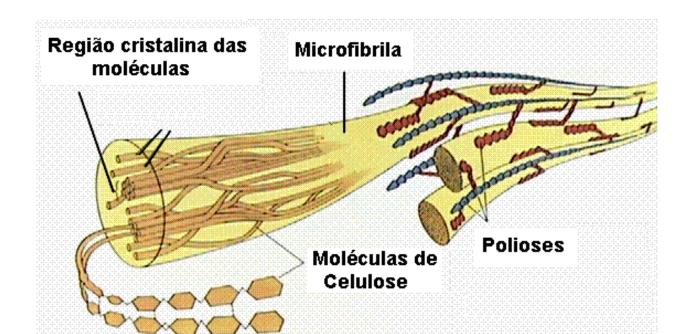
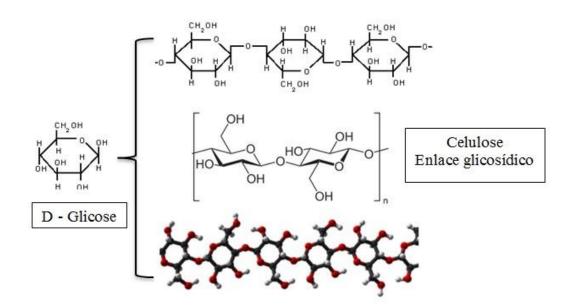

Características da biomassa



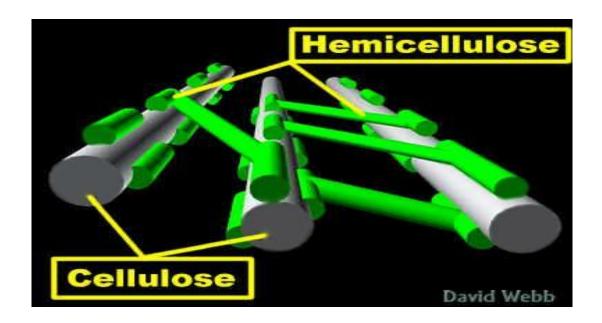
Modelo da parede celular típica do tecido vegetal (biomassa)

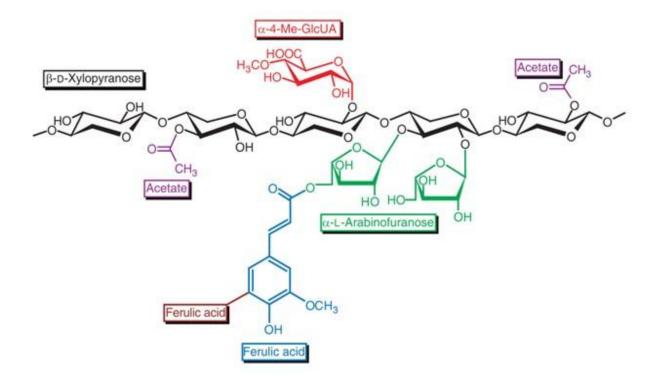
COMPOSIÇÃO QUÍMICA


Substâncias Macromoleculares:

- principais componentes da parede celular:
- Celulose
- Polioses (ou Hemicelulose)
- Lignina

CELULOSE

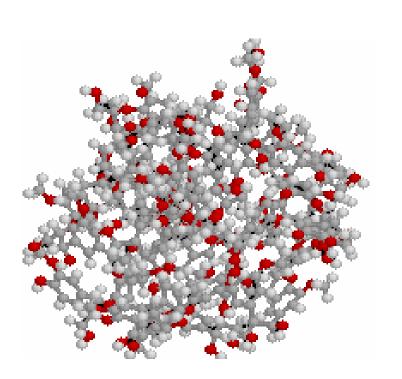

- Componente de maior fração.
- Polímero linear de alto peso molecular, constituído β-D-glucose.

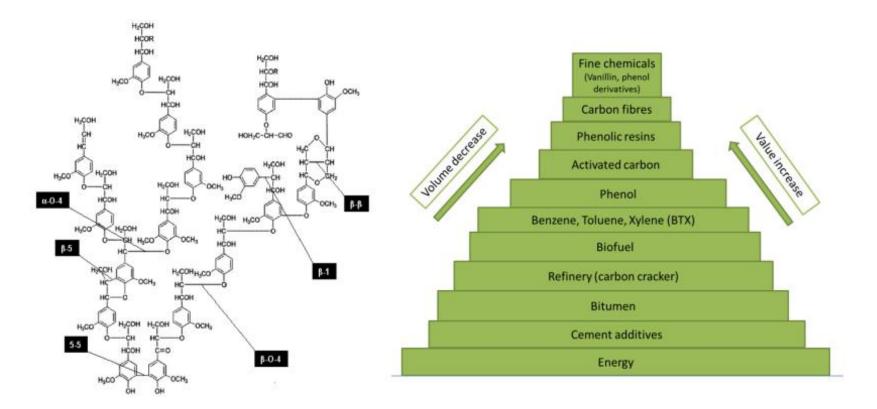


Levoglucosan: um dos produtos da pirólise da celulose

HEMICELULOSE

 Cinco açucares neutros, as hexoses : glucose, manose e galactose; e as pentoses : xilose e arabinose. Pode conter também ácidos urônicos.





Xilano: um dos monômeros mais frequentes na hemicelulose

Lignina

• constituídas por um sistema aromático composto de unidades de fenil-propano, apresentando estrutura amorfa.

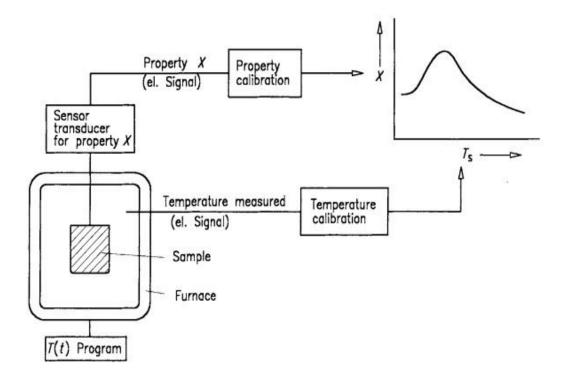
Macromolécula amorfa da lignina

$$R_{1}=R_{2}=H-\rho \text{Hidroxifenil (H)}$$

$$R_{1}=R_{2}=H-\text{Guaiacil (G)}$$

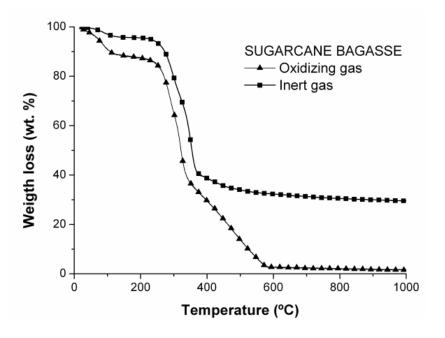
$$R_{1}=R_{2}=OCH_{3}-\text{Siringil (S)}$$

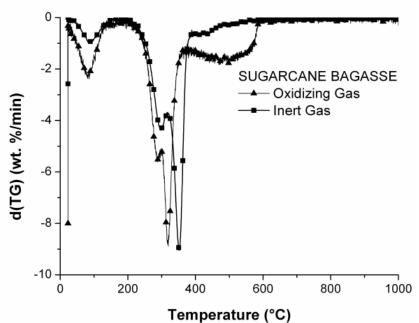
$$Estrutura representativa das unidades presentes na lignina$$


Tabela 1. Composição típica do bagaço de cana-de-açúcar (% massa, base seca).

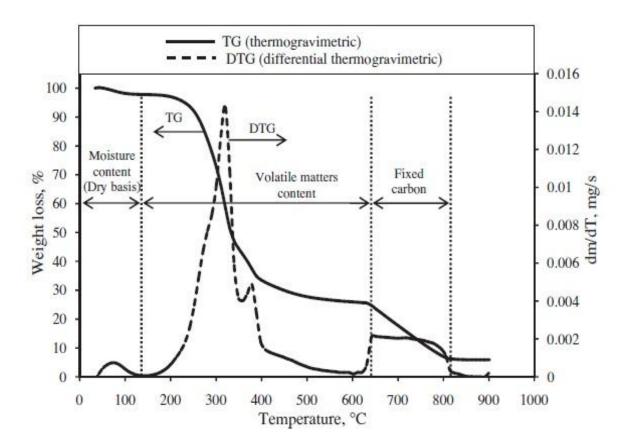
Componente	Bagaço Integral
Celulose	46,6
Hemicelulose	25,2
Lignina	20,7
Organossolúveis	2-3
Aquosolúveis	2-3
Cinzas	2,6
Umidade	47 - 52

A soma das parcelas de organossolúveis e aquossolúveis é denominada "Extrativos totais"


Análises típicas


Material	Composição	Celulose	Lignina	Hemicelulose	e Extrativos	Referênc ia
Bagaço	integral	40,0	22,0	33,0	n.d	Purchase, 1995
Dagago					n.d	Bernar,
Bagaço	integral	53,2	22,7	25		1992
	integral	46,6	20,7	25,2	n.d	7 7.
Bagaço	fibra	47,0	19,5	25,1	n.d	Trina <i>et al.</i> 1990
	medula	41,2	21,7	26,0	n.d	ai. 1770
Bagaço	integral	33,6	18,5	29,0	n.d	Nassar et al. 1996
					14,70	este
Bagaço	Integral	35,31	22,85	24,01		trabalho
					11,50	este
Palha	Integral	36,68	20,45	28,57		trabalho

Instrumento para análise termogravimétrica


- Analisa a perda de massa da amostra em função da temperatura
- Taxa de aquecimento controlada, normalmente de 10 a 35 K/min
- Atmosfera controlada, inerte ou oxidante

Análise:

- Início e fim da devolatização
- Formação do carbono fixo
- Temperatura de ignição
- Dados para constantes cinéticas (com limitações devido às baixas taxas de aquecimento)

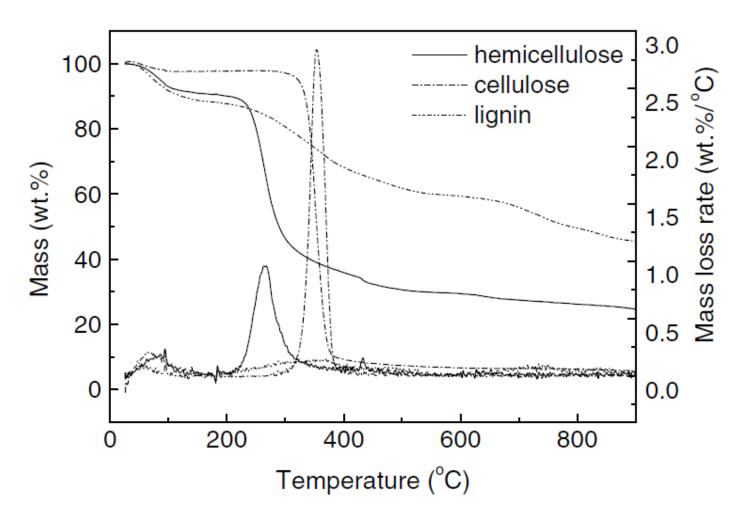


Fig. 2. Pyrolysis curves of hemicellulose, cellulose and lignin in TGA.

Análise imediata e poder calorífico de biomassa

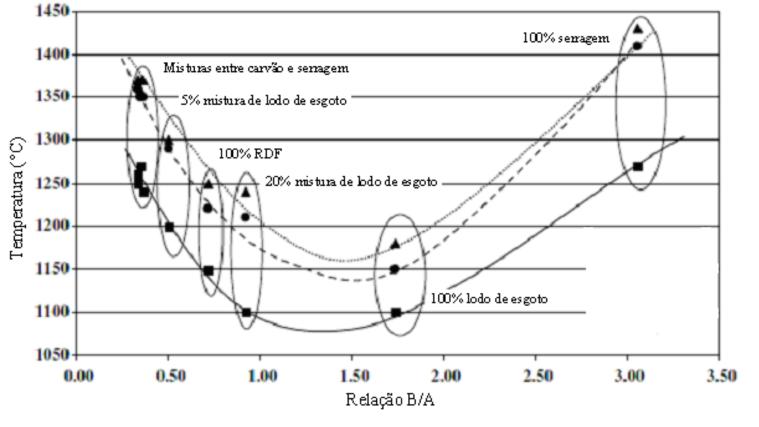
Material	Carbono fixo (daf)	Teor de voláteis (daf)	Cinzas (b.s)	PCS (daf) MJ/kg	Referência
Bagaço	12,94	87,06	n.d	19,24	Rein 2007
Bagaço	13,54	86,45	4,00	19,69	Camargo
Bagaço	12,37	87,62	2,44	19,46	Jenkins et al. 1998
Bagaço	12,26	87,73	3,61	19,19	Turn,et al. 1997
Bagaço	9,48	90,5	2,00	19,08	Filippis 2004
Bagaço	12,73	87,26	3,40	18,84	Nassar, 1996
Bagaço	19,18	80,81	5,13		Manyà, 2008
Bagaço	8,65	91,34	2,93	16,9	Resende 2003
Bagaço	6,93	90,03	2,93	17,72	este trabalho
Palha	10,1	82,25	7,5	17,1	este trabalho

daf: dry and ash free

b.s.: base sêca

Análise imediata de biomassas, em base seca.

	Composição Imediata (%)				
Tipo de Biomassa	Voláteis	Cinzas	Carb.Fixo		
Pinus	82,54	0,29	17,70		
Eucalipto	81,42	0,79	17,82		
Casca de arroz	65,47	17,89	16,67		
Bagaço de cana	73,78	11,27	14,95		
Casca de coco	67,95	8,25	23,80		
Sabugo de milho	80,10	1,36	18,54		
Ramas de algodão	73,29	5,51	21,20		
Jenkins (1990)					


Análise imediata:

- cinzas: calcinação da amostra (sêca) a 575°C, durante 3 horas
- Voláteis: amostra (sêca) colocada em forno a 900 °C, durante
 6 minutos
- Carbono fixo: por diferença:

C fixo = total - cinzas - voláteis

Composição elementar das cinzas do bagaço e da palha de cana.

Óxidos	Rein, 2007	Jenkins et al, 1998	Turn et al, 1997	Gabra, 2001	Manyà, 2008	Bagaço	Palha
$\overline{\text{SiO}_2}$	75,20	46,61	41,87	72,30	64,29	43,01	40,81
Al_2O_3	2,70	17,69	22,25	8,00	3,44	7,0	9,64
Fe_3O_3	2,60	14,14	20,90	6,20	3,69	5,23	4,47
Ti_3O_2	0,01	2,63	3,87	0,60	1,25	1,56	1,17
P_2O_5	1,46	2,72	1,13	0,90	2,89	5,82	1,77
CaO	6,90	4,47	3,50	4,20	4,84	12,75	21,15
MgO	1,70	3,33	1,45	2,30	1,33	6,70	4,49
Na ₂ O	0,60	0,79	0,26	1,00	0,31	0,20	0,54
K_2O	5,10	0,15	2,59	4,50	14,34	14,14	8,03
SO_3	2,70	2,08	0,90	-	0,97	1,68	4,62
MnO_2	0,02	3,33	-	0,10	0,54	0,53	0,68
outros	0,92	2,06	1,28	-0,10	1,41	1,35	2,58
Total	99,91	100	100	100	100	100	99,95
Cinzas	2,00	2,44	3,61	7,40	5,02	2,93	7,50

Temperatura de fusibilidade de cinzas e o índice B/A

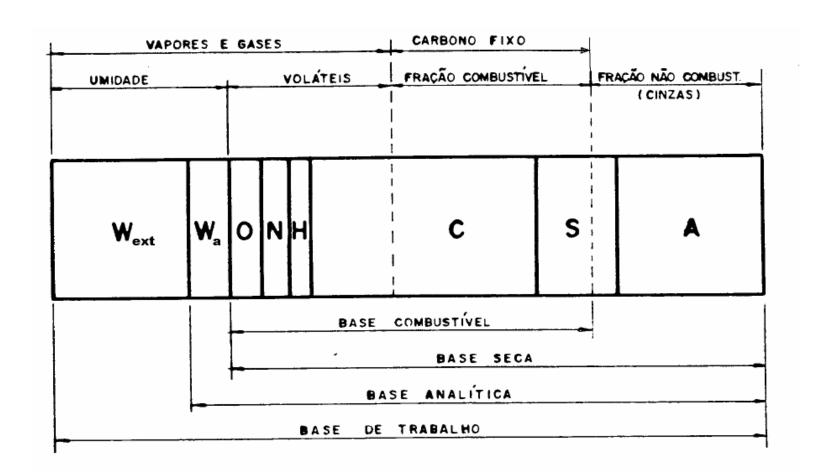
$$B/A = \frac{\%(Fe_2O_3 + CaO + MgO + Na_2O + K_2O + P_2O_5)}{\%(SiO_2 + Al_2O_3 + TiO_2)}$$

Índice alcalino

$$AI = (1/Q)Y_f^a(Y_{K_2O}^a + Y_{Na_2O}^a)$$

- AI Quantidade de óxido alcalino no combustível por unidade de energia deste;
- Q PCS do combustível;
- Y_f^a Fração mássica de cinzas no combustível;
- $Y_{K_2O}^a$ e $Y_{Na_2O}^a$ Fração mássica dos óxidos de potássio e de sódio nas cinzas.
- AI < 0,17 kg GJ⁻¹ pouca possibilidade de incrustação
- $0.17 < AI < 0.34 \text{ kg GJ}^{-1}$ média possibilidade
- AI > 0,34 kg GJ⁻¹ ocorrência de incrustação

Índices de fusibilidade e índice de álcalis calculados para o bagaço e a palha de cana.


Parâmetros	Jenkins et al, 1998	Turn et al., 1997	M. Gabra	Manyà, 2008	Bagaço	Palha
$R_{(b/a)}$	0,34	0,4	0,16	0,15	0,87	0,78
Probabilidade de formação de depósitos	baixa	baixa	baixa	baixa	alta	alta
I.A Probabilidade	0,12	0,56	2,26	3,98	2,30	3,48
de formação de depósitos	baixa	alta	alta	alta	alta	alta

Fusibilidade temperatura de amolecimento das cinzas °C. (Camargo et al., 1989)

Atmosfera oxidante.	T inicial	960
	T Final	1235
Atmosfera redutora	T inicial	915
	T Final	1130

Análise de fusibilidade das cinzas por observação:

- A análise é feita por observação de um cone feito com amostras de cinzas
 - Temperatura de início de deformação
 - Temperatura de amolecimento
 - Temperatura de início de fusão

Composição elementar da biomassa, em base seca.

33,533.		Composição Elementar (%)					
Tipo de Biomassa	С	Н	0	N	S	Α	
Pinus	49,25	5,99	44,36	0,06	0,03	0,3	
Eucalipto	49,00	5,87	43,97	0,030	0,01	0,72	
Casca de arroz	40,96	4,30	35,86	0,40	0,02	18,34	
Bagaço de cana	44,80	5,35	39,55	0,38	0,01	9,79	
Casca de coco	48,23	5,23	33,19	2,98	0,12	10,25	
Sabugo de milho	46,58	5,87	45,46	0,47	0,01	1,40	
Ramas de algodão	47,05	5,35	40,77	0,65	0,21	5,89	