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1. INTRODUCTION

The design of a furnace, more specifically the prediction of the performance of
a chosen design, can be carried out at several levels of sophistication. Although a
determination of the distribution of heat-flux density over the surface of the stock is
desirable - sometimes, in high flux-density systems, necessary - the attainment of the
simpler objective of determining the total heat transfer rate as a function of firing rate
and excess air is a proper orienting first step; and often it suffices. Even if that is the
sole objective, knowledge of the detailed interaction of radiation and convection with
mass transfer and combustion is in principle necessary. But integral formulations are
tolerant of casual treatment of detail, especially in the presence of the leveling effect
of radiation, responsive to a high power of temperature; and a surprisingly accurate
overall performance is predictable from a relatively simple model. Even though the
knowledge of flux distribution over the stock may be the ultimate objective, it is still
good engineering practice to start with an almost-quantitative understanding of the
overall process. In fact, it may be asserted that prospects of success with the zone
method are poor if the simpler and less ambitious approach, which is after all a one-
gas-zone example of the zone method, is not thoroughly understood.

1t is the object here to set up a simple overall furnace performance model, in
form as general as is consistent with the assumption of a single-gas-radiating
temperature, a single equilibrium refractory temperature and, a single equilibrium re-
fractory temperature and a single term characterizing the exchange area between the
combustion gases and the sink, which allows for:

1. The effect of the adiabatic flame temperature T, dependent on the entering
fuel and air enthalpies and the gas heat capacity

2. The effect of stock or sink tempraiure T, measured by the ratio of its mean
value to Tf.

3. The effect of stock temperature variation, measured by the ratio r of stock
temperatue rise to its arithmetic mean temperature.
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4. The value of the characteristic or effective sink area Ag, that area which,
multiplied by the difference of black-body emissive powers of the gas and stock
temperatures, gives the flux from gas to stock. The major problem of making the
model describe realistically the effects of gas composition, furnace shape, and dispo-
sition of heat sinks in the furnace clies in the evaluation of Ag, the total gas-sink
exchange area.

5. The use of a single gas-radiating temperature 7.

6. The use of a difference A between the gas-radiating and leaving-gas-enthalpy
temperature, which varies with firing rate.

7. The loss of heat through the refractory walls.

8. The loss of heat by radiation through openings.

9. Other factors, contributing to the evaluaiton of Ag.

2. THE ONE-GAS-ZONE FURNACE MODEL

Although parts of the following development have appeared before [1,2a],
parts are new; and for completeness the full derivation will be presented. The well
stirred furnace gases are at temperature T, in consequence of loss of heat (a) by ra-
diative exchange with the stock or sink at Ty, (b) by convection to that part of the
sink Ay . which does not include any curtain tubes across the gas exit from chamber,
(c) by convection to and through the refractory walls, and (d) by radiation through
furnace openings of area Aq.

a) The net radiative flux to the sink - direct as well as with the aid of refractory
surfaces which reflect diffusely or absorb and reradiate - must, if the refractory is ra-
diatively adiabatic and the gas is gray, be proportional to the difference in black-body
emissive power of the gas and sink. The proportionality constant, having the dimen-
sions of area, is called the gas-surface total-exchange area (G S )g the formulation of
which will be discussed later. (The subscript indicates that allowance has been made
for the aid given by refractory surfaces).The flux is then (( G S )g 6(T;—T1)).

b) Convective flux to those surfaces A . which affect the stirred-gas enthalpy
is hA1 ((Tg—T)). Because this term is quite small compared to (a), it is convenient to
combine the two by forcing the convection into a fourth-power form:

[ hA; (Tg—T1) ~hA; O(T*-T /40T 13

where T is the arithmetic mean of T, and T'y. Then
(GS)ROT*-TiH+hA | (T,—T1)=[(GS ) +hA; J40Tg1] 6(TA-T)%)

The bracket has in other contributions been called (W)R'c to indicate that con-
vection has been included. The simpler term A;. the effective area of the sink, will be
used here.

¢) Convection to and through refractory walls. If the walls are in rediative
equilibrium, convection - gas to wall - equals conduction through the wall. The flux
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is U,A (T~ Top), where Ty is the ambient tempreature and U, is given,

conventionally, by U,= W ! :

—t—t
h,‘ K hc+r,0

The inside flux is not in fact equal to the flux through the wall, but the differ-
ence is so small compared to the radiative flux as hardly to negate the assumption of
radiative equilibrium. Without that assumption one would need to introduce an addi-
tional unknown and an additional equation,and the slight improvement in final accu-
racy does not justify the complication.

d) Radiation through peep holes or other openings, of area Ag. Rigorous al-
lowance for this usually small effect would introduce such comlexities as to prevent
obtaining a solution capable of easy engineering use. Altough the view from the out-
side through furnace openings is a view of sink and refractory surfaces seen dimly
through partly diathermanous gas, the assumption will be made that the effective fur-
nace tempreature (the inside plane of the openings) is T,. With F representing the
exchange factor to allow for wall thickness [3], the loss through the openings be-
comes AOFG(Tg“ -Ty*). Furnaces with openings large enough to make this casual
treatment inadequate are rare.

The equation of transfer from the gas is, from the above,

Q =AsO(T*~-T1")+ U ATy~ To)+ F AgS(Tg*-To*) )
An energy balance on the gas is needed. Although a single gas radiating tem-
perature has been postulated, it can be a space-mean value rather than the uniform gas
temperature of a perfectly stirred chamber; and the gas temperature measuring the gas
enthalpy leaving the chamber is usually lower. Let T, — A represent the leaving-gas
temperature, between which and the base tempreature T, the mean heat capacity is

—C—p, ¢- Then the energy balance is
0y = Hy ~ Tg-A-To) m, Cp e (2)

where 4, is the hourly entering enthalpy, chemical plus sensible, in the fuel and air
and recirculated flue gas, if any, To is the enthalpy-base temperature, and m . 1S the
mass flow rate of gas/hour. Let the same mean heat capacity be used to define an
adiabatic pseudo-flame tempreature Tp

(Tp~To)= 8, / m, Cpg

(T will in general be much higher than the true adiabatic flame temperature which
allows for a temperature-varying C,, and for dissociation). The energy balance may
then be written in the form

H -0 1,1,
H . F-i0

The additional relation needed is that giving furnace efficiency 1.
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QG -wall losses QG —[UA(T,-To)+FAqo(T,*-To*)]
n= : = ;

Hp Hp

3

Equations (1) and (2a) contain as unknowns T, an QG (assuming rules

available for finding (ﬁ)R and choosing A). Solution for these and insertion into
(3) gives the furnace efficiency. But a much deeper understanding of the nature of
furnaces can be obtained by further manipulation. Let (1) be made dimensionless by
division through by As6Tz? and let the dimensionless ratios of various tempreatures
to Tr be denoted by their primes.

QG U’A FAO
_T-4_7°4 r . e +4_7-4
aora= T T g (T T +— T =T )

Equation (2a) may be written

o
——(1-T)=1-T+A’ 5)
H

F
where A’= A/Tr. To complete the normalization, let
Q¢

H g

(1-T"9)=Q", the reduced gas efficiency

H r

oA T (1 To) Q’, the reduced firing density

UA,

AT

=L", , the refractory loss factor

FAg
Ag

= L’y, the furnace-opening loss factor

Equations (4) and (5) then become
QD' =TT+ L, (T'g=TO+L oI -To% (6)
and

Q'=1-T+A (N
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When loss factors L, and L 7 are small enough to be neglected and A' is as-
sumed zero, Q' becomes the reduced furnace efficiency - the furnace efficiency times
(1-T"p)-given by the solution of the equation

QD =(1-2)-T"* (®)

This extraordinarily simple relation, giving furnace efficiency as a function of
two dimensionless parameters, D’, proportional to the firing rate per unit of effective
sink area, and T, the ratio of sink temperature to adiabatic flame temperature, is the
basic relationship governing the efficiency of furnaces of almost any class. Perfor-
mance data on furnaces of a wide variety of types, from gas turbine combustors to
openhearth furnaces, can be put on a diagram of efficiency versus firing rate, with
sink temperature as a parameter [ 1,2b] (efficiency here refers to transfer of heat from
the combustion gases rather than to the stock).

Better agreement between prediction and experiment, however, may be ex-
pected if allowance is made for some difference between mean-radiating temperature
and leaving enthalpy temperature. Experience with furnaces of various types as well
as with computations based on the multi-zone model indicate that A varies inversely
with Hp, and the assumption that A’ is proportional to Q’is much more realistic than
treating A as constant. For a reason which will emerge later let the proportionality
constant be (1-1/d).(There is some evidence that d is about 4/3, putting A in the range
of 150 to 240C for heavily fired cracking coils or marine boilers). The energy bal-
ance, Equation (7) then becomes

T=1% )

An additional modification is desirable. In many modem high-output furnaces -
e.g., reformers and ethylene furnaces - the stock is often heated through a significant
temperature interval: and the stock temperature leaving the combustion chamber may
come to within a few hundred degrees of the leaving-gas temperature. It may readily
be shown that, if the stock has a constant specific heat and T rises from Ty ;t0T,
within the combustion chamber, the term (T’g4— T4 in Eq. (6) should be replaced
by

8T’Z3T’1r (10)
. . . . P . \
lnL_T,l(l—r) ) T ,x+T’1(l+r)+2 tan"T !(}+r) —tan‘lT 1(1-r)
Tg+T I(l—r) Tg—T 1(l+r) T‘g T’g

where T is now (T ;+ T} )/2 and r= (T1o=T1;)(T1 0+T ;). As before,
T’y =T)/Tp. In the limit as r — 0, (10) approaches (T",*—T"*.*

. * Although chemical or phase change within the stock invalidates the assumption of constant
specific heat, it is always possible to find an equivalent r to make (10) numerically correct. With H(T)
representing the stock enthalpy as a function of T varying from H\ ; at entry to H, , at exit, the true value

of Q ulotk/ OAS is

X (Hl.O—Hl.i ) N(HI.IHI_O'\f(dH(Tl)' Tg4'—T14)) .
readily evaluated graphically. The result must equal T;* times (10) or (10) with the primes missing. For
the T, and T, of interest, r can be found by trial and error. Since the ratio of r defined as (T-T)/(T4+T)) to
r from above equality depends on the H-T), relation and on T/T) and the latter is substantially constant for

a particluar furnace type, the ratio of the two r's requires but infrequent determination. It is to be
remembered that if the stock is a fluid in a tube, T in the H-T), relation is the outer tube surface
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With (10) replacing (T'g4—T'14) in (6) and with T, replaced by its value from
(8), Equation (6) becomes

3

8{1 —QJ T r
(e d
2 _ -
1%—T’1(1—r) 1 —%—+T’1(1+r) T (147) T a-n
In— ) - +2[tan~1—L—=—tan-'"—L—-
%+T'1(1—’) 1-%—T"(1+") 1_8_ l—g—
i{-gorefudo-geor

with r=0, this reduces to
[%)(dD 1=(1-L-Tyd+ L, [1 -2 —T’o)+L’o[(l —%)4—T’04] (11b)

The error in the use of (11b) rather than (11a) is less then one percent when
T1/Tg= 0.8 and r<0.05 or T1/Tg =0.9 and r <0.02. r is often many times these
values and the error mounts rapidly.

If loss coefficients L°, and Ly are both zero, (11b) has the same structure as
(8), with (Q/d) replacing Q' and (D’d) replacing D’. Thus the form of relation chosen
for A has permitted inclusion of allowance for it without increasing the number of
dimensionless groups.

The furnace efficiency 1, when there are wall losses, may be shown from (3)
to take the form

n_Q/d L, (, Q7d) L% Q4 74
d 1-T, (D'd)[l 1—T'0] (D'd)(l—-T’o)[(l a) 10 (12)

The desired relation between efficiency 1 and reduced firing density D’ - or

rather between 1/d and D'd - is obtianable from (11a or b) and (12) considered as
parametric equations in Q/d. They express the relation

Wd=£(dD’, T;" (or T"y and r), L’, and L") (13)

which is in a form involving no commitment as to what value will be assigned to d,
the measure of the difference between radiating and enthalpy temperature of the
combustion gases.

3. OVERALL FURNACE PERFORMANCE - GRAPHICAL
PRESENTATION

To indicate the character and use of relation (13), three graphs have been pre-
sented. Figure 1 shows, on logarithmic coordinates, the consequences of allowing
for wall losses, for the case of L g and r both zero, and for T3=1/8, T"; =0.5, and
L%=0.02 ( arealistic wall-loss coefficient). The lower curve is the furnace efficiency,

temperature, not the bulk temperature of the fluid. Enough is generally known in advance to construct an
H-T, diagram allowing for temperature drop through the fluid film and tube wall.



H. C. Hottel 173

efficiency, going to 0 when the normalized firing density drops to 0.015, * passing
through a
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Fig. 1. Effect of wall-loss factor L’, on combustion chamber performance. L, =0.02; T", = 0.5:T9=1/8

maximum, and dropping at high firing rate. The top curve is the sum of efficiency
and fractional wall loss. The middle curve is the no-wall-loss efficiency, which
increases continuously as the firing rate drops, and at D’ — 0 is asymptotic to (1 -
T'D/I(1-T").

Figure 2 shows, on cartesion coordinates, the (1)/d) versus D‘d relation, and
gives the effect of sink temperature (T =0.2 to 0.7) and L, (0.02 and 0.04).

The same picture on logarithmic coordinates is much more useful, Figure 3. Its
importance is that in this form the relationship may be used to correlate and extrapo-
late furnace data without concern for the sometimes difficult technique of accurately
evaluating the quantity Ag. Let us assume that furnace performance data are available
in the form of effeciency 1 versus firing rate Hp. The quantitaties Ty, Ty, Tr, U A,,
Ag, F are known or readily calculable, and a vlaue of Ag sufficiently accurate for the
determining the not too important quantity L, and L’ should also be calculable. Let
the efficiency 1) be plotted vs Hp/GT 7*(1~T"p) on transparent logarithmic paper
which matches Fig. 3, and let the plot be supenmposed on an equivalent of Fig. 3
which has been constructed for the values of r and L ‘o which characterize the furnace.
Let the plot be displaced vertically and horizontally until tha data fit the proper 7"
and L, curves. The relative vertical displacement of the two plots yields the value of
d, their relative horizontal displacement yields the value D'd/[HE/0T g (1-T")]
which is d/Ag. The two quantities d and Ag are characteristic of the furnace; one is an

* (@D Ynoo=IL (T =T oL oT =T o H(1-T"); (@ /d)q0=1-T
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Figure 2. Efficiency vs firing density for 2 values of the wall-loss factor L”,.
T’ =reduced sink temperature, T}/Tr. L, =0, r=0.
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empirical constant taking account of A, the other a measure of the many factors
affecting radiative exchange.They permit a computation of what will happen under
other furnace operating conditions (provided these don't change the general character
of the flow pattern or the system's radiation geometry); and when determined for
each of several furnaces in a particular class they lead to an empirical determination of
the effects of design variables on performance For predictions requiring no prior
data, however, it is necessary to be able to calculate Ag from first principles, and this
depends primarily on the total-exchange area the evaluation of which will now be
considered.

4. THE TOTAL-EXCHANGE AREA

Given: a gray isothermal gas volume enclosed by an isothermal sink surface A
and by a refractory surface A, in radiative equilibrium. The net flux from gas to sink
is T}ﬁo(T’g“— T"14) where GS| is the total-exchange area. The restriction must be
imposed that the gas and two surfaces are each treated as a single zone, implying not
that all of surface A, for example, is segregated into a single area but that a single
mean view that A| has of A, can be used in evaluating all of the radiation emitted or
reflected from A toward A,. The total-exchange area GS allows for multiple
reflections off all surfaces and for assistance given by the refractory in absorbing gas
radiation and reradiating a part of it to the sink. In the model under discussion it is
clear that GS carries a major burden of making the model agree with reality. Many

degrees of complexity exist in evaluating G S , and the engineer has the choice of

advancing as far along the path as the importance of his problem warrants.
It may be shown that the total-exchange area depends on sink emissivity and
on the inter-zone direct-exchange areas (lower case letter pairs)

- 1

S 1= 1 —El ) 1

+
A€y

(14)

g5 + .

gsr + =
5.8
with 851 EAI [eg(Lm,])] and EEAr[eg(Lm,r)] and 8rs1 =AL (1- [eg(Lm,m,rl)] }.
Here the gas emissivity €, is written to indicate its dependence on mean beam length
L,,, and the latter in turn to indicate that its value depends on the source and sink of

radiation. If the three €,'s are assumed representable by a single gas emissivity
applicable to the whole enclosure, (14) becomes

- A
GS,| =1 I (15)

;_ 1+ Ar/Al
€ L+e /(1-€)F,

This ancient relation* was replaced early by a simplified version [5] based on
what later became known as the speckled-furnace approximation. If A; and A, are

*Tts black — sink equivalent appeared in 1928 [4], perhaps earlier.
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intimately mixed over the surface of the enclosure rather than more or less segregated
the view factor either surface has of A} is A}/(A; +A,). Subsituttion of this value for
F,1 in (15) together with the replacement of A| by CAr and A, by (1-C)Ar, where C
is the fraction of the total envelope area Ay which is "cold” (i.e., which is A}), yields
the very simple relation

GS |=——L— (16)

If instead of A and A, being intimately mixed A, lies in a single plane, Fy, be-
comes 1 and, since A1F,=A, /F., Fr is A}/A, or C(1-C). Substitution of this into
(15) yields a result which may be shown to have the structure of (16) except that the
parenthesis in the denominator is now multiplied by

1-¢
)

The object of converting (15) to (16) or to (16) modified has of course been to
dodge the often tedious formulation of F,; (or £, ). From the two results which ap-
pear to be limiting cases it is tempting to seek an interpolation procedure, i.e., to find
a function by which to multiply the parenthesis in (16) which varies from 1 for
speckled furnaces to (16a) for the case of A| in a single plane.

It may be shown that Eq. (15), with A; and A, replaced by CA7 and (1-C)A7,
becomes
GS, _GS, 1

A_l-ECAT_l_+_1.—1 C I:J_e +F,1(1-€,/C) (17
€ (&g Ceg+F 1 (1—gp)

The bracketed term can be written in a form more nearly symmetrical with re-
spect to C and (1-C) by substitution of the exchange area ¥ for A|F;, (=A, F,{) to
give -

[eg/cm —€,/C) Ir JA7C(1 @} %)

g, +H(1—eg) Ir [ATC(1-0)

The term takes the three limiting (?) forms

(@) () (c)
If A lies in a single If the walls are If A, lies in a single
plane,(C< 1/2), speckled, (0<C< 1) plane, (C>1/2)
substitution of substitution of substitution of
F1,=1 yields Fa=Cor Fr1=1yields
Fi,=1-Cyields
1—¢ 1 - (1-C)/C
=1 [1=1 (=178l

1 -Ce, T 1-£,(1-0)
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The first two of these three results have already been given. Since F|, changes
from (1-C) for case (b) above - the speckled system - to 1 for A; segregated ina
plane, let us make the heuristic assumption that a term S - called the speckledness -
measures the shift from complete speckledness to A; in a plane, according to the re-
lation

Fi,=1-SC
or _ C<1R (19)
Ir JAr=C(1-SC)

with S =1 for a speckled enclosure and 0 for A-segregation. Substitution of this into

the bracket of (17) gives
1 -e,-S(C—-¢))
= — g ")
(1= [1 ~Ce,—SC(1 -eg)] 20

Values of S=1 and 0 substituted into (20) yield the results of cases (b) and (a)
above respectively.

Similarly, since F,| changes from C for the speckled system to 1 for A, ina
single plane, we make the parallel assumption that S’ measures the shift from speck-
ledness to A,-segregation according to the relation

Fy=1-S(1-C)
or _ c21p @1
F/Ar=(1-C)1-S(1-C))

with §’=1 for a speckled enclosure and 0 for A, in a plane. Substitution of this into
the bracket of (17) give

0 =[g+(1 —€,/C)(1=S (1 4))] 22)

£,/C +(1~£,)(1-S (1-C))

Values of §’=1 and 0 substituted into (22) yield the results of cases (b) and (c)
above, respectively.
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Figure 4. Evaluation of ratio of Sink-refractory direct-exchange area to total furnace envelope area, in
terms of fraction cold C, and speckledness S.
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In Fig. 4 the value Ir /A7 appears as a function of C for the three limiting

values:
speckled-wall enclosure, lower parabola (§=5§ '=1)
A in a plane, upper left straight line (S=0)
A, in a plane, upper right straight line (5'=0)

The values of Tr-/AT acoording to (19) and (21) are given in Fig. 4 at S and §'
of 1/4, 1/2, 3/4. The question arises as to the meaning of these curves intermediate
between S(or $") = 1 and 0 where the meanings are quantitatively identifiable. Or if
the questions is rephrased, does the S-concept have utility in quick identification of Ir
for use in (17) to evaluate GS; ? How significant is an error in Tr/AT ?

An examination of a few geometrical shapes is illuminating:

1. Spheres. The view that A, has of A, depends on areas only, not on location.
(A1F1,=A1A,/Ap). No matter what the disposition of surfaces or their degree of
segregation, S=1=25", and all spherical enclosures are in the "speckled" category.

CYLINDERS

\\ N

1/8 174 172

1/Number of Segments

Figure 5. Effect of division of the surface of various enclosures into A (sink) and A, (refractory) on the
speckledness necessary to predict the exchange area A, F 1(=AF, ).
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2. Long cylinders. Figure 5 shows two sets of cylinders, C=1/2 and 1/4, with
A| successively divided into smaller segments symmetrically disposed. The value of
S needed for the known value of Ir /Ay is plotted versus the reciprocal of the
number of segments into which the surface is divided. Note that division of A; and
Ar into only two segments each is almost sufficient to put S above 0.9.

3. Cubes, C=1/2. When three of the six faces are A, the only two possible
arrangements will yield an S of 0.8, cases (a) and (b). Case (c), the four sidewalls
symmetrically banded, with A, occupying one-half the area, and the roof and floor
speckled. The overall § is 0.856. When this case is modified to (d), with A
occupying all opposite sides and a speckled half of the roof and floor, §=0.867. But
when a value of C=1/2 is reached (e) by a plane parallel to one of the faces, with all
A, on one side of it, S =4/3. It becomes obvious that S values of 0 and 1 are not
bounding values (see next case).

4. Rectangular parallelepipeds, C= 1/2, A| and A, on either side of a plane
parallel to one face. It may be shown that in this case §=2-2/{1 + H(1/W + 1/L)]. The
larger S the poorer the performance. When H/(W + L) is small, S is small, zero in the
limits as H — O(the case of infinite parallel planes). Under these conditions A, makes
a maximum contribution to the transfer of heat to A(. As H increases to 1/2W, with
L=W, § becomes 1. With H great compared to Wor L, S is increasingly greater than
1. Actual furnaces of such geometry as to make §> 1 are rare, and should be.

A study of the cases presented justifies the conclusion that for most furnace
chambers S, which is near 1 unless C is small (when A| may be in a single plane),
may generally be estimated within 0.2 on the basis of a qualitative examination of the
chamber. To examine the accuracy to which § need be established, GS, /A, was

evaluated for the case of £, =0.9 and €, = 0.3, realistic values for cracking coils and
reformers. Figure 6 shows curves for S=5'=1 and for § =0 (C < 1/2) and

S’'= 0 (C> 1/2). Since the maximum difference between the two curves is only
about 10% at C=0.4, it is clear that estimation of S to within 0.2 should be adequate

for most design purpose, and that in consequence it should rarely be necessary to
evaluate F,| rigorously.

1.0
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Figure 6. Example of the effect of the variation of speckledness from 0 to 1 on the relation between total
gas-sink exchange area and "cold" fraction of a furnace chamber. (€, =0.9; £,=0.3).



H. C. Hottel 181

It is interesting to note that Lobo and Evans [6], in an early application of the
equivalent of Eq. (15) to cracking-coil furnaces, recommended a procedure which

can be shown to be the equivalent, in Fig. 6, of assuming that GS /CA7is uniquely

determined by C. The relation recommended was the equivalent of assuming that

S =0 for C up to 1/3, that S undergoes transition from O to 1 as C varies from 1/3 to
1/2, and that S=1 from C = 1/2 to 1. The transition is shown as a dotted line in

Fig. 6. In Fig. 4, the Lobo and Evans recommendation is equivalent to following the
top line from the left at C=0 to C = 1/3, dropping from there to the S =1 curve at
C=1/2.

5. EFFECT OF NON-GRAY GAS ON GS

Although refractory surfaces are in overall radiative equlibrium, they are capa-
ble of absorbing radiaton from a gas and then reradiating it with a different spectral
distribution, some of the radiation passing through the spectral windows of the gas
directly to the sink A{. The mixed-gray-gas assumption [7,2c] is consequently more
realistic than the gray-gas assumption on which Egs. (14) and (15) are based.

The simple mixed-gray gas is a gray-plus-clear system, with a, and (1-ag) rep-
resenting the energy-fractions of the black-body spectrum in which the gas is gray
(or the absorption coefficient is constant) and clear, respectively. The quantity a, is
obtained from a determination of gas emissivity €, _at the mean length L,, which

characterizes the enclosure, and of €g 2, at twice that length.

(Eg L )2
q=—2n_ 23
g 2€8vLm—€3-2Lm ( )
The rather involved derivation [2d] leads to a reasonably simple expression for
GS, . '

GS = Az 24)

I
Cey e,, a, a, Ce +(1-C),

Note that for a gray gas a,= 1, and (24) reduces to (16).

The new subscript e on gas emissivity requires explanation. For a gray gas,
emissivity and absorptivity are the same; and the net gas-sink flux is the black-body

emissive-power difference (Eg —E ) multiplied by a GS; dependent on €,. Fora
non-gray gas E, and E are separately multiplied by different values of GS , based

on gas emissivity and gas absorptivity, respectively. This complication may be
avoided, however, by using a modified gas emissivity in (24), equal to the value at
the arithmetic mean of T, and T, then multiplied by the factor [1 + (a’+ b-c)/4] which

allows primarily for the way emissivity varies with absorption strength and
tempreature [6.2c].

a’=dIney/dlnpL
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b=dIne,/dInT,
¢=0.65 for CO,, 0.45 for H,O, 0.5 for average flue gas.

When T < Tg /2, the simpler €, evaluated at gas temperature replaces €, . in
(24).(Note that GS|; now depends on refractory emissivity, about 0.5).

6. SPECIAL PROBLEMS ASSOCIATED WITH TUBULAR
HEATERS

The heat sinks of many furnaces are in the form of a row or rows of tubes,
often mounted in a plane parallel to and near a refractory backing wall. When so mo-
unted each tube row - backwall combination acts, with respect to radiative intercha-
nge with the remainder of the chamber - gas and walls - like a plane gray surface of
area equal to the continuous tube plane A, and of effectove emissivity given [7,2f] by

€= L (25)

1 B,
F+(1-FHF n e
Here €1 is the true emissivity of the tube metal (often taken as 0.9, lower for
high-quality alloys), B is the ratio of tube center-to-center distance to diameter, and F

is the fraction of radiation incident on the plane through 2n steradians which is inter-
cepted by the tubes. The fraction (1-F) impinges on the backwall and is reradiated or
reflected.

The fraction F, the view-factor for radiation incident on a row of tubes, is con-
ventionally evaluated for incident radiation which is isotropic, of which black-body
radiation is an example. In that case

1 1
Fio=1- E[(BZ—I)I/Z— cos-IE] : (26)

(The numerical equivalent of (26), clumsily obtained, first appeared in
1930[8]). The question unavoidably arises as to how much error is involved in using
F from (26) when the incident radiation on a tube row is non-isotropic, as from a
gray gas (the result for a real gas is then readily evaluated by use of the mixed gray
gas concept).

Consider a two-dimensionally Vinﬁnjte tube row, Fig. 7, irradiated by a slab of

Figure 7. Section through a gas slab
adjacent to a row of tubes z,/z, =B

WL I L L L L
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gas of width W and absorption coefficient K. The interchange-area “ss between
surface elements bounding the ends of the wedge-shaped space [2g] is

42 —_ rn/2
4755 2 [ ,-KxlcosBeqg2
dAcosy dy mo-[e Heoeos0do 27
Call the definite integral f3(Kx); its numerical value is given in [2g]. The value
of ss if the gas is non-absorbing is, from (27) with K =0, (2/m)f3(0) =1/2. Since

S8 clear— SS absorbing gas present = 85

one may express gs , with x replaced by W/cosy, as

Lo L 2. 28
dAcosy dy -2 x EW/cosy) (28)
As dA is moved along the plane of the tube row without changing v, the inter-
ception of the beam varies intermittently from O to 1. Let the mean fractional inter-
ception for y-oriented radiation be Fy, given by

secy <
F‘v={ B when secy <B
1 when secy =B

The interchange area ratio gs /A - the flux from gas to tubes per unit area of
tube plane and per unit black emissive power difference of gas and tube surface -- is
then given by multiplying the r.h.s. of (28) by F\, and integrating.

—_— 1

i—s= 2 J [;— - ,%fa (KW/cos\y)]Fwdsin\y (29)
0
The same interchange-area ratio for a continuous plane receiver would be (29)
evaluated with F, = 1; this may be shown to be 1-2e3(KW), where €3 is the third
exponential integral. The ratio of these two values of G S is the desired mean
fractional interception F g, of radiation from a gas slab to a bounding tube row.

1

2 J [;——%fg, (KW/cos\y):l[F\y(B)]d siny
0
Fgas= 0.5-e;(KW) 30)

The ratio F g, f/F isorropics from (26)/(30), is the correction factor to the conven-
tionally used graphs giving Fy, as a function of B. This ratio appears in Fig. 8.
Since, for the gray-plus-clear gas model, tube furnaces have a KW of the order of 1,
the correction for non-isotropic incidence on the tube row is generally small.
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If the tube-row is mounted on a backwall, F is required in (25) in order to ob-
tain the effective plane emissivity €,. The term [F + (1~F)F], representing interception

of the incoming beam plus interception of the beam returning from the refractory, is
called F. Because the returning beam is either almost-isotropic emission or almost-
isotropic diffuse reflection,

Fgas =Fgas+(1"Fgas)Fiso 3D

Clearly, the ratio Fgqus / Figo is €ven nearer 1 then the direct-radiation ratio
F gas/Fiso, and the correction can almost always be ignored.

"

)

—
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Figure.&. Ratio F,, JF,.,. (fractional interception of a gas radiation)/ (fractional interception of isotropic
radiation) by a tube raw. Tube center-to-center distance / diameter = B; optical thickness of gas a
slab=KW.

From the above discussion it is clear that in using Equation (15)-(22) and (24)
to predict the performance of a furnace with tubes mounted on walls, A, refers only
to bare refractory, Ay is the total area of the tube planes which, with their refractory
backing act like a surface at T and of emissivity €; given by Eq. (25). There remains
the evaluation of gas emissivity, which depends on the mean beam length. for rect-
angular parallepipeds varying from cubes to the space between infinite parallel planes
an average mean beam length of 0.83x4 times the system mean hydraulic radius is an
excellent approximation for absorption strengths in the range of industrial furnaces
(KLyy ~ 1-3).
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The use of the one-gas-zone model for furnace chambers in which the tubes are
enveloped in combustion gases rather than mounted in planes near refractory back-
walls raises some difficult questions, such as how to define the sink area A} and
what mean beam length L, to use in evaluating €,. No longer is the system repre-
sentable as an equivalent box, with the sink A represented by continuous plane sur-
faces. A rigorous treatment of this problem has not to my knowledge been made. The
multizone method could be used to determined the best recommentations for a one-
zone model. In the interim an approximation will be suggested.

K .
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Fig. 9. Section through one cell of a furnace chamber filled wiht spaced parallel vertical tube screens, and
its two alternative visualizaitons

Consider a furnace in which equally spaced parallel tube screens are mounted,
with firing between each pair, sufficient in number to justify the assumption that a
repeating pattern is typical. Figures. 9(a) and (b) depict the two choices avaiable for
picturing the repeating pattern. If there are several zones on either side of the one
pictured, the dotted lines are planes of no net radiative flux. Specular mirrors replac-
ing the dotted lines would make both sketches truly representative, and therefore
completely equivalent. It is tempting to visualize perfectly diffuse mirrors instead,
because for a gray-gas system with refractory surfaces in radiative equilibrium such
surfaces are the equivalent of perfectly diffuse mirrors. A little consideration shows,
however, that diffuse and specular mirrors produce different distributions of
flux particlularly when the top and bottom refractory surfaces of the enclosure are
significant. Because the scale of variation in image detail is small compared to W and
particluarly because H/W is usually large, the assumption that the dotted lines are
replaceable by refractory surfaces, thereby defining a chamber independent of the rest
of the system, is probably a good one. But it provides two alternative proceedures
between which to choose.

Step one is to replace the tubes by plane interrupted surfaces - vertical strips -
which intercept the same radiation that the tubes would. Since most of the radiation
1s from the gas, the height of a replacing strip should be the tube pitch P (the center-
to-center spacing) multiplied by the F gas of Eq. (30) - the F;, of Eq. (26), multiplied
if warranted, by a correction factor from Fig. 8. (This will hereafter be called F,
without subscript). Figures. 9(a) and (b) then become (a') and (b'). With the num-
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ber of tubes in a screen equal to », the total scren height is nP, generally a little less
than H; and the area A is 2nPF (all zreas are per unit dimension normal to the plane

of the illustra_tion). The tabulation *. :iow gives, for each of the two cases, values of
A, AL AT, F [A(=F,1A,/AT) for use in Eq. (15) or (18), and the transverse
dimension involved in determining mean beam length L,,,.

Case (a) Case (b')
Aq 2nPF(=2HF) 2nPF(=2HF)
A, 2H+W) 2[H—nPF +W]
A=A 114, 2(H+W)+nPF 20H+W)
lr
—, clear—gas valuel [41F1 nPF o A(1-Fyy)
Ar _ g Ar  H+W npE=C (=0=5=0) 2H+W)
for use in Eq. (15)
F{nP-[N(nP)2 +WZ_W|F)
H+W
Basis for L, related to
transmittances associated
with,
551 Based on W/2 Based on W
5151 Inapplicable. 5151 =0 Based on W
5pSy Based on W Based on W

Some of the terms need explanation. For case (b'), the term [\ (nP)Z+ W2 —
WIF in the expression for Ir /A comes from setting Ir (=AF},) equal to A1(1-Fp)
and from visualizing A F to consist of the exchange-area between two continuous
parallel planes of height nP and separeted by W(=+/(nPY2+WZ—W), then multiply-
ing once by F to allow for emitter area and once more to allow for receiver area.

The gas emissivity affects GS, through its appearance in the the direct-
exchange areas in Eq.(14). These may be written in terms of gas transmittance T as
follows, with primes indicating that gas absorption in present.

gs1=A - I1'—F "=A;— 515 71— 518, Uy

Er=Ar_7/_7/=Ar_ 51 Ur— S5 Uy (32)

581 =1 7= 581 T,

All exchange areas on the r.h.s. are clear-gas values; those in Eq. (14) include
gas emission or absorption. It is seen that G S  involves three different values of gas
transmittance T(=1-og, = 1€, if the gas is gray), differentiated by the subscripts
identifying the surfaces at the two ends of a beam.

Case (b'). In this case the three T's are identical, and Eq.(15) may be used di-

rectly, with €, based on a rectangular parallelepiped H high and W wide. Substitution
of values from the table into (15) yields
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1 1 1 1
—_—=—— | |—=1|+
GS, 2nPF [el ] L4 1
& T L PF B nP

£

H+W —nPF " l—¢, np_FN(nP)2+WZI_W)

(33)

As a numerical example, if nP =H, W/H=2/3, €= 0.3, B=2,and F=0.6576x
X 1.02=0.67 (use of Fig. 8), the above yields

Lot i1
=TT [[81 1]+ 1.91]
Ife;=0.9,GS | =2nPF/2.021
Case (a). Although two different 1's (and eg’s) are involved, assume tem-

porarily that a single value of €, may be used. Substitution from the table into
Eq. (15) yields

1 1 1 1
GS, 2nPF [el eg[l N 1 J

The same numerical example gives

L1 [
< "5 [[el 1}+1.511}

If£1=0.9, GS =2nPF/1.622, which is 24.5% highter than case (b').

Consider the other €, involved. T, is based on the slab width W/2, 1,, on W (the
screen effect is allowed for in the F’s). If the gas is gray and A, is dominantly on the
walls,

Trr = Tp/Tpp, O [1 - Eg(PV)] =1 _Eg(W/z)]2~

Then

€, (W/2)= 1-+ 1-€,(W) (35)
Introducing €,(W/2) into (33) instead of g.(W)

1 1 1
= {;—1]+2.286]

fe,=09, GS =2nPF/2.397, whichis 15.7 percent lower than case (b).

Clearly, the two bounds set by use of the limiting values of €, are too far apart to be
useful, and it is necessary to go back to more basic Eq. (14). Either the substitution
of exchange areas from (32) into (14) or the use of a different approach [7] yields
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1
Gs, A [81 ] o (Ir YA, (36)
] -0 — ————
Ay A, —rr’
From first principles and definitions
W =A(1-Fp)y,
Ir ,)2/A1=A1(Flr‘tlr)2
A—m /=Ar[l"(l _Frl)Tn]zAr(l_Tn)+AlFern

Insertion of these into (36) yields

1 1](1 1
GS, A [91 ] : I G G
L-(1=Fp (A JA D) +F 1

This is still general. For case (a'), from the relation before (35),1,,2=1,,=1-
—eg(W). In addition, F,=1 and A,/A| = (H + W)/nPF, and substitution into (37)

1 11 1 1(1 l-e, npF
—_— ——1 |+ =—|—+—4 Jpr
GS 1 Al [E] ] - 1 A [El Eg H+Wi| (38)
1+H+W €
nPF 1—¢

&

Numerical substitution gives

1 1 1
‘G—Tl—znPF [;"1]4’1938

Ife1=0.9, GS (=2nrPF/2.049, which is but 1.3% lower than case (b'). The
excellent agrement between Eqs. (33) and (38) is no measure of the error introduced
by the diffuse-mirror assumption (As W/H — 0, both (a') and (b') reduce to:

AI/_G—S_I =(l/e)) + (FnP/H) (l—eg)/eg). Because case (a'), Eq. (38), is simpler, its use
is recommended. It is to be remembered that both derivations apply rigorously to
two-dimensional systems; many reformer furnaces approximate that condition.
Approximate allowance for the third both derivations apply rigorously to two-
dimensional systems; many reformer furnaces approximate that condition.
Approximate allowance for the third dimension comes from adding the end enclosure
areas to A, and adjusting I in the conventioanal manner of allowing for opposed
rectangles rather than opposed strips.

There remains the term €, the effective emissivity of the strips which have re-
placed the tubes. The recesses formed by the tubes will give them an effective emis-
sivity greater than that of plane metal. In the absence of gas, the interchange area
between a tube row of true area A; and true emissivity of €” and two parallel black
plates on either side of it, of total area Ag and coextensive with the plane of the tubes,
is given by

1

i,
A2 [ AHF
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For black plates surrounding gray strips of emissivity € and area ApF replac-
ing the tubes, the interchange area is ApFe . The two interchange areas are then

equated to find €. Replacement of Ag/A; by 2B/r, where B is the ratio of center- to-
center distance to diameter, gives

£)=————— 39)

L)
n g

This is the effective emissivity of A;. When B=2 and ¢, = 0.8, F =0.66 and
€1=0.084.

Other tube arrangements. Since furnaces with one central vertical screen of
horizontal tubes between refractory walls are the complete equivalent of case (a"),
they do not present a new problem. If the central screen consists of two rows of
tubes the only change is the increase in the value of the interception factor F defining
the fraction of the central plane occupied by equivalent strips. If one cell consists of a
fired section bounded by a refractory wall on one side and a tube screen on the other,
with another cell on the other side of the tube screen, there is a lack of symmetry
which makes the replacement of the tube row by mixed strips of refractory and sink
not quite right; but such a model, if modified, is recommended. If, when calculations
of the impinging performance of that cell and the one next to it have been completed,
the flux densities onto the two sides of the tube row are different, there is then justi-
fication to for repeatining the calculations allowing for net flux between the two
cells.

The statement has been made that the gray-plus-clear gas model is more realis-
tic and by implication better than the gray-gas model; but the only solution given for
the former was restricted to the speckled box-type furnace, Eq (24). It may be shown
[2,h] that, if the constraint is put on the gray-plus-clear gas model that its refractory
surfaces diffusely reflect all radiation incident on them (thereby failing to take advan-
tage of shifting the incident gas radiation to the spectral windows of the gas on re-
emission through gas to sink), the flux is obtained quite simply from the relation.

G S (gray-plus-clear-gas model, with refractory = a, X (GS based on a gray gas of
surface perfect diffuse reflectors) emissivity €/a;)  (39)

Furthermore, the result for the real-gas real-refractory model-when it is avail-
able -, with €,=0.5, always lies roughly half-way between (39) and that obtained for
the simple gray-gas mode. The arithmetic mean of (39) and the gray-gas model is
therefore suggested for those cases, such as the ones last discussed above, which
are too complex to formulate rigorously. How important it is to make such a
correction can only be established by correlation of a considerable body of furnace
data,

Models (a') and (b') presented here have not been tested with furnace data. It
will be especially necessary to allow for the temperature difference A in tube-screen
furnaces with fuel fired between screens because of the absence of strong back-mix-
ing with a reach comparable to the total gas-flow path. The fitting by Lobo and Evans
[6] of a model similar to that based on Eq. (15) was done without the use of a A.
Whether the striking success of that model-when fitted to and applied to box fur-
naces-indicated that A was in fact zero in such furnaces or whether there were com-
pensating errors, such as the gray-gas assumption, was never established It is re-



190

H. C. Hottel

ported that that model has in a number of cases been less than satisfactory in applica-
tion to modern furnaces with interior tubes. The reason may lie in the incorrect

evaluationof GS 1.

A correlation of performance data on modem furnaces, using a model such as
that herein described, is highly desirable.

NOMENCLATURE

Ag area of furnace openings losing radiation

A (Ap) area of refrectory (of tube plane)

Ag effective sink area (old ( G S )g,¢)

Ay area of stock or sink in furnace chamber. If tubes on wall, plane
of tubes

Al that part of A| exclusive of any tube curtain across the gas-exit
passage.

a, energy fraction of black-body spectrum occupied by gray gas in
a gray plus clear mixture

B ratio of center-to-center tube spacing to diameter

C "cold" fraction of furnace enclosure are, A|/(A;+A,)

c p.g specific heat of combustion gases, mean value from gas-chamber
exit to base temperature

D’ reduced firing density, H, /GAsTF*(1-Tp")

d dimensionless constant in relation A"=(1-1/d)Q~

€3 third exponential integral, [(¢™/s3)dr

1

B black emissive power, 6T

F factor for radiation loss through walls, based on inside and
outside temperatures and area of opening

Tiso(gas) fraction of isotropic (gas) radiation intercepted by tube row,
directly plus by interception of returning beam from background

Fyy fraction of radiation from surface x which is intercepted by
surface y

BxSy direct-interchange area between gas x and surface y

GSy total-interchange area, ratio of net radiative flux between gas

zone x and surface zone y, allowing for reflections products at all
surfaces,to the difference in black emissive powers (6T%) of x
and y. Sometimes, allowance made for refractory aid without
appending sub-R.

(GS)Hr total-interchange area between gas and surface zones, with aid
given by equilibrium refractory surfaces included

H(Ty) enthalpy of stream 1 (sink stream) dependent on temperature

Hy i(o)

enthalpy of stream 1 at inlet (outlet)
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enthalpy of any entering streams affecting firing rate, including
fuel, air, and recirculated flue gas if any, above dead state of
completely burned gaseous products at 7.

convection heat-transfer coefficient on inside surface of
refractory walls

heat transfer coefficient by convection plus radiation, on outside
walls of refractory surfaces

absorption coefficient, /= !

thermal conductivity of refractory walls

dimension of parallelepipes

mean beam length for gas radiation

dimensionless loss coefficient for radiative flux through furnace
openings, F Ag/A;

dimensionless loss coefficient for heat loss through refractory
walls, U,A,-/O'AsTF3

mass flow rate of combustion gases

number of tubes in a tube row

pitch of tubes in row, center-to-center distance

partial pressure of gas-radiating components, atm.

rate of heat transfer from combustion gases

reduced rate of heat transfer from combustion gases,

( Qg / H. )1-To)

ratio of temperature rise of stock surface to the sum of inlet and
outlet temperatures, (T) o—T) YTy o+T) ).

speckledness; 1 for surface with A; and A, intimately mixed
direct-interchange area for radiative exchange between surfaces x
and y no gas absorption included

same as above, except that gas absorption is included
shorthand for E(s_xs; )

adiabatic pseudo—flame temperature, based on Eq. following [2]
mean radiating temperature of combustion gases

mean temperature of stock or sink surface

base temperature (also ambient)

overall coefficient of heat transfer from combustion gases
through refractory wall to ambient '
refractory wall thickness. Also thickness of gas slab, Figs. 7-9
shorthand for sys, ,=AF1,=A,F 1

gas absorptivity

gas-radiating temperature minus gas temperature leaving
combustion chamber

gas emisivity (effective emissivity (emittance, absorptance) of
surface Aj)

true emissivity of tube surface

furnace efficiency, (flux to stock or sink)/Hg

Stefan-Boltzman constant

gas transmissivity (= 1-absorptivity,= 1€, if gas gray)

angle. See Fig. 7 -



192 H. C. Hottel

Subscripts

i,0 inlet, outlet

r refractory

l sink surface, or stock surface
T total, applied to area

Primes

On Ty, Ty, T, designate the ratio those temperatures to Tp.
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Author's comments, after 13 years, on the paper "First Estimates of Industrial
Furnace Performance —the One - Gas —Zone Model Reexamined”

The dominant theme, combining an energy balance based on the gas — exit
temperature 7g with a rigorously formulated heat transfer relation based on a mean
gas—radiating temperature T through an empirical relation between Tg and 7 is,
by hindsight, clouded by much chaff. A few desired changes or omissions:

1. Since the energy balance and heat transfer relations force the solution of a
limited quartic in T, there is no particular merit in forcing the convection term
hA (TG —T1) into a fourth—power temperature expression for combining with
(GS1R-

2. The recommended relation between TE and T could have been stated much
more clearly: TG =ATE + (1 —a)TF, with "a" in the neighborhood of 3/4 but
increasing toward 1 as the firing rate goes down.

3. The attempted quantitative definition of "spleckledness” —material following
Eq. 18 and running to two paragraphs before Eq. (23)—was an abberation, better
forgotten. Arrangement of the sink and refractory surfaces of a furnace chamber in
"speckled" vs. sink—in—a— plane form are not bounding arrangements determining
the view factor F'1g. Speckledness is near the center of possible arrangements, and
Eq. (24) is recommended for determining (GS])R, except for metallurgical or glass
furnaces where the sink is generally planar.





