar la tarea de diseñar, programar, y administrar aplicaciones distribuidas
 - □ Provee un ambiente de programación distribuido simple, consistente e integrado

Evolución Middleware



Semantic Management of Middleware. Ramesh Jain. Amit Sheth. Springer 2006.

Message Oriented Middleware

Los MOMs proveen comunicación asincrónica a través de mensajes, utilizando colas de mensajes para su almacenamiento temporal

G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley Professional, October 2003.

Message Oriented Middleware

- □El principal objetivo de un MOM es transportar mensajes desde el equipo remitente al equipo receptor de una manera confiable
- Algunos Patrones de Mensajería
 - Point to point
 - Request Response
 - Request Callback
 - Publish Subscribe

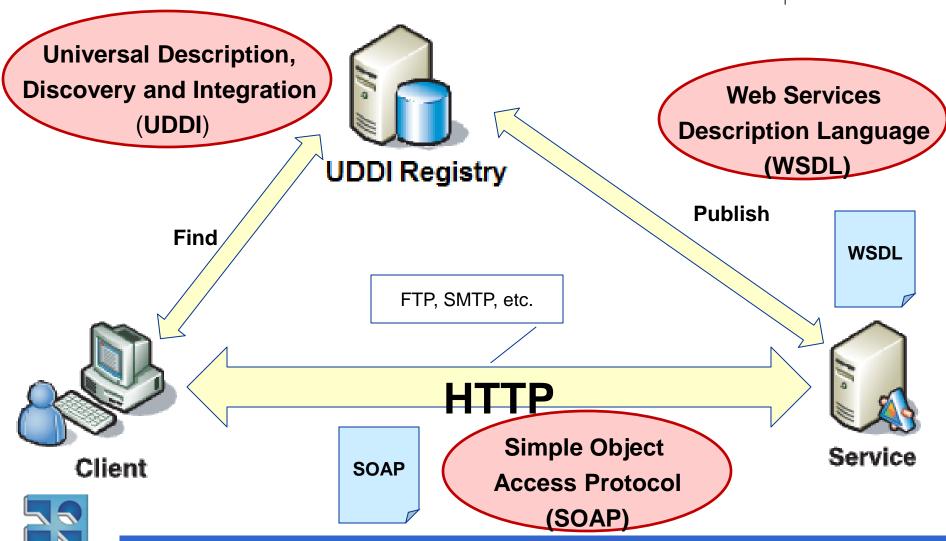
Application Servers

- Los servidores de aplicaciones proveen mecanismos para manejar toda o la mayoría de las interacciones entre los componentes de una aplicación distribuida
- □ Proveen varias tecnologías de middleware (MOMs, etc) junto con el concepto de contenedor, que brinda un entorno de ejecución para los componentes de una aplicación

Application Servers

- En general se puede encontrar soporte para seguridad, transacciones, administración de aplicaciones y recursos, y balanceo de carga
- Proveen una solución completa para la construcción e integración de aplicaciones empresariales

Web Services


Un Web Service es una aplicación de software identificada por una URI, cuyas interfaces y formas de acceso pueden ser definidas, descriptas y descubiertas como artefactos XML, y soporta la interacción directa con otros componentes de software utilizando mensajes basados en XML, intercambiados a través de protocolos basados en internet

http://www.w3.org/TR/ws-desc-reqs/#definitions

Primera Generación de WS

SOAP

- Provee una forma estándar de estructurar mensajes utilizando XML
- Define mecanismos para utilizar distintos protocolos de transporte para el envío de mensajes
- Especifica un modelo de procesamiento que indica cómo se deben procesar los mensajes

Mensaje SOAP


```
<?xml version="1.0"?>
<soap:Envelope</pre>
      xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
      soap:encodingStyle="http://www.w3.org/2001/12/soap-
      encoding">
      <soap:Header>
      </soap:Header>
      <soap:Body>
         <soap:Fault> ... </soap:Fault>
       /soap:Body>
</soap:Envelope>
```

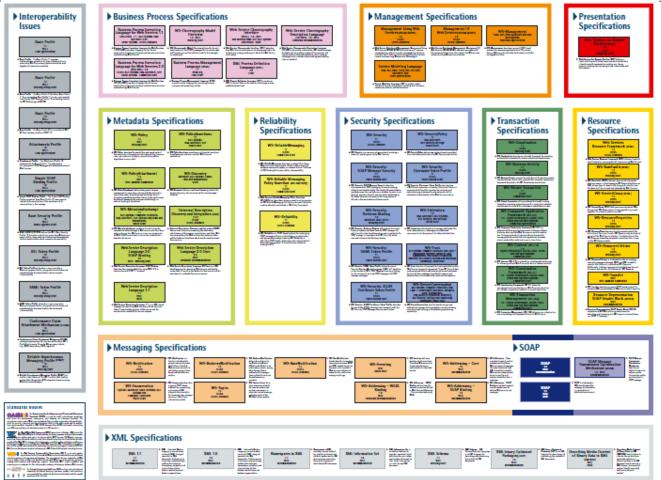

WSDL

- Lenguaje basado en XML que permite describir la interfaz y otras características de un Web Service
- Un documento WSDL puede dividirse en dos partes:
 - descripción abstracta
 - o descripción concreta

UDDI

- ☐ Especificación que provee una forma estándar de publicar y descubrir Web Services
- UDDI define
 - un modelo de datos para almacenar información de servicios y negocios
 - interfaces para utilizar el registro UDDI
 - Inquiry
 - Publish

Segunda Generación de WS

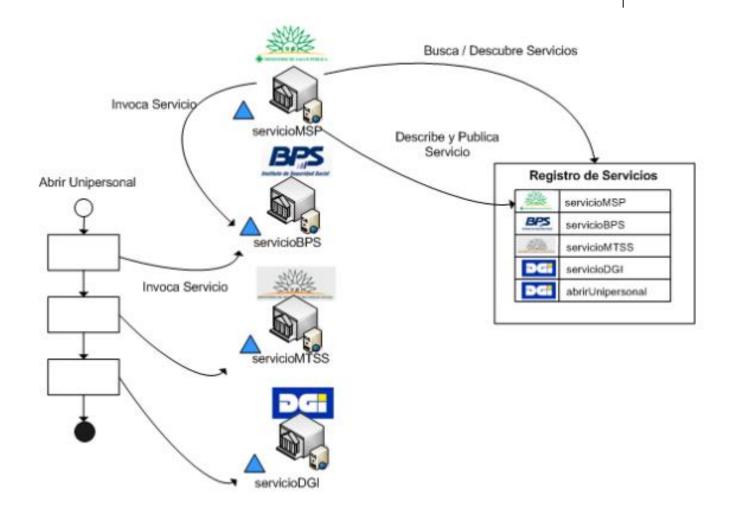


- Surgen como forma de abordar problemáticas comunes en contextos empresariales
- ■Se les conoce como WS-*
- Cada una aborda una problemática específica:
 - Seguridad, Transacciones, Mensajería, etc

Estándares Avanzados de WS

http://www.innoq.com/soa/ws-standards/poster/

WS-BPEL



- Web Services Business Process Execution Language es un lenguaje para "orquestar" Web Services
- ■WS-BPEL es un lenguaje de flujo basado en XML para la especificación formal de procesos de negocio y protocolos de interacción de negocio

WS-BPEL

Mensajería – WS-Addressing

- WS-Addressing (WS-A) provee un mecanismo estándar para direccionar mensajes y Web Services
- Define dos construcciones básicas
 - o endpoint reference
 - Address, Reference Parameters, Metadata
 - addressing properties
 - To, From, ReplyTo, FaultTo,
 - Action, MessageID, RelatesTo
 - ReferenceParameters

Metadata – WS-Policy

- □ Define un modelo abstracto, independiente del dominio, que permite describir características, requerimientos y capacidades de un Web Service
- Delega a otras especificaciones la definición de políticas particulares a un dominio.
 - WS-SecurityPolicy
 - WS-ReliableMessagingPolicy

Transacciones en WS

- Transacción Atómica: WS-AtomicTransaction
 - Propiedades ACID
 - Corta Duración
 - Ambiente seguro
 - Diseñado principalmente para dar soporte a la interoperabilidad
- ☐ Actividad de Negocio: WS-BusinessActivity
 - Larga Duración
 - Se define un mecanismo de compensación

Seguridad en WS

- Alternativas
 - Seguridad a nivel de trasporte
 - A través de HTTPS
 - Tecnología madura y existencia de expertos
 - Seguridad a nivel de mensaje SOAP
 - OWS-Security

WS-Security

- Define un conjunto de extensiones SOAP para brindar seguridad a nivel de mensaje
- Se especifica cómo:
 - utilizar XML Signature en mensajes SOAP
 - utilizar XML Encryption en mensajes SOAP
 - incluir Tokens de Seguridad en mensajes SOAP

Especificaciones de WS

- Actualmente la tecnología de Web Services está basada en un gran número de especificaciones que:
 - o en general, son propuestas por la industria
 - Microsoft, IBM, Oracle, etc.
 - son estandarizadas por distintas organizaciones
 - > W3C, OASIS, etc.
 - son implementadas por distintos proveedores
 - > Apache, JBoss, Sun, Microsoft, IBM, Oracle, etc.

- REST (REpresentational State Transfer)
 - Estilo arquitectónico para sistemas de hipermedia distribuidos
 - Todo es tratado como recursos que se identifican por URIs
 - Toma ventaja de los verbos HTTP
 - > GET, POST, PUT, DELETE

- □ La intención de una llamada a un RESTful Service, se obtiene del verbo HTTP
 - o GET (recuperar), DELETE (eliminar)...

Verbo HTTP	Significado en términos de CRUD (Create, Read, Update, Delete)
POST	Crear un nuevo recurso a partir de los datos de la solicitud.
GET	Leer un recurso.
PUT	Actualizar un recurso a partir de los datos de la solicitud.
DELETE	Eliminar un recurso.

De este modo las URIs actúan como identificadores de recursos y los métodos HTTP como verbos que especifican operaciones sobre los mismos

Verbo HTTP / URI	Significado en términos de CRUD
POST emps	Crear un nuevo empleado a partir de los datos de la solicitud.
GET emps	Leer una lista de todos los empleados.
GET emps?id=27	Leer el empleado 27.
PUT emps	Actualizar la lista de empleados con los datos de la solicitud.
DELETE emps	Eliminar la lista de empleados.
DELETE emps?id=27	Eliminar el empleado 27.

Encabezados de la petición

```
GET /sqlrest/INVOICE/9999/ HTTP/1.1

Host: www.thomas-bayer.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; es-AR; rv:1.9.2.3) (
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
```

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1, utf-8; q=0.7, *; q=0.7

Accept-Language: es,en; q=0.8,es-ar; q=0.5,en-us; q=0.3

Keep-Alive: 115

Connection: keep-alive

Encabezados de la respuesta

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: application/xml

Transfer-Encoding: chunked

Date: Wed, 07 Apr 2010 01:30:00 GMT

Taller de Sistemas de Información Geográficos Empresariales

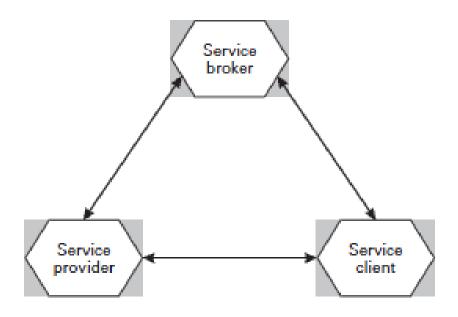
SOA y ESB

Orientación a Servicios

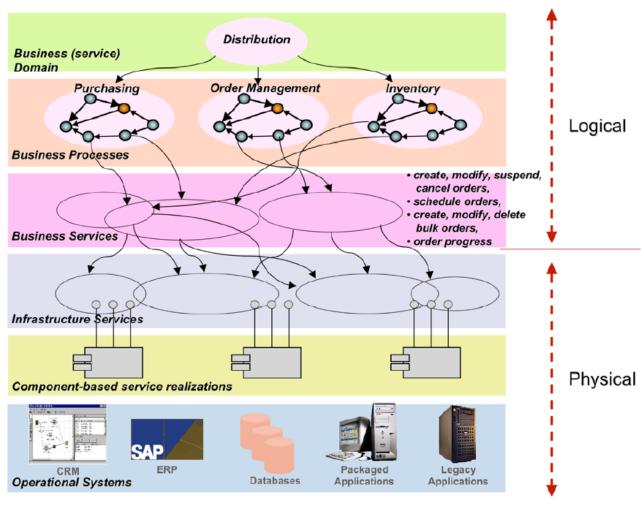
- Computación Orientada a Servicios
 - paradigma que basa el diseño de aplicaciones en servicios para dar soporte al desarrollo ágil y flexible de aplicaciones distribuidas en ambientes heterogéneos
- Un Servicio es una entidad de cómputo que expone una funcionalidad de negocio y es:
 - o autónoma
 - o independiente de la plataforma
 - puede ser descrita, publicada, descubierta y combinada

Orientación a Servicios

Principios


- Standardized Service Contracts
- Service Loose Coupling
- Service Abstraction
- Service Reusability
- Service Autonomy
- Service Statelessness
- Service Discoverability
- Service Composability

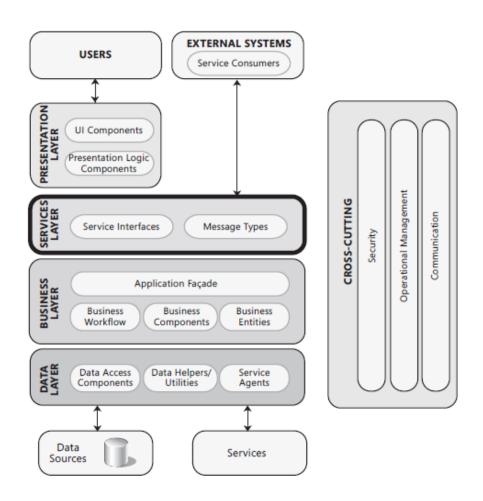
Arquitectura Orientada a Servicios


- Arquitectura Orientada a Servicios
 - forma lógica de diseñar sistemas de software para proveer servicios a través de interfaces públicas y descubribles

Service Oriented Architecture

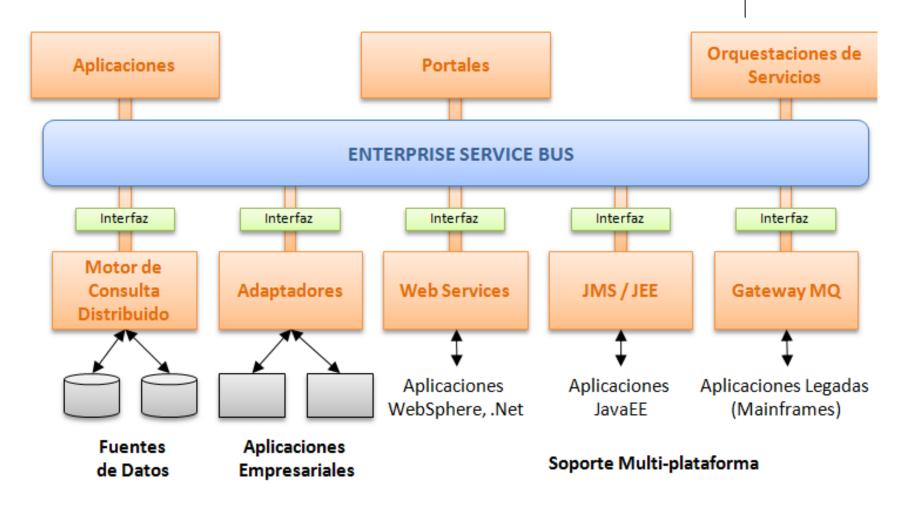
M. Papazoglou, Web Services: Principles and Technology, 1st ed. Prentice Hall, September 2007.

Service Oriented Architecture

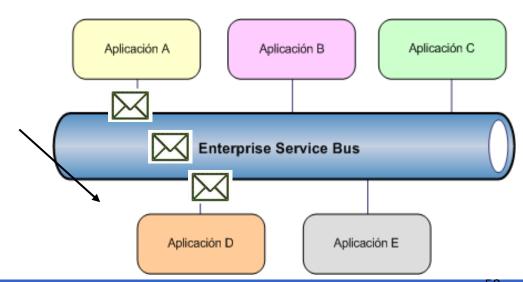


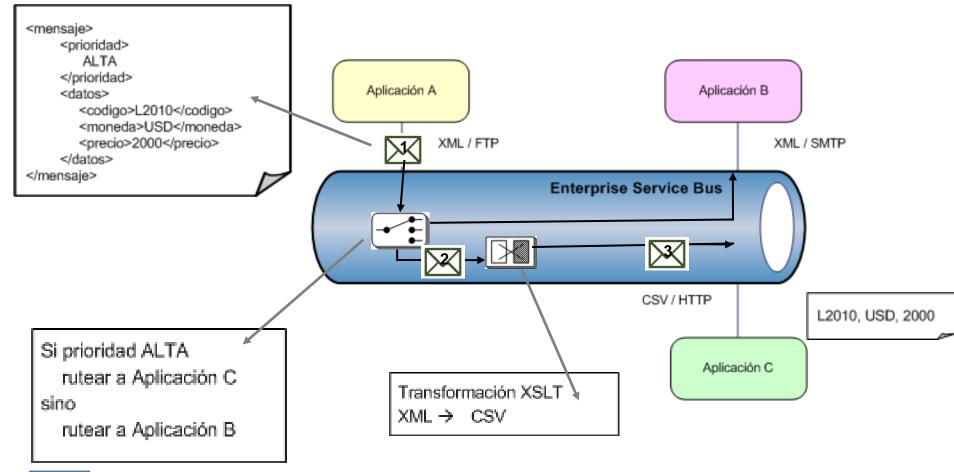
- □Si bien los principios de SOA no dependen de una tecnología en particular, los Web Services se han convertido en el mecanismo preferido para su implementación
- Actualmente, la forma más común de proveer una infraestructura de integración administrable, para Web Services y SOA, es a través de un ESB

Capa de Servicios


Microsoft Patterns & Practices. Microsoft Application Architecture Guide v2.0

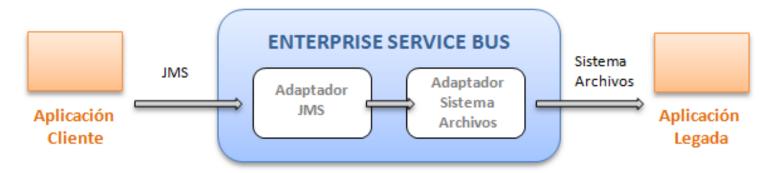
■Un ESB es una plataforma de integración basada en estándares que combina mensajería, Web Services, transformación de datos, y ruteo inteligente, para conectar y coordinar de forma confiable la interacción de un gran número de aplicaciones a través de empresas con integridad transaccional





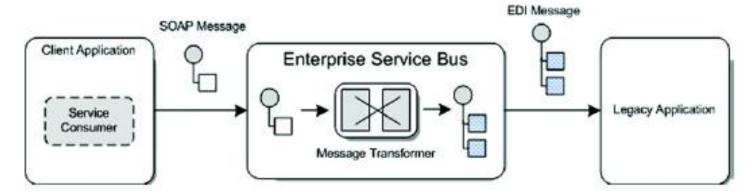
- En lugar de interactuar directamente las aplicaciones se comunican enviando mensajes a través del ESB
- Los mensajes que fluyen a través del ESB son en general mensajes XML

Funcionalidades de ESB


- Conectividad / Adaptadores
- Transformación de Mensajes
- Ruteo Intermediario
- Flujos de Mediación
- Mensajería Asincrónica
- Monitoreo y Administración
- □Otras…

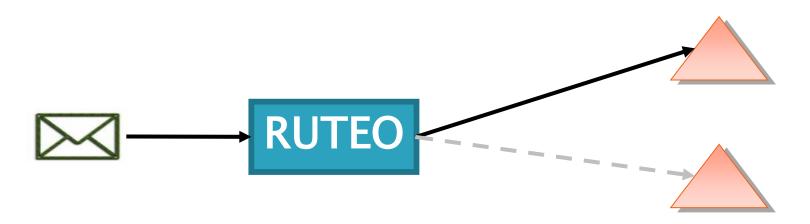
Conectividad y Adaptadores

- Permiten satisfacer un requerimiento de integración común conocido como conversión de protocolo (protocol switch).
- Este requerimiento se da cuando dos aplicaciones que necesitan integrarse no manejan un protocolo de comunicación común.



Transformación de Mensajes

- Los ESBs también incluyen capacidades de transformación de mensajes.
- Estas capacidades posibilitan, por ejemplo, que aplicaciones que utilizan distintos formatos o modelos de datos puedan comunicarse.



(Rademakers and Dirksen 2008)

Ruteo Inteligente

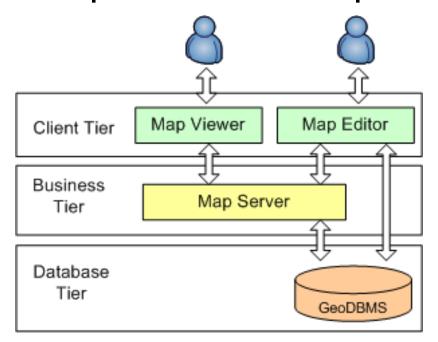
□El ruteo inteligente permite determinar dinámicamente el destino de un mensaje (seleccionando de varios destinos posibles)

Basado en contenido, contexto, balanceo de carga, etc

Monitoreo y Administración

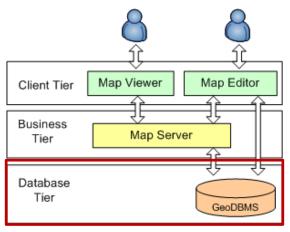
- Los ESB incluyen funcionalidades de monitoreo que proveen valores para distintas métricas
 - o tiempos de respuesta,
 - o cantidad de mensajes procesados por servicio,
 - o errores en la invocación de servicios, etc
- Esto permite detectar:
 - o cuellos de botella,
 - incumplimiento de requerimientos de calidad de servicio, etc

Taller de Sistemas de Información Geográficos Empresariales


Arquitectura y Tecnologías GIS

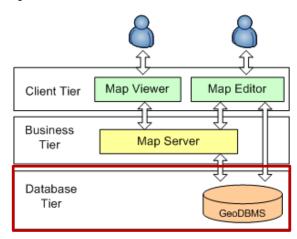
Arquitectura y Tecnologías GIS

□ En las últimas décadas el Software GIS ha pasado de ser un software "standalone" de escritorio, a tener la típica arquitectura en capas de las aplicaciones empresariales



GeoDBMS

- Un GeoDBMS da soporte al almacenamiento y consulta de objetos geográficos.
- El enfoque común es extender un DBMS con elementos geográficos:
 - o Tipos
 - Funciones
 - Metadatos


SELECT r.nombre, ST_LENGTH(r.geom) AS longitud FROM Calles r WHERE r.codigo=223;

GeoDBMS

- Las extensiones geográficas a un DBMS deben cumplir con el estándar Open Geospatial Consortium (OGC) conocido como:
 - Simple Features Standard, SQL Option
- Algunas extensiones SFS son:
 - Oracle Spatial
 - o PostGIS
 - MySQL Spatial Extensions
 - ESRI ArcSDE

Map Server

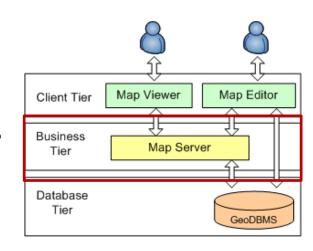
- Un Servidor de Mapas es un componente de SW que generalmente se ejecuta sobre un Servidor Web o Servidor de Aplicaciones
- Su objetivo principal es proveer a clientes de Internet mapas generados dinámicamente (a partir de Map Viewer Client Tier datos vectoriales o raster)

Map Editor

GeoDBMS

Map Server

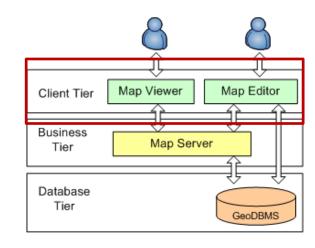
Business


Tier

Database Tier

Map Server

- La tendencia actual es que los servidores de mapas implementen estándares de Web Services geográficos (de la OGC):
 - Web Map Service (WMS)
 - proveen mapas sólo lectura
 - Web Feature Service (WFS)
 - acceso y manipulación de objetos geográficos (protocolos basados en XML)



Map Viewer

- Un Map Viewer es una aplicación cliente que despliega un mapa en una interfaz de usuario
 - en general son aplicaciones Web-based que obtienen mapas desde Map Servers (ej. via WMS)
- Ejemplos
 - Google Maps
 - OpenLayers

Map Editor

Map Viewer

Map Server

Client Tier

Business

Tier

Database Tier

- Un Map Editor permite además crear mapas, modificar objetos, realizar geo-procesamiento avanzado
- □ Son generalmente aplicaciones desktop pero

hay alternativas Web-based

 Se pueden comunicar con Map Servers (vía WMS o WFS) o con geo-databases (vía SQL)

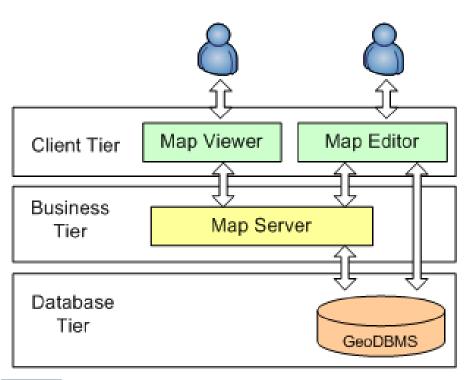
Ejemplos: gvSIG, QGIS

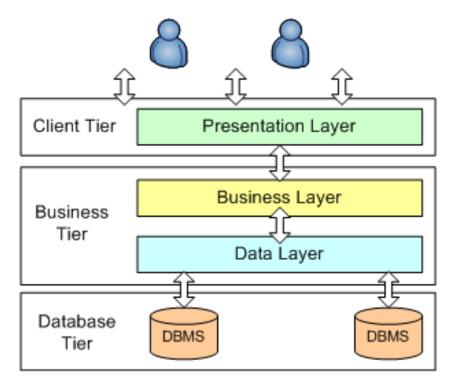
Map Editor

GeoDBMS

Taller de Sistemas de Información Geográficos Empresariales

Alternativas de Integración

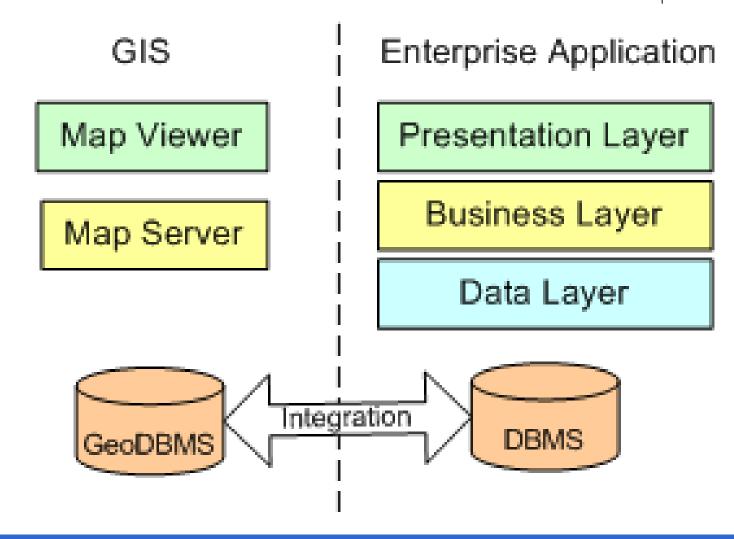



Escenarios de Integración

GIS

Aplicación Empresarial

Alternativas de Integración

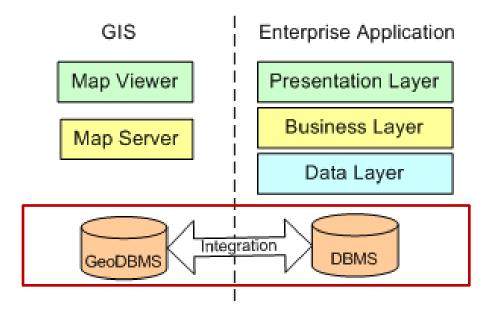


- Integración a nivel de Base de Datos
- Integración a nivel de Servicios
- Integración a nivel de Interfaz de Usuario

Integración a nivel de BD

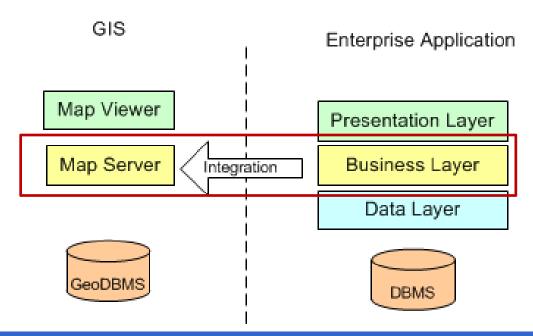
Integración a nivel de BD

- Utilizar un database-link
 - Es posible vía las capacidades de algunos DBMS o productos de terceros (ej. dblink)
 - Este mecanismo permite acceder a una BD externa a través de vistas
- Utilizar mecanismos de ETL
 - Se deben implementar mecanismos para extraer información del a BD empresarial y almacenarla en la geo-DB
 - Definir periodicidad de carga

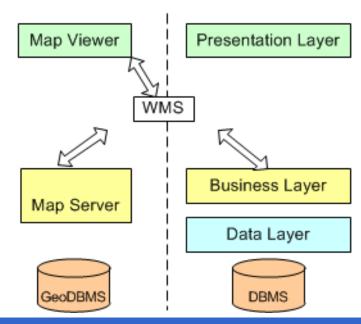

Data Layer

Map Server

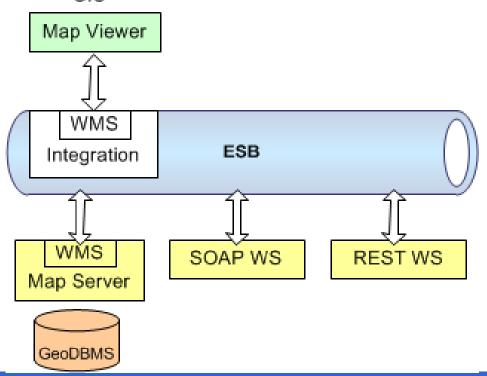
Integración a nivel de BD


- ¿database-link vs ETL?
- ¿es siempre posible este enfoque?

Los servicios geográficos tienen interfaces bien conocidas, por lo que invocarlos desde aplicaciones empresariales no presenta mayores desafíos



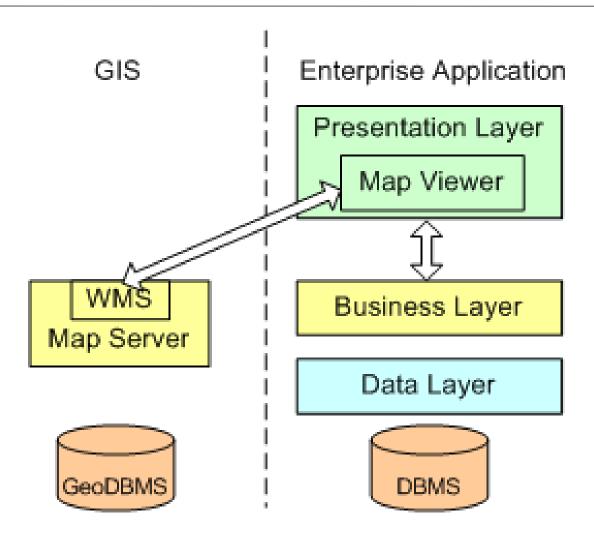
- El principal desafío es proveer datos provenientes de aplicaciones de negocio a través de interfaces geográficas
- La problemática se da porque:
 - Muchos clientes (ej. Map Viewers) están diseñados para consumir sólo WS Geográficos
 - Los Map Servers proveen poco soporte para consumir servicios externos (ej. WS SOAP)
- ¿Qué alternativas hay?


- Un posible enfoque es desarrollar un componente que consuma ambos servicios, integre los datos y los provea a través de una interfaz geográfica
- La obtención de datos y la integración es trasparente tanto para el cliente como para el Map Server

Una alternativa para implementar el componente de integración es aprovechar los mecanismos que brindan los ESBs

- Otra posible problemática de integración es cómo utilizar un WS Geográfico en un proceso WS-BPEL
- Habría que brindar una interfaz SOAP para el WS Geográfico
 - Para esto existe una recomendación del OGC
- Se podría también utilizar los mecanismos de los ESBs para implementar esta conversión

Integración a nivel de Ul



- Las organización están notando los beneficios de agregar mapas a sus aplicaciones existentes
- Una posible alternativa es agregar un Map Viewer a la UI de las aplicaciones empresariales

Escenarios de Integración

Integración a nivel de Ul

- Dada la heterogeneidad tecnológica, muchas veces la mejor opción es utilizar un viewer basado en javascript (ej. OpenLayers)
- Si una organización no tiene su propio dataset geográfico, podría utilizar mapas de propósito general (ej, google maps)

Integración a nivel de Ul

- Otro posible escenario es enriquecer los datos brindado por un Map Viewer con datos de Negocio
- En este caso, se puede utilizar la integración a nivel de servicios descripta previamente
- Si esto no es posible, la integración se debe hacer a nivel del cliente
 - O Qué problemáticas presenta esta solución?

Tecnologías GIS Empresariales

- Varias tecnologías empresariales están siendo extendidas para tener soporte geográfico
- Algunos Ejemplos:
 - Soporte en BD (postgis, etc)
 - Hibernate Spatial
 - GeoMajas
 - GeoFaces

3 conceptos importantes de la clase

Referencias

- G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley Professional, October 2003.
- □ J. McGovern, O. Sims, A. Jain, and M. Little, Enterprise Service Oriented Architectures: Concepts, Challenges, Recommendations
- □ D. Chappell, Enterprise Service Bus. O'Reilly Media, Inc., July 2004.
- M. Papazoglou, Web Services: Principles and Technology, 1st ed. Prentice Hall, September 2007.
- ☐ G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services, 1st ed. Springer, October 2003.
- M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. "Service-oriented computing: State of the art and research challenges", Computer, vol. 40, no. 11, pp. 38-45, 2007.
- The SOA Source Book

http://www.opengroup.org/soa/source-book/intro/

Referencias

- □ Rienzi, B., Sosa, R., Foti, P., González, L.: Benefits and challenges of using geographic information systems to enhance social security services. (2010).
- □ Bruno Riezi, Laura González: Towards an ESB-Based Enterprise Integration Platform for Geospatial Web Services. (2013).

