Primer parcial 29 de setiembre de 2012

N^o de parcial	Cédula	Apellido y nombre	Salón

Múltiple opción (Total: 20 puntos)

En cada pregunta hay una sola opción correcta.

Respuesta correcta: 5 puntos Respuesta incorrecta: -1 puntos No responde: 0 punto

Ejercicio 1.

La ecuación $z^4 = -4$:

- (A) Tiene cuatro raíces en C, todas tienen parte real e imaginaria distinta de cero.
- (B) Tiene cuatro raíces en C, dos de ellas con parte real cero y dos de ellas con parte imaginaria cero.
- (C) Tiene al menos una raíz con módulo $2\sqrt{2}$.
- (D) Tiene cuatro raíces en $\mathbb C$ y una de ellas tiene argumento π .
- (E) Tiene dos raíces en \mathbb{C} y son conjugadas.

Ejercicio 2.

Considere el conjunto $A = \{3^{-p} + 5^{-q} : p, q \in \mathbb{N}, p, q \geq 1\} \subset \mathbb{R}.$

Se consideran las siguientes afirmaciones:

- (I) A está acotado, tiene supremo e ínfimo pero no tiene máximo ni mínimo.
- (II) A no está acotado inferiormente, tiene supremo y máximo pero no tiene ínfimo ni mínimo.
- (III) A está acotado, tiene supremo e ínfimo, y tiene máximo pero no tiene mínimo.
- (IV) El ínfimo del conjunto $-A = \{-a \in \mathbb{R} : a \in A\}$ es -8/15.

Entonces:

- (A) Solo la opción (III) es verdadera.
- (B) Solo las opciones (III) y (IV) son verdaderas.
- (C) Solo las opciones (I) y (IV) son verdaderas.
- (D) Solo la opción (II) es verdadera.
- (E) Solo la opción (I) es verdadera.

Ejercicio 3.

Se consideran las funciones f, f_1 , f_2 , f_3 , f_4 y f_5 bosquejadas en la Figura 1. Entonces la derivada primera de f es:

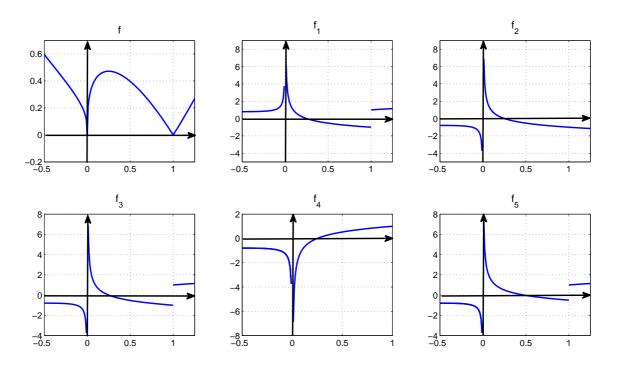


Figura 1:

(A)
$$f_1$$
. (B) f_2 . (C) f_3 . (D) f_5 . (E) f_4 .

Ejercicio 4.

Sea $f : \mathbb{R} \to \mathbb{R}$ tal que f(x) = 1 para todo $x \neq 1$ y f(1) = 0. Sea $B^*(1, \delta) = \{x : 0 < |x - 1| < \delta\}$. Se realizan las siguientes afirmaciones:

- (I) Existe $\varepsilon > 0$ tal que para todo $\delta > 0$ existen $x_1, x_2 \in B^*(1, \delta)$ con $|f(x_1) f(x_2)| > \varepsilon$.
- (II) Dado $\varepsilon > 0$ cualquiera existe $\delta > 0$ tal que si $x \in B^*(1, \delta)$ entonces $|f(x) 1| < \varepsilon$.
- (III) Cualquiera sea $\varepsilon > 0$, no es posible hallar $\delta > 0$ tal que si $|x x'| < \delta$ entonces $|f(x) f(x')| < \varepsilon$.
- (IV) Para todo $a \in \mathbb{R}$ existe $\lim_{x \to a} \frac{f(x) f(a)}{x a} = 0$.

Entonces:

- (A) Solamente la afirmación (I) es verdadera.
- (B) Solamente la afirmación (II) es verdadera.
- (C) Solamente las afirmaciones (I) y (III) son verdaderas.
- (D) Solamente la afirmación (IV) es verdadera.
- (E) Solamente las afirmaciones (IV) y (II) son verdaderas.

Primer parcial 29 de setiembre de 2012

N^o de parcial	Cédula	Apellido y nombre	Salón

Desarrollo (Total: 20 puntos)

Ejercicio 1.

(8 puntos)

Sea $f: \mathbb{R} \to \mathbb{R}$ y la sucesión $a_n = f(n)$ tal que existe $\lim_{n \to +\infty} a_n = l$.

- 1. ¿Es cierto que $\lim_{x\to +\infty} f(x)=l$? Demuestre o proporcione un contraejemplo.
- 2. Se supone además que f es monótona (creciente o decreciente). ¿Es cierto que $\lim_{x\to+\infty} f(x) = l$? Demuestre o proporcione un contraejemplo.

Ejercicio 2.

(12 puntos)

Sea $f: D(\subset \mathbb{R}) \to \mathbb{R}$.

- 1. Defina derivada de f en a.
- 2. a) Demuestre que si f es derivable en a entonces f es continua en a.
 - b) ¿Es cierto el recíproco? Demuestre o proporcione un contraejemplo.
- 3. Sea $f: D(\subset \mathbb{R}) \to \mathbb{R}$ tal que $f(x) = x^2 3x 2\log x$.
 - a) Halle el dominio de f y estudie continuidad y derivabilidad. Justifique.
 - b) (i) Halle el máximo intervalo que contenga a x = 1 donde se pueda definir la inversa de f. Justifique.
 - (ii) Sea g esa inversa. Calcule g'(f(1)). Justifique.